
DATA CHALLENGE PHME 2026 PROPOSAL

IUT Besançon-Vesoul | Marie & Louis pasteur University (www.iut-bv.univ-fcomte.fr) 

Institut FEMTO-ST/AS2M/DATA-PHM (https://www.femto-st.fr)

E-mail: moncef.soualhi@umlp.fr

http://www.iut-bv.univ-fcomte.fr/
http://www.iut-bv.univ-fcomte.fr/
http://www.iut-bv.univ-fcomte.fr/
http://www.iut-bv.univ-fcomte.fr/
http://www.iut-bv.univ-fcomte.fr/
https://www.femto-st.fr/
https://www.femto-st.fr/
https://www.femto-st.fr/
mailto:moncef.soualhi@univ-fcomte.fr


2

Outlines

Introduction to failure prognostics and challenges

Case study description and failure scenario 

Collected data and visualization 

Evaluation metrics and scoring function
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Remaining Useful Life (RUL) Actual time (tc) Failure time (FT)

Healthy mode Degradation mode Failure mode

Fault detection

Remaining Useful Life techniques 

Failure prognostic is the analysis of the symptoms of faults to predict future condition and residual life within design parameters 

[ISO 13372, 2012 1.5]

Remaining useful life estimation for failure prognostics
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Remaining Useful Life techniques 

✓ Pre-determination of failure threshold

✓ Appropriate for incomplete data

Recursive RUL estimation

ꭙ Difficult in non-stationary conditions

ꭙ Reduced modeling quality due to low data
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Historical failure scenario

Regression model
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prediction

RUL
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New system

Thr

Direct RUL estimation

✓ Perform high accuracy prediction

✓ Adaptive to the system variation

ꭙ Require large amount of similar data

ꭙ Take a lot of computation time

H
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Learning RUL
Direct prediction of 

RUL

Historical failure scenarios New system

RUL

Similarity-based RUL estimation

✓ Easy implementation and fast computing time

✓ Perform good predictions

ꭙ Sensitive to condition variations

ꭙ Require large amount of similar data

H
I

Historical failure scenarios

Identification of most similar scenario

H
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RUL

Assignment of similar RUL

New system
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Address challenges in the proposed data

1

2

3

• Addressing the variability of end-of-life on predictors: failures at different

times with high variance level exist.

• Addressing the variability of degradation speed: we can find a high life cycle 

with a rapid degradation trend and sometimes with a slow degradation 
trend, and reversely. 

• Addressing the uncertainty of predictions of end-of-life amplitudes: the

prognostic indicator failure time does not end at the same time.
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Case study – subway door

Current
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Door closed

Door opened
Opening 
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Case study – subway door

𝑋max 𝑡𝑠𝑛 = 1− 𝑝 𝑡𝑠𝑛 ⋅ 𝑋max 𝑡𝑠𝑛−1

Closing 

operation

Opening 

operation

MAX 

amplitude

MIN 

amplitude

Complete cycle of the door

0°

X°

In this case study, to generate the failure scenario, the degradation time as well as

the negative impact of the random shocks are simulated the Everest XCR
controller.

During the closing activity of the door, a degradation on maximal position degree

is triggered randomly over time.

Xmax tsn and Xmax tsn−1 are the maximal position degrees of the subway at

the 𝑛th and the (𝑛 − 1)-th times, respectively.

p tsn is the degradation percentage, and it is chosen randomly from predefined

ranges to reflects the severity ' of degradation.

tsn is the occurrence time of the shocks and it reflects the different degradation

rates (degradation speed) of the door.

The variation of these two parameters allows to generate multiple possibilities of
failure, representing a dynamic behavior of the system degradation.
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Illustration of degradation generation

Xmax tsn = 1− p tsn ⋅ Xmax tsn−1

Pn[5:15]%       tsn[60:1000]s       → pn = 14% &  tsn = 700s      → Xmax(tSn) = (1-0.14)x20,23 = 17,39°

...

7200s+4000s+1000s+.......

7200s+4000s+1000s+.......

