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A Comparative Study of Semi-Supervised Anomaly Detection
Methods for Machine Fault Detection

Dhiraj Neupane, Mohamed Reda Bouadjenek, Richard Dazeley, and Sunil Aryal

School of Information Technology, Deakin University, Waurn Ponds, VIC 3216, Australia
{d.neupane, reda.bouadjenek, richard.dazeley, sunil.aryal}@deakin.edu.au

Abstract
Industrial automation has extended machines’ runtime, thereby
raising breakdown risks. Machine breakdowns not only have
economic and productivity consequences, but they can also
be fatal. Thus, the early detection of fault signs is essential
for the safe and uninterrupted operation of machinery and
its maintenance. In the last few years, machine learning has
been widely used in machine condition monitoring. Most
existing approaches rely on supervised learning techniques,
which face challenges in real-world scenarios due to the lack
of enough labelled fault data. Additionally, models trained
on historical fault data might struggle to detect new and un-
seen faults accurately in the future. Therefore, this research
uses semi-supervised Anomaly Detection (AD) techniques to
detect abnormal patterns in machines’ vibration signals. As
semi-supervised techniques are trained on normal data only,
they do not require faulty samples and abnormal patterns are
detected based on their deviations from the learned normal
pattern. We compared the effectiveness of seven state-of-the-
art AD methods, ranging from traditional approaches such as
isolation forest and local outlier factor to more recent Deep
Learning (DL) approaches based on autoencoders. We evalu-
ated the effectiveness of different feature types extracted from
the raw vibration signals, including simple statistical features
like kurtosis, mean, peak-to-peak, and more complex repre-
sentations like the scalogram images. Our study on three pub-
lic datasets, with unique challenges, shows that the traditional
methods based on simple statistical analysis have shown com-
parable and sometimes superior performance to more com-
plex DL approaches. The use of traditional approaches offers
simplicity and lower computational needs. Thus, our study
recommends that future researchers start with the traditional
approaches first and then jump to DL methods if necessary.

Dhiraj Neupane et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.
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Figure 1. Proportion of machine components failure

1. Introduction
Rotating machinery is a fundamental component of modern
industry and has a wide range of applications in practical en-
gineering, including electric machines, trains, turbines, aero-
engines, and so on (Jiao, Zhao, Lin, & Liang, 2019). The
ubiquitous presence of these devices, from simple mechan-
ical systems to complex nuclear power plants, reflects their
critical role in modern industrial processes (Zhong, Zhang, &
Ban, 2023). With the advancement of technology and produc-
tive growth in modern industry, there has been an increased
reliance on machinery, making them frequently operated un-
der adverse and challenging conditions and increased risks
of failures. If unattended timely and accurately, these fail-
ures can have significant consequences, including decreased
production efficiency, financial losses, and, in extreme cases,
the potential loss of human lives (Neupane & Seok, 2020).
Common failures in electric motors include bearings, stators,
rotors, and gearboxes. Figure 1 shows the failure rates of these
machinery components. These components are vital for effi-
cient power transmission and operation of machinery. How-
ever, continuous use can result in wear, cracks, and defects
of these components that can lead to machine breakdowns.
Therefore, prompt and accurate fault detection and diagnosis
are essential. Thus, timely maintenance of these components
is critical to the machine’s safe and reliable operation.

Fault diagnosis and maintenance are crucial for improving
production efficiency and reducing accident rates in mechan-
ical systems. Both the academic and industrial communities

1
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Supervised Learning ~80%
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Reinforcement Learning ~2%

Figure 2. ML techniques used for MFD

have acknowledged the significance of Machinery Fault Di-
agnosis (MFD), leading to the development of various diag-
nostic methods for practical applications (Li, Zhang, Qin, &
Estupinan, 2020). MFD has become an essential aspect of
industrial development and engineering research, and numer-
ous strategies have been developed by researchers, scientists,
and engineers through years of innovative and diligent work.

Over the last decade, Machine Learning (ML) techniques have
been widely used in MFD. A vast majority (over 80%, see
figure 2) of those MFD methods have used supervised learn-
ing (SL) approaches (Das, Das, & Birant, 2023) to classify
fault types. While such methods can detect faults previously
seen, they are unable to detect new or unseen types of faults.
Because many modern machines are operated in complex in-
dustrial environments, new types of faults can emerge over
time. Also, to train a decent model to classify different types
of faults, we need a sufficient amount of labelled data for
each fault type. The scarcity of labelled data is a challenging
problem in real-world industrial settings. Data labelling is
an expensive and time-consuming process as it requires do-
main expertise to manually annotate different types of faults.
Moreover, labelled data might not cover the entire spectrum
of possible faults, leading to a lack of diversity in the training
dataset and potentially limiting the model’s ability to general-
ize to unseen faults.

To show the aforementioned limitations of SL in MFD, we
evaluated the capability of the Decision Tree classifier using
deep features from the pre-trained ResNet (ResNet-DT) (He,
Zhang, Ren, & Sun, 2016) in detecting previously unseen
faults. We trained the ResNet-DT model for binary classifica-
tion (faulty vs. normal type) by excluding certain fault types
from the training set, while including all fault types in the test
set. The objective is to distinguish between normal operation
and any fault condition, rather than identifying specific types
of faults. We used 10 runs of a random 70-30 train-test split
for each combination of omitting 𝑖 = {0, 1, 2} fault types from
the training set. Our results, shown in figure 3, for the Case
Western Reserve University (CWRU) datasets show that the
ResNet-DT model’s performance declines significantly when
it encounters fault types that were not present during the train-
ing. In the x-axis of figure 3, labels C0, C1, and C2 represent
the number of fault types intentionally omitted during the
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Figure 3. Average F1 score of the ResNet-DT classifier from
scalogram images of vibration signals on the CWRU dataset.

model’s training phase. C0 indicates that the model is trained
with all fault types included. C1 represents the model being
trained with one fault type excluded; this is done sequentially
for each fault type (first excluding fault type 1, then includ-
ing it while excluding fault type 2, and so on). Similarly, C2
denotes the exclusion of two fault types simultaneously. The
y-axis shows the average F1-score for the classification of the
fault condition, corresponding to the different combinations
of omissions. Due to the numerous possible combinations of
omitted fault types, we calculated and presented the average
F1 score. The red dots in the figure denote the respective
average F1 score for each fault type omission. In contrast,
the green dot represents the F1 score of the Isolation Forest
(iF) based semi-supervised Anomaly Detection (AD) method
using the same ResNet deep features (ResNet-iF) trained on
half of the normal dataset. The other half is concatenated
with all fault types together. It is evident from figure 3 that
the ResNet-DT model encounters challenges in detecting un-
known faults. The trend shows a significant decrease in the
F1-score as more fault types are excluded from the training
set, underscoring the model’s limitations in recognizing un-
seen machinery faults. In contrast, the ResNet-iF’s average
F1 score shows the effectiveness of AD methods in detecting
unseen faults. The iF, trained on half the amount of the normal
state machinery signals and tested on all the fault types along
with the other remaining half of the normal data, performed
nearly equal (1̃.8% lesser) to the ResNet-DT model (trained
with 70% data as training) with no classes omitted in training.

Taking the supervised model’s ineffectiveness in detecting un-
seen faults in real-world scenarios as the motivation for this
project, we have explored the potential of semi-supervised
learning (SSL) based AD algorithms that are trained on nor-
mal data only and aim to detect unseen fault types. These
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algorithms model the profile of normal vibration signals to
distinguish faulty (or abnormal) vibration signals from nor-
mal signals. In the real-world scenario, where the availability
of normal/healthy machinery data is abundant, these algo-
rithms are very useful and can detect anomalies or faults more
easily and quickly than the SL classification models.

The use of SSL in MFD is relatively unexplored. Prior stud-
ies employing SSL techniques mostly focus on classifying the
faults only. A recent study (Zong et al., 2022) on bearing fault
diagnosis of CWRU and Xi’an Jiaotong University dataset
focused on the use of SSL. The study utilized a short-time
Fourier transform as a preprocessing step and employed SSL
with domain adversarial neural network for fault classifica-
tion and achieved an average accuracy of 96.77%. Another
study by Zhang et al. (Zhang, Ye, Wang, & Habetler, 2021)
also focused on SSL employing VAE for the classification
of bearing faults for the CWRU and University of Cincinnati
Intelligent Maintenance System dataset. With 16.67% of la-
belled data in each class, the accuracy of 9̃8% was achieved.
Moreover, a research (Zhang, Ye, Wang, & Habetler, 2020)
addressed bearing AD challenges via few-shot learning based
on model-agnostic meta-learning using CNN on the CWRU
and Paderborn University (PU) dataset. The study also fo-
cused on classifying the bearing faults using a limited amount
of data. Other than these two datasets, a study by Vos et al.
(Vos et al., 2022) employed AD for vibration-based fault diag-
nosis. Experimented on Airbus and DST gearbox datasets, the
study employed LSTM-SVM and simple OCSVM techniques.

For this research, we have used seven AD algorithms, in-
cluding traditional approaches like iF (Liu, Ting, & Zhou,
2008), Local Outlier Factor (LOF) (Breunig, Kriegel, Ng,
& Sander, 2000), one class support vector machine(OCSVM)
(Schölkopf, Williamson, Smola, Shawe-Taylor, & Platt, 1999),
and the Deep Learning (DL)-based techniques like Autoen-
coder (AE) (Ahmad, Styp-Rekowski, Nedelkoski, & Kao,
2020) and Variational AE (VAE) (Zhang, Ye, Wang, & Ha-
betler, 2019), and the hybrid approaches like ResNet (He et al.,
2016) and VGGNet (Simonyan & Zisserman, 2014)-based iF,
LOF and OCSVM, which will be described in detail in later
sections. The motive behind taking the traditional algorithms
is that, for fault or anomaly detection, it is not necessarily true
that DL architectures are always superior (Wang, Vos, et al.,
2023; Audibert, Michiardi, Guyard, Marti, & Zuluaga, 2022).
The traditional algorithms, with the simpler architectures, can
sometimes outperform the complex and deeper networks.

The organization of this article is as follows. In Section 2,
the dataset description is presented. Section 3 provides an
overview of the methodology implemented in this research,
and Section 4 presents the experimental results and analysis
of this work. Finally, the article concludes in Section 5.

2. Dataset Description
We have used three datasets for this research, two of which
are the most widely used benchmark datasets—the CWRU and
PU bearing datasets— and the other is the Health and Usage
Monitoring System (HUMS) planet gear rim crack dataset pro-
vided by the Defence Science and Technology Group (DSTG)
in Melbourne, Australia.

2.1. CWRU Dataset
The CWRU bearing dataset is one of the most widely used
fundamental bearing datasets for MFD research. It contains
experimental data collected from a test rig with four different
types of faults: inner race fault, outer race fault, ball fault, and
normal (healthy) state. These faults are artificially induced
with varying severities and load conditions. The dataset pro-
vides time-domain vibration signals, making it suitable for
MFD methods such as feature extraction, classification, and
model training (Chaleshtori & Aghaie, 2024). The dataset is
publicly available on this website 1. For this research, we have
used all four types of faults with a fault diameter of 7 mils (1
mils=0.001 inches) with all available loads from 0 to 3 HP. A
total of 413 instances were used for each class. The types of
faults used are shown in Table 1.

2.2. PU Dataset
The PU dataset, provided by the KAT data center at Paderborn
University, is a comprehensive resource for MFD and prog-
nosis research. The PU bearing dataset comprises vibration
data from experiments on six healthy bearings and 26 dam-
aged bearing sets, of which 12 are artificial damages, and 14
are real damages. The dataset provides time-domain vibration
signals, acoustic emission signals, and temperature measure-
ments, covering various fault severities and load conditions
(Lessmeier, Kimotho, Zimmer, & Sextro, 2016; Neupane,
Bouadjenek, Dazeley, & Aryal, 2024). This dataset can be
downloaded from this website 2. For this research, we have
taken five types of bearing vibration data, including two ar-
tificial fault types, two real fault types, and one normal state
data. A total of 4967 instances from each class were used.
Other information about the dataset is described in Table 1.

2.3. HUMS Dataset
The HUMS dataset originates from an extensive experimental
study executed at the Helicopter Transmission Test Facility
(HTTF) at the DSTG in Melbourne. This study was executed
with the specific aim of investigating fatigue cracking in thin-
rim helicopter planet gears, which are critical components of
helicopter transmission systems. The dataset was released as a
part of the HUMS 2023 Data Challenge. Further information
about the experimental set, data processing, and acquisition

1https://engineering.case.edu/bearingdatacenter
2https://mb.uni-paderborn.de/kat/forschung/datacenter/bearing-datacenter/
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Table 1. Types of faults and number of instances used for the
CWRU and PU datasets

CWRU (413) PU (4967)
Normal Normal
B007 KA01 (Artificial Damage [OR])
IR007 KA03 (Artificial Damage [OR])
OR007 KB23 (Real Damage [IR+OR])

KB24 (Real Damage [IR+OR])
All Faults (B+IR+OR) All Faults (Artificial+Real)

Table 2. Number of data files (records) provided for the
HUMS dataset

Day No. of records Remarks
Day 17 65 Provided Later
Day 18 68
Day 19 62
Day 20 87 Total 282
Day 21 89
Day 22 80
Day 23 72 Provided Earlier
Day 24 89
Day 25 85
Day 26 26 Total 526
Day 27 27
Grand Total 808

technique for this dataset can be found on (Peeters, Wang,
Blunt, Verstraeten, & Helsen, 2024), (Wang, Blunt, & Kappas,
2023), and (Sawalhi, Wang, & Blunt, 2024). A total of 808
four-channel planet-ring hunting-tooth average data files were
provided in two sessions (526 files [files from Day 21 to Day
27] before the data challenge and 282 files [from Day 17 to
Day 20] after the challenge). The whole dataset features 94
load cycles, out of which the last 60 cycles were released prior
to the data challenge, and the first 34 load cycles were released
later. Table 2 shows the number of records with respect to the
days of testing. In this research, we used 282 data files from
Day 17 to Day 20, which were taken as a training set, and the
remaining 526 data files from Day 21 to Day 27 were taken as
the test set. Our experiment encompassed data collected from
all four sensors.

3. Methodology Implemented
The methodology implemented in this research is consistent
across two benchmark datasets, CWRU and PU, with a mi-
nor difference in the pre-processing (PP) step for the HUMS
dataset.

Normalized (0-mean,1-std) 
Hunting_SSA (405405) 
reshape to 4095 x 99 array

Average along 99 rows 
to get Planet_SSA of 
length 4095

Hilbert & FFT
Remove gear mesh 
harmonics + 2 side bands & 
lowpass at 3.5 x harmonics

Real of IFFT

Figure 4. Preprocessing technique used for the HUMS dataset

3.1. Pre-processing
A. CWRU and PU datasets: The initial preprocessing step

of standardizing the raw vibration signals was done to
achieve a mean of zero and a standard deviation of one.
Then, the signals of length, 𝑋 (say), were segmented
into 𝑁 samples, each comprising 4096 data points. It is
important to note that the value of 𝑁 varies across datasets
but remains constant for different fault types within a
particular dataset.

B. HUMS dataset: The whole dataset consists of 808 files
of Hunting tooth synchronous averaging (H-SSA) with
405405 data points per sample per channel, which was
standardized to zero mean and unit standard deviation.
This standardization of H-SSA mitigates variations in
torque, speed, and temperature, enhancing sensitivity to
fault-induced changes. Then, Planet Gear SSA (P-SSA)
was derived by reshaping H-SSA into a matrix and av-
eraging along specific rows corresponding to gear rev-
olutions. Specifically, each 405405-data points sample
was reshaped into a 4095×99 matrix array and was aver-
aged along 99 rows to get the averaged sample of 4095
data points. The output 4095 data points sample was then
transformed using Hilbert and then fast Fourier transform.
The residual signals were generated by eliminating gear
mesh harmonics and sidebands in the order domain. To
detect rim cracks, an ideal low-pass filter at 3.5 times the
gear mesh harmonics was applied, followed by an inverse
fast Fourier transform (IFFT), and the real values of IFFT
were taken as the data points for samples (Sawalhi et al.,
2024), (Peeters et al., 2024). In this way, 808 planet-
ring hunting-tooth average samples per channel, each of
length 4095, were finally achieved. The preprocessing
steps for the HUMS dataset can also be seen in figure 4.

3.2. Analyses Carried
After these prepossessing steps, two primary analyses were
conducted for all three datasets:

A. Statistical analysis: For each segment generated, key sta-
tistical metrics including, Mean (M), Standard deviation
(Std), Peak-to-Peak (P2P), Kurtosis (K), and Skewness
(Sk) were computed and saved in a CSV format. Further-
more, labels were assigned to each of the samples of the
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CWRU and PU datasets to indicate their condition, with
‘0’ representing a normal state and ‘1’ signifying a fault.
Since the HUMS dataset does not contain distinctive nor-
mal and faulty signals, this labelling step was skipped for
this particular dataset.

B. Wavelet transform analysis: Scalograms were gener-
ated from the pre-processed data files for each datasets,
for further examination using the Continuous Wavelet
Transform (CWT) (Zheng, Li, & Chen, 2002) technique,
specifically employing the Morlet wavelet. Research
(Neupane, Kim, & Seok, 2021), (Guo, Liu, Li, & Wang,
2020) indicate that vibration signals featuring periodic
impulses correspond notably with the Morlet wavelet’s
properties. This alignment facilitates the utility of Morlet
wavelets in identifying both anomalies and standard ele-
ments in machinery, which has made it a popular choice
in this domain of study. Scalograms were labelled as ‘0’
or ‘1’ to indicate normal or faulty signals for the CWRU
and PU datasets, and skipped for the HUMS dataset.

3.3. Anomaly Detection Approaches
Anomalies represent data instances that exhibit distinct char-
acteristics from normal instances, and the detection of these
abnormal patterns or instances is called anomaly detection
(Liu et al., 2008). AD, also called outlier detection, is a
widely used technique in data mining and ML to identify or
detect instances or patterns that do not conform to the expected
behavior within a dataset (Kumagai, Iwata, & Fujiwara, 2021).
AD methods have been used in various applications, such as
fraud detection (Pourhabibi, Ong, Kam, & Boo, 2020), intru-
sion detection (Aryal, Santosh, & Dazeley, 2021), and so on.
The task of AD can be addressed through supervised, semi-
supervised, or unsupervised learning strategies. However,
a significant obstacle is the scarcity of high-quality training
instances, particularly for anomalous behaviors, which pose
challenges in various domains, including MFD. Given these
challenges, it is imperative to address the task through semi-
supervised approaches.

Semi-supervised AD techniques are designed to identify anoma-
lies or outliers in data by combining labelled and unlabelled
instances. The process begins by manually labeling a small
subset of the data as either normal or anomalous, which serves
as the training set. Using this labelled data, a model is trained
to distinguish between these two categories. Subsequently,
the trained model is applied to the unlabelled data, assigning
scores or probabilities to each data point. Thresholds are then
applied to these scores to classify instances as either normal
or anomalous.

For this work, we have labelled only the normal data and
trained the AD models on this subset of labelled data. We ex-
plored the efficacy of various AD algorithms like iF, LOF,
OCSVM, AE, and VAE. The use of statistical features is

primarily for traditional AD algorithms, like iF, LOF, and
OCSVM only. In contrast, the scalogram images are fed as
input to the DL architectures, like AE, and VAE. Additionally,
DL architectures like ResNet50 and VGG16 are employed to
extract the features from the scalograms, and traditional algo-
rithms (iF, LOF, and OCSVM) are employed for the extracted
features for detecting normal and anomalous instances. A
brief overview of each of these algorithms is provided below:
• iF: Isolation forest (Liu et al., 2008) is an AD algorithm

that operates on a tree-based approach to identify out-
liers in the dataset. This algorithm isolates anomalies by
randomly selecting features and partitioning data points
based on their values along those features. This process
is repeated recursively until each data point is isolated in
its own partition. Anomalies are identified as data points
that require fewer partitions to isolate, as they stand out
as unusual compared to normal instances.

• LOF: Local outlier factor (Breunig et al., 2000) is a
density-based AD algorithm, that measures the local de-
viation of a data point in relation to its neighbors. It
calculates the ratio of the local density of a point to the
local densities of its neighbors, identifying outliers as
data points with significantly lower densities compared
to their neighbors.

• OCSVM: One class support vector machines (Schölkopf
et al., 1999), an AD algorithm used for novelty detection,
constructs a hyperplane that separates the normal data
instances from the origin in a high-dimensional feature
space. This method aims to maximize the margin be-
tween the hyperplane and the nearest normal data points,
identifying anomalies as data points lying on the opposite
side of the hyperplane from the normal class.

• AE: Autoencoders (Torabi, Mirtaheri, & Greco, 2023),
a type of neural network architecture, can also be used
for AD tasks. When trained on normal data points, AE
aims to reconstruct input data with minimal error; how-
ever, anomalies generally result in higher reconstruction
errors. By setting a predefined threshold, instances with
reconstruction errors surpassing this threshold are flagged
as anomalies or outliers.

• VAE: Variational AEs (Xie, Xu, Jiang, Gao, & Wang,
2024), a variation of AE, are capable of learning com-
plex data distributions and generating new data samples
similar to the training data. VAEs, trained on normal data
points, aim to reconstruct input data with minimal error.
However, anomalies typically result in higher reconstruc-
tion errors, as they deviate significantly from the learned
data distribution. By comparing the reconstructed data
with the original input, anomalies can be identified based
on higher reconstruction errors.

Moreover, we have also used ResNet50 (He et al., 2016),
and VGG16 (Simonyan & Zisserman, 2014) neural architec-
tures for feature extraction from the scalogram images. These
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are pre-trained architectures, which utilize a series of con-
volutional and pooling layers to extract hierarchical features
from input images. ResNet50 introduces residual connections,
which help alleviate the vanishing gradient problem during
training, allowing for deeper architectures to be trained effec-
tively. In contrast, VGG16 relies on a simpler architecture
with a stack of convolutional layers followed by max-pooling
layers. Despite the difference in their architecture, both of
these networks can extract informative features from images.
The extracted features are used as the input of three AD mod-
els: iF, LOF and OCSVM.

Thus, the methodology incorporates three diverse strategies
for anomaly detection, specifically designed for those data
types and analytical approaches. These approaches utilize a
consistent evaluation framework, which comprises multiple
runs (10), incorporates statistical and deep features, and em-
ploys various thresholding techniques for detecting anomalies.
The following provides a brief overview of each approach:

A. Approach 1: AD with Statistical Features: This study
evaluates the effectiveness of the key statistical features,
like mean, standard deviation, kurtosis, skewness, and
P2P, computed for each standardized sample, and the tra-
ditional AD algorithms in detecting anomalies. Three
models, iF, LOF, and OCSVM, were implemented. A
comprehensive analysis was conducted across 31 combi-
nations of these features to explore their effectiveness in
AD. The anomaly score generated by these models was
compared with the custom thresholds like three sigma
(𝜇 − 3𝜎), one percent, and minimum anomaly score +
standard error.

B. DL-based End-to-End AD: The second strategy utilized
end-to-end DL models, specifically AE and VAE, which
are designed for scalogram images. This method employs
reconstruction loss as a measure for AD. Anomalies are
expected to have a larger reconstruction loss. The same
thresholding techniques are applied to the reconstruction
loss to differentiate between normal and anomalous in-
stances. This approach explores the ability of AE and
VAE to capture and reconstruct the intricate patterns
present in scalogram images.

C. Hybrid Approach (DL + Traditional AD): The third
methodology expands the analysis of scalogram images
by employing feature extraction through the use of pre-
trained DL architectures like ResNet50 and VGG16 neu-
ral networks. Similar to the first approach, the models
iF, LOF, and OCSVM are implemented to the extracted
features to get the anomaly scores, and the anomalies
were detected utilizing the same thresholding techniques.
Employing ResNet50 as a feature extractor, each image
results in a feature vector of size 2048, and using VGG16,
each input image results in a feature vector of size 512.
These features are then fed as the input of the AD models.

3.4. Threshold Techniques
The AD algorithms generate the anomaly scores. Anomaly
scores in iF are typically calculated based on the number of
splits required to isolate each data point in a decision tree.
Data points that require fewer splits to isolate are considered
more anomalous and receive higher anomaly scores. There-
fore, lower anomaly scores indicate normal behavior, while
higher scores indicate anomalies. Similarly, LOF computes
anomaly scores by comparing the local density of data points
around each point to the density of its neighbors. Points with
significantly lower density compared to their neighbors are
assigned higher anomaly scores. Thus, higher LOF scores
denote more anomalous behavior. Similarly, anomaly scores
in OCSVM are determined based on the distance of each data
point from the boundary of the region containing normal data
points. Points lying farther away from this boundary are con-
sidered more anomalous and receive higher anomaly scores.

Three custom thresholds are used for this research: three
sigma, one percent, and the minimum anomaly score (or re-
construction loss) plus the standard error. For 𝜇 − 3𝜎, the
mean of these scores (𝜇) is calculated, along with their stan-
dard deviation (𝜎). The 𝜇 − 3𝜎 threshold is then determined
by subtracting three times the standard deviation (3𝜎) from
the mean (𝜇 − 3𝜎). This threshold serves as a boundary for
identifying anomalies; samples with anomaly scores exceed-
ing this threshold are considered anomalous. Additionally, for
models such as AE and VAE, the reconstruction errors of nor-
mal training samples are used instead of anomaly scores. The
𝜇 − 3𝜎 threshold is calculated in the same manner, but based
on these reconstruction errors, providing a consistent crite-
rion for anomaly detection across different types of models.
Moreover, the one percent threshold is determined by select-
ing the value below which only one percent of the normal
training scores or reconstruction errors fall. This threshold
is established to identify anomalies among samples with ex-
ceptionally low scores, indicating significant deviations from
the norm. Furthermore, the minimum value plus the standard
error threshold is calculated by adding the standard error to
the minimum normal training score or reconstruction error.
The standard error provides a measure of the variability or
uncertainty associated with the estimation of the minimum
value. This threshold aims to capture anomalies beyond the
minimum score while accounting for potential fluctuations.