Failure threshold

On the last range of time, the time 

will be chosen in a for loop until the 
indicator reaches the failure 
threshold 

Xmax = 90°

Represent the maximal value of the 

indicator and the optimal good 
condition

17,39°

Represent the random first time where the fault occurs

P1[2:5]%.        ts1[3600:10000]s  → p1 = 3% &  ts1 = 7200s     → Xmax(ts1) = (1-0.03)x90° = 87,3°

7200s

87,30°

P2[4:9]%         ts2[3600:10000]s  → p2 = 8% &  ts2 = 4000s     → Xmax(tS2) = (1-0.08)x87,3° = 80,31°

7200s+4000s

new randomly chosen time after first time finished and so on ... 

80,31°

P3[20:30]%     ts3[500:1500]s     → p3 = 25% &  ts2 = 1000s   → Xmax(tS3) = (1-0.25)x 80,31° = 20,23°

7200s+4000s+1000s

20,23°
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Illustration of degradation generation

Example of a health indicator using the MAX value as feature of position cycles
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Address challenges in the proposed data

1

2

3

• Addressing the variability of end-of-life on predictors: failures at different

times with high variance level exist.

• Addressing the variability of degradation speed: we can find a high life cycle 

with a rapid degradation trend and sometimes with a slow degradation 
trend, and reversely. 

• Addressing the uncertainty of predictions of end-of-life amplitudes: the

prognostic indicator failure time does not end at the same time.
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Operating conditions of the INGENIA platform

Velocity Acceleration Deceleration Experiments Acquisition parameters

15 18 18 22 scenarios of degradation
Hardware: INGENIA servomotor

File extension: .csv

Time:  600 samples/file

10 15 15 22 scenarios of degradation

15 18 15 23 scenarios of degradation

Information on collected data

Collected data (.csv files) Description

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8

Time POS_REF POS_FBK VEL_FBK VEL_FBK FBK_DIGHALL FBK_DIGENC1
DRV_PROT_VBU

S

Duration of 

acquisition

Reference of 

desired position 

Feedback of 

actual position 

Reference of 

desired velocity 

Feedback of 

actual velocity 

Feedback of 

digital hall

Feedback of 

digital encoder

Voltage bus level 

of the driver

Column 9 Column 10 Column 11 Column 12 Column 13 Column 14 Column 15 Column 16

MOT_PROT_TEM

P
FBK_CUR_A FBK_CUR_B FBK_CUR_C

DRV_PROT_TEM

P
FBK_VOL_A FBK_VOL_B FBK_VOL_C

Temperature of 

the motor

Feedback 

current A

Feedback 

current B

Feedback 

current C

Temperature of 

the driver 
circuitry

Feedback 

voltage A

Feedback 

voltage A

Feedback voltage 

C
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Structure of folders of data sets

There is 47

training failures :
data are from
begining of life

to failure

An opening and a closing file acquisition constitute a cycle Each file have 600 of points or 600 of points/position

A RUL file/failure

is provided at
the end of each
folder
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Illustration of current and voltage data

a) RMS health indicators constructed from the three-phase voltage signals

b) RMS health indicators constructed from the three-phase current signals

0 500 1000 1500 2000 2500

Life cyle

12.6

12.8

13

13.2

In
d

ic
a
to

r 
a
m

p
lit

u
d

e

RMS indicator of voltage of the 8
th

 trajectory

RMS indicator of voltage (Va)

0 500 1000 1500 2000 2500

Life cyle

12.2

12.4

12.6

12.8

13

13.2

In
d

ic
a
to

r 
a
m

p
lit

u
d

e

RMS indicator of voltage of the 8
th

 trajectory

RMS indicator of voltage (Vb)

0 500 1000 1500 2000 2500

Life cyle

12.8

12.9

13

13.1

13.2

13.3

In
d

ic
a
to

r 
a
m

p
lit

u
d

e

RMS indicator of voltage of the 8
th

 trajectory

RMS indicator of voltage (Vc)

0 500 1000 1500 2000 2500

Life cyle

0.5

1

1.5

2

In
d

ic
a
to

r 
a
m

p
lit

u
d

e

RMS indicator of current of the 8
th

 trajectory

RMS indicator of current (Ia)

0 500 1000 1500 2000 2500

Life cyle

0.5

1

1.5

2
In

d
ic

a
to

r 
a
m

p
lit

u
d

e
RMS indicator of current of the 8

th
 trajectory

RMS indicator of current (Ib)

0 500 1000 1500 2000 2500

Life cyle

0.4

0.6

0.8

1

1.2

1.4

In
d

ic
a
to

r 
a
m

p
lit

u
d

e

RMS indicator of current of the 8
th

 trajectory

RMS indicator of current (Ic)



14

Illustration of position data
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Evaluation metrics

• Precision Metric

The precision metric quantifies the prediction error's dispersion around its mean. Given 𝑇 be the total prediction, it can be calculated based on the 
following equation: 

1

T
σt=1
T ϵ t − തϵ

ϵ is the error at time t, defined as the difference between the real RUL and the estimated RUL at time t: RULreal t − RULtest t
തϵ is the mean of all errors . 

T is the total number of prediction points. 

To implement this, lets assume that we have only 5 observations for a test failure scenario. Here, we calculate the metric for all predicted values of the 

gived observations and avoid to use only the last value. 

• Root Mean Square Error (RMSE) Metric Calculation 

The Root Mean Square Error (RMSE) is a standard way to measure the error of a model in predicting quantitative data. The RMSE is calculated using 
the following formula: 

𝑅𝑀𝑆𝐸 =
1

T
෍

t=1

T

ϵ t 2
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Evaluation metrics

• Accuracy Metric

The Accuracy (Acc) metric quantifies the precision of Remaining Useful Life (RUL) predictions over a series of prediction poi nts, emphasizing the 
exponential penalty for deviations from the actual RUL values. This metric is calculated using the following formula:

Acc = 
1

T
σt=1
T e

− ϵ t

RULreal t

• Prognostic Horizon
The Prognostic Horizon (PH) measures the period before the actual end-of-life (EoL) during which the predicted Remaining Useful Life (RUL) values 

consistently stay within a specified tolerance of the true RUL. This metric is crucial for effective predictive maintenance p lanning. The Prognostic 
Horizon is defined by the equation: 

PH = tEoL − tα
tEoL is the actual end-of-life time. 
tα is the earliest time at which the predicted RUL remains within the acceptable bounds consistently. 

The acceptable bounds are defined by the formula: 

RULreal t − α × tEoL, RULreal t + α × tEoL,

Where α is a percentage that defines the tolerance range around the true RUL. 
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Evaluation metrics

• Normalization of Each Metric 

The idea is to use an exponential function that maps the metric value to a range between 0 and 1, with the function asymptoti cally approaching 1.

• Normalized PH 

as its values increase, and inversely for RMSE and Pre, where the function should asymptotically approach 1 as the RMSE value decreases. 
For Prognostic Horizon (PH): 

PHnorm =
tEoL − tin

tEoL

• Normalized Root Mean Square Error (RMSE) or Precision (Pre)
Given that lower RMSE values are better and we want the normalized value to approach 1 as the RMSE value approaches 0, we sho uld consider a 
function that gently decays from 1 to 0 as m increases, while meeting the specific value requirements at : 

Precnorm, RMSEnorm = f m =
a

mb + c
+ d

Where a, b, c and d can be optimized using fsolver function with initial values (scipy.optimize package)

• Combine all metrics: Combinemetricsetric

Score =
ACC + Precnorm + RMSEnorm+β × PHnorm

3 + β
Where β is applied for a balance between the (precision, accuracy, root mean square error), and the prognostic horizon

Soualhi, M., Nguyen, K. T., Medjaher, K., Nejjari, F., Puig, V., Blesa, J., ... & Marlasca, F. (2023). Dealing with prognostics uncertainties: Combination of direct 

and recursive remaining useful life estimations. Computers in Industry, 144, 103766.
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Evaluation metrics

Soualhi, M., Nguyen, K. T., Medjaher, K., Nejjari, F., Puig, V., Blesa, J., ... & Marlasca, F. (2023). Dealing with prognostics uncertainties: Combination of direct 

and recursive remaining useful life estimations. Computers in Industry, 144, 103766.

Score =
ACC + Precnorm + RMSEnorm+β × PHnorm

3 + β
Where β is applied for a balance between the (precision, accuracy, root mean square error), and the prognostic horizon.
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Other information

• The overall and detailed description (with this presentation) will be online at the conference website

• Instructions for the submission of results are provided on the announcement page

• There will be a deadline to submit final results

• Prizes will be awarded to the first three winning groups 

• Python/Matlab code will be provided to calculate results and metrics

• Data will be available on different servers

....
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Thank you for your attention!
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