3.5. Evaluation Framework
A. CWRU and PU datasets: The methodology follows a

consistent evaluation framework across all approaches.
Initially, the training data is split evenly into two halves.
One half is utilized for model training, while the other half
is combined with 90% of randomly selected test data to
establish a diverse testing scenario. The test data includes
various types of bearing health datasets collected from
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the CWRU dataset, each comprising 413 instances. We
created a total of five datasets, as depicted in Table 1. The
‘All Faults’ dataset is the combination of all fault types,
namely B007, IR007, and OR007, excluding the Normal
type, resulting in 1239 instances.
Additionally, we extracted five distinct health states from
the PU bearing dataset. These states encompass a normal
state, two artificial damages featuring OR faults, and two
real damages featuring IR+OR faults, with each class
containing 4967 instances. Consequently, a total of six
datasets were generated, as illustrated in Table 1, in which
the ‘All Faults’ dataset comprises all four faulty states
datasets (except the normal).

B. HUMS Dataset: After the PP of the HUMS dataset, as
mentioned in section 3.1, the resulting 808 data samples
from each of the four sensors, were divided into train and
test sets. As mentioned in an earlier section, 282 data
files from the first 34 load cycles, from Day 17 to Day
20, were taken as a training set in this research, and the
remaining 526 data files, from Day 21 to Day 27, were
taken as the test set.

4. Experimental Results
As we have mentioned earlier, we implemented the iF, LOF,
and OCSVM models which were fed with the combination
of the key statistical features computed for each sample. We
also employed end-to-end DL-based AD algorithms, includ-
ing AE and VAE, to detect anomalies using scalogram images.
Additionally, we applied ResNet50 and VGG16 architectures
to extract features from the scalograms and implemented iF,
LOF, and OCSVM techniques for detecting anomalies. From
the experiments conducted, we obtained the following out-
comes.

4.1. Results for the CWRU and PU Dataset
Tables 3 and 4 present the performance of various anomaly
detection algorithms achieved for the CWRU and PU datasets,
respectively. These tables represent that the feature combina-
tions of kurtosis, skewness, and P2P excel other combinations,
and the threshold 𝜇−3𝜎 performs better than other techniques.
Here, the term “best average F1 score” refers to the highest
F1 score calculated by averaging the F1 scores obtained from
10 separate runs. The term “Overall” denotes the best score
achieved across all datasets, reflecting the highest performance
observed collectively across all evaluated datasets. Abbrevia-
tions K, P2P, Sk, M and Std represent Kurtosis, Peak-to-Peak,
Skewness, Mean and Standard deviation, respectively. More-
over, the average F1 score over 10 runs for each of the datasets
for each method is shown as a bar graph in Figure 5 and 6.
The first three bar clusters, representing models iF, LOF, and
OCSVM, denote the use of the respective AD models for the
feature combinations kurtosis, P2P, and skewness. The subse-
quent bar clusters, from ResNet-iF to VAE, use the scalogram

Table 3. Experimental results for the CWRU Dataset.

Dataset CWRU
Model iF
Best Average F1 Score 0.99826221 (OR007)
Overall K, P2P, Sk; 𝜇 − 3𝜎
Model OCSVM
Best Average F1 Score 0.0.997340705 (OR007)
Overall K, Sk, P2P; Min+stdError and

𝜇 − 3𝜎
x
Model

LOF

Best Average F1 Score 0.788509613 (B007)
Overall 𝜇 − 3𝜎
Model ResNet-iF
Best Average F1 Score 0.995008449 (OR007)
Threshold 𝜇 − 3𝜎
Model ResNet-LOF
Best Average F1 Score 0.8 (B007)
Threshold 𝜇 − 3𝜎
Model ResNet-OCSVM
Best Average F1 Score 0.993120206 (All Faults)
Threshold 𝜇 − 3𝜎
Model VGG-iF
Best Average F1 Score 0.908164235(IR007)

Threshold One Percent
Model VGG-LOF
Best Average F1 Score 0.8(All Faults)

Threshold 𝜇 − 3𝜎
Model VGG-OCSVM
Best Average F1 Score 0.8(All Faults)

Threshold 𝜇 − 3𝜎
Model AE
Best Average F1 Score 0.753205267(All Faults)

Threshold 𝜇 + 3𝜎
Model VAE
Best Average F1 Score 0.872920403(All Faults)
Threshold 𝜇 + 3𝜎

images as input. The threshold for all of these models is
𝜇 − 3𝜎. Figure 5 illustrates notable performance trends of
the ResNet-iF and ResNet-OCSVM models across all dataset
types for the CWRU dataset, whereas figure 6 illustrates no-
table performance trends of ResNet-OCSVM models across
all dataset types for PU dataset.

4.2. Results for HUMS Dataset
The HUMS dataset is a new dataset in the study of machinery
faults, and researchers are employing various algorithms to
detect the faults and find anomalous patterns in them. There
aren’t any concrete results yet. In the results of the data
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Table 4. Experimental results for the PU Dataset.

Dataset PU
Model iF
Best Average F1 Score 0.98707402 (Artificial Dam-

ages)
Overall K, P2P, Sk; 𝜇 − 3𝜎
Model LOF
Best Average F1 Score 0.935198014 (All Faults)
Overall Sk; 𝜇 − 3𝜎
Model OCSVM
Best Average F1 Score 0.985556437(Artificial Dam-

ages)
Overall K, P2P, Std; 𝜇 − 3𝜎 and

Min+stdError
Model ResNet-iF
Best Average F1 Score 0.930936511(Real Damages)
Threshold 𝜇 − 3𝜎
Model ResNet-OCSVM
Best Average F1 Score 0.999316099 (All Faults)
Threshold 𝜇 − 3𝜎 and Min+stdError
Model VGG-iF
Best Average F1 Score 0.981120622(Real Damages)
Threshold 𝜇 − 3𝜎
Model VGG-OCSVM
Best Average F1 Score 0.941165324 (All Faults)
Threshold 𝜇 − 3𝜎
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Figure 5. Comparison of Models’ Performances on the
CWRU Dataset.

challenge, the winning team (Peeters et al., 2024) claimed
the record number #175 (Day 23/ 20211214, 104944) to be
the earliest convincing fault detection. However, the data
challenge committee pointed out that records #264 (Day 24/
20211216, 112716) and #272 (Day 24/ 20211216, 120021)
as contenders. As further research continues, different results
are claimed, proposing different records as the earliest detec-
tion. In the latest notice released by the committee3, records
#15 (Day 21/ 20211208, 113917), #50 (Day 21/ 20211208,
135820), #125 (Day 22/ 20211209, 124241), #143 (Day 22/

3https://www.dst.defence.gov.au/our-technologies/helicopter-main-rotor-
gearbox-planet-gear-fatigue-crack-propagation-test
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Figure 6. Comparison of Models’ Performances on PU
Dataset

20211209, 135146) and #150 (Day 22/ 20211209, 141330)
have found to contain the anomalies as well.

With our various AD detection algorithms, various records (or
file numbers) were detected as the earliest detection. How-
ever, seeing the most convincing features (kurtosis, P2P, and
skewness) and effective algorithms for the CWRU and PU
dataset, the results obtained from ResNet-iF and ResNet-
OCSVM are considered for this HUMS dataset as well. The
iF, LOF and OCSVM algorithms, trained on the combined
features of kurtosis, skewness and P2P and threshold 𝜇 − 3𝜎,
predicted #15 (Day 21/ 20211208, 113917), #50 (Day 21/
20211208, 135820) and #150 (Day 22/ 20211209, 141330)
as the first three consecutive faults. Taking the ResNet-iF
and ResNet-OCSVM models and 𝜇 − 3𝜎 as a threshold, the
earliest anomaly prediction was found to be the file #11 (Day
21/20211208, 112723).

5. Discussion and Conclusion
Identifying faults in machinery poses significant challenges,
particularly in accurately classifying fault types. Conven-
tional supervised machine learning methods have limitations
due to the need for abundant labelled data, expert supervi-
sion in labelling, and their inability to generalize to unseen
faults. To tackle these challenges, this article explores the
potential of semi-supervised learning-based anomaly detec-
tion techniques in the field of machinery fault diagnosis. This
study specifically focuses on identifying abnormal patterns in
machinery vibration signals, which are crucial for preventing
breakdowns and ensuring safety and productivity. Our exper-
imental results highlight the effectiveness of certain feature
combinations, such as kurtosis, skewness, and peak-to-peak,
in conjunction with a threshold of three sigma. Furthermore,
we found that models like ResNet-OCSVM and ResNet-iF,
as well as deep learning-based methods like VAE, demon-
strate promising performance. However, it’s worth noting that
DL-based techniques often come with higher computational
resource requirements and longer training times, as depicted
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Figure 7. Comparison of Model Performances Based on Run-
time: The figure illustrates the time taken by various models
to complete 10 runs of anomaly detection using all 4 test sets
from the CWRU dataset. Notably, all models operate on the
same input, namely, scalograms.

in figure 7. Interestingly, simpler traditional methods, some-
times, outperform or perform equally well compared to com-
plex DL methods. Given their simplicity and lower computa-
tional demands, prioritizing these simpler approaches may be
more practical in many scenarios.

Our research examines seven AD methods across various fea-
ture representations using benchmark datasets, including the
CWRU bearing, PU bearing, and HUMS planet gear rim
crack dataset. Our findings provide valuable insights with
significant practical implications, suggesting that simpler ap-
proaches may be, sometimes, effective in real-world applica-
tions due to their ease of implementation and reduced compu-
tational burden. DL methods, indeed, have shown promising
results in MFD, but their practicality may be limited by re-
source constraints. Therefore, incorporating semi-supervised
learning-based AD techniques alongside simpler traditional
methods can enhance fault detection systems in industrial set-
tings. We, therefore, would like to recommend that future
researchers proceed with simpler methods initially, then tran-
sition to DL-based methodologies if necessary for MFD.
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ABSTRACT

We introduce an object detection model specifically designed
to identify failure modes in images of bearing components,
including the inner ring, outer ring, and rolling elements. The
method effectively detects and pinpoints failure features, sub-
sequently determining the associated failure mode within the
image. With images sourced from real-world bearing appli-
cations, our model can recognize various ISO-failure modes
such as surface-initiated fatigue, abrasive wear, adhesive wear,
moisture corrosion, fretting corrosion, current leakage ero-
sion, and indents from particles. The proposed model could
be used in an assistive tool where failure modes give insights
on how to prolong average future bearing life in an asset and
therefore reduce related costs and environmental impacts.

1. INTRODUCTION

Bearings are extensively utilized in a wide range of rotating
equipment and are essential for ensuring their proper func-
tion. Bearing failures can lead to unplanned downtime with
unforeseen costs, or even result in hazardous situations. Sensor-
based condition monitoring has been an important tool for the
prediction of these undesired events and are a key ingredi-
ent for a predictive maintenance strategy (Randall & Antoni,
2011). In this paper, the focus is on a subsequent stage after
sensor-based fault detection, that is, a visual inspection of the
replaced disassembled bearing to further prolong the average
future bearing life in an asset (SKF, 2017).

A visual inspection of the bearing provides additional infor-
mation on how to prevent problems from reoccurring. This

Stephan Baggeröhr et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

includes altering the bearing design, lubrication or operation
and maintenance procedures. Another important application
of bearing inspections is quantifying its damage severity, such
as spall size. This information can be fed back to sensor-
based condition monitoring systems enabling supervised ma-
chine learning for bearing diagnostics and prognostics. In-
spections are also being used to determine whether a bear-
ing qualifies for remanufacturing (Chiarot, Cooper Ordoñez,
& Lahura, 2022). Remanufacturing is a process which en-
ables re-using the bearing by means of polishing or grinding
its components, potentially doubling its life. To summarize,
visual bearing inspections can significantly prolong average
future bearing life in an asset and therefore reduce related
costs and environmental impacts, e.g., due to the manufactur-
ing process of the bearing.

Unfortunately, visual postmortem analysis of bearings require
an application engineer with many years of experience, which
is something not always readily available. This limits its scal-
ability to be applied to a large population of bearings used
in an asset. In this work we propose an image-based deep
learning algorithm, which can assist the technician replacing
the bearing. For example, a picture can be taken of the bear-
ing components with a smart-phone, where the software auto-
matically provides insights on proposed maintenance actions,
altering bearing designs, its remanufacturability and provide
an automated connection in supervising condition monitoring
algorithms.

Bearing failures can occur due to a wide variety of reasons
(Liu & Zhang, 2020), where each failure category can lead to
a unique footprint observable during visual inspection (SKF,
2017). The different categories of bearing failures have been
standardized and well described in (ISO-15243-2017, 2017),
also referred to as bearing failure modes, where, in total,
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Figure 1. ISO 15243-2017 failure mode classifications. Im-
age taken from (SKF, 2017).

seven main categories of failure modes are proposed. An
overview of the different failure modes is shown in Figure 1.
In Figure 2 an overview is shown on the most common failure
modes based on collected statistics from bearing inspections
(SKF, 2017).

Figure 2. An example of SKF’s field failure statistics, de-
tailing the frequency of various failure modes. Image taken
from (SKF, 2022).

Applying deep learning algorithms to automate visual inspec-
tions in PHM applications is not new. A significant amount
of work has been done in the field of structure health mon-
itoring. Examples include crack detection in concrete struc-
tures caused by, e.g., changing loading and corrosion (Azimi,
Eslamlou, & Pekcan, 2020). More examples can be found
from the steel industry, that is, detection and classification of

steel surface defects (Fu et al., 2019; Wang, Xia, Ye, & Yang,
2021). However, to the authors knowledge there is no specific
method to classify bearing failure modes.

In this work a framework of selecting a deep-learning based
object detection model is introduced. The object detection
model is specifically tasked to identify failure modes in im-
ages of bearing components, including the inner ring, outer
ring, and rolling elements. This model effectively detects and
pinpoints failure features, subsequently determining the as-
sociated failure mode within the image. As a first step, the
selected model is trained for the top 7 most common fail-
ure modes, namely: abrasive wear, surface-initiated fatigue,
moisture corrosion, adhesive wear, current leakage erosion,
fretting corrosion, and indentations from particles (Figure 2).

2. DATASET

The foundation of bearing failure mode object detection model
lies in the curated dataset. The dataset encompasses a broad
spectrum of bearing images, taken from industrial centres
across the globe and showcases various bearing types along
with the one or more of the top seven primary failure modes
identified for diagnosis. This breadth in dataset variety was
crucial for the development of a model capable of accurately
identifying and classifying a range of real-world bearing fail-
ures captured in their operational environment.
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Figure 3. Final number of images per failure class after se-
lecting process and annotation done by expert.

The precision in our dataset was ensured by an expert led data
labelling team based on SKF employee’s experience. Special-
ists in bearing maintenance meticulously labeled and anno-
tated each image, drawing accurate bounding boxes around
the designated failure modes. During the annotation pro-
cess images were selected based on their representation of
the failure mode, making sure the failure mode characteris-
tics and features are within clear view according to the ex-
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pert. Furthermore, an assessment was made on the quality
of the image itself, filtering any blurry images. Images ob-
jects other than bearing components (maintenance tools, ta-
bles, etc) were also removed from the training set. In the
end the dataset comprised of 11k images across the 7 chosen
failure modes as shown in Figure 3. Images were normalized,
padded and resized to 640x640 pixels. Additionally, augmen-
tation techniques were applied to the images before ingesting
into the model.

Here the bar graph illustrates a significant class imbalance
within our object detection dataset, where certain classes are
overly represented with a high number of images, while oth-
ers have markedly fewer instances. This imbalance poses a
challenge for effective model training, as it can lead to bi-
ases towards the more prevalent classes, potentially compro-
mising the model’s ability to accurately detect and classify
less represented objects. Addressing this issue is crucial for
enhancing the model’s overall performance and ensuring a
balanced sensitivity across all classes. To overcome this, as
a first step, the shift-scale-rotate augmentation was applied
with a rotation limit set to +/- 15 degrees. This method in-
volves stochastic affine transformations that adjust the origi-
nal images through shifting, scaling, and rotating. Such trans-
formations significantly increase the dataset’s variety without
the need to collect new samples.

3. PROPOSED METHODOLOGY

The methodology employed in developing an object detection
model aimed at detecting failure modes in images of bearings
was twofold: firstly, leveraging out-of-the-box (pretrained)
models, and secondly, fine-tuning these models on the earlier
described dataset split into an 80%-20% training and test set,
respectively.

3.1. Model Selection

To determine the optimal pre-trained model for our applica-
tion, we conducted a comparative analysis of several state-of-
the-art models. Each model was evaluated using its default
parameters, with the only modifications being the image size
and batch size. Specifically, all models were trained with im-
ages resized to 640x640 pixels and a batch size of 4. The
models included in the study were as follows with their re-
spective backbone (Zou, Chen, Shi, Guo, & Ye, 2023):

• EfficientDet (D0)
• EfficientDet (D4)
• Retinanet (Resnet - 101 - 2x)
• Retinanet (Resnet - 101 - 1x)
• Retinanet (Swin)
• Yolo-x (Yolo - Tiny)

The models were compared using the COCO metric. The

COCO metric, used for evaluating object detection models,
includes several key components: Average Precision (AP)
and Average Recall (AR) across multiple IoU thresholds (0.50
to 0.95). The metric also evaluates performance across differ-
ent object sizes (small, medium, large), providing a compre-
hensive and standardized assessment of a model’s detection
capabilities. This robust evaluation ensures accurate localiza-
tion and detection across varied conditions (Lin et al., 2014).

3.2. Training the Model

The dataset, characterized by class imbalance among differ-
ent failure modes, necessitated a tailored approach to model
training. To mitigate the effects of class imbalance, focal loss
was integrated into the model’s loss function (Lin, Goyal,
Girshick, He, & Dollár, 2017). This modification aimed to
amplify the loss associated with misclassified examples, par-
ticularly those from underrepresented classes, thereby enhanc-
ing the model’s sensitivity to such cases. The models were
trained with a learning rate of 1e-4 for 20 epochs.

One of the paramount challenges encountered during train-
ing was the potential for overfitting. To counteract this, tech-
niques such as early stopping, layer normalization, and weight
decay were employed. Additionally, model performance was
evaluated using the test set to ensure generalizability beyond
the training data. Early stopping as a regularization technique
was also used to prevent overfitting, by halting the training
process before the model’s performance on the test set starts
to degrade. By terminating the training at this optimal point,
early stopping ensures that the model retains its ability to
generalize well to new, unseen data, thereby mitigating over-
fitting and improving the model’s overall predictive perfor-
mance.

4. RESULTS

Figure 5 shows the results of the comparative study of differ-
ent model architectures. The study revealed that EfficientDet
and RetinaNet emerged as top candidates in terms of accu-
racy in contrast to the Yolo methods. The RetinaNet model,
with its ResNet backbone, was ultimately selected based on
its performance.

The implementation of early stopping mechanisms helped mit-
igate this risk by halting training once the test loss plateaued,
as shown in Figure 6. This strategy proved invaluable in pre-
serving the model’s generalizability.

Example model predictions for the different failure modes are
shown in Figure 4. Looking at the confusion matrix in Figure
7, the Retinanet model detection threshold was set in a way
that left around 32% of the images without any predictions
resulting in low recall. Among the images with predictions,
there was a notable emphasis on precision, as evidenced by a
significant number of predictions aligning along the matrix’s
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Figure 4. Example predictions for several failure modes. From left to right, top to bottom: Surface initiated fatigue, abrasive
wear, adhesive wear, moisture corrosion, fretting corrosion, current leakage erosion and indentations from debris.

Figure 5. Comparative analysis of investigated object detec-
tion models.

Figure 6. Graph depicting model accuracy along epochs with
and without early stopping indicated to prevent overfitting.

diagonal.

Figure 7. Confusion matrix for the top performing model
(RetinaNet - ResNet 101, fpn) model applied to the test set.
Displayed results pertain exclusively to images with predic-
tions.

In evaluating the performance of the object detection models,
we have observed a notable discrepancy between the model’s
precision and recall, as measured by the COCO metric sys-
tem. Specifically, our model demonstrates high precision (as
shown in Figure 7), indicating a strong ability to correctly
identify and label objects when it decides to do so. However,

4
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this is adjacent to a significantly lower recall, suggesting that
the model is more conservative in its detection, often missing
objects that should have been detected. This characteristic
leads to a lower overall COCO metric score, which incorpo-
rates both precision and recall into its evaluation. Despite
this, the high precision of our model still presents substantial
utility in specific applications where the cost of false positives
is high, and accuracy in the detection of identified objects is
paramount. In such scenarios, our model’s ability to mini-
mize incorrect detection — ensuring high confidence in the
positive detection it makes — can be more valuable than de-
tecting every possible object, underscoring the importance of
considering application-specific requirements when evaluat-
ing model performance. Therefore, while the overall COCO
metric may be lower, the high precision of our model affirms
its applicability and effectiveness in contexts where precision
is critically valued over recall.

5. CONCLUSION

The model, selected through bench-marking various neural
network architectures, was trained to detect seven primary
bearing failure modes, addressing challenges such as class
imbalance and image rotation inconsistencies. Key to the suc-
cess was the meticulous collection and preparation of images.
A dataset comprising 11k images of bearings with annotated
failure modes was curated to train the model. Through thor-
ough data gathering, precise annotation, and strategic data
augmentation, we created a robust dataset that improved the
accuracy of the model and real-world applicability. Reti-
naNet, with its ResNet 101 - fpn backbone, was chosen for
its performance. This work shows the feasibility of such a
model to be used in an assistive tool where failure modes
give insights on how to prolong average future bearing life in
an asset and therefore reduce related costs and environmental
impacts.
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ABSTRACT

To assist subject matter experts in investigating electronic fail-
ures of drilling tools, an innovative risk assessment approach
for oil well drilling operations is developed that relies on
synthetic time-series data to emulate environmental factors
encountered downhole, explicitly focusing on temperature,
shock, and vibration. The approach involves utilizing load
cycle counting to extract meaningful features from each en-
vironmental channel measured by the drilling tool. The re-
sults from experiments with features related to dwell periods
(dwell time and dwell damage) and load cycles (cycle means
and cycle ranges) show a significant correlation between load
cycle features and the risk label. Subsequently, a tree-based
machine learning model is trained to label drilling operations
based on synthetic data. Several models have been trained ini-
tially with comparable results. However, the advantage of us-
ing a tree-based model, specifically extra trees, is explainabil-
ity and the stochastic aspect, which translates into model ro-
bustness when applied to real data. Preliminary results from a
case study indicate that this new approach is highly effective
in categorizing environmental risks associated with drilling
operations. This risk assessment method can significantly en-
hance the decision-making process in investigating electronic
board failures by offering reliable decision support.

Delia-Elena Dumitru et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

The drilling process has undergone a remarkable transforma-
tion in the oil and gas industry, evolving into a complex and
sophisticated endeavor. This increased complexity stems di-
rectly from the necessity of accessing and extracting valuable
resources hidden deep within the earth’s crust. To accomplish
this daunting task, the industry relies heavily on drilling tools,
which are the technological cornerstones of these operations.

Drilling tools represent exceedingly intricate systems enriched
with electronics, comprising a multitude of electronic boards,
each meticulously designed to fulfill specialized functions of
paramount significance to the success of drilling operations.
These electronic boards function as the central hubs of tech-
nological operations, assuming responsibilities encompass-
ing data acquisition, signal processing, management of con-
trol systems, and the facilitation of seamless communication
(Kang et al., 2022). Thus, the reliability and performance of
these electronic boards are inexorably linked to the overall
effectiveness of drilling endeavors. However, the harsh op-
erating conditions encountered downhole, including elevated
temperatures, dynamic vibrations, and substantial shocks, ren-
der these boards susceptible to complex failure modes, poten-
tially resulting in drilling operation failures. Failed drilling
operations can lead to significant financial losses and envi-
ronmental concerns. Therefore, health assessment and prog-
nostics of electronic boards in drilling tools is essential to en-
sure that proactive maintenance is carried out in advance to
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prevent drilling operations from failing.

The current health assessment and prognostics models for
electronics are predominantly data-driven. For instance, physics-
of-failure-based prognostics combine sensor data with mod-
els that evaluate a component’s deviation from normal oper-
ation (Pecht & Gu, 2009). Another example is the use of ac-
celerometers to monitor the response of printed circuit boards
to vibrations and predict their remaining life (Gu, Barker, &
Pecht, 2009). Similarly, (Vichare & Pecht, 2009) propose a
technique that extracts load parameters from time-series data
to estimate remaining life and assess damage. This method
focuses on identifying valuable features for prognostics with-
out requiring the storage of large volumes of data. Addi-
tionally, (Prisacaru, Gromala, Han, & Zhang, 2022) detect
faults in electronic packages through the Mahalanobis dis-
tance and clarify them using a clustering technique. They
also employ Echo state networks to perform degradation as-
sessment and remaining useful life prediction. Additional lit-
erature on data-driven approaches for electronics health as-
sessment and prognostics can be found in the following re-
view articles: (Bhat, Muench, & Roellig, 2023), (Bhargava et
al., 2020), and (Michael G. Pecht, Myeongsu Kang, 2018).

In the context of electronic boards used for oil well drilling
operations, (Kale, Carter-Journet, Falgout, Heuermann-Kuehn,
& Zurcher, 2014) propose a probabilistic approach that uses
operational data, drilling dynamics, and historical mainte-
nance information to predict reliability and life of electron-
ics. (Bhatnagar, Cassou, Masry, & Mosallam, 2021) develop
a data-driven fault detection approach tailored to electronic
boards in intelligent remote dual-valve systems . Similarly,
(V. Gupta et al., 2023) present an automatic fault detection
method based on support vector machines for resistivity sub-
systems in Logging-While-Drilling (LWD) tools. (Sobczak-
Oramus, Mosallam, Basci, & Kang, 2022) introduce a data-
driven fault detection approach for transmitter subsystems in
LWD tools . Finally, (Mosallam, Kang, Youssef, Laval, &
Fulton, 2023) propose a data-driven fault diagnostics approach
for three power supply boards in LWD tools.

Obtaining comprehensive data and corresponding labels through-
out the equipment lifecycle is essential for building data-driven
models for health assessment and prognostics of electronics.
Subject matter experts usually derive data labels through fail-
ure investigations, but this process can be costly and time-
consuming for complex equipment. Specifically, investigat-
ing electronic board failures in drilling tools requires manu-
ally examining extensive operational environment data mea-
sured by the tools. This process is labor intensive and prone
to human error, making it challenging. Considering this chal-
lenge, this paper proposes an innovative risk assessment ap-
proach for oil well drilling operations to assist subject matter
experts in investigating electronic failures. One of the pri-
mary advantages of this approach is its ability to harness the

power of supervised learning for efficient and objective risk
assessment, compared to manual inspections of operational
environment data.

Literature has shown that various factors, such as tempera-
ture, humidity, vibration, dust, electrical stress, etc., affect
the performance and life of electronic components (Michael
G. Pecht, Myeongsu Kang, 2018). Among these factors, fail-
ures attributed to environmental conditions like temperature,
humidity, and vibration constitute a significant 84% of elec-
tronic failures (Bhargava et al., 2020). Given the paramount
importance of environmental factors in electronic failures, this
paper seeks to develop a method to aid the subject matter ex-
perts investigate the specific environmental factors contribut-
ing to electronic failures.

However, only temperature and vibration are considered in
the proposed method. We did not account for potential fac-
tors such as dust, humidity, chemicals, and radiation. This
omission is because drilling tools do not typically measure
these parameters for electronic boards. The physical arrange-
ment of electronic boards within these tools inherently pro-
tects against exposure to dust, humidity, radiation, and chem-
icals that may be present in the wellbore. These tools are
typically enclosed within robust steel tubing, shielding inter-
nal electronics from direct contact with these environmental
factors. Moreover, before tool deployment, field engineers
frequently introduce nitrogen into these tools, reducing the
likelihood of exposure to potentially harmful substances. As
a result of these protective measures and practices, the risk of
electronic board damage due to dust, humidity, radiation, and
chemical exposure is significantly mitigated.

The rest of this paper is structured into four sections. The first
section offers a detailed presentation of the proposed method.
Following that, a case study is presented. Finally, the last sec-
tion summarizes the findings and suggests potential avenues
for future research.

2. PROPOSED METHOD

The proposed method consists of three steps: data genera-
tion, preprocessing and feature extraction, and modelling, as
illustrated in Figure 1.

2.1. Data generation

To leverage the power of supervised learning, labeled envi-
ronmental data are needed. We generate synthetic time se-
ries programmatically to remove the need for expert-labeled
data. Drilling tools regularly record measurements concern-
ing the environment, specifically, temperature, shock peak
values, and vibration root mean square values; therefore, in
our experiment, we generate synthetic time series data that
emulate drilling conditions for each of the three channels.
The simulated data incorporate various sources of random-
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Figure 1. Proposed method.

ness, including sinusoidal waves with random time-variant
amplitude and frequency, Gaussian noise, random spikes, and
random shocks with random decay rates. Specifically, low-
risk time series data exhibit lower parameter values for ran-
dom number generation than high-risk time series data. For
instance, the mean and standard deviation for generating low-
risk temperature data’s Gaussian noise are set to 40 and 3,
respectively, while the amplitude for temperature shocks falls
between 30 and 70. On the other hand, the mean and standard
deviation for generating high-risk temperature data’s Gaus-
sian noise are set to 80 and 10, respectively, while the ampli-
tude for temperature shocks falls between 50 and 100.

2.2. Data preparation

To effectively use the generated environmental data, prepro-
cessing and optimal feature extraction are required. The pre-
processing step consists of smoothing the signal using the
upper envelope of the signal, as shown in Figure 2. After
the preprocessing step, the environmental features can be ex-
tracted. For each environmental channel (i.e., temperature,
shocks, and vibration) we compute two features based on
dwell periods and two features based on load cycles, using the
rainflow cycle counting method for the latter (Lee & Tjhung,
2012).

2.3. Feature extraction using rainflow cycle counting

Rainflow cycle counting is a method used in fatigue analy-
sis to quantify the number of stress cycles experienced by a
component or material (Endo, 1974).

The process involves analyzing a time series of stress or strain
data to identify and count individual cycles. These cycles
represent the repeated loading and unloading of a material,
which can lead to fatigue failure over time. Rainflow cycle
counting is especially useful for irregular or variable ampli-

(a) Raw signal

(b) Preprocessed signal

Figure 2. Generated vibration signal for a high-risk run (red)
and a low-risk run(green), before and after preprocessing.
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tude loading conditions, where the stress levels vary over time
(Lee & Tjhung, 2012).

The method consists of four steps, as illustrated in Figure 3:

1. Hysteresis filtering (Figure 3a) entails removing cycles
smaller than an amplitude gate that contribute minimal
damage. This is accomplished by setting a gate with a
specific amplitude. Any cycle with an amplitude below
this gate is excluded from the load-time data. The gate
is projected sequentially from left to right starting from
each turning point in the time series. If a turning point
falls below the gate’s threshold, it is omitted from the
time history. (Endo, 1974)(Lee & Tjhung, 2012).

2. Peak-valley identification (Figure 3b) consists of locating
the points in the data where the direction of the signal
reverses. In a cycle, only the highest and lowest values
are pertinent for fatigue life assessments. Therefore, any
intermediate data points between these extremes within a
cycle can be disregarded as they do not contribute to the
fatigue calculation. (Endo, 1974)(Lee & Tjhung, 2012).

3. In discretization (Figure 3c), the amplitude dimension of
the signal is divided into a set number of equal bins. Each
data point is then mapped to the center of its correspond-
ing bin to facilitate cycle counting. Centering the data
samples within their bins slightly modifies their ampli-
tudes, therefore it is crucial to utilize an adequate number
of bins in the analysis to minimize significant alterations
in amplitudes (Endo, 1974)(Lee & Tjhung, 2012).

4. In four-point counting (Figure 3d), the identified peaks
and valleys are connected to form hysteresis loops, or
closed paths that represent complete stress cycles (Endo,
1974)(Lee & Tjhung, 2012). This is done using the fol-
lowing steps:
(a) Select four consecutive points: S1, S2, S3, S4.
(b) Compute inner stress: |S2− S3|.
(c) Compute outer stress: |S1− S4|.
(d) If the inner stress range is less than or equal to the

outer stress range, a cycle is counted, otherwise it is
not counted.

Using the method described above, the extracted features are
as follows:

1. average cycle mean, where the cycle mean represents the
mean values of the initial and final points of a cycle

2. average cycle range, where the cycle range represents
the absolute difference between the initial and final points
of a cycle

3. dwell time, representing the cumulative time during which
the signal oscillation is lower than a set threshold

4. dwell damage, representing the average amplitude during
the dwell time
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Figure 3. Rainflow cycle counting steps.
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Figure 4. Confusion matrix for a binary classification prob-
lem.

2.4. Modelling

We model the problem as a binary classification problem,
where we interpret the positive class as high environmental
risk, and the negative class as low environmental risk.

For risk classification three models were trained: logistic re-
gression (LaValley, 2008), random forest (Biau & Scornet,
2016), and extra trees (Geurts, Ernst, & Wehenkel, 2006).
The random forest and the extra trees models consist of an
ensemble of 100 trees, and the Gini index was used as the
splitting criterion. Logistic regression, as well as the ensem-
ble tree-based models are less prone to overfitting and thus
have the potential to generalize better to real data.

3. CASE STUDY

A number of 1128 examples were generated, out of which
80% were used for training and 20% for testing. The training
set was further split into train and validation sets in the same
ratio using k-fold cross validation with 10 folds. The data
were split as to preserve the class balance.

To evaluate the models on a labeled subset of the data we
make use use of the confusion matrix (Fawcett, 2006), illus-
trated in Figure 4. In a binary classification problem, the con-
fusion matrix has four sections:

1. True positives (TP): the number of instances where the
model correctly predicts the positive class (high risk).

2. True negatives (TN): the number of instances where the
model correctly predicts the negative class (low risk).

3. False positives (FP): the number of instances where the
model incorrectly predicts the positive class.

4. False negatives (FN): the number of instances where the
model incorrectly predicts the negative class.

To compare the models, we use the area under the receiver
operating characteristic (ROC) curve (ROC AUC score). The
ROC curve plots the true positive (TP) rate, defined as

TP

TP + FN
,

Figure 5. Model feature importance.

against the true negative (TN) rate, defined as

TN

TN + FP

It is a graphical representation of a binary classifier at differ-
ent classification thresholds. The ROC AUC score is repre-
sented by the area under the ROC curve, where a score of 0.5
indicates a random model (Bradley, 1997).

The three trained models output a ROC AUC score of 1 on
the validation set, indicated in Table 1. The application of the
trained models is to assess environmental risk on electronic
boards. Therefore, an important aspect is the ability of the
model to successfully transfer knowledge from synthetic data
to real data. In this regard, the stochastic features of the extra
trees represent an advantage for increasing robustness (Geurts
et al., 2006).

Table 1. Comparative ROC AUC score for the three trained
models.

Model ROC AUC score

Logistic regression 1.00

Random forest 1.00

Extra trees 1.00

We evaluate feature importance for the classification prob-
lem using Shapley values. This step helps to reduce feature
redundancy and improve model interpretability. Shapley val-
ues are a method derived from cooperative game theory that
has been adapted for use in explaining the predictions of ma-
chine learning models. They provide a way to fairly assess the
impact of each feature for a particular prediction in a model
(Merrick & Taly, 2020).

Using this method, Figure 5 indicates that for the extra trees
model, the most impactful features are the average cycle means
on each environmental channel, which is consistent with the
feature correlation matrix in Figure 6.

Feature correlation in a machine learning model refers to the
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Figure 6. Feature correlation matrix.

degree to which the variables (features) in the dataset are re-
lated to each other, as well as with the target variable. For
this experiment we use the Pearson correlation coefficient
(Kendall & Stuart, 1973) and we specifically study the cor-
relation between the features and the target variable, denom-
inated as risk. In Figure 6 we notice the highest correlation
between the average cycle means on the temperature, shock
and vibration channels, and the risk variable.

In the second iteration of experiments, we restrict the training
to these three features.

During the validation step, the model achieves promising clas-
sification results, as indicated by the confusion matrix in Ta-
ble 2. Based on the confusion matrix, we define the following
metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1score =
2 ∗ TP

2 ∗ TP + FP + FN
. (4)

The results on the validation set are consistent with the results

on the test set after the training is completed, which can be
seen in Table 3, despite the 0.52 score for data drift. Data
drift indicates a difference in the statistical properties of the
data. Therefore, the classification scores prove the robustness
of the extra trees model and the potential for such a model to
be used for assessing risk on real data.

Table 2. Confusion matrix on the validation set, where the
positive class is equivalent to a high-risk run and the negative
class is equivalent to a low-risk run.

Predicted positive Predicted negative

True positive 93 0

True negative 0 86

Table 3. Metrics measured on the test set.

Metric Value

Accuracy 1.00

Precision 1.00

Recall 1.00

F1 Score 1.00

ROC AUC 1.00

Data drift 0.52
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4. CONCLUSION AND FUTURE WORK

This paper presented a data-driven approach for assessing en-
vironmental risk in electronic boards based on supervised ma-
chine learning. The method makes use of synthetic data and
consists of extracting features with respect to dwell time and
load cycles, showing that the latter have a larger impact on the
performance of the models. The extra trees model achieves
promising results on the synthetic data, but further work is
needed to address the potential mismatch between training
and test data in practical applications.

To address this issue, we plan to collect real-world environ-
mental data and use it to fine-tune the model to better handle
the variability of different environments. Additionally, we
could explore the use of transfer learning techniques to adapt
the model to new environments and improve its robustness to
different types of data.

Overall, the proposed approach shows potential for assessing
environmental risk in electronic boards, but further research
is needed to optimize the model for real-world applications.
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ABSTRACT

This paper introduces a cutting-edge methodology for the mon-
itoring of abrasive wear, particularly focusing on SAG (Semi-
Autogenous Grinding) mills liners. The lack of a regular in-
spection regime has historically led to opportunistic and thus,
irregular wear measurements that are challenging to integrate
into machine learning algorithms for condition-based main-
tenance. The study unveils a virtual sensor designed to es-
timate the mill liner’s remaining thickness, aiming to offer
daily updates and assist the maintenance team in determining
the optimal timing for liner replacements without the need for
halting operations. This approach is positioned as a strategic
response to the critical need for efficient maintenance strate-
gies, addressing the inherent challenges in real-world indus-
trial settings where data quality may be poor and operational
realities dominate. A significant aspect of this methodology is
its emphasis on uncertainty quantification, vital for informed
maintenance decision-making. This novel approach has been
successfully applied to SAG mills at Minera Los Pelambres,
showcasing its potential for broader applications across sce-
narios characterized by sporadic data collection. The results
showcase an error of ±7.4254 mm of remaining thickness
on the validation set, demonstrating the effectiveness of the
methodology. The key contributions of this work lie in its
ability to utilize low-quality data effectively and its low com-
plexity, reducing barriers to implementing predictive health
monitoring (PHM) algorithms. The successful implementa-
tion highlights the methodology’s adaptability and flexibility,
marking a significant advancement in the domain of mainte-
nance strategy for the mining industry.

Thomas Bate et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

SAG (Semi-Autogenous Grinding) mills are indispensable as-
sets in the mining industry, serving as the cornerstone of ore
processing operations. The significance of these mills can-
not be overstated, as any downtime incurred due to mainte-
nance activities can translate into substantial financial losses.
The costliness of SAG mill stoppages underscores the critical
need for effective maintenance strategies to ensure continu-
ous operation and productivity.

Within the maintenance team at Minera Los Pelambres, there
arose a strategic initiative aimed at reducing the duration of
mill downtime attributed to inspections. To support this en-
deavor, the concept of the virtual remaining liner sensor was
conceived. A virtual sensor, by definition, offers an approx-
imation of a state based on other measurable variables or
states, serving as an indirect measurement. In this instance,
the objective was to estimate the remaining thickness in mil-
limeters of a specific component of the mill liner online and
with daily frequency updates. The overarching goal was to
provide the maintenance team with a decision support tool
to determine the optimal timing for liner replacement with-
out necessitating mill shutdowns solely for inspections. One
of the major challenges in implementing this system was the
absence of a regular inspection schedule for the mill. Histor-
ically, inspections were performed opportunistically, aligned
with planned mill shutdowns. This approach resulted in ir-
regular wear measurements, complicating their utilization in
ML algorithms designed to predict wear and determine the
remaining liner thickness accurately.

The endeavor to minimize downtime due to maintenance ac-
tivities has long been a focal point, with condition monitor-
ing tasks representing approximately 13% (Kawahata, Schu-
macher, & Criss, 2016) of total mill downtime. Traditional
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approaches to address this challenge, such as discrete element
method (DEM) (Wu, Che, & Hao, 2020) simulations, have
proven to be exceedingly complex and costly to implement
in productive environments, necessitating expensive software
and extensive time investments to achieve realistic simula-
tions.

This paper presents a methodology specifically tailored to
address the challenges inherent in real-world industry envi-
ronments, where data quality is often poor, and operational
considerations are paramount. By focusing solely on wear
monitoring issues prevalent in the industry, this methodology
emphasizes the importance of incorporating operational in-
sights into the model design to ensure effective utilization
by maintenance teams. The majority of degradation moni-
toring algorithms are developed using synthetic data or data
obtained under suitable acquisition settings, like the measur-
ing method proposed in (Powell & Chandramohan, 2011)
(appropriate and stable sampling rates, low measurement er-
ror). However, few academic works focus on solving real-
world problems where data quality is poor, as the results are
naturally less impressive than those generated in studies with
high-quality laboratory data, enabling the use of state-of-the-
art machine learning algorithms to achieve high precision (Li
et al., 2022). The most significant contribution of this work is
to provide a methodology that utilizes low-quality data to its
fullest potential. The low complexity of the method reduces
the barriers currently faced by the industry in implementing
PHM algorithms.

This challenge is predominantly practical rather than theo-
retical, as the methodology was conceived with real-world
industrial scenarios in mind, the approach is quite easy to im-
plement. Leveraging neural networks and feature engineering
based on phenomenology, the proposed approach is success-
fully implemented to monitor the liners of SAG Mills at Min-
era Los Pelambres, providing a decision-support tool for the
maintenance team. The methodology is designed to infer de-
viations from an average wear rate curve, utilizing features
that represent stress factors on the mill derived from both his-
torical lining data and real-time mill operation information.
The predictive modeling aspect of the methodology employs
neural networks, these networks offer accurate inferences of
wear progression, allowing for proactive maintenance strate-
gies and the timely identification of potential issues. Comple-
menting the data-driven approach, the methodology incorpo-
rates feature engineering grounded in the phenomenology of
abrasive wear. This ensures that the monitoring scheme is not
solely reliant on learned patterns but also integrates domain
knowledge, enhancing interpretability and generalization. A
distinctive feature of the methodology is its focus on uncer-
tainty quantification in wear monitoring during the online op-
eration of the model, this is crucial for decision-making, pro-
viding the maintenance team with insights into the reliabil-
ity of wear assessments and facilitating the prioritization of

maintenance interventions.

Incorporating uncertainty quantification in industrial moni-
toring is essential for enhancing intelligent maintenance decision-
making. This approach provides a probabilistic perspective
on operational data, facilitating a more nuanced understand-
ing of equipment behavior and maintenance needs. The key
benefits include:

1. Enhanced Decision-making: Uncertainty quantification
allows for informed, risk-aware decision-making. By
understanding the range of possible outcomes and their
probabilities, maintenance teams can make decisions that
improve safety, operational efficiency, and financial per-
formance.

2. Optimized Maintenance Scheduling: It aids in identi-
fying the most opportune moments for maintenance ac-
tions, balancing preventive and corrective strategies. This
optimization minimizes operational disruptions and costs
while extending equipment lifespan.

3. Risk Management: Understanding model uncertainty
helps in managing the risks associated with maintenance
activities. Identifying high-risk scenarios enables prior-
itization of critical maintenance interventions, ensuring
operational continuity and safety.

4. Confidence in Predictive Models: Quantifying uncer-
tainties builds confidence in predictive maintenance mod-
els by transparently communicating their reliability. This
transparency is crucial for trust among operational staff
and stakeholders.

The successful implementation on SAG Mill liners at one of
the world’s largest copper mine validates the methodology’s
efficacy. Beyond its application to this specific context, the
methodology is highlighted for its flexibility and adaptability
to other scenarios. Notably, it accommodates few and irregu-
lar measurements of the asset’s state, making it applicable in
situations where data collection may be limited or sporadic.

However, unlike traditional approaches such as discrete el-
ement method (DEM) simulations which are complex and
costly to implement, this methodology provides a straight-
forward and cost-effective alternative. By leveraging low-
quality data and emphasizing uncertainty quantification, we
address the practical challenges faced in real-world industrial
settings. This approach not only simplifies the implementa-
tion of PHM algorithms but also ensures robust predictions
even with sporadic data collection. Additionally, the incorpo-
ration of phenomenology-based feature engineering enhances
the interpretability and reliability of the model, setting it apart
from purely data-driven methods.
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Figure 1. SAG Mill illustration.

2. SAG MILLS BACKGROUND

SAG mills consist of rotating drums containing metal balls
that cascade and impact against the mineral (Figure 1), ef-
fectively grinding it. The collision between grinding balls
and mineral particles fractures and further grinds the mineral,
producing finer material. SAG mills are distinguished by their
large diameter and short length compared to ball mills. The
interior of the mill is lined with lifter plates to lift the material
inside, facilitating the cascading material flow for grinding.
Figure 1 illustrates this operation. Various lifter configura-
tions and positions line the interior of the mill. Of particu-
lar interest is the discharge end cap, where worn or fractured
components could lead to ball escape and downstream pro-
cessing issues.

To assess the condition of the mill liners, a procedure known
as a ”faro” is typically conducted. A faro is akin to a ra-
diographic examination of the mill, providing precise mea-
surements of the liner condition. However, these stoppages
are costly. There has never been a consistent schedule for
the faros, therefore the sampling rate is inconsistent, the only
constant measurement made is at the end of the liners life
when it is removed from the mill. The virtual sensor devel-
oped in this study aims to reduce the frequency of faro in-
spections, offering online monitoring capabilities to track the
remaining liner thickness, particularly focusing on the dis-
charge end cap, where liner failure poses significant opera-
tional risks.

The availability of SAG mills is paramount in mineral pro-
cessing, as every hour of downtime translates to substantial
financial losses, valued in thousands of dollars. Optimiza-
tion of maintenance activities is crucial to minimize mill stop-
pages, balancing the risk of failure with maintenance require-
ments.

Given the criticality of mill uptime, any condition monitor-
ing initiative aiding in optimal maintenance scheduling adds
significant value. The virtual sensor developed in this study

aligns with this objective, providing the maintenance team
with decision support tools to optimize faro inspection sched-
ules without necessitating mill shutdowns. This approach not
only reduces downtime but also mitigates the risk of opera-
tional disruptions downstream.

The current market offers various solutions for monitoring
the liners of SAG mills, each with its own set of advantages
and challenges. Many of these solutions rely on expensive
hardware or require interventions directly on the mill cylinder
(Dandotiya, Lundberg, & Wijaya, 2011). However, few ef-
fectively leverage historical data to optimize monitoring pro-
cesses.

One significant challenge is the difficulty of integrating ad-
ditional monitoring equipment into large-scale machinery al-
ready in production. SAG mills are massive industrial units
critical to the mineral processing chain, and any modifica-
tions or additions to these machines must be carefully imple-
mented to avoid disrupting operations. Installing new moni-
toring devices often involves intricate engineering work and
may require halting production for extended periods, leading
to significant downtime and revenue loss for mining compa-
nies.

Moreover, the harsh operating conditions within SAG mills
present further challenges. These mills operate in environ-
ments characterized by high temperatures, dust, and vibra-
tions, which can adversely affect the performance and longevity
of monitoring equipment. Ensuring the reliability and dura-
bility of monitoring devices under such conditions is essential
but often requires additional investments in ruggedized hard-
ware and protective enclosures. Mill liners are located deep
within the mill cylinder, necessitating specialized equipment
and skilled personnel for installation and maintenance tasks.
Any monitoring solution that requires frequent access to the
liners may incur significant logistical challenges and opera-
tional disruptions.

In light of these difficulties, there is a growing need for inno-
vative monitoring solutions that can leverage existing data in-
frastructure and minimize disruptions to mill operations. So-
lutions that harness historical data and employ non-intrusive
monitoring techniques offer promise in this regard, provid-
ing valuable insights into liner wear patterns while minimiz-
ing the need for costly hardware installations and production
stoppages.

At Minera Los Pelambres, where three SAG mills—SAG1,
SAG2, and SAG3—are operational, the focus is primarily on
SAG1 and SAG2 due to their comprehensive data records and
identical machinery specifications. The successful replication
of the methodology for SAG3 underscores its potential scal-
ability and applicability across multiple mill units, albeit not
covered in this document.
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Figure 2. Historic remaining liner mesurements SAG1.

3. DATA AND PROCESSING

The methodology involves two primary data sources: opera-
tional tags related to the mill’s functioning and mineralogy,
and liner wear measurements reported through inspections.
Operational tags, which are time series data from sensors
or states, can be extracted at various granularities, they are
stored via Pi Systems, a platform for operational data man-
agement developed by OSIsoft. It plays a crucial role in this
project by serving as the source of operational data. This
platform captures, stores, analyzes, and visualizes real-time
data from industrial processes. Pi System has its own data
cleaning protocols which are critical to ensuring data quality
and reliability before analysis, and these protocols were con-
sidered in the project’s data processing strategy. Given that
Pi Systems are commonly used across various industries to
manage data, it is important to delve into how data is handled
and processed within the methodology. The first step in data
processing involves cleaning and imputing these tags. The
main issues addressed in the data are outliers, non-numeric
values, and missing values. The cleaning process categorizes
tags into four types:

• Tags representing percentages: Values above 100 or be-
low 0 are set as NaN (empty value).

• Tags for positive variables with distributions similar to
normal: Values below zero and those above the 99th per-
centile distribution (outliers) are set as NaN.

• Binary variable tags, which include two variables:
– Rotation direction: Non-numeric values are present,

with two relevant states indicating clockwise and
counterclockwise rotation. Clockwise is replaced
with 1, counterclockwise with -1, and other mes-
sages with NaN, to then interpolate them with the
closest value.

– Mill state: Relevant messages indicate whether the
mill is stopped (0) or operating (1). Other messages
are set to 0.

• Tags that do not require cleaning.

Non-numeric values, often error messages from the tag stor-
age system, are addressed next. Messages indicating a value
above/below defined ranges are replaced with the tag’s post-
cleaning maximum/minimum value. Remaining NaN values
are imputed linearly. The tags are cleaned on an hourly basis,
including:

• Grinding hardness
• Feed water
• Load cell
• Stator current
• Noise detector
• F80
• Rotation
• Granulometry (of the incoming mineral) 100, 200, 325,

48, 65, 125 Inches
• Filling level
• Solids percentage
• Power
• Pressure
• Noise
• Speed

Following the removal of non-numeric values, data transfor-
mation begins, incorporating liner wear measurements. The
term ’campaign’ refers to the lifespan of the lining. A cam-
paign begins when the lining is installed and ends when it is
retired. These measurements are taken with the mill stopped
and vary across campaigns, with up to 5 intermediate mea-
surements in some campaigns and a median of 3. The above
Figure (2) shows SAG1 grate wear monitoring over time, with
two curves representing different grate positions as reported
by faros. Points on the curves are measurements, and lines
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Figure 3. Average wear curves for the lifter position.

represent linear interpolations between points. This high-
lights the irregularity and varying wear rates in SAG1’s his-
tory, a pattern consistent across other mills. Almost all the
campaigns have a measurement at the start of the lining’s
lifespan and one near to its end.

Within each campaign, segments between contiguous mea-
surements are defined to calculate consumed thickness and
total operational hours, yielding a wear rate in [mm/hour],
which is converted to [mm/day]. The objective is to update
the liner’s remaining millimeters daily. To achieve this, aver-
age wear rate curves for SAG1 and SAG2 are calculated (Fig-
ure 3). Operational days within each campaign are assigned
a wear rate, and using all campaigns, daily wear rates are
averaged to produce the curves shown in the next figure. A
Savgol filter is applied to obtain the final average wear curve
used throughout the study.

The difference between the curves is mainly due to SAG2
receiving more recirculated material, which is less abrasive.
Finally, new variables are generated, including accumulated
minaral-flows, moving averages, time window dispersions,
and others detailed below, aggregated daily and indicating the
mill’s operational percentage per day.

• Accumulated mineral-flow.

• Clockwise mineral-flow.

• Counter-clockwise mineral-flow.

• Accumulated counter-clockwise flow.

• Accumulated clockwise flow.

• Velocity dispersion over a 72-hour window.

• Accumulated velocity dispersion sum.

• Accumulated power (electric consumption).

• Load cell weight moving average.

• Load cell weight dispersion over a 72-hour window.

• Accumulated load cell weight dispersion sum.

• Noise power moving average.

• Noise power dispersion over a 72-hour window.

• Accumulated noise power dispersion sum.

• Operational day of the campaign.

• Day of the campaign.

• Percentage of clockwise operation time during the cam-
paign.

These enhancements prepare the variables for model input,
with accumulations specific to each campaign.

4. PROPOSED METHODOLOGY

The initial decision was to utilize a unified model for both
SAG1 and SAG2, justified by the fact that they are essentially
the same machinery, albeit with some operational differences.
All input variables are aggregated on a daily level, aiming for
the model to approximate daily wear of the mill, subsequently
accumulating it throughout the campaign for real-time wear
monitoring.

After defining the model’s input variables, the next step was
addressing its output. Resulting from the daily aggregation of
data, each data row contains the daily average of tags and cre-
ated variables, a daily mill utilization percentage, and the in-
terpolated wear rate for that specific day. However, the model
does not output this daily wear rate directly; instead, it uses
the deviation from the interpolated wear rate compared to the
previously mentioned average rates. The creation of the out-
put for the regresor and the histogram of this deviations is
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Figure 4. Computation of the deviations from the average wear rate curve.

illustrated in Figure (4). The wear expression in Equation (1)
is derived based on the cumulative effect of daily operational
conditions on the liner’s wear rate. Specifically, we start with
the basic principle that the wear on any given day is influ-
enced by both the average wear rate for that day and devia-
tions due to specific operational conditions. Mathematically,
this can be expressed as:

s(T ) =
T∑

i=1

(δi + δmodel(xi)) ∗ αi (1)

where T denotes the current day, s represents the lining state
measured in millimeters, δi is the average wear rate for op-
erational day i, δmodel is the model’s output, xi is the model
input, and αi is the day i utilization percentage.

The training set was determined by selecting campaigns with
a significant number of measurements to create average wear
curves. Considering the irregularity of measurements per cam-
paign and their impact on model training, campaigns with
only one intermediate measurement, typically towards the cam-
paign’s end, were excluded from the training set (and in-
cluded in the validation set) due to their limited information
contribution about the wear pattern. Thus, the training set
comprised 36 campaigns, with a testing set of 8 campaigns
chosen for their recency (in order to test the methodology
with the most recent campaigns) and lack of more than one

measurement.

To train the model, only days from the training campaigns
with at least 21 operational hours were used, addressing the
distinct data distribution during mill stoppages or startups.
The model (in production and testing) was fed all days re-
gardless of operational hours, adjusting outputs by the cal-
culated utilization percentage to prevent unexpected results
from low-operation days.

Several types of regressors were tested, including linear re-
gression, decision trees, and support vector machines; how-
ever, the neural network was chosen due to its superior inter-
polation capability and its effectiveness in handling the com-
plexities and variations present in the historical wear data.
A Multi-Layer Perceptron (MLP) neural network with three
hidden layers and slight dropout was trained using the train-
ing set, aiming to minimize the error between the prediction
and the actual deviation from the average wear rate curve.
The network’s performance was then tested against the vali-
dation campaigns, focusing on minimizing the projection er-
ror, defined as:

eproy =

√√√√
N∑

k=0

(sk(T )− skreal(T ))2 (2)

where k indexes the validation campaigns, and skreal(T ) rep-
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resents the actual liner measurements for that campaign in
millimeters.

The network’s output represents a percentage deviation, which
is then converted to millimeters of liner wear before being ad-
justed by the daily utilization percentage, ensuring the model
accurately reflects operational impact on wear. The distinc-
tion between the metric training the neural network and the
projection error metric highlights the goal of accurately mod-
eling the actual mill state through the accumulation of neural
network results.

5. RESULTS

Recalling from the previous section, the model was devel-
oped for the component known as the grate, which, as shown
in Figure 2, is monitored at two positions on the grate, named
lifter and plate. Therefore, there are two models, one for each
position, and the results for both models, which follow the
exact procedures described earlier, will be reported. The best
model generated for the plate achieved a projection error of
7.4254 mm, whereas the lifter model had an error of 8.701
mm. Below is the table highlighting the projection errors for
both models, two example campaigns (Figures 5 and 6) are
given in order to illustrate the performance of both models,
comparing their results with the faros and with the curve gen-
erated by integrating the average wear rates (also weighted by
the daily utilization rate), which will serve as a reference. The
projection error obtained for those two validation campaigns
is also reported.

Table 1. Reported Projection Errors

Model Position Projection Error (mm)
Plate 7.4254
Lifter 8.701

5.1. Analysis

The study demonstrates the viability and effectiveness of mod-
eling SAG1 and SAG2 operations jointly. Given that they are
identical machines whose variables operate within the same
ranges despite differences in their operational patterns, a uni-
fied model approach fosters a more robust solution. This ro-
bustness stems from training a neural network with data from
both mills, offering a larger dataset per model than would be
available if two separate models were trained for each mill,
also avoiding over-fitting on a single mill’s typical operation.
This approach not only improves the model’s accuracy but
also its general applicability across identical machinery.

A significant insight from this work is the advantage of es-
tablishing an ’average’ operational reference for each asset,
as exemplified by the average wear curve against which each
mill’s wear is calculated. This methodology allows for the

Figure 5. Model evaluation example with campaign 30 (vali-
dation) SAG.

Figure 6. Model evaluation example with campaign 34 (vali-
dation) SAG.

development of a model that calculates deviations from ’nor-
mal’ operation, ensuring predictions remain within reason-
able bounds. The histogram of deviations (used as output
of the regresor) showed in Figure 4 confirms that there are
no significant deviations from the average, highlighting the
model’s reliability in providing plausible calculations from
an operational perspective. This trait is critical for maintain-
ing operator trust in the model, a confidence that could be
undermined by implausible model outputs.

The project faced considerable challenges due to the scarcity
and poor quality of intermediate wear measurement data. Ef-
fective data handling and processing were crucial for max-
imizing the utility of the available information. Campaigns
with only one measurement were primarily useful for vali-
dating the model’s wear projections and offered limited value
for training purposes.
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The obtained results are satisfactory, yet they lack a crucial
aspect to function online: integrating recent measurements to
adjust predictions and quantify uncertainty.

5.2. Online Operation and Uncertainty Quantification

Implementing real-time functionality and accounting for mea-
surement updates in the model necessitates a dynamic ap-
proach to incorporate new measurements from inspections, a
crucial enhancement given the model’s reliance on up-to-date
information. A particle filter, a key algorithm in this study,
offers an effective tool for state estimation in online settings
when incorporating real-time measurements. This Bayesian
recursive estimator employs discrete particles to approximate
the posterior distribution of the estimated state, making it
suitable for online state estimation with available measure-
ments and a system model correlating model states with mea-
surements. It involves initialization, prediction, and correc-
tion steps, recursively calculating state estimates.

In the context of this work, a simplified particle filter was
implemented as follows:

1. Initialization: With an initial measurement always avail-
able, particles are sampled from a normal distribution
centered on this initial measurement, with variance re-
lated to measurement error. Each particle’s weight is ini-
tialized as 1

N , where N is the number of particles.

2. Model Prediction: Particles follow the model’s trajec-
tory, with added noise to introduce variability among the
particles.

3. Measurement Update: Upon receiving a measurement,
the posterior state distribution is calculated using the par-
ticles, with new weights computed based on each parti-
cle’s likelihood given the measurement. If a weight dis-
parity condition is triggered, a resampling step occurs.
The process returns to the previous step upon comple-
tion.

This particle-based approach generates a probability distribu-
tion of the state to be estimated, acknowledging and address-
ing the inherent uncertainty, thus offering a solution that man-
ages the uncertainty associated with the state estimation pro-
cess effectively. The variance of the particles in the particle
filter was calculated based on the projection error, allowing
the filter to produce calibrated uncertainty quantification.

For instance, in campaign 34 of SAG1 (Figure 7), the parti-
cle filter had minimal impact due to the model’s consistent
accuracy. However, in campaign 27 (Figure 8) of SAG2, a
significant deviation was corrected by the filter upon the third
measurement, thereby improving model performance towards
the campaign’s end.

Figure 7. On-line operation of the model with the particle
filter, SAG1 campaign 34.

Figure 8. On-line operation of the model with the particle
filter, SAG2 campaign 27

6. CONCLUSIONS

This paper presents an innovative methodology for abrasive
wear monitoring in SAG (Semi-Autogenous Grinding) mills,
addressing the challenge of irregular wear measurements due
to the lack of a regular inspection regime. The introduc-
tion of a virtual sensor aims to estimate the liner’s remain-
ing thickness, providing daily updates to assist the mainte-
nance team in scheduling liner replacements efficiently. This
method proves critical in enhancing maintenance strategies,
particularly in environments where data quality may be com-
promised and operational realities prevail. A key feature of
this approach is the emphasis on uncertainty quantification,
which is crucial for informed maintenance decision-making.

The successful application of this methodology to SAG mills
at Minera Los Pelambres demonstrates its effectiveness and
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potential for broader adoption. Achieving an error of ±7.4254
mm of remaining thickness for the plate position and ±8.701
for the lifter in the validation set underscores the models pre-
cision. The methodology’s ability to utilize low-quality data
and its simplicity are among its most valuable contributions,
reducing the barriers to implementing predictive health mon-
itoring (PHM) algorithms and marking a significant advance-
ment in maintenance strategies for the mining industry.
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ABSTRACT

The development of high-quality health indicators based on
Artificial Intelligence (AI) for condition monitoring, reflect-
ing the degradation process and trend, remains a key area of
research. Unsupervised deep learning methods, such as deep
autoencoders and variational autoencoders, are often employed
to establish health indicators for rotating machinery. How-
ever, commonly used methods frequently face challenges in
controlling and evaluating the quality of learned features that
represent this distribution, which subsequently impacts the
accuracy of the test data analysis and anomaly detection. Ad-
ditionally, the empirical nature of threshold setting adds an
element of uncertainty to detections.

The research propose a novel approach for constructing gear
health indicators and performing anomaly detection using Gen-
erative Adversarial Networks (GAN), with a particular em-
phasis on the f-AnoGAN structure. The research focuses on
modeling the distribution of vibration signals acquired from
healthy systems using adversarial learning. By comparing
test samples against this modeled distribution, the degree of
similarity or dissimilarity acts as an indicator of anomalies.
Owing to the generative process of the GAN architecture (cre-
ating data from randomly sampled low-dimensional noise),
GAN-based modeling overcomes the limitation of autoen-
coders by aiming to reconstruct the continuous distribution

Hao Wen et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

of systems in healthy conditions from a limited set of healthy
(training) samples. In this way, it offers more generalizability
than traditional model learning. Moreover, this study pro-
poses a new method for establishing thresholds based on dis-
tribution fitting by the anomaly score of healthy data. The
proposed f-AnoGAN-based model and thresholding technique
is applied, tested and evaluated in a gear-pitting degradation
dataset and result in more accurate and timely fault detection,
markedly enhancing the ability to identify subtle faults in sys-
tems over traditional methods.

1. INTRODUCTION

Gears are an indispensable element of rotating machinery,
widely employed across industry, including aerospace, rail
transport, and industrial sectors (Chen, Jiang, Ding, & Huang,
2022; Salameh, Cauet, Etien, Sakout, & Rambault, 2018).
The malfunctioning of gears constitutes a prevalent reason
for the failure of machine systems, which can result in sub-
stantial economic losses and may even pose risks to human
safety (Lee et al., 2014). Consequently, monitoring gear con-
ditions and accurately predicting component failure and fault
progression are crucial.

The employment of vibration based condition monitoring at
both system and component levels represents a universally
endorsed technique within the realm of health monitoring for
rotating machinery (Elasha et al., 2014; Teng, Wang, Zhang,
Liu, & Ding, 2014; Öztürk, Sabuncu, & Yesilyurt, 2008). The
meticulous measurement and subsequent analysis of vibra-
tion signals are instrumental in the precise identification of in-
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cipient faults, thereby enabling the implementation of preven-
tative and predictive maintenance prior to deterioration and
corresponding issues. This proactive approach significantly
contributes to the sustenance of system reliability and safety.
Moreover, vibration analysis serves as an invaluable source of
insight regarding the mechanical condition, since deviations
in pivotal rotating elements, such as gears, manifest within
the vibration signals (Zhu, Mousmoulis, & Gryllias, 2023;
Hendriks, Dumond, & Knox, 2022). The utilization of signal
processing tools for the examination of vibratory data aids in
the extraction of critical information and indicators spanning
both frequency and time-frequency domains. Nevertheless, it
is imperative to acknowledge that the interpretations derived
from these signal processing outcomes frequently require the
expertise of seasoned operators.

With the advancement of artificial intelligence, its application
in gear fault detection has gained increasing attention. Artifi-
cial intelligence, especially machine learning and deep learn-
ing methods, can process and analyze vast amounts of data,
uncovering complex patterns and relationships that may be
elusive to human experts. This reduces reliance on deep ex-
pert knowledge while enhancing the efficiency and accuracy
of fault detection, enabling even non-experts to effectively di-
agnose faults. Among the various techniques, Convolutional
Neural Networks (CNN) have demonstrated their versatility
in state monitoring applications, including the detection and
diagnosis of gear pitting faults (Zhang, Liu, Wang, & Gu,
2022; Xiang, Yang, Hu, Su, & Wang, 2022; Shi et al., 2022;
Kim, Na, & Youn, 2022).

Viewing fault detection as a classification problem is a widely
adopted strategy. However, obtaining clean, ample, and bal-
anced healthy and especially faulty data, is challenging. Thus,
various unsupervised one-class classification methods have
been introduced. Unsupervised training methods, which in-
fer based solely on information from healthy data, are limited
by their output being the probability of a sample being nor-
mal. Thus for detection in a continuous progress, such as a
degradation, this type of methods lacks of ability to represent
trend. These methods primarily involve two steps: firstly,
through the neural network’s learning, mastering the distri-
bution of healthy data and gauging the deviation of test data
from this baseline; secondly, establishing reasonable thresh-
olds for anomaly detection. A popular method is Deep Sup-
port Vector Data Description (DSVDD) (Ruff et al., 2018;
Liu & Gryllias, 2020; Peng, Liu, Desmet, & Gryllias, 2023),
which uses the Euclidean distance between hidden layer fea-
ture representations to characterize the extent of faults, allow-
ing for trend assessment. However, DSVDD faces limitations
in feature space representation capability and a lack of control
over hidden layers/features.

An alternative unsupervised learning approach involves self-
supervised schemes like Autoencoder (AE). By encoding and

decoding complete data through neural networks, these mod-
els learn the intrinsic structure of the data (C. Zhou & Paf-
fenroth, 2017; Ren, Sun, Cui, & Zhang, 2018; Mao, Feng,
Liu, Zhang, & Liang, 2021). Yet, the characteristic of data
compression in autoencoders limits their generalization abil-
ity, showing a significant dependency on the training data.

Recent years have seen generative models emerge as a new re-
search focus. From the perspective of mechanical fault detec-
tion, Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have been applied primarily in data augmentation
tasks (He, Tian, & Zuo, 2022; K. Zhou, Diehl, & Tang, 2023;
Qin, Wang, & Xi, 2022; Wang et al., 2019). (Ding, Ma, Ma,
Wang, & Lu, 2019) proposed a GAN-based anomaly detec-
tion method for bearing fault diagnosis, where the discrimi-
nator is used as an anomaly detector. (Dai, Wang, Huang,
Shi, & Zhu, 2020) introduces an adversarial learning strategy
to optimise the training of autoencoder(the method is also
known as adversarial autoencoder) for the establishment of
rotating machinery health indicators.

However, the essence of GANs lies in their use of adversarial
learning to better fit the distribution of training data, allowing
the direct generation of new data from this distribution. This
aligns with the upstream task of various anomaly detection
algorithms, which is to simulate the distribution of training
data.

This study explores the potential of Generative Adversarial
Networks in the task of anomaly detection for rotating ma-
chinery, based on vibration signals. It proposes a scheme for
constructing a gear health indicator using GANs, along with
a corresponding threshold setting and an anomaly detection
system, aimed at detecting pitting initiation as early as possi-
ble. The methodology is validated on a dataset from a gear-
accelerated degradation test.

The rest of the paper is organised as follows. In Section 2, the
proposed anomaly detection methodology including model
training, construction of health indices, and the threshold set-
ting scheme is presented in detail. Then in Section 3 the ex-
perimental set up is described, the proposed methodology is
applied on the experimental dataset and its effectiveness is
analysed. The paper closes at the final section with some con-
clusions and the potentials of the proposed method in the field
of rotating machinery health monitoring.

2. PROPOSED METHOD

The proposed detection scheme can be divided into three in-
dependent steps:

1. Offline Distribution Learning, by generative adversar-
ial learning. In this step, the model is trained only by a
limited number of partitioned healthy signals. The gen-
erator uses low-dimensional random noise as input and
upscales it to the same dimension as the actual samples.
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The objective of the generator is to produce signals from
the random noise (i.e., feature space) that are as realis-
tic as possible. This process can be considered as the
model’s grasp of the intrinsic structure of the training sig-
nals.

2. Health Indicator Formation, by the fast AnoGAN (f-
AnoGAN) structure. The well-trained generator from
step 1 can upscale any arbitrary low-dimensional feature
set to obtain sufficiently realistic signals. This result can
be interpreted as having obtained a continuous, infinite
set of training samples. Therefore, for a test sample, its
state related with health can be determined by whether an
identical sample (or, as similar as possible) can be found
within this continuous healthy set. The process of finding
the corresponding sample, according to the f-AnoGAN
structure, is assisted by an independently trained encoder
working alongside the generator. After obtaining the cor-
responding sample for the test signal, the Euclidean dis-
tance is measured between signals to gauge the test sam-
ple.

3. Fault Detection, by a thresholding method. The discrep-
ancy measured as outlined in step 2 is compared against a
pre-determined threshold. Samples exceeding this thresh-
old are flagged as potential anomalies, indicating a de-
parture from the healthy signal distribution and hence,
identifying possible faults.

2.1. Generative Adversarial Network (GAN) Training

2.1.1. Training Strategy

The training of GAN, depicted in Figure 1, alternates between
updating the discriminator (also referred to as the Critic in
the context of WGANs) and the generator. The discriminator
(Critic model)’s task is to evaluate the realism of both real and
generated samples, while the generator aims to produce data
that are indistinguishable from real data. The key innovation
of WGAN-GP (Gulrajani, Ahmed, Arjovsky, Dumoulin, &
Courville, 2017) lies in the gradient penalty term, which en-
forces a soft version of the Lipschitz constraint by penalizing
the gradient norm of the Critic’s output with respect to its in-
put.

2.1.2. Loss Composition

Generator Loss: The generator’s objective is to minimize the
negative average score of the generated samples evaluated by
the discriminator:

LG(θG) = −Ex̃∼Pg
[C(x̃)] (1)

where θG represents the generator’s parameters. The genera-
tor is trained to produce samples x̃ that maximize the discrim-
inator’s (critic’s) score C(x̃), pushing it towards generating
more realistic samples.

Discriminator Loss: It includes two components - the aver-
age score for the real samples and the average score for the
generated (fake) samples.

The objective of the GAN’s training can be expressed as:

min
θG

max
θC∈C

Ex∼Pr [C(x)]− Ex̃∼Pg [C(x̃)] (2)

where θC represents the critic’s parameters. The goal is to
train the critic to assign higher scores to real samples x ∼ Pr

and lower scores to generated samples x̃ ∼ Pg .

However, the optimizing objective (2) is still not effective
enough in the practice of GAN training, and researchers are
often plagued by pattern collapse, which has spawned more
related studies. Among them, the study of (Gulrajani et
al., 2017) has attracted attention by introducing the gradient
penalty:

Gradient Penalty (GP): Is calculated by first interpolating be-
tween real and fake samples, and then computing the gra-
dient of the critic’s scores with respect to these interpolated
samples. The penalty is the squared deviation of the gradi-
ent norm from 1, averaged across the batch. The final loss
function is as follows:

L(θC) =Ex∼Pr
[C(x)]− Ex̃∼Pg

[C(x̃)]+

λEx̂∼Px̂

[
(∥∇x̂C(x̂)∥2 − 1)2

]
(3)

where x̂ is sampled uniformly along straight lines between
pairs of real and generated samples, and λ is a hyperparam-
eter that controls the strength of the penalty, which is set as
default value 10 to ensure Critic’s gradient comply with the
Lipschitz constraint.

This strategy encourages the generator to produce samples
that are realistic enough to receive high scores from the dis-
criminator, while the discriminator is penalized for having
a gradient norm far from 1, ensuring that it behaves like a
smooth function (Gulrajani et al., 2017) that provides useful
gradients to the generator throughout the training process.

2.2. Indicator Formation

As previously mentioned, following the training of the GAN,
the generator can now represent the complete and continu-
ous distribution of healthy samples found within the training
set. Subsequently, the difference between the test signal and
the healthy distribution need to be measured to quantify the
degree of anomaly in a new signal.

However, this learned distribution is implicit, which means
that it is impossible to explicitly write out the mathematical
form of this learned data distribution. In the final implemen-
tation of AnoGAN (Schlegl, Seeböck, Waldstein, Schmidt-
Erfurth, & Langs, 2017), this process is simplified to whether
a similar signal can be sampled from the distribution of the
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Figure 1. WGAN-GP Training Strategy

generated signal (Dgen), that is, finding z in the noise space
(the distribution of Z, DZ , is normally defined as a Gaussian
distribution). This process is further reduced iteratively using
back-propagation for a substantial number of iterations, such
as 10,000 iterations, after which the final sampling result is
considered the closest match to the test sample in Dgen.

However, the drawbacks of this process are evident; iterat-
ing multiple times for a single sample is computationally in-
efficient, especially when considering practical downstream
applications. Moreover, using gradient descent optimization
in isolation carries a significant risk of the sampling being
trapped in local minima, which can adversely affect the qual-
ity of signal sampling in Dgen.

To enhance efficiency, the f-AnoGAN introduces an indepen-
dent encoder for the sampling process. In GAN models, re-
liable mapping from Dz to Dgen is established. The aim of
the independent encoder in f-AnoGAN is to facilitate the re-
verse process: mapping from the complex data distribution
Dgen back to the simple feature space Dz . This process aids
in quickly searching feature vectors z that match the new
test sample best, enhancing both accuracy and efficiency in
anomaly detection tasks. The obtained vector z is used to
generate the corresponding health data xgen = G(z). The
generated signal(xgen) is then considered as the generated
health signal closest to the tested signal to complete the cor-
responding indicator calculation.

To train the model, the encoder takes the generated signal
Xgen as input and Z as output to train the parameters. The
formation of the encoder can be depicted in Figure 2.

The loss of the training process of the Encoder is defined as:

Loss = Lossszs + Lossf
= MSE(Xgen −G(E(Xgen)))

+ MSE(C(Xgen)− C(G(E(Xgen)))) (4)

As mentioned earlier, the detection relies on the discrepancy
between the test data and the generated healthy data. The dis-
crepancies in this work are defined as two independent parts:

1. the Euclidean distance in the signal space

2. the Euclidean distance in the feature space, defined by
the Critic

The Health Indicator (HI): the Anomaly Score (AS) is defined
as the weighted sum of these two distances. In this research,
this weighting parameter is not discussed emphatically and
both distances are considered equally important, thus, for a
tested data x, AS can be expressed as follows:

AS = ∥x−G(E(x))∥+ ∥C(x)− C(G(E(x)))∥ (5)

2.3. Detection Part - Thresholding

The described method evaluates any signal to obtain a unique
quantified indicator AS. For anomaly detection tasks, it is
necessary to set a threshold based on the AS collection of
the given healthy samples. The aforementioned method is
applied to evaluate the healthy signals in the validation set to
obtain the AS. Then, for the resulting SetAS, the maximum
likelihood estimation is used to estimate the parameters ac-
cording to the assumed distribution type. In this step, research
first establishes a distribution bank that includes all common
and interesting distributions. Afterward, for SetAS, differ-
ent distribution estimates can be obtained, Dis1, Dis2, etc.,
along with the estimated distribution parameters. The AIC
is taken as the matrix to compare and evaluate different dis-
tributions, and to select the optimal distribution based on this
comparison as the parametric expression of the AS collection.
The resulting dis is the distribution expression of the healthy
signals. This distribution is inferred based on actual vibration
measurements, and given the potential instability of operating
conditions in the actual experimental process, and various in-
terferences in signal measurements (such as the electrical en-
vironment), there are outliers in both the AS collection and
the estimated distribution. This is also why similar studies
do not use the maximum value of the validation’s AS as the
threshold for judging anomalies. In this method, the threshold
setting is based on the estimation of the threshold according
to the Distribution’s Cumulative distribution function (CDF).
In this paper, the AS corresponding to CDF (AS) = 0.99 is

4

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 36



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 2. Encoder formation in f-AnoGAN

used as the threshold for judgment of anomaly.

3. APPLICATION OF THE METHODOLOGY AND RESULTS

3.1. Description of the data

The data used for validating the anomaly detection approach
in this research were derived from a comprehensive gear-
box degradation test (Van Maele et al., 2023).The measure-
ments were conducted on an FZG multi-stage gearbox test
rig (Figure 3), where the input and output of two gearboxes
were mechanically interconnected, thus forming a mechan-
ical closed loop. The load was provided by a friction disk
coupling mechanism situated between the gearboxes, which
applies torque to the gear meshing system through angular
displacement between two discs at either end. Throughout
the test, the torque, applied manually, was maintained at 60-
90Nm, and the gear under test was set to a speed of 2560
rpm.

Figure 3. Photo of the multistage FZG test rig

Within the gearbox under investigation, the transmission sys-
tem consists of three pairs of meshing gears, with their spe-
cific locations indicated in Figure 4. The test employed two
pairs of helical gears made of 20MnCr5 steel, featuring 41
(monitored) and 38 teeth, respectively. Unlike standard, in-
dustrial gears, the gears under observation were not hard-
ened (250HV) to ensure pitting would occur on the moni-

tored surfaces within a reasonable time frame (Van Maele et
al., 2023). A camera was used during the operation to peri-
odically record the visual information of the gear surfaces at
fixed intervals for the study and quantification of surface pit-
ting. Specifically, the system was slowed down to 1rpm for
image capture every 30 minutes during operation. The cam-
era system took five shots of each meshing surface during the
collection process, and the sharpest image was algorithmi-
cally selected to serve as the basis for quantifying the pitting
area. Thus, after the test concluded, a quantitative description
of the process of surface pitting area evolution over time was
obtained, providing a metric for the degradation process.

Figure 4. Sketch of the test gearbox setup

In addition to the visual information, during the test also torque,
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speed, and most importantly, vibration signals were measured.
The locations of the vibration sensors are indicated in the ac-
companying diagram. Vibration signals were sampled at 10-
minute intervals, with each sample collected at a sampling
rate of 25600Hz over a duration of 10 seconds. In total, this
accelerated degradation test lasted approximately 205 hours.

Overall, the test yielded 999 valid vibration data entries (indi-
cating failure after 999 cycles) and 300 sets of synchronized
gear surface information. According to tribologists’ analysis,
significant and observable pitting occurred on all gear sur-
faces after the 33 cycle.Figure 5 is a depict of the observed
degradation process of pitting.

In this study, the vibration signal in the X-direction from the
vibration sensor EN-3924, which lies closest to the tested
gear, was utilized. A health indicator built on a generative
model was used to track the degradation of gears, aiming for
earlier detection of pitting formation, which would, in turn,
guide maintenance activities.

3.2. Data preprocessing

In this research, the training data were prepared with the fol-
lowing preprocessing steps to use more informative samples.
It is postulated that the degradation features are primarily
concentrated in the gear mesh frequency (GMF), its harmon-
ics, and the features and structures of the sidebands. In this
test, with the input shaft rotating at 2560 rpm, the velocity
of the intermediate and target gears was calculated as v2 =
v1 × gear ratio = 39.5Hz, and the gear mesh frequency was
GMF = Teeth num × v2 = 1622Hz. Table 1 contains the
characteristic frequencies of the test rig and the test.

Table 1. Characteristic frequencies of the test gearbox

Speed (Input Shaft) 2560 rpm
Speed (Driver Gear) 42.7 Hz
Speed (Target Gear) 39.5 Hz
GMF (Target Gear) 1622.6 Hz

2*GMF (Target Gear) 3245.2 Hz
3*GMF (Target Gear) 4867.8 Hz

Accordingly, the following preprocessing was applied to the
data: initially, vibration signals were passed through a filter
targeting the 1500-5000Hz frequency band, which includes
the harmonics from the 1st to the 3rd order of the gear mesh
frequency, along with the related band components. After-
ward, the Discrete Fourier Transform was applied to isolate
the informative frequency band, and then the 1500-5000Hz
range was extracted to form the training, validation and test
set samples.

The complete experimental dataset consists of approximately
999 independent measurements covering the full lifecycle.

For this study, the early-life gear signals are selected as train-
ing samples to ensure that the training set comprised entirely
healthy data to support model building and parameter opti-
mization. A portion of the healthy dataset was also reserved
as a validation set due to the encoder architecture of f-AnoGAN.
In f-AnoGAN, unlike the original AnoGAN structure that re-
lies solely on random sampling and gradient descent for sam-
pling in Dgen, the model treats the training data as input to
build the latent feature z via the encoder. Hence, to establish
a threshold for anomaly detection, the new, unseen healthy
data is still required as a reference.

Figure 6 delineates the division of the dataset in the test. Due
to the run-in and gear bedding-in phases, which led to an un-
stable operational state of the experimental system, the ini-
tial two signals were discarded. The complete training set is
composed of 19 independent signals, each sliced into time se-
ries of 51200 points with a 50% overlap during segmentation.
All models in the study, including the generator, discrimina-
tor, and encoder, were trained exclusively with the aforemen-
tioned samples as per the described method. Furthermore,
following the aforementioned method, 9 independent mea-
surements from the healthy system were retained as a valida-
tion set, with the data division and sample generation being
identical to the training set. All remaining data, encompass-
ing both healthy and anomalous readings, were used as the
final test set. It is important to note that the exclusion of data,
as well as the delineation of the training, validation, and test
sets, was conducted in chronological order following the ac-
celerated degradation life course. In other words, the train-
ing and validation sets represent the early service life of the
gears, while the test set includes the entire progression from
a healthy state through the onset and development of pitting.
Figure 7 illustrates the data pre-processing process.

3.3. Results

To verify the methodology’s effectiveness, this study sets up
comparative experiments and discusses the performance of
the proposed model and the Autoencoder (AE). For the f-
AnoGAN architecture, all models are set to be based on fully
connected networks. To ensure fairness in the comparative
experiments, the main model’s structure and the number of
parameters are kept as consistent and comparable as possi-
ble. This implies that both the generator of the proposed
approach and the decoder of the AE, which serves as the
benchmark method, undertake analogous functions by up-
scaling low-dimensional variables in the feature space to the
target dimension. Consequently, to guarantee comparability
between the two models, their parameters and network struc-
tures are configured to be identical. Both G and AE are com-
pleted by fully connected neural networks, transforming di-
mensions from 1000 → 2500 → 5000 → 7001, finally ob-
taining the spectrum from 1500-5000Hz (with a resolution of
0.5Hz). Based on these two models, model construction in
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Figure 5. Observed degradation process of pitting

Figure 6. Segmentation of the training, validation, and test
sets

each method is respectively completed, i.e., completing the
Critic in GAN and implementing the encoder in f-AnoGAN.
For the AE, the encoder is set according to the structure of the
decoder. The AE uses the Mean Squared reconstruction Error
(MSE) as its training loss and evaluates the health indicator
during an assessment based on the MS reconstruction error.

For the proposed method, the training process generally fol-
lows the WGAN-GP (Wasserstein GAN with Gradient Penalty)
scheme, setting the model to be trained for 2000 epochs (learn-
ing rate = 0.0001) to allow the model parameters to converge.
After complete training, the generator can produce specified
frequency bands based on any given set of features z. Fig-
ure 8 shows examples of training data and Figure 9 shows
the generated results after 1990 epochs based on four ran-
domly sampled z values. It is observed that the generated
frequency bands closely mimic the features of the training
data. From this, it can be inferred that the generator model
has grasped the internal structure of the training data, that

Figure 7. Dataset formation & pre-processing of signals,
where v(t) is the time-domain vibration signal, F is the filter,
the Discrete Fourier Transform (DFT) of the filtered signal
vf (t) is represented as Vf (ω).

is, the representation of the service vibration condition of the
given gear in the experimental system in the frequency do-
main. Specifically, the generated samples accurately repli-
cate the gear mesh frequency and its higher-order harmonics,
as well as the surrounding sideband performance.

According to the f-AnoGAN architecture, the construction of
the Anomaly Score (AS) for any signal is completed with the
help of the encoder. Figure 10 illustrates the result of gener-
ator sampling based on the aforementioned method and cal-
culating the Euclidean distance in two spaces, with example
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Figure 8. Sample overview in the training set

Figure 9. Generated spectrum at the end of the training period

signals from the validation set.

Based on all the validation set data, a reference benchmark
for anomaly detection, namely the Anomaly Score (AS) col-
lection of healthy data, will be established. Figure 11 shows
the AS for 81 samples (from 9 vibration signals) in the valida-
tion set 11. The study constructed a distribution bank using
some common distributions. Following the aforementioned
thresholding method, the fitting of the obtained distribution
is as shown in Figure 12. The legend lists the distribution
types in the figure, which are sorted in ascending order of
the Akaike Information Criterion (AIC). Theoretically, a dis-
tribution with a smaller AIC value is closer to the true dis-
tribution. According to this criterion, the distribution among
tested that best represents the AS of the healthy samples is
the lognorm distribution (Figure 12). Additionally its numer-
ical solution for various parameters is obtained, allowing to
derive the CDF. Based on the aforementioned method where
CDF (ASthreshold) = 0.99, the threshold is then determined
for determining the anomaly (Figure 13). The threshold is
then applied to the test set to evaluate the performance of the
proposed method in anomaly detection.

Having completed all the components for anomaly detection

Figure 10. Comparison of the generated spectrum and the
original spectrum

Figure 11. Anomaly score of the validation set (Healthy sam-
ples)

as described previously, the Anomaly Score (AS) for each
data in the test set is obtained following the aforementioned
method. The average AS from the same vibration signal is
taken as the AS for that vibration signal. Figure 14 shows
the variation of AS across the entire test set in chronological
order, along with the threshold performance. The results indi-
cate that, according to the aforementioned method, the onset
of failure occurs at the 33rd cycle (Figure 15), which aligns
with the onset time of pitting derived from tribologists and
visual information.

As a comparison, the AE model was also trained on the train-
ing set for 2000 epochs (learning rate = 0.0001), with an
early-stopping at patience of 100. Figure 16 illustrates the re-
construction effect and schematic after completing the train-
ing.

As mentioned the reconstruction error derived from the AE
model served as health indicators. In the comparative ex-
periments, the threshold was established as the mean plus
three times the standard deviation of the derived HI. AE-
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Figure 12. Distribution fit of the anomaly score in the Valida-
tion set

Figure 13. CDF according to the fitted distribution of the
Anomaly Score of the healthy spectrum

based anomaly detection method identified the 38th cycle as
the first cycle exceeding the threshold. However, this indi-
cator was less stable, with a significant number of cycles be-
tween 38 and 200 falling below the threshold (Figure 18), in-
dicating mis-detections if analogous to a classification prob-
lem.

3.4. Discussion

The results indicate that the proposed health indicator scheme
and the thresholding method based on the GAN accurately
detected the onset of the gear failure. Compared to the tradi-
tional unsupervised anomaly detection AE, the GAN-based
detection advanced the detection time by 5 cycles. Given
that the experiment conducted was an accelerated degrada-
tion test, and the gears underwent softening, this gap would
be even more significant in actual industrial components.

Furthermore, it is also observed that the AE-reconstruction
error, used as a HI, was highly unstable. One reason for this
is the instability in the application of torque during the mea-
surement campaign, which gradually diminishes during oper-
ation, necessitating the experiment to be halted and torque to
be manually reapplied once excessive torque loss occurs. In
the trend of HI obtained from AE, each sharp decrease in HI

Figure 14. Detection result of f-AnoGAN-based anomaly de-
tection method

Figure 15. Anomaly Score in the first 100 cycles

corresponds to the moments when the experiment is stopped
and torque is reapplied. The same phenomenon is also ob-
served in GAN-based HI. In GAN-based HI, even though HI
is still established based on Euclidean distance, the powerful
representation learning capability of the generator model al-
lows it to construct more diverse samples that are more adapt-
able to certain instabilities in torque interference. Conse-
quently, the differences reflected by HI are more attributable
to degradation, with less impact from torque variations. This
explains why GAN-based HI demonstrates better trend per-
formance.

4. CONCLUSION

This work proposes an anomaly detection scheme for the con-
dition monitoring of rotating machinery, focusing on gear
fault detection using vibration signals. This method employs
Generative Adversarial Networks (GANs) to learn the intrin-
sic structure and features of the training data’s spectrum, par-
ticularly aiming to generate non-existent, highly realistic coun-
terfeit samples. Based on the f-AnoGAN architecture, a health
indicator is constructed utilizing the quantified Euclidean dis-
tance in two independent spaces. The study also employs
a distribution fitting-based threshold method to assist in de-
tection. The methodology is validated in a comprehensive
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Figure 16. Comparison of the original spectrum and the re-
constructed spectrum by an Autoencoder

Figure 17. Detection result of Autoencoder-based anomaly
detection method

gear accelerated degradation measurement campaign, which
includes synchronized visual information collection, thus al-
lowing for precise determination of the initial onset of pitting
— the target of anomaly detection based on vibration signals
in this research. In comparative experiments, the GAN-based
method surpassed traditional unsupervised autoencoders and
demonstrated better adaptability to changes in operating con-
ditions, highlighting the performance of generative models
with adversarial learning in the field of anomaly detection.
Exploring how to better and more controllably utilize its adapt-
ability under changing operating conditions will be the focus
of future research.
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ABSTRACT 

During its operational lifetime, a wind turbine is continuously 
subjected to a number of aggressive environmental and 
operational conditions, resulting in degradation of its parts. If 
left unattended, these degraded components will negatively 
influence its performance and may lead to failure of the wind 
turbine. In order to mitigate the risk associated with the 
failure of components, a wind turbine is regularly inspected 
and maintained. 

Currently, there are two commonly used approaches for 
making maintenance management (inspection and 
maintenance) plans. Traditional Approach utilises 
understanding of failure profile of the components for 
manually developing maintenance plan for the equipment. 
Condition-Based Approach utilises data collected by 
condition monitoring of equipment for developing dynamic 
maintenance plan. SCADA system offers a low-resolution 
condition-monitoring data that can be used for fault detection, 
fault diagnosis, fault quantification and fault prognosis and 
eventually for maintenance planning. 

The monitoring data from SCADA system of a wind turbine 
is often afflicted with variability and uncertainty. The 
variability in data is the result of continuously changing 
environmental conditions and uncertainty arises due to 
imperfections in the recorded data. The uncertainty may be 
due to many reasons, including, inherent characteristic of 
sensing devices, drift in calibration with time, deterioration 
of sensing devices’ sensitivity and response due to 
environmental attacks, etc.  

For handling variability in monitoring data a number of 
parametric and non-parametric (statistical) predictive models 
for different aspects of a wind turbine’s structure and 
operation have been proposed. Depending upon its type – 
aleatory or epistemic – an uncertainty can be handled in a 
number of ways. Since, the dynamic nature of wind turbine 
operation does not allow collection of multiple values under 

the same condition; hence, uncertainty is mostly epistemic in 
nature. Possibilistic Approach, based on Fuzzy Set Theory, is 
especially suitable for handling epistemic uncertainty that 
may arise due to imprecision or lack of statistical data. 

Aim of the ongoing research is to develop a methodology for 
detecting sub-optimal operation of a wind turbine by 
comparing Measured Produced Power against Predicted 
Produced Power. Unfortunately, variability and uncertainty 
associated with the recorded data make accurate prediction of 
produced power challenging.  

This paper presents methodologies for predicting produced 
power using SCADA data while simultaneously accounting 
for variability and uncertainty. The methodologies utilise 
either parametric (example, power curve) or machine 
learning (example, XGBoost) models for handling 
variability; and Possibilistic Approach for handling 
uncertainty. 

1. INTRODUCTION 

1.1. Background 

The world has two conflicting needs, on one side is the need 
to generate and supply more energy to bring people out of 
poverty and improve their living standard; on the other side 
is the need to reduce reliance on fossil fuel so as to cut down 
on emissions that cause global warming. These conflicting 
needs have acted as a spur to find economical and clean 
alternative sources of energy. In recent years, wind power has 
become one of the major sources of alternative energy and its 
share is expected to continuously grow in the coming decade 
(Global Wind Energy Council, 2021). 

Due to various financial, social (“not-in-my-backyard” 
syndrome), environmental (meteorological conditions) and 
geographical (topological features) reasons the wind turbines 
are often located in remote areas where they experience harsh 
environmental conditions. The inconsistent and aggressive 
environmental conditions, like, wind velocity, humidity, 
temperature, precipitation and icing, degrade the vulnerable 
components. If left unattended, these degraded components 

This is an open-access article distributed under the terms of the Creative 
Commons Attribution 3.0 United States License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided 
the original author and source are credited. 
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will result in deterioration of performance and at times 
failure. To prevent that from happening, maintenance of wind 
turbines is needed throughout their lifetime. It is estimated 
that maintenance costs comprise of a significant proportion 
(10-25%) of the total annual operational cost (Nilsson & 
Bertling, 2007). 

Currently, there are two commonly used approaches for 
making maintenance management plans (tasks and 
schedules):  

(a) Traditional Approach – In which understanding of the 
failure profile (failure causes, failure mechanisms, 
failure modes, failure rates, etc.) of components is used 
to develop maintenance concept and maintenance plan 
for the equipment.  

(b) Condition-Based Approach – In which data, collected 
using condition-monitoring equipment or Supervisory 
Control and Data Acquisition (SCADA) systems is 
analysed for fault detection, fault diagnosis, fault 
quantification and fault prognosis and maintenance 
planning.  

The Traditional Approach analyses structural, environmental 
and operational attributes to develop corrective or preventive 
maintenance plans. The preventive maintenance plans are 
often time-based, for example, preventive maintenance 
activities of wind turbines are normally planned at 3 to 6-
month intervals based upon the age and condition of the 
turbine (Nilsson & Bertling, 2007). Since these time-based 
inspection and maintenance plans are expensive to execute, 
there have been efforts to develop methodologies based on 
formalized risk analysis, e.g., Risk Based Inspection and 
Maintenance or Reliability Centered Maintenance. This 
involves understanding failure profile and carrying out risk 
analysis & risk evaluation for preparing maintenance plans 
that are more efficient and effective than time-based or 
incidence-based maintenance plans (Fischer, Besnard & 
Bertling, 2012). 

The Condition-Based Approach improves upon the 
inspection and maintenance plan by using condition 
attributes to update the equipment’s risk assessment by 
detecting faults. This is achieved by (a) intermittent or 
continuous monitoring using sensors; (b) data analytics; and 
(c) developing condition-based maintenance plans. This 
approach can be applied using either (Tavner, 2012): 

1. Condition Monitoring System (CMS) – A high-
resolution specialized system for detailed analysis of the 
condition of a machinery by monitoring parameters like, 
speed, displacement, vibration and oil particles, using 
sensitive sensors. While specialized Condition 
Monitoring Systems can give accurate and detailed 
analysis, they are also expensive to install and use. 

2. Supervisory Control and Data Acquisition (SCADA) 
– A low-resolution, usually at 10-minute intervals, 

standard system in every large wind turbine that 
monitors parameters for characterising environment, 
electrical, operational or structural attributes. SCADA 
system uses this data for controlling the wind turbine’s 
operation after analysing its operating conditions and 
status. This data can also be used for deducing the health 
(fault detection, diagnosis and quantification) of the 
wind turbine. 

3. Structural Health Monitoring (SHM) – A low-
resolution system for monitoring health of a structure, 
including tower and foundation. 

 

 
 

Figure 1. Main steps of a monitoring system (Based on 
ISO17359). 
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While Condition Monitoring System (CMS) provides costly 
but in-depth coverage, SCADA and Structural Health 
Monitoring (SHM) can provide cheap but wide coverage. 
Hence, a number of commercially available SCADA systems 
offer real-time data analysis, using statistical and artificial 
intelligence techniques, for fault detection of components. 
Yet, there is a need for better diagnostics, prognostics and 
control techniques using SCADA (Tavner, 2012; Yang et al., 
2018).  

Since, both – Traditional and Condition-based – Approaches 
have their own advantages and disadvantages, most of the 
maintenance planning is carried out by integrating the two 
approaches. The integration provides a solution that is robust, 
effective, and efficient. In an integrated method (Bindingsbø 
et al. 2023): 

 failure analysis is carried out in the traditional manner, 
and then the results of failure profile is used judiciously 
to develop a maintenance strategy; 

 time for inspection and maintenance of a component is 
adjusted based upon outcome of condition monitoring. 

Figure 1 shows main steps that should be carried out to 
monitor a system according to ISO17359. According to the 
standard, condition-monitoring approach has three steps 
(Equipment Audit, Reliability and Criticality Audit and 
Select Appropriate Maintenance Strategy) that help in 
developing maintenance plan using the Tradition Approach. 
Thereafter, three more steps (Select Monitoring Method, 
Data Acquisition and Analysis and Determine Maintenance 
Action) help in improving the maintenance plan by 
incorporating knowledge of system’s condition.  

1.2. Supervisory Control and Data Acquisition (SCADA) 
System  

An offshore wind turbine is subjected to severe variations in 
the environmental and operating conditions. To continuously 
monitor these variations all modern wind turbines come with 
a Supervisory Control and Data Acquisition (SCADA) 
system (Pandit & Wang, 2024).  

In a SCADA system, a multitude of sensors constantly 
monitor various meteorological and operational parameters; 
and the data is transmitted, processed and stored in SCADA 
supervisory computers. The parameters that are monitored 
include (Manwell, McGowan & Rogers, 2009): 

 Position – blade pitch angle, nacelle direction 
 Temperature – nose cone, gearbox bearing, gearbox oil, 

hydraulic system oil, generator bearing, generator stator 
windings, generator split ring chamber, transformer, 
busbar section, inverter, controllers, VCP control boards 

 RPM – rotor, generator 
 Hydraulic Characteristics – pressure, reservoir level, 

flowrate 

 Environmental Characteristics – wind speed, wind 
direction, temperature, humidity 

 Electrical Characteristics – active power, reactive 
power, voltage, current, phase displacement, frequency 

Apart from the data collected using sensors that are connected 
to a wind turbine, a number of data streams from nearby 
weather stations are also recorded. 

The recorded SCADA data is analysed using different 
deterministic, probabilistic, Fuzzy Logic, Machine Learning, 
Artificial Neural Networks and Deep Learning approaches to 
detect, diagnose and quantify failures in the components. 
Information gained after analysis is used to control the 
process or operation (Manwell, McGowan & Rogers, 2009; 
Tavner, 2012).  

Based on the data collected and analysed, a SCADA system 
can perform the following tasks (Manwell, McGowan & 
Rogers, 2009; Pandit & Wang, 2024): 

1. Controlling Operating Conditions – SCADA uses the 
information regarding environment and grid to 
determine the appropriate operating conditions. It then 
controls the components (pitch angle, brakes, generator 
connection to the grid, etc.) so that the turbine operates 
according to the determined task schedule. 

2. Monitoring for Fault Detection – SCADA uses the data 
from sensors (example, bearing temperature, hydraulic 
oil temperature, etc.) connected to critical components to 
monitor their behaviour and detect potential faults or 
spurious behaviour. 

3. Raising Alarm in Case of Faulty Behaviour – If 
SCADA detects abnormal behaviour of a component it 
can raise alarm and notify the operator. 

4. Triggering Safety and Emergency Response – In case 
of situations that can escalate into an accident, SCADA 
can disconnect turbine from the grid and activate brakes 
to isolate and shut down the operation. 

5. Integrating with Power Grid – SCADA can control 
integration of individual wind turbine into the power 
grid, thereby contributing to feed and stabilisation. 

1.3. Condition-based Maintenance Planning Using 
SCADA Data 

The data acquired from SCADA can be used for fault 
detection, where a fault can be of various kinds, for example, 
degradation of components, failure of sensors, operation 
beyond safe operating limits, problems associated with grid. 
While it may be possible to detect some of these faults 
directly, for example, failure of sensors resulting in irrational 
readings, other faults may only be detected indirectly 
(Manwell, McGowan & Rogers, 2009). 
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Depending upon the type of fault, the time span between 
inception to potential failure could be between a few seconds 
(example, generator earth fault) to a few weeks (example, 
wear-out of gears). For the faults that have a long time span, 
analyses of SCADA data using appropriate models for fault 
diagnosis, fault quantification and finally fault prognosis may 
help in planning maintenance activities. These activities can 
be: 

 triggered either when some condition indicator crosses a 
pre-set limit, or  

 decided based on combination of Failure mode, Effect 
and Criticality Analysis (FMECA) with the condition 
analysis (fault diagnosis, quantification and prognosis) 
to update the existing maintenance plan. 

The recommended maintenance activities may include 
inspection (visual, auditory, NDT), testing, service 
(lubrication, cleaning, repair, etc.), repair and replacement 
tasks. These activities may be either preventive or corrective 
in nature depending on whether the needed task is carried out 
before or after failure. Since maintenance activities are 
planned based on the actual monitored condition, condition-
based maintenance strategy offers advantages that are 
associated with (Bindingsbø et al. 2023, Tavner, 2012): 

 maintenance activities being carried out when required 
and not limited to corrective or preventive maintenance; 

 not conducting unnecessary scheduled replacement of 
parts before their end of useful life. 

In spite of these advantages, use of the Condition-Based 
Approach is still restricted and needs further research and 
development. This is because of the difficulties associated 
with the (Bindingsbø et al. 2023): 

 quality and quantity of collected data, 
 handling of imperfect (spurious, inconsistent, inaccurate, 

uncertain, or irrational) data collected from faulty 
sensors, 

 interpretation of data for fault diagnosis, quantification 
and prognosis, 

 updating of maintenance plan, and 
 handling of unreliable analysis that may trigger false 

alarm (false positive) or failure to respond (false 
negative) 

1.4. Methodologies for Predicting Produced Power 

One of the common methods for analysing the performance 
of a wind turbine using SCADA data is to understand the 
power generation as a function of various variables, 
especially wind speed. A significant difference between the 
predicted power generation and measured power generation 
gives an indication of sub-optimal performance, hence, need 
for detailed examination. For this purpose it is essential to be 
able to accurately predict power generation under varying 

environmental and operating conditions (Pandit & Wang, 
2024; Wang et al., 2016).  

Power curve of a wind turbine is the unique relationship of a 
wind turbine between the power it generates and the 
environmental and operational conditions under which it 
operates. The power generated by a wind turbine is dependent 
upon the technical (example, radius of the rotor), 
environmental (example, wind speed, air density) and 
operational (example, pitch angle, angle between wind and 
nacelle) attributes (Manwell, McGowan & Rogers, 2009). 

In a simplified power balance model, the wind power is 
converted to rotor power; which in turn is converted to 
electrical power. The efficiency of conversion of wind power 
to rotor power is dependent upon wind speed, air density, 
blade geometry, etc. Ideally, the rotor power should be 
converted entirely to the electrical power via its drive train 
system; but in reality, some power is lost as vibration and 
heat. The energy balance can be expressed as (Manwell, 
McGowan & Rogers, 2009): 

𝑃𝑅𝑜𝑡𝑜𝑟 = 𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 +  𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 +  𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙  (1a) 
𝑃𝑅𝑜𝑡𝑜𝑟 −  𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙  (1b) 

Where: 
𝑃𝑅𝑜𝑡𝑜𝑟  = Rotor power 
𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙  = Electrical power 
𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛  = Vibration power 
𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙  = Thermal power 

Hence, an increased discrepancy between rotor power 
( 𝑃𝑅𝑜𝑡𝑜𝑟 , predicted using models) and electrical power 
(𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 , measured) is an indication of additional loss of 
energy due to increase in vibrations and heat generation-
dissipation. This in turn can be attributed to the falling health 
condition of the mechanical and electrical drive train 
components. Thus, analysis of produced power can be used 
for (Duguid, 2018): 
 Fault Detection – While exact cause may not be easy to 

identify, but a significant difference may help in fault 
detection necessitating further investigation. 

 Suboptimal Performance Detection – Suboptimal 
performance, often due to poor control, can be identified 
using power curve. A comparison in power generation 
between a local group of wind turbines may also help in 
identifying those units that are performing sub-
optimally. 

To predict power generation, a number of parametric and 
non-parametric (statistical) methods have been proposed 
(Lydia at al. 2014; Pandit, Infield & Kolios, 2019; Saint-
Drenan et al., 2020; Pandit & Wang, 2024). The parametric 
models are based on functions that correlate different 
variables and are of different types. For example, linearized 
segmented model, polynomial power curve, 4/5-parameter 
logistic function, etc. are based on power equation derived 
from Bentz’s law, which can be expressed as (Manwell, 
McGowan & Rogers, 2009): 
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𝑃𝑅𝑜𝑡𝑜𝑟 = 𝑃𝑊𝑖𝑛𝑑 × 𝐶𝑃(𝜆, 𝛽) (2a) 
𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑃𝑅𝑜𝑡𝑜𝑟 × η (2b) 

𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = (
1

2
ρ𝐴𝑈3) × 𝐶𝑃(𝜆, 𝛽) × η 

(2c) 

Where: 
𝑃𝑊𝑖𝑛𝑑= Wind power 
𝜂  = Drive train efficiency ( 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟/

𝑟𝑜𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟 ), (mechanical & electrical) 
𝜌  = Air density 
𝐴 = Rotor disc area 
𝑈  = Air velocity 
𝐶𝑃(𝜆, 𝛽)  = Rotor power coefficient, it expresses the 

recoverable fraction of wind power and is a 
function of 𝜆 (tip speed ratio) and 𝛽 (blade pitch 
angle). 

The 𝜆 (tip speed ratio) can be expressed as:  

𝜆 =  
𝛺𝑅

𝑈
 

(3) 

Where: 
𝜆 = Tip speed ratio 
𝑅 = Radius of the wind rotor 
𝛺 = Angular velocity (in radians/sec) 

The maximum theoretically possible rotor power coefficient, 
𝐶𝑃,𝑚𝑎𝑥  also called the Betz limit, can be determined to be 
0.59. The actual value of 𝐶𝑃(𝜆, 𝛽) is much below the Bentz 
limit and is dependent upon technical features of the turbine 
and environmental factors (Saint-Drenan et al., 2020).  
According to the Equation 2c, produced electric power is 
proportional to the density of air and cube of wind speed. The 
density of air is in-turn dependent upon the ambient 
temperature, humidity and pressure. It can be calculated 
according to: 

𝜌 =  𝜌𝑑 + 𝜌𝑣 (4a) 

𝜌𝑑 =
𝑃 − 𝑃𝑣

(𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝐷𝑟𝑦 𝐴𝑖𝑟 × 𝑇𝑘)
 

(4b) 

𝜌𝑣 =
𝑃𝑣

(𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝑊𝑎𝑡𝑒𝑟 𝑉𝑎𝑝𝑜𝑢𝑟 × 𝑇𝑘)
 

(4c) 

𝑃𝑠𝑎𝑡 = 6.1078 × 10
7.5𝑇

𝑇+237.3 

𝑃𝑣 =
(ℎ × 𝑃𝑠𝑎𝑡)

100
 

(4d) 

Where: 
𝜌𝑑  = Density of the dry air 
𝜌𝑣  = Density of the water vapour 
𝑇  = Temperature (oC) 
𝑇𝐾   = 𝑇 + 273.15 (Kelvin) 
ℎ  = Humidity 
𝑃  = Total pressure of air 
𝑃𝑠𝑎𝑡   = Saturation water vapour pressure (Tetens’ 

Formula) 
𝑃𝑣  = Partial pressure of water vapour 
𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝐷𝑟𝑦 𝐴𝑖𝑟   = Specific gas constant for dry air 

= 287.05 J/(kg·K) 
𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝑊𝑎𝑡𝑒𝑟 𝑉𝑎𝑝𝑜𝑢𝑟  = Specific gas constant for water 

vapour = 461.5 J/(kg·K) 

The actual operation of a wind turbine is outcome of a 
number of controls, for example, aerodynamic torque control, 
yaw orientation control, brake torque control and generator 
torque control, that work together to create a number of 
decision combinations. The final operating strategy, which is 
an outcome of optimisation of diverse and often contradictory 
goals, determines the control of individual components. 
These goals include, safe operation, maximising power 
generation, minimising vibrations, preventing structural 
damages, integration with grid, etc. (Manwell, McGowan & 
Rogers, 2009).  
Due to the complexities involved in accounting for all the 
parameters that can effect control and operation, the 
parametric models are often not accurate. Hence, for 
predicting power generation of existing wind turbines a 
number of models based on Artificial Intelligence (Support 
Vector Machine, Gaussian Process, Random Forest and 
Artificial Neural Network) have been propounded These 
models are trained using historical SCADA data and the 
trained models are later used for making predictions (Ouyang 
et al., 2017; Pandit, Infield & Kolios, 2019).  

1.5. Data Quality for Predicting Power Produced 

In spite of all the precautions, the measurements recorded by 
SCADA system are always afflicted with imperfections or 
uncertainties of various kinds. Where uncertainty of 
measurement can be defined as the doubt that exists about the 
result of any measurement (Bell, 1999).  
Since, the uncertainties arise due to multiple reasons they are 
also of different types. Some of them are tangible (can be 
quantified), while others are intangible (cannot be properly 
quantified). Some uncertainties can by random and others can 
be systematic. Because of the difficulties associated with the 
taxonomy of uncertainties, a number of classifications have 
been proposed. Unfortunately, there is no consensus 
regarding these classifications and the proposed 
classifications have not been widely accepted, resulting in 
confusions. Traditionally, uncertainties have been classified 
into two types (Manwell, McGowan & Rogers, 2009; Simon, 
Weber & Sallak, 2018): 
 Aleatoric – This type of uncertainty arises due to 

inherent randomness or variability of the measured 
parameter. By repeating the measurement, it is possible 
to express it in terms of mean and standard deviation 
(interval and confidence level). 

 Epistemic – This type of uncertainty arises due to the 
lack of knowledge or data. The factors that contribute to 
the uncertainty influence all the recorded values, hence, 
there is limited benefit to be gained by repeated 
measurement. Epistemic uncertainty can be further 
classified into: 
o Bias – It is a systematic shift from the true value. 
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o Inaccuracy – This is the mean difference between 
the measured and true value of the measured 
variable. 

o Imprecision – It refers to the length of interval 
between which the measured values lie. 

o Ignorance – It arises due to limited availability of 
measurements or knowledge regarding precision. 

o Incompleteness – It arises due to missing data. 

o Credibility – It arises due to competence or 
trustworthiness during calibration, installation, 
etc. 

Epistemic uncertainty can be evaluated based on 
information like the manufacturer’s specifications, past 
experience, expert opinion or subjective feel. 

For the sake of completeness, measurements should be 
reported along with their corresponding uncertainties. A 
tangible uncertainty can be quantified using two numbers: 
interval (width of margin of doubt or dispersion about the 
mean) and confidence level (confidence that the “true” value 
lies with that margin. Since the uncertainties of a 
measurement depends upon a number of factors, it is often 
difficult to quantify all of them (Bell, 1999). 
These uncertainties are severe for wind turbines because of 
the large variations taking place in the environmental 
conditions. Most of the errors arise due to: 
 Imperfections Caused by Sensors – These 

imperfections arise because of many reasons, including, 
variations in the parametric values, imperfect nature 
(bias, noise, etc.) of the instruments, incorrect 
calibration, drift in the instrument calibration, 
measurement location, etc. They may be characterised 
as: 
o Inherent Imperfections – Since, environmental 

conditions constantly change, the sensors report 
values based on their response time, sampling rate, 
resolution, sensitivity and statistical analysis. Each 
of these behaviour introduces different types of 
uncertainties. 

o Acquired Imperfections – During its operation, a 
sensor is exposed to a number of environmental 
attacks, like, variations in impacts, wind force, 
temperature, humidity, condensation, frosting / 
icing, vibrations, oil / dirt / salt deposition, etc., 
resulting in its degradation. 

 Imperfection Caused by SCADA System – In a 
SCADA system, values are recorded every 10 minutes, 
hence, the recorded data is actually not of that particular 
time, but a statistical value based on predefined 
algorithm. 

To ensure confidence in the data used for analysis, a number 
of corrective measures need to be taken. These include 
(Manwell, McGowan & Rogers, 2009; Tavner, 2012): 

 Use of High Quality Sensors – High quality sensors 
should have structure that is able to withstand 
environmental attacks; and have superiority of 
performance in terms of accuracy, precision, reliability, 
repeatability and reproducibility.  

 Use of Multiple Data Streams – Multiple and varied 
data streams can be used to confirm the same fault so that 
its probability of detection increases, for example, use of 
vibration and debris count for detecting bearing fault. 
Apart from the benefits of redundancy, use of different 
sensors at different locations increases the probability of 
detection. A negative side effect of this is the collection 
of excessive number of data streams resulting in data 
overload. Additionally, “law of diminishing return” 
dictates that use of multiple sensors for the same task 
may not provide any new information. 

 Use of Advanced Data Analytics Techniques – A 
number of methods have been proposed to handle 
different types of uncertainties. While aleatoric 
uncertainty is often handled using the Probabilistic 
Approach, epistemic uncertainty can be handled using 
the Possibilistic Approach.  
In Possibilistic Approach, values are not regarded as 
“crisp point numbers” but as membership functions. By 
integrating Fuzzy arithmetic, that is based on extended 
interval analysis, with deterministic or Machine Learning 
models, the predicted output is not a crisp point but a 
Possibility Distribution Function. Comparison of this 
output membership function against acceptance criteria 
gives likelihood of failure in terms of “Possibility of 
Failure” and “Necessity of Failure”. The advantage of 
using Possibility Distribution Function, over Probability 
Density Function, is that no preference is given to values 
within the range of Fuzzy interval. This suits well for the 
situations where the available data is sparse. The 
weakness of the Possibilistic Approach is its imprecise 
results, which may give over-conservative and, at times, 
uneconomical recommendations. Thus, Possibilistic 
Approach may be a useful tool for implementing the 
philosophy of zero tolerance of accidents where not only 
the probability but also any possibility of failure has to 
be eliminated (Ayyub & Klir, 2006; Ross, 2004). 

2. MOTIVATION AND AIM OF THE RESEARCH 

2.1. Motivation for the Research 

As discussed in the previous section, performance of a wind 
turbine can be judged by comparing Predicted Produced 
Power and Measured Produced Power. A Significant 
Difference between the two indicates sub-optimal 
performance. Figure 2 shows a flowchart of the methodology 
that can employed for detecting sub-optimal power 
production. 
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Figure 2. Flowchart showing the proposed fault detection 
methodology. 

 

It may be possible to calculate Predicted Produced Power by 
using the four environmental variables; and if the Measured 
Produced Power (Grid Produced Power) is significantly less 
than the predicted value, there is a possibility that the wind 
turbine is operating sub-optimally.  
While SCADA data can be used for carrying out this analysis, 
the methodology has some weaknesses. These weaknesses 
arise due to: 
 lack of reliable models for calculating Predicted 

Produced Power taking into account all variations and 
imperfections in the collected data, and 

 identification of what constitutes as Significant 
Difference considering the imperfections of the data. 

2.2. Aim of the Research 

Aim of the research is to develop a methodology for 
calculating Predicted Power Production using Hybrid 
(Machine Learning – Possibilistic) Approach while 
accounting for variability and uncertainty in the SCADA 
data.  

2.3. Scientific Novelty and Importance of the Research 

This paper presents work carried out to calculate Predicted 
Produced Power using wind turbine SCADA data using a 
Hybrid (Machine Learning – Possibilistic) Approach. The 
research includes: 
 developing Machine Learning models for calculating 

Predicted Produced Power under varying environmental 
conditions, and  

 handling of imperfections in the collected environmental 
and operating data by representing them as Fuzzy 
Membership Functions. 

3. METHODS 

3.1. SCADA Data Description 

To demonstrate feasibility of the proposed methodology, 
SCADA data made available by the energy company EDP 
 

(2016) from four horizontal axis wind turbines located off the 
western coast of Africa has been used. The data has been 
recorded over a period of 2 years (2016 and 2017) at a 10-
minute averaging interval. The datasets contain values of 76 
parameters. For the mechanical components, some recorded 
parameters are (Bindingsbø et al. 2023): 
 Blades – pitch angle 
 Rotor – rpm 
 Nose Cone – temperature 
 Nacelle – direction, temperature 
 Generator – rpm, bearing temperature (drive end and 

non-drive end), stator windings temperatures in the 3 
phases, split ring chamber temperature, active power, 
reactive power 

 Gearbox – bearing temperature, oil temperature 
 Hydraulic System – oil temperature 
 High Voltage Transformer – temperature 
 Ambient – temperature, wind speed, wind direction 
Associated dataset about meteorological conditions has also 
been provided for the same time instances. Failure logs 
containing timestamp, damaged component and associated 
remarks are also available. For this work, Turbine Number 7 
(“T07”) has been selected for which the total number of 
instances are 52445 and 52294 for 2016 and 2017, 
respectively. The variables that have been used in the 
calculation of power curve are given in Table 1. 

Figure 3a shows the effect of Ambient Wind Speed on 
Generator RPM. The plot can be divided into three regions – 
(a) Low RPM Region, where Generator RPM < 300; (b) 
Transition Region, where 300 < Generator RPM < 1250; and 
(c) High RPM Region, where 1250 rpm < Generator RPM < 
1680. When the Ambient Wind Speed is below the Cut-In 
Wind Speed (4 m/s), the frequency of Generator RPM below 
300 rpm is high. With the increase in Ambient Wind Speed, 
the wind turbine adjusts its blade pitch angle so that 
Generator RPM is normally above 1250 rpm. Above the 
Rated Wind Speed (12 m/s), the Generator RPM is mostly 
above 1650 rpm. Figure 3b shows the effect of Ambient 
Wind Speed on Grid Produced Power. When the Ambient 
Wind Speed is below the Cut-In Wind Speed (4 m/s), Grid 
Produced Power is either negative or less than 275 kW. With 
increasing Ambient Wind Speed, Grid Produced Power 
increases so that at the Rated Wind Speed (12 m/s), Grid 
Produced Power is mostly Rated Power (2000 kW). Figure 
3c shows the effect of Generator RPM on Grid Produced 
Power. The figure shows that the power generation 
drastically increases when the Generator RPM is above 1250 
rpm.  
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Figure 3. Relationships between Ambient Wind Speed, Generator RPM and Grid Produced Power. 
 

Table 1. Selected variables used for developing the model. 
 

Variable Short Variable 
Name 

Original SCADA 
Name 

Description Units 

Timestamp   10-minute resolution  
Ambient 
Temperature 

Amb_Temp Amb_Temp_Avg Average ambient temperature ºC 

Ambient 
Humidity 

Amb_Humidity Avg_Humidity Average ambient relative humidity % 

Ambient Pressure Amb_Pressure Avg_Pressure Average ambient pressure millibar 
Ambient Wind 
Speed 

Amb_Wind_Speed Amb_WindSpeed_Avg Average windspeed within average 
timebase 

m/s 

Generator RPM Gen_RPM Gen_RPM_Avg Average generator shaft / bearing 
rotational speed 

rpm 

Grid Produced 
Power 

Grid_Prod_Power Grd_Prod_Pwr_Avg Power average kW 
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Figure 4. Plot of power generated versus wind speed 
using SCADA data. (a) Using raw data (b) Using data 

after removing outliers. 

3.2. Data Pre-processing 

Data pre-processing is an important step in the development 
of a Machine Learning model. This is to correct or remove 
vague, inconsistent, irrational, duplicate or missing values for 
algorithms to work properly (Bindingsbø et al. 2023).  
SCADA data from a wind turbine also contain data that do 
not conform to the expected power curve and are referred to 
as “outliers”. These outliers arise because of various 
explainable reasons. In this work, outliers have been 
identified for the following reasons: 
Outlier Rule 1. Generator RPM = 0 when Ambient Wind 

Speed => 4 m/s. Even though the Wind Speed is above 
the Cut-In Wind Speed (4 m/s), the rotor does not move 
because the wind turbine is in the shutdown state. This 
can be because of various reasons, including the grid 
condition. 

Outlier Rule 2. Grid Produced Power <= 0 when Ambient 
Wind Speed < 4 and Generator RPM > 0. This happens 
when the rpm of rotor is low, as a result of which power 
generation is less than the power consumed for 
operation. The difference is fulfilled by extracting power 
from grid. 

Outlier Rule 3. Grid Produced Power <= 0 when Ambient 
Wind Speed => 4 & Generator RPM > 0. Even though 
the Wind Speed is above the Cut-In Wind Speed (4 m/s), 
the rotor is moving, power generation does not take place 
because the wind turbine is “free wheeling” in the 
shutdown state. This can be because of various reasons, 
including the grid condition. 

Apart from these outlier data points, there are some more 
points that need to be removed. These data points have been 
recorded during the transition from normal operation to 
shutdown state or vice versa. These points lie scattered and 
 

can be identified using DBSCAN, a density-based clustering 
algorithm (Ester, Kriegel et al. 1996). Two rules that have 
been used for identifying the outliers are: 
DBSCAN Clustering Rule 1. Ambient Wind Speed, 

Grid Produced Power, eps value = 2, min_samples value 
= 10 

DBSCAN Clustering Rule 2. Ambient Wind Speed, 
Generator RPM, eps value = 3.45, min_samples value = 
10 

The results before and after cleaning are shown in Figure 4.  

3.3. Flowchart for Predicting Produced Power 

In order to develop a workable predictive model it is 
important to understand the process in terms of the structure, 
environment, and operation. Section 1 briefly discusses some 
of these issues and based on this knowledge a simplified 
flowchart used for calculating Predicted Produced Power is 
shown in Figure 5. The figure also shows that there is a weak 
correlation between the environmental variables (Ambient 
temperature, Ambient Humidity and Ambient Pressure) and 
Grid Produced Power; but there is a strong correlation 
between Ambient Wind Speed and Grid Produced Power. 

3.4. Representation of Variables as Possibility 
Distribution Functions 

As discussed earlier, SCADA data is always encumbered by 
imperfections. One of the techniques that can be used for 
handling imperfections of the data is the Fuzzy Logic 
Approach. In this approach, a fuzzy variable 𝑋  can be 
described by its Fuzzy Membership Function, instead of a 
Probability Density Function 
In the Possibilistic Approach, a Fuzzy Membership Function 
can also be interpreted as a Possibility Distribution Function 
(Figure 6). 𝛼𝑐𝑢𝑡 of this Possibility Distribution Function, 
donated by 𝑋𝛼 , is a fuzzy interval [𝑥, 𝑥′] that contains the 
values whose likelihood is 𝛼. The value of 𝛼 can be in the 
range [0,1]. At the base, when the value of 𝛼 is 0, variable 
has the interval within which the expected value will 
“certainly” lie. As the value of 𝛼  increases, the interval 
between which the values lie decreases, but the certainty that 
the values will lie within this interval also decreases. 
The 𝛼𝑐𝑢𝑡 of a fuzzy set is given by (Ayyub & Klir, 2006): 

𝑋𝛼 = [𝑥, 𝑥′]𝛼 = {𝑥 ∈ 𝑋|𝑥 ≤ 𝑥 ≤ 𝑥′} 
𝛼 ∈ [0,1] 

(5) 

Where: 

𝑥 = Lowest real number value of the interval 

𝑥′ = Highest real number value of the interval 

The use of 𝛼𝑐𝑢𝑡 allows for the concepts of interval analysis 
to be used (Ayyub & Klir, 2006). 
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Figure 5. Flowchart showing influence of variables on the calculation of produced power. 
 
 
 

 
Figure 6. Conceptual illustration of possibility 

distribution function. 
 
 

In the absence of detailed study to quantify the interval, limit 
values that have been used for the calculations are based on 
the literature and experience. For example, response time and 
uncertainty of a value recorded by a cup anemometer, 
depends upon its construction (dimensions, weight, etc.) and 
degree of deterioration (example, friction caused by 
corrosion). Under test conditions, a new anemometer can 
show inaccuracy of about 2%. Under working conditions, this 
inaccuracy may increase due to corrosion, wear, 
misalignment, deposition of dust, etc. (Manwell, McGowan 
& Rogers, 2009). Thus, at 𝛼 = 0 (interval within which the 
expected value “certainly” lies), the estimated limit of values 
around the measured values have been estimates as: 
 Ambient Temperature : ±1.0oC 
 Ambient Humidity : ±1.0% 
 Ambient Pressure : ±1.0 millibars 
 Ambient Wind Speed : ±0.5 m/s 
 Power Coefficient : 0.45 ±0.05 
Possibility Distribution Function for a variable is generated 
by stacking 𝛼 number of intervals, where the bottom layer, 
𝛼 = 0, has interval range:
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Table 2. Possible combinations of interval values used for calculating Predicted Produced Power. 

 
Combination Ambient 

Wind Speed 
Ambient 

Temperature 
Ambient 
Pressure 

Ambient 
Humidity 

Combination_1 Min Min Min Min 
Combination_2 Min Min Min Max 
Combination_3 Min Min Max Min 
Combination_4 Min Min Max Max 
Combination_5 Min Max Min Min 
Combination_6 Min Max Min Max 
Combination_7 Min Max Max Min 
Combination_8 Min Max Max Max 
Combination_9 Max Min Min Min 
Combination_10 Max Min Min Max 
Combination_11 Max Min Max Min 
Combination_12 Max Min Max Max 
Combination_13 Max Max Min Min 
Combination_14 Max Max Min Max 
Combination_15 Max Max Max Min 
Combination_16 Max Max Max Max 

 
 

[
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒),
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒)

] 

In the Possibilistic Approach, in order to account for the 
uncertainty, instead of using crisp values of environmental 
variables (Ambient Temperature, Humidity, Pressure and 
Wind Speed) as recorded by SCADA and Power Coefficient, 
Possibility Distribution Functions of the variables are used. 
Calculations are carried out using interval values at each 
𝛼𝑐𝑢𝑡. For each value of 𝛼, the interval values of variables 
are determined. Considering all the minimum and maximum 
values of the intervals, the minimum and maximum values of 
the output function are calculated using accepted equations. 
Different combinations that are possible are shown in Table 
2. The results of all 𝛼𝑐𝑢𝑡𝑠  are stacked to build the 
possibility distribution function of the output function 
(Ayyub & Klir, 2006). 

3.5. Possibilistic Approach 

The calculations are done in two steps. In the first step, 
Possibility Distribution Function for Air Density is generated 
using Equation 4. In the second step, the Possibility 
Distribution Functions for Air Density, Ambient Wind Speed 
and 𝐶𝑃(𝜆, 𝛽)  are used to generate Possibility Distribution 
Function for Predicted Produced Power using Equation 2. 

3.6. Hybrid (Machine Learning – Possibilistic) Approach 

Development of the Hybrid (Machine Learning – 
Possibilistic) is done in two steps. 
In the first step, different Machine Learning models are 
trained using training dataset and the output from the trained 
models are evaluated. Models that have been evaluated are: 

 Linear Models – Linear Regression (LR), Lasso, Ridge, 
and 

 Tree-based Models – Decision Trees, Random Forest 
(RF) 

 Boosting Models – AdaBoost, XGBoost and LGBoost 
 Support Vector Regression (SVR)  
Out of these models, XGBoost (RMSE = 186, R2 = 0.93, 
MAE = 127) has been selected because it gives acceptable fit 
and takes short calculation time. 
In the second step, the trained model and Possibility 
Distribution Functions of the environmental variables are 
used to generate Possibility Distribution Functions for 
Predicted Produced Power. The calculations are carried out 
according to the method described in the previous section, 
except that the calculations are done using the trained 
Machine Learning model instead of the equations. 

4. RESULTS AND DISCUSSION 

4.1. Possibilistic Approach 

4.1.1. Effect of Environmental Variables on Air Density 

Figure 7 shows the results of the calculations carried out for 
predicting Air Density. Since Air Density increases with the 
increase in Ambient Pressure, but decreases with the increase 
in Ambient Temperature and Ambient Humidity; the graph 
shows seasonal variations of the Air Density. The graph also 
shows sensitivity to the inaccuracies of recorded values and 
the “true” value may lie anywhere within the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 
and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 curves. 
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Figure 7. Seasonal variation on Predicted Air Density at 𝛼𝑐𝑢𝑡 = 0. 
 

 
 

Figure 8. Effect of Ambient Wind Speed on Predicted Produced Power using Possibilistic Approach at 𝛼𝑐𝑢𝑡 = 0. 
 

 
 

Figure 9. Plot of Grid Produced Power and Predicted Produced Power calculated using Possibilistic Approach at 𝛼𝑐𝑢𝑡=0 
for a 24 hour duration (19th July, 2016). 
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Figure 10. Predicted Produced Power using Hybrid Model for the combinations of interval values given in Table 2 at 
𝛼𝑐𝑢𝑡=0. 

 

 
 

Figure 11. Effect of Ambient Wind Speed on Predicted Produced Power using Hybrid Approach at 𝛼𝑐𝑢𝑡 = 0. 
𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 is obtained from Combination_6 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 is obtained from Combination_11. 

 

 
 

Figure 12. Plot of Grid Produced Power and Predicted Produced Power calculated using Hybrid Approach at 𝛼𝑐𝑢𝑡=0 for 
a 24 hour duration (19th July, 2016). 
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4.1.2. Effect of Environmental Variables on Predicted 
Produced Power 

Figure 8 shows the effect of Ambient Wind Speed on the 
Predicted Produced Power. The graph shows that: 
 Power curve developed according to the Equation 2 

does not follow the actual trend. A better model, as 
proposed by Saint-Drenan, Y.-M. et al. (2020), may give 
better result. 

 Spread of measured Grid Produced Power at a particular 
wind speed has not been accounted for. The spread can 
arise due to various reasons, like, control of the operation 
and imperfections in measurements. 

 Predicted produced power is sensitive to the inaccuracies 
of recorded values and the “true” value may lie anywhere 
within the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 curves.  

Figure 9 shows plot of Predicted Produced Power and Grid 
Produced Power for a 24-hour duration (19th July, 2016). The 
graph shows that measured values generally lie within the 
boundaries set by 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛  and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 
values. 

4.2. Hybrid (Machine Learning – Possibilistic) Approach 

Figures 10-12 show the results of calculations carried out 
using Hybrid (Machine Learning – Possibilistic) Approach. 
Figure 10 shows the effect of max and min interval values of 
environmental variables on Predicted Produced Power. The 
figure shows that combinations have significant effect on the 
Predicted Produced Power.  
According to Equation 2, Predicted Produced Power is 
proportional to cube of Ambient Wind Speed. Hence, 
Combination_1 to Combination_8 show lower values of 
Predicted Produced Power as compared to Combination_9 to 
Combination_16. Within these two sets of combinations, the 
differences are small because of the relatively small 
differences in the calculated air density.  
Figure 11 shows the effect of Ambient Wind Speed on 
Predicted Produced Power using Hybrid Approach at 
𝛼𝑐𝑢𝑡 = 0 . The figure shows significant effect of 
measurement uncertainties on the predicted values. 
𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛  is obtained from Combination_6 and 
𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 is obtained from Combination_11. 
Figure 12 shows plot of Grid Produced Power and Predicted 
Produced Power calculated using hybrid approach at 
𝛼𝑐𝑢𝑡=0 for a 24-hour duration (19th July, 2016). The graph 
shows that measured values generally lie within the outer 
most boundaries set by 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 
values.  
A comparison between Figure 9 and Figure 12 shows that, 
in general, (a) Machine Learning model fits better than the 
parametric model; and (b) the difference between 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −
𝑀𝑎𝑥 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 in the Hybrid Model is less than 
that in the Possibilistic Model.  

5. CONCLUSIONS 

This paper presents a simple yet robust methodologies for 
calculating Predicted Produced Power using SCADA data 
while accounting for variability and uncertainty. The 
methodologies utilise either parametric or Machine Learning 
models for handling variability; and Possibilistic Approach 
for handling uncertainty. As a case study, the idea has been 
demonstrated using real-life SCADA data. 
To take the research work further, the following tasks have 
been identified: 

 The models do not account for effect of control measures 
of the wind turbine on produced power. Since, these 
measures can significantly effect power generation 
(López-Queija et al., 2022); models that account for 
control measures need to be used. 

 Grid Produced Power has been assumed to have crisp 
values, but in reality measurement of Grid Produced 
Power is also afflicted with uncertainties. Hence, 
calculations need to be done by representing it by a 
Possibility Distribution Function. 

 Having obtained Possibility Distribution Functions of 
Predicted Produced Power and Grid Produced Power, 
Likelihood of Sub-optimal Performance can be 
determined using the concepts of Possibility and 
Necessity Measures. 

DATA AVAILABILITY 

The datasets presented in this study can be found in online 
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 https://www.edp.com/en/wind-turbine-scada-signals-
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 https://www.edp.com/en/innovation/open-data/wind-

turbinescada-signals-2017. 
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ABSTRACT 

Maintenance decisions range from the simple detection of 
faults to ultimately predicting future failures and solving the 
problem. These traditionally human decisions are nowadays 
increasingly supported by data and the ultimate aim is to 
make them autonomous. This paper explores the challenges 
encountered in data driven maintenance, and proposes to 
consider four aspects in a maturity framework: data / decision 
maturity, the translation from the real world to data, the 
computability of decisions (using models) and the causality 
in the obtained relations. After a discussion of the theoretical 
concepts involved,  the exploration continues by considering 
a practical fault detection and identification problem. Two 
approaches, i.e. experience based and model based, are 
compared and discussed in terms of the four aspects in the 
maturity framework. It is observed that both approaches yield 
the same decisions, but still differ in the assignment of 
causality. This confirms that a maturity assessment not only 
concerns the type of decision, but should also include the 
other proposed aspects.  

1. INTRODUCTION 

Von Leibnitz already dreamt of a universe where decision 
problems were solved by computations rather than by furious 
debates. Centuries later, it is much better understood that Von 
Leibnitz’s dream cannot come true. So, one may compute 
many decisions, but not any decision. Where computed 
engineering decisions fail, maintenance decisions are 
typically triggered. Unsurprisingly, maintenance decisions 
are often hard to compute, or they may even be fundamentally 
incomputable. However, an inability to compute a decision 
does not imply that such a decision cannot be supported by 

computations. This paper will present a maturity framework 
for computational maintenance decision support.  

In this framework, maturity grows as more (advanced) 
decisions in a maintenance control loop are computed. 
However, the presented framework not only considers the 
type of decision, as in existing data maturity models, but 
relates maturity also to: (i) the translation of reality to data 
(vice-versa), (ii) the computability (with models) of the 
decisions involved and (iii) the causality of the relations 
obtained. A case study will be used to explore the attainable 
maturity starting from the lowest level. An experience based 
and a model based approach will be attempted, which both 
will prove to take the correct decision for  an arbitrary 
validation set. Still, decision makers should care about the 
approach as causality is managed differently. In the 
experience based approach, causality will be assigned 
afterwards. In the model based approach, causality is 
inherent, as a model that is posited as true is solved. Further, 
it is observed that it is impossible to compute a true model 
from only a history of measurements. Therefore, a history of 
measurements will be indecisive about the approach. Still, the 
engineering profession established a plethora of guidelines 
that have often proved to be correct. As these engineering 
guidelines strengthen (a suspicion of) causality for both 
approaches, the attainable maturity in data driven 
maintenance may rise at an acceptable risk. 

This paper is organized as follows. Section 2 will introduce 
the four basic aspects of the framework to assess the maturity 
in data driven maintenance. Section 3 will portray a typical 
construction of two different autonomous fault detection and 
isolation methods (the first step in maturity). Section 4 will 
demonstrate fault detection and isolation in an iconic case 
study. Finally, section 5 will discuss the results and section 6 
will present the conclusion. 

2. BACKGROUND 

This section will introduce the four basic elements that jointly 
determine the maturity in data driven maintenance and thus 

Chris Rijsdijk et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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constitute the proposed framework. Section 2.1 addresses the 
challenges in computing a “real” decision, section 2.2 will 
discuss the challenges in using (engineering) models to 
compute  decisions. Then section 2.3  will relate the flow of 
the maintenance control loop with a conventional data 
maturity model. Finally, section 2.4 discusses the difference 
between observed associations and causality, and its effect on 
decision making. 

2.1. Obstructions in computing “real” decisions 

Data (Latin: givens) are input symbols to a syntactical formal 
language. Hilbert dreamt of a formal language that could 
provide a complete, consistent, and decidable foundation of 
mathematics. Gödel (1931), Church (1936) and Turing 
(1937) showed that such a formal language is nonexistent and 
the dreams of Von Leibnitz and Hilbert were destroyed. This 
means that some problems are fundamentally incomputable. 
Moreover, even the most potent computing devices may just 
fail to compute a problem in time. Therefore, problems that 
are computable in principle may be too complex to compute 
in practice. 

A formal language becomes meaningful by assigning a truth 
value. Then, a computation may become similarly 
meaningful and it may eventually represent some reasoning 
about truth or falsehood. Evidently, Von Leibnitz similarly 
hoped to compute meaningful decisions as he hoped to settle 
legal disputes this way. Then, a computed decision involves 
both syntax and semantics (Figure 1).  

“reality”

model
semantics

mathematics
syntaxdata compute outcome

ob
se
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e
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ct

 
Figure 1. Framework for computing “real” decisions. 

 

Engineers are not necessarily orthodox positivists but the 
engineering profession is not just about modelling, it also 
includes building. To circumvent or at least alleviate 
philosophical controversy, the “reality” in Figure 1 could also 
be seen as merely a user interface by skeptics who doubt the 
existence of space-time (Hoffman, 2019). 

Any vertical translation in Figure 1 involves an arbitrary 
human choice, i.e. facts are made (Latin: facere) and 
information is shaped (Latin: formare). So, facts and 
information do not follow from some computable coding 
operation, they involve arbitrary human choice. For example, 

observing is not just a mechanical decoding of sound or light 
waves, it also involves a specific interpretation. Likewise, 
predicting involves more than just computing an outcome 
(100101…).  

In conclusion, computing a “real” decision may be 
impossible because (i) it is fundamentally incomputable, (ii) 
it is too complex to compute in time, or (iii) the translation 
between “reality” and the syntactical computation is 
philosophically controversial. 

2.2. Maintenance decisions are incomputable 

A decision (Latin: cut-off) is the elimination of outcomes that 
would have occurred otherwise. A computation is a 
deterministic discrete operation that can be performed on a 
Turing Machine. In a way, a Turing Machine decides as it 
halts at a particular outcome (while eliminating all other 
candidate outcomes). So, syntactical decisions include the 
acceptance or rejection of a string as a well formed formula 
in a formal language. However, “real” decisions include a 
choice that causes a specific outcome, rather than any other 
outcome. 

The computation of a “real” decision requires translations 
between a syntactical Turing Machine and “reality” (Figure 
1). These translations are essential for data driven 
maintenance where computations from syntactical data 
should support “real” maintenance decisions. Generally, the 
engineering profession established a high degree of common 
sense regarding these potentially controversial translations. 
This common sense has been made explicit in guidelines that 
specify the computation of the quality of a design (CEN, 
2007), (IACS, 2024). Quality is defined by ISO (2015): 

The degree to which a set of inherent characteristics 
of an object fulfils requirements.  

So, quality reflects a margin between measurable inherent 
characteristics and subjective requirements. So, quality is not 
just a measurable “real” variable  (Figure 1), rather quality is 
the result of an arbitrary translation between a measurable 
reality and some subjective aspiration. Engineers showed a 
great ability to compute outcomes that (often) appeared to 
satisfy quality in practice. Also in this case, computations 
from syntactical data support “real” engineering decisions. 

The Church-Turing thesis states: 

If something is computable on a discrete device, 
then it is also computable on a Turing Machine. 

This implies that up until now, no one has been able to 
construct a discrete computing device for which an 
equivalent Turing Machine does not exist. Still, some 
computations that are computable on a Turing Machine in 
principle, may be too complex to compute on a practical 
device in time. Engineers showed great ability in constructing 
devices that autonomously compute “real” decisions as 
feedback control loops are ubiquitous. So, Von Leibnitz’s 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 61



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

3 

dream often became attainable after all. As an example, the 
feedback controller (C) shown in Figure 2 autonomously 
computes an input signal (U) to the process (P) that yields an 
output (Y). This computation depends on the error (W) 
between the output (Y) and the set point.  

Still, the delimitations from section 2.1 remain unresolved 
implying that (i) engineering guidelines are occasionally 
improved by lessons learned from “real” disasters, or that (ii) 
the feedback control loop occasionally oscillates away from 
the set point. Where engineering computations fail, 
maintenance is often triggered. Maintenance is defined by:  

The combination of all technical and administrative 
actions, including supervision actions, to retain or to 
restore an item’s quality. 

This definition paraphrases CEN (2019) and IEC (2015). So, 
maintenance is considered as a decision to act, with the 
intention to cause a quality effect. Figure 2 shows a 
maintenance control loop that should correct the faults of an 
autonomous feedback control loop (Tinga et al., 2023). The 
maintenance control loop is typically triggered by the 
detection of a fault, i.e. an observation of some anomaly. 
Fault isolation is the assignment of a specific fault label that 
assists in the choice of the recovery action. Fault 
identification is an assessment of the (evolution in the) 
magnitude of the fault. Prognostics is an estimation of the 
remaining useful life. Finally, recovery is an action that 
causes quality. This maintenance control loop follows a Fault 
Detection and Isolation (FDI) convention (Isermann, 2006). 

Fault 
identification Fault isolation Fault detection

Recovery
C PW Y

Disturbance

U

Prognostics

 
Figure 2. Autonomous control loop extended with 

maintenance control. 
 

Although the maintenance control loop is thought to be 
human involved (as indicated by the person symbols in 
Figure 2), parts of it may still be computed. For example, the 
fault detection and the fault isolation may be computed before 
a human takes over. Then, this human may not need to 
troubleshoot the anomaly as this has been computed 
autonomously. 

In conclusion, engineers have developed a great ability to 
compute “real” decisions and to construct devices that could 

similarly do so autonomously. Still, engineering 
computations occasionally fail which triggers human 
involved maintenance. Therefore, computing autonomous 
maintenance is challenging, but parts of the maintenance 
control loop may still be supported by computations. For that 
reason, the title of this paper refers to data driven 
maintenance rather than autonomous maintenance. 

2.3. Maturity in data driven maintenance 

Data maturity models are widely researched (Al-Sai et al., 
2023) and applicable. Figure 3 shows a commonly adopted 
data maturity classification that includes monitoring, 
understanding, predicting, and deciding. 

Monitor

Understand

Predict

Decide

 
Figure 3. Data maturity model. 

 

A comparison of the data maturity model in Figure 3 with the 
maintenance control loop in Figure 2 reveals that data 
maturity grows as more steps in the maintenance control loop 
are being computed, i.e. monitoring corresponds with fault 
detection, understanding with fault isolation & identification, 
predicting with prognosis and deciding with recovery.  

Tiddens et al. (2023) observed a relation between an aspired 
maturity level and the required measurements. This paper 
intends to be more precise about this relationship by 
comparing two computations of fault detection and isolation 
that both provide a correct decision for a specific set of 
measurements. Still, these two computations will differ in 
attainable maturity as they translate to “reality” in a different 
way (Figure 1), i.e. the “real” causal implication of 
corresponding syntactical computations will be shown to 
differ. Then, the attainable maturity does not just rely on 
measurements, but also on a subjective translation. 

2.4. Causality 

This section will introduce two ways to address causality 
when computing a “real” decision (e.g. in the case study in 
the next section). In the experience based approach, a 
statistical association is computed and the causal assumptions 
are made separately. In the model based approach, the effect 
of setting a variable in an engineering (design) model of 
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equivalences is computed and the causality follows from the 
deterministic process of the computation itself. 

An equivalence is symmetrical, reflexive, and transitive: 

 𝑌 = 𝑎𝑋 + 𝑏 (1) 

A causality is only transitive: 

 𝑌 ← 𝑎𝑋 + 𝑏 (2) 

In Eq. (1) swapping the terms around the equivalence symbol 
does not change the meaning of the expression. However, in 
Eq. (2) swapping the terms around the arrow changes the 
meaning of the expression from “𝑋 causes 𝑌” to “𝑌 causes 
𝑋 ”. It is important to realize that statistical associations 
retrieved from measurements are equivalences, but they do 
not imply causality.  

Decisions rely on causality rather than on associations as a 
choice should bring about an effect that would not or less 
likely occur otherwise. To validate an individual decision, the 
effect of each choice would have to be observed whereas only 
the effect of the choice made is observable. Generally, the 
problem of observing the causal interactions in an individual 
experiment is that the counterfactuals remain unobservable. 
Therefore, the interventional distribution 𝑃𝑟(𝑌|𝑑𝑜(𝑋)) may 
wildly differ from the observed distribution 𝑃𝑟(𝑌|𝑋).  

Still, there are ways to strengthen a suspicion of causality 
across many experiments provided that the cause 𝑋 in Eq. (2) 
sufficiently varies. Fisher (1935) proposed random 
assignment of treatments to eliminate the effect of 
unobserved confounders and he suggested that unobserved 
confounders could explain the measured association between 
smoking and lung cancer (Fisher, 1958). The latter 
beautifully illustrates the delicacy to use a measured 
association to support a decision to smoke. Structural Causal 
Modelling (SCM) proposed by Pearl (2009) also applies to 
non-experimental research constructs. SCM subsumes 
Structural Equations Modelling (Wright, 1934), and the 
Potential Outcomes Framework (Rubin, 2005). The 
experience based approach to the case study in section 4 will 
use SCM to specify the independence assumptions needed for 
a specific causal explanation of a computed statistical 
association. 

Engineers typically use equivalence relations like bond 
graphs or finite element methods when designing a device. 
These equivalence relations are acausal, but the computation 
of their solution is a sequential process that introduces 
causality, i.e. if one variable in these equations has been set 
to a known value, the response of the other variables follows 
by computation. So, there is an intimate relationship between 
computing the solution of an engineering model and causality 
(Karnopp et al., 2012). The causal effect of a “real” decision 
to set one of these variables is similarly computable. The 
model based approach to the case study will use a bond graph 

to model the case study and the causality follows from the 
sequence in the computation itself. 

In conclusion, this subsection showed that causality could be 
assigned after the computation of a statistical association and 
that causality is just inherent to the process of computing. 
Both notions of causality will be applied to the case study. 

Now these four basic ingredients of data-driven maintenance 
decision making have been considered, the theoretical 
concepts will be converted to a practical application in the 
next two sections. 

3. AUTONOMOUS FAULT DETECTION AND ISOLATION 

This section will portray a typical construction of 
autonomous fault detection and isolation. Fault detection and 
isolation are the first “real” decisions in the maintenance 
control loop (Figure 2). A Fault Signature Matrix (FSM) will 
be used to assess the ability to detect or isolate faults. The 
rows in a FSM list the applicable faults (Table 1). A fault can 
be defined as an anomaly that precedes a failure (= 
nonconformity in quality). The columns in a FSM list the 
features (or symptoms) that indicate the faults (Table 1). The 
fields in a FSM indicate the relationship between the faults 
and the symptoms. A FSM could therefore support decisions 
to detect or to isolate faults (step 1 and 2 in Figure 2). For 
example, 𝐹𝑎𝑢𝑙𝑡0 in Table 1 is detectable and isolable by the 
feature 𝐹0. 𝐹𝑎𝑢𝑙𝑡1 and 𝐹𝑎𝑢𝑙𝑡2 are detectable but not isolable 
by the features 𝐹1  and 𝐹2 , while 𝐹𝑎𝑢𝑙𝑡3  is both detectable 
and isolable by these two features. 

 
An Experience Based (EB) and a Model Based (MB) 
approach to construct a FSM will illustrate two scenarios for 
the assignment of causality. It will become clear that an 
EB_FSM merely relates faults to associated symptoms and a 
causality assignment will require additional assumptions. For 
a MB_FSM, causality has already been settled in the process 
of its construction. The objective here is to explore the human 
involvement. The objective is not to review all existing 
approaches or to exhaustively review the computing of the 
fault detection and diagnostics. The presented FSM 
constructions just survey the essential steps to be taken in the 

Table 1: Example of a FSM. 
  

𝐹0 𝐹1 𝐹2 

𝐹𝑎𝑢𝑙𝑡0 1 0 0 

𝐹𝑎𝑢𝑙𝑡1 0 1 1 

𝐹𝑎𝑢𝑙𝑡2 0 1 1 

𝐹𝑎𝑢𝑙𝑡3 0 0 1 
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simple case study that is feed forward, linear and time 
invariant. 

3.1. Experience based fault signature matrices 

This section will outline the construction of an EB_FSM that 
will be used in the case study in section 4. 

Step 1: choose the faults (EB_FSM rows). 

The faults of choice should be both (i) relevant and (ii) 
present in the history of measurements. In principle, the 
relevance of a fault resides in the domain of an individual’s 
taste. However, engineering guidelines (ISO, 2016) may 
establish common sense about typical equipment-, 
component- (OREDA, 2002) or part level failure modes 
(Chandler et al., 1991). A Reliability Centered Maintenance 
(RCM) process may filter out the critical failures, while 
identifying the faults that may predict them.  

The history of measurements will often be collected by non-
experimental research which precludes control over the 
collection of all relevant fault states and operating regimes. 
By conceiving many fault states and operating regimes, the 
collection of the history of measurement may take too long 
(=complexity issue analogous to computational complexity). 
Moreover, faults are often a hidden variable. As already 
signaled by Tiddens et al. (2023), the history of 
measurements often delimits aspirations to compute fault 
detection and isolation. 

Step 2: choose the features (EB_FSM columns). 

The features of choice should be built from the history of 
measurements. A data scientist may generate an enormous 
amount of features from the library of signal features (Lu et 
al., 2023) while ignoring the choice of the faults. Burnham & 
Anderson (2002) already argued that even vague knowledge 
regarding related variables reduces the computational 
complexity of the model selection while avoiding spurious 
relations. Engineering guidelines may establish common 
sense about features (Isermann, 2011) that indicate a fault.  

Step 3: select a model 

Any regression or classification model may be considered to 
describe the data, but the shortest description is supposed to 
be the best one (Occam’s razor). However, the shortest 
description of a data string is fundamentally incomputable 
(Solomonoff, 1964). Therefore, model selection remains 
rather arbitrary. Still, a suboptimal approximating model 
could support a dithering decision maker accepting some risk. 

Step 4: explain the model 

To explain the selected model, i.e. to identify which features 
strongly relate to a fault, some arbitrary feature importance 
test may be chosen. However, feature importance scores do 
not indicate causality, while a decision maker who does not 
only seek support in deciding whether to act, but also in how 
to act, requires causality. Section 2.4 mentioned that 

Structural Causal Modelling (SCM) will be used to specify 
the independence assumptions. 

flow/ effort Y
Switch S1

open/closed

 
Figure 4. Example of a DAG. 

 

Figure 4 is a directed acyclic graph (DAG) that specifies the 
causalities in a universe of the variables (𝑆, 𝑌). By Bayesian 
Network Factorization, the joint probability distribution 
𝑃𝑟(𝑆, 𝑌) follows from the DAG in Figure 4: 

𝑃𝑟(𝑆, 𝑌) = 𝑃𝑟(𝑆)𝑃𝑟(𝑌|𝑆) (3) 

Eq. (3) specifies the potentially observable association to 
identify a causality provided that the DAG is true. For 
example, the causality 𝑃𝑟(𝑌|𝑑𝑜(𝑆))  is identifiable by the 
potentially observable association 𝑃𝑟(𝑌|𝑆) , provided that 
Figure 4 is true. The DAG may be highly controversial, but it 
is explicit at least (Pearl, 2009).   

3.2. Model based fault signature matrices 

This section will outline the construction of a MB_FSM that 
will be used in the case study. 

Step 1: construct an engineering model 

A device does not come from some natural phenomenon, it is 
the result of a deliberate design. Engineers typically compute 
their designs using the laws of physics. These laws of physics 
hold under idealized conditions and they should adequately 
approximate the “real” conditions. These approximations are 
usually reflected in engineering guidelines that prescribe 
safety margins. Laws of physics and engineering guidelines 
are arbitrary in principle as they are occasionally updated, but 
they generally reflect a very high degree of common sense.  

Step 2: choose the faults (MB_FSM rows) 

Faults should be phrased in terms of drifts in parameters in 
the engineering model. If other faults (beyond the parameters 
in the model) should be detected or isolated, the engineering 
model needs extension or an additional EB_FSM may be 
needed.  

Step 3: choose the 𝐴𝑅𝑅s (MB_FSM columns) 

From an engineering model of n equations the values of n  
variables are computable. As (some of) these variables are 
measured, less equations are needed which enables the 
formulation of Analytical Redundancy Relations (𝐴𝑅𝑅). An 
𝐴𝑅𝑅  is an equivalence consisting of measurements and 
parameters from the engineering model. An 𝐴𝑅𝑅  detects 
faults that have been defined as parameter drifts, and thus acts 
as feature or symptom in the FSM.  
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Step 4: construct the MB_FSM 

The faults (MB_FSM rows) have been defined at step 2. The 
𝐴𝑅𝑅s have been defined at step 3, and the fields trivially 
follow from the presence of the parameters in the 𝐴𝑅𝑅s. 
Therefore, the construction of the MB_FSM is autonomously 
computable from the previous steps. 

The 𝐴𝑅𝑅 s are acausal equivalence relations. However, 
computing the solution of the 𝐴𝑅𝑅s involves a sequential 
process where the values of the 𝐴𝑅𝑅 s follow from their 
variable and parameter values. Similarly, a “real” decision to 
set a variable or a parameter to a specific value causes the 
corresponding 𝐴𝑅𝑅s to change. As a fault in step 2 has been 
defined as a drift in some 𝐴𝑅𝑅 parameter, this fault causes 
the 𝐴𝑅𝑅 s to change within the universe of idealized 
conditions of the engineering (design) model from step 1.  

4. CASE STUDY 

This section will demonstrate fault detection and isolation by 
constructing an EB_FSM and a MB_FSM in an iconic case 
study of a linear time invariant system under feed-forward 
control. This case study involves the RRC circuit in Figure 5. 

10 kΩ

5V S1

V1

0,1 mF

10 kΩ

V0 V2

 
Figure 5. The RRC circuit. 

 
A pulse signal with a period of 20 seconds will trigger the 
switch 𝑆1. The lines in Figure 6 show the computed evolution 
of the voltages and the dots show the measured evolution of 
the voltages for a normal (healthy) state of the circuit. 

 
Figure 6. Evolution of the computed and the measured 

voltages at the healthy state. 
 

Figure 6 confirms that engineers are highly capable of 
deciding about the “real” behavior of the RRC circuit by 

computation. Occasionally, the “real” measurements may 
drift away from the engineering computation which could 
trigger maintenance. In this case study, two fault treatments 
have been applied: 

1. A decreased resistance 𝑅0 that is in between the voltages 
𝑉0, 𝑉1 in Figure 5. 

2. An increased capacitance. 
Fault detection and isolation would have been trivial if the 
resistance and the capacitance were directly observable. It is 
only due to the experimental setup of this case study that the 
presence and absence of the faults was certain. Therefore, 
fault labels in Figure 7 and Figure 8 just followed from a 
known experimental intervention. 
Figure 7 shows that in the faulty state (reduced resistance) the 
measured voltages respond faster to the switch than predicted 
by the engineering computation (for the healthy state). 

  
Figure 7. Evolution of the computed and the measured 

voltages at a decreased resistance R0. 
 

Figure 8 shows that the measured voltages respond slower to 
the switch at an increased capacitance than predicted by the 
engineering computation. 

 
Figure 8. Evolution of the computed and the measured 

voltages at an increased capacitance. 
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Note that the operating regime of a pulse signal highly 
influences Figure 6, Figure 7 and Figure 8 as the RRC circuit 
is known to operate as a low-pass filter. 

Section 4.1 and section 4.2 will explain the construction of an 
EB_FSM and a MB_FSM respectively. The focus will be on 
the possible obstructions (section 2.1) in computing fault 
detection and isolation and not on a quest for the optimal 
computation. 

4.1. Application of EB_FSM 

Let the faults (EB_FSM rows) be a reduced resistance and an 
increased capacitance. Let the features (EB_FSM columns) 
be the measured voltages 𝑉0, 𝑉1, 𝑉2 , the switch position 𝑆1 , 
and the time 𝑇 from Figure 6, Figure 7, and Figure 8. Note 
that the lines in the three plots are the predictions of an 
engineering (design) model that should be ignored here.  

Let the fields of the EB_FSM be the permutation importance 
scores of an arbitrary random forest classification. The 
permutation importance indicates the mean Gini impurity 
loss of the random forest classification after random 
resampling of a feature. Note that the EB_FSM fields do not 
only rely on aforementioned choices, but also on the history 
of measurements in Figure 6, Figure 7, and Figure 8.  

Then, the EB_FSM is given in Table 2. 

 
Table 2 shows that the voltage 𝑉1 entailed unique information 
about a decreased resistance as random resampling strongly 
affects the mean Gini impurity loss of the random forest 
classification. Similarly, the voltages 𝑉1, 𝑉2, and the time 𝑇 
entailed unique information about an increased capacitance.  

The EB_FSM may be used to reduce the complexity of the 
model selection as Table 2 implies that the random forest 
classification could still detect both faults when the switch 
position 𝑆1 is omitted from the history of measurements. 

As this paper is not about an improved model selection, 
details about the arbitrarily selected model will be omitted. It 
has just been verified that the model of choice correctly 
predicted all instances in a validation set comprising the same 
faults that occurred during the same operating regime. So, 
fault detection and fault isolation (Figure 2) is possible for 
this specific validation set. 

Let the DAG in Figure 9 apply to the EB_FSM (Table 2). 
This DAG asserts that changes in the resistance 𝑅0, in the 
capacitance 𝐶, or in the switch 𝑆1  cause some hidden flow 

and effort variables. However, these flow and effort variables 
are indicated by the voltages 𝑉0, 𝑉1, 𝑉2.  

Feature 
V0

Feature 
V1

Feature 
V2

Some flow/ 
effort Y

Resistance  

true/false

Capacitance  

true/false

Switch S
Open/closed

 
Figure 9. DAG with indicators. 

 

It has been presumed that the switch 𝑆1 in the DAG (Figure 
9) does not cause the faults and the EB_FSM confirms that 
the switch 𝑆1 neither associates with the faults. Similarly, it 
has been presumed that the time 𝑇 does not cause the faults 
(not in DAG) but the EB_FSM shows that the time 𝑇 still 
associates with the faults. Still, section 2.4 already mentioned 
that observed associations (in the EB_FSM) are not 
compelling for a DAG. A DAG merely specifies the 
independence assumptions (omitted arrows) of a specific 
causal explanation for the EB_FSM.  

Section 3.1 mentioned that a decision regarding the fault 
detection or isolation may be incomputable because it is 
fundamentally incomputable, it is too complex, or it is subject 
to philosophical controversy. In this case study, the latter 
prevailed as the DAG is merely postulated afterwards. 
Therefore, a compelling causal explanation of the computed 
fault detection and isolation is lacking. In other words, the 
causality is philosophically controversial. Common sense 
reflected in engineering guidelines (section 3.1) may alleviate 
this controversy. The effects of this controversy are: 

• Fault detection and isolation beyond the history of 
measurements (training set) is risky. 

• The applicability of the fault detection and isolation is 
unknown, i.e. it worked for a specific validation set, but 
it is unknown whether it will work at an unprecedented 
operating regime. 

• The features (like the time 𝑇) do not necessarily indicate 
the magnitude of the fault.  

Finally, the fault detection and isolation relied on the 
arbitrary choice of the classification model, and the feature 
importance score. Different results might have been obtained 
had other choices been made. 

4.2. Application of MB_FSM 

In advance of constructing a MB_FSM, an engineering 
(design) model will be posited. Let the case study be 
represented by the Hybrid Bond Graph (HBG) in Figure 10. 

Table 2: EB_FSM of the case study. 
  

𝑉0 𝑉1 𝑉2 𝑇 𝑆1 

Resistance 𝑅0   0,00 0,30 0,06 0,04 0,00 

Capacitance   0,04 0,18 0,12 0,16 0,00 
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Figure 10. Hybrid Bond Graph of the case study. 
 

The switch has been modelled by a modulated transformer 
(MTF) as proposed by Borutzky (2012). Figure 10 shows 
four elements that convert power. As power is the product of 
an effort variable and a flow variable, the engineering model 
(Table 3) consists of eight variables and eight constitutive 
equations that follow from Ohm’s Law and Kirchhoff’s Law. 
In this case study, the effort of the source 𝑢𝑆𝑒 = 𝑉0, and the 
effort of the resistances 𝑢𝑅0 = 𝑉0 − 𝑉1, 𝑢𝑅1 = 𝑉1 − 𝑉2 have 
been measured which makes three of the equations in Table 
3 redundant. 

 
Let’s now construct an MB_FSM of the case study using this 
engineering model. Let the faults (MB_FSM rows) be a drift 
in the resistance 𝑅0 and a drift in the capacitance 𝐶. As a drift 
may include an increase as well as a decrease, these fault 
definitions are more generic than the ones in Figure 7 and 
Figure 8. Note that  the history of measurements (Figure 6, 
Figure 7 and Figure 8) is not needed for the construction of a 
MB_FSM. 

Let the features (MB_FSM columns) be defined by the 𝐴𝑅𝑅s 
that follow from the measured variables in the engineering 
model (Borutzky, 2021), (Samantaray et al., 2006).  

The 𝐴𝑅𝑅1 is given by:  

  =
𝑉0 − 𝑉1
𝑅0

−
𝑉1 − 𝑉2

𝑅1

 (4) 

The 𝐴𝑅𝑅1 follows from (ii), (iii) and (vi) in Table 3, and the 
voltages 𝑉0, 𝑉1, and 𝑉2.  

The 𝐴𝑅𝑅2 is given by:  

 = 𝑉0 − 𝑉2 − (𝑉0𝑥 − 𝑉2𝑥) ×  
− 
(𝑇−𝑥)×𝐶
𝑅0+𝑅1  (5) 

In Eq. (5), 𝑉0𝑥 , 𝑉2𝑥 represent the voltages at the time of the 
last switch transition. The 𝐴𝑅𝑅2 follows from (iv) and (v) in 
Table 3, the evolution in 𝑢𝑆𝑒 , and the measurements 𝑉0, 𝑉2, 
𝑇.  

Let the fields of the MB_FSM be given as shown in Table 4, 
revealing an indicator function on the presence of the drifting 
parameters in the 𝐴𝑅𝑅s.. 

 
Now, the MB_FSM could be used to evaluate the same 
validation set as the one used for the EB_FSM. Figure 11 
confirms that both 𝐴𝑅𝑅s drift away from zero at a decreased 
resistance as predicted in the MB_FSM (Table 4). 

 
Figure 11. Measured ARRs at a decreased resistance. 

 

Figure 12 confirms that only 𝐴𝑅𝑅2 drifts away from zero at 
an increased capacitance as predicted in the MB_FSM (Table 
4). By choosing a threshold value for the 𝐴𝑅𝑅s, the fault 
detection is autonomously computable. Figure 11 and Figure 
12 show that the 𝐴𝑅𝑅 s can only detect faults as the 
components in the RRC circuit exchange power shortly after 
a transition of the switch. The applicability of the fault 
detection and isolation under various switching regimes is 
straightforwardly assessable without any history of 
measurements.  
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Table 3: Engineering (design) model for case study. 
 

i 𝑢𝑆𝑒 = 5 ×   ;  ∈ { , } 
ii  = 𝑢𝑅0 −   4 × 𝑖𝑅0  

iii  = 𝑢𝑅1 −   4 × 𝑖𝑅1  

iv  = 𝑢𝐶 −   4 ×∫ 𝑖𝐶(𝑡)𝑑𝑡 

v  = 𝑢𝑅0 + 𝑢𝑅1 + 𝑢𝐶 − 𝑢𝑆𝑒  
vi  = 𝑖𝑅0 − 𝑖𝑅1 

vii  = 𝑖𝑅0 − 𝑖𝐶  
viii  = 𝑖𝑅0 − 𝑖𝑆𝑒  

 
 

Table 4: MB_FSM of the case study. 
  
𝐴𝑅𝑅1 𝐴𝑅𝑅2 

Drift in 𝑅0     

Drift in 𝐶     
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Eq. (4) and Eq. (5) specify the value of the 𝐴𝑅𝑅 at a given 
magnitude of the drift in 𝑅0 or 𝐶, i.e. a decision regarding the 
fault identification (i.e. severity of the fault) is partially 
computable. An autonomously computable fault 
identification implies a higher maturity in data driven 
maintenance support (Figure 2) than just isolating the fault. 
Moreover, the impact of the precision of the measurements is 
assessable at the stage of design. The precision of the 
measurements is important to define appropriate threshold 
values on the 𝐴𝑅𝑅s. 

 
Figure 12. Measured ARRs at an increased capacitance. 

 

Section 2.1 mentioned that a decision regarding the fault 
detection or isolation may be incomputable because it is 
fundamentally incomputable, it is too complex, or it is 
philosophically controversial. In this case study, the latter 
prevailed as the engineering model is not pertinently true. 
The fault detection and isolation relied on the applicability of 
the idealized conditions of the laws of physics that underlie 
the engineering model. Typically, physical laws are rather 
robust against changes in these conditions. Still, unmeasured 
operating conditions may become problematic. For example, 
large but unrecorded temperature fluctuations may trouble 
Ohm’s Law and consequently the fault detection and 
isolation (MIL-HDBK-217F, 1991). 

If the engineering (design) model were to be true, the MB 
approach would have resolved the concerns of the EB 
approach: 

• Fault detection and isolation beyond the history of 
measurements (training set) is decidable. The MB_FSM 
can even be constructed at the stage of design (without 
any training set at all). 

• The applicability of the fault detection and isolation to 
work is known. For example, it is known that the fault 
detection and isolation only works as power is being 
exchanged. 

• The 𝐴𝑅𝑅s indicate the magnitude of the fault. Therefore, 
the attainable maturity in data driven maintenance is 
potentially higher. 

Finally, section 3.2 mentioned that the engineering (design) 
model may just be incapable to detect or isolate a particular 
fault. As aspirations should meet capabilities, the engineering 
(design) model may need adjustments for the purpose of data 
driven maintenance. 

5. DISCUSSION 

This section will reflect on the case study. Section 5.1 will 
discuss the impact on the computability of “real” decisions, 
section 5.2 will discuss the impact on the maturity in data 
driven maintenance, and section 5.3 will discuss some 
practical implications.  

5.1. Impact on computing “real” decisions 

Section 2.1 mentioned that a decision may be incomputable 
because it (i) is fundamentally incomputable, it (ii) is too 
complex, or it (iii) is philosophically controversial.  

In this simple case study, the philosophical concerns 
appeared predominant as the translation between a 
syntactical computation and a “real” decision required 
arbitrary human involvement to choose: 

• The faults (EB, MB); 
• The measurements/ features (EB/MB); 
• A classification model (EB/MB); 
• A feature importance score (EB); 
• A causal explanation (EB); 
• An engineering (design) model (MB). 
The engineering profession established a high degree of 
common sense regarding this translation by formulating laws 
of physics and guidelines. This common sense lacks the 
solidity of a mathematical proof, and it has been subject to 
occasional improvement, but it has shown to be effective due 
to the wide application of engineered devices. Section 2.2 
stated that where engineers fail to compute “real” decisions, 
a human involved maintenance control loop is typically 
triggered. Still, parts of the maintenance control loop may be 
computed as shown in the case study. Cases where the 
computing of “real” decisions is challenging, are also 
expected to be of high interest to scientists. 

In the simple case study, complexity was not an issue. Still, 
complexity plays a role in other cases. For the EB approach, 
the inference of a high dimensional model from a large 
history of measurements may require excessive computing 
time. Section 3.1 stated that complexity may impede the 
collection of a history of measurements that includes all 
relevant system states. Particularly under a non-experimental 
research construct, the required time is uncontrolled. For the 
MB approach, the solving of a high dimensional engineering 
(design) model may similarly bump into complexity 
concerns. 
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Fundamental incomputability precluded the selection of a 
true EB_FSM model (section 3.1). Similarly, the truth of the 
engineering model (Table 3) was ultimately an incomputable 
postulate. Fundamental incomputability is also an issue in 
cases of software faults as there cannot exist a computing 
device that separates looping software from software that 
halts in the general case. If this computing device only had to 
separate software of some fixed number of input symbols, the 
computation rapidly becomes too complex to solve in time 
(Rado, 1962). 

5.2. Impact on maturity 

Growth in the data maturity model (Figure 3) coincided with 
the flow of the consecutive decisions in the maintenance 
control loop (Figure 2). This paper confirms that the 
computation of fault detection and isolation should be settled 
before addressing the computation of decisions further 
downstream the maintenance control loop. Similarly, 
maturity growth in data driven maintenance should start with 
computing fault detection and isolation. 

In the specific validation set of the case study, the EB 
approach and the MB approach were exchangeable in terms 
of missed and false alarms. Still, a decision maker should not 
be indifferent towards the approach because (i) causality is 
assigned differently, and (ii) the meaning of the features 
differs. Using the EB approach, causality was assigned 
afterwards using some arbitrary DAG and the features just 
described the state of the RRC circuit. Using the MB 
approach, causality was inherent in the solving of the 
engineering (design) model and the 𝐴𝑅𝑅s represented the 
magnitude of the fault. The latter is part of fault identification 
(Figure 2) which corresponds with a higher maturity in data 
driven maintenance. 

5.3. Practical impact 

The case study revealed that the “real” causal implications of 
some syntactical computation matter for the attainable 
maturity in data driven maintenance. In the cases study, both 
the EB and the MB approach appeared to be not entirely 
compelling for causality. Still, some references to 
engineering guidelines were given to alleviate potential 
controversy. Section 3.1 referred to some engineering 
guidelines for (i) the most relevant faults of specific devices 
and for (ii) typical features to detect these faults. Section 3.2 
referred to some engineering guidelines to establish common 
sense regarding the margins between the computed strength 
and the “real” strength.  

For this iconic case study, the construction of a MB_FSM 
was easy but for a more realistic case study, the construction 
of a MB_FSM could become complex. Typically, the 
knowledge of the engineering models is scattered over 
various agents who may be unwilling to share them. 
Consequently, much effort may be wasted on reconstructing 
design models that are in principle already available. Life 

cycle modelling as proposed in ISO (2014) is a precondition 
to apply a MB_FSM efficiently in practice. 

The EB approach and the MB approach do not compete as 
one may also consider a hybrid FSM that adds the 𝐴𝑅𝑅s to 
an EB_FSM. The EB approach that decides on associated 
symptoms may be an appreciable resort in the absence of a 
causal explanation. The MB approach demonstrated the 
potential of a more mature data driven maintenance under 
idealized conditions. 

6. CONCLUSION 

This paper argued that some decision problems cannot be 
solved by any autonomous computation and that maintenance 
decisions are prone to be computationally challenging. A 
maturity framework has been proposed that specifies the 
decisions in a maintenance control loop, and connects these 
to the aspects of human interpretation, computability and 
causality. An application of the lowest maturity level to an 
iconic case study showed that decision makers should not be 
indifferent to (two) models that provide equal decisions on a 
validation set in terms of missed and false alarms. Access to 
a true engineering (design) model allows achieving a higher 
maturity level in data driven maintenance but it has been 
observed that a true model cannot be computed from only a 
history of measurements. Where logic cannot decide, the 
common sense reflected in engineering guidelines provides a 
resort at an acceptable risk. 
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ABSTRACT

In prognostics and health management (PHM), data-driven
approaches are crucial for performing prognostics based on
historical data, relying on the analysis of extensive datasets
to identify patterns and relationships that contribute to pre-
dicting or optimizing variables. However, their efficiency is
contingent upon the availability of large, high-quality datasets
tailored to the specific task at hand.
Yet, real-world applications frequently face challenges as data
may not always be readily available due to limitations in data
acquisition systems or confidentiality concerns. Paradoxi-
cally, the contemporary era witnesses an unprecedented surge
in the availability of online databases across various fields.
These databases offer a plethora of data that can be harnessed
to develop, prototype, and test PHM solutions.
This study endeavors to introduce an innovative approach for
assessing the similarity between datasets, specifically tailored
for prognostic and health management applications. The ob-
jective is to empower the development of PHM solutions for
predefined systems without relying on data generated from
the system itself, but rather by leveraging analogous datasets.
To quantify the similarity between different datasets, we pro-
pose a set of criteria and sub-criteria based on the characteris-
tics of datasets. Subsequently, the analytic hierarchy process
(AHP), a well-established multi-criteria decision-making ap-
proach, is employed to systematically compare the impor-
tance of criteria and sub-criteria for each elementary pro-
cess within the PHM cycle. This dynamic process considers
the varying importance of criteria across different phases, ac-
knowledging that a criterion may not be uniformly significant

Mohamed Aziz Zaghdoudi et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

for all elementary processes. The evaluation of dataset simi-
larity incorporates the proposed criteria and sub-criteria, uti-
lizing a fundamental scale of importance intensity and weights
assigned through AHP. This holistic approach yields a com-
prehensive similarity score, enabling a nuanced understand-
ing of dataset compatibility.
To exemplify the efficiency of our proposed approach, we ap-
plied it to a practical case study. The study involves assessing
the similarity between a run-to-stop database of mechanical
bearings and a set of online databases dedicated to the same
application. Our solution facilitated the identification of cri-
teria pertinent to the case study, the determination of criterion
weights, and ultimately, the calculation of a similarity score
for each database. This process proved instrumental in select-
ing the most similar database, showcasing the practical utility
of our proposed approach in real-world PHM scenarios.

1. INTRODUCTION

Prognostics and Health Management (PHM) is an engineer-
ing and research field that aims to study fielded systems con-
ditions, predict their possible failures, and take appropriate
actions to mitigate those malfunctions effects (Bougacha, Varnier,
& Zerhouni, 2022). In this context, data-driven approaches
are being increasingly used to convert historical data into mod-
els that accurately represent the physical systems’ degrada-
tion behavior (Tobon-Mejia, Medjaher, Zerhouni, & Tripot,
2012). To perform efficiently, those approaches require the
presence of extensive datasets, adhering to established data
quality standards, and accurately reflecting the characteris-
tics of the system under study. However, for real systems,
data collection is a complicated process that requires setting
up sometimes costly acquisition devices, overcoming confi-
dentiality issues, and selecting the characteristics of the data
to be collected (data format, relevant variables, data quality

1
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requirements...). This has led to a problem of insufficient
amount of data for some PHM applications and uncertainty
regarding the characteristics of the data to be collected.
Conversely, the current era is experiencing a proliferation in
both the quantity and diversity of online databases, with ap-
proximately 31 million databases accessible on the Internet
as of August 2020 (Benjelloun, Chen, & Noy, 2020). These
publicly accessible datasets span a broad spectrum of do-
mains, encompassing around 4600 domains in August 2020
(Benjelloun et al., 2020), and are amenable to adaptation for
analogous problem-solving scenarios.
This theme has motivated this research work. We are inter-
ested in finding an approach for datasets similarity evalua-
tion that makes it possible to find, among freely accessible
datasets, the most similar dataset to a sample of data from a
system studied in order to overcome the problem of lack of
data for PHM applications.
In pursuit of this goal, we have introduced a set of criteria
grounded in data characteristics to assess the similarity be-
tween datasets. Subsequently, we presented a methodology
employing the Analytical Hierarchy Process (AHP), a widely
recognized multi-criteria decision-making technique. This
methodology serves to determine criteria weights and eval-
uate datasets similarity on the base of those criteria.
The remainder of this paper is organized into four sections.
Section 2 summarizes previous works related to data insuffi-
ciency, data characterization, and the AHP technique. Section
3 describes the proposed methodology. Section 4 presents an
illustrative case study evaluating the similarity between dif-
ferent bearing datasets. In section 5, a reliability evaluation
approach is proposed to assess the consistency of the results.
Finally, section 6 summarizes the main findings and outlines
future directions for research.

2. RELATED WORK

2.1. Solving the data insufficiency problem

The data insufficiency problem was the subject of several re-
search works. Indeed, (Guo, Lei, Xing, Yan, & Li, 2018)
require the existence of two conditions for the success of ma-
chine diagnosis data-driven intelligent approaches : Labeled
data containing fault information is available and training and
test data are drawn from the same probability distribution.
However, for some systems, it is difficult to obtain massive
labeled data (Guo et al., 2018).
One of the solutions proposed in the literature is Transfer
Learning. It is defined as follows: Given a source domain DS
with a corresponding source task TS and a target domain DT
with a corresponding task TT , transfer learning is the process
of improving the target predictive function fT(·) using related
information from DS and TS , where DS ̸= DT or TS ̸= TT
(Weiss, Khoshgoftaar, & Wang, 2016).
The transfer learning approach has been applied to several
industrial systems. (Wen, Gao, & Li, 2017) applied deep

transfer learning method for fault diagnosis in a big data en-
vironment. Their approach was tested on a Case Western
Reserve University bearing dataset (Smith & Randall, 2015).
(Shao, McAleer, Yan, & Baldi, 2018) developed a deep trans-
fer learning framework for mechanical fault diagnosis and
classification, and created a repository of several reference
datasets.
Despite its ability to solve the data gap problem, the transfer
learning technique requires that the source and target data are
similar and of the same distribution.
Another widely used approach is data augmentation. This
technique consists in increasing the amount of training data
by using the information contained within it (Perez & Wang,
2017).
Various data augmentation techniques have been applied to
specific problems. The main techniques fall under the cate-
gory of data warping, which is an approach to directly aug-
ment the input data to the model in the data space. This tech-
nique has been applied for several industrial applications and
on various types of data. (Li, Zhang, Ding, & Sun, 2020) em-
ployed it for fault diagnosis of rotating machines. They ap-
plied 5 techniques for data augmentation in the form of digital
signals, namely, Gaussian noise, masking noise, signal trans-
lation, amplitude shift, and time stretching.
Moreover, this technique is widely used with image data. As
an example, we cite the work of (Wang, Yang, Jiang, & Fan,
2020) on image augmentation for crack detection using 9 dif-
ferent techniques.
Certainly, the data augmentation technique is useful to over-
come the problem of lack of data for different applications
and data types. However, this approach requires the existence
of a minimal amount of data to be augmented.
On the other hand, other alternatives are used by researchers
and industrialists to generate artificial data, such as physical
model-based simulation (Saxena, Goebel, Simon, & Eklund,
2008) or test bench fabrication (Nectoux et al., 2012).

2.2. Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) was developed by
Saaty in the 1970s (Saaty, 1980). This method, used in many
fields related to multiple criteria decision-making (MCDM)
is considered one of the most useful decision-making tech-
niques (Ahmadi, Arasteh Khouy, Kumar, & Schunnesson, 2009).
It’s a methodology for relative measurement (Brunelli, 2014)
where the focus is on proportions between some quantities
rather than their exact measurement.
In AHP, The problem is divided into a hierarchy of quali-
tative and quantitative criteria, and then, using experience,
the degree of relative importance is deducted. According to
(Nydick & Hill, 1992), the AHP method is based on 4 steps :

1. Problem structuring
2. Data collection and measurement
3. Normalized weights determination

2
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4. Application and problem-solution-finding

The Analytical Hierarchy Process has been used in several
industrial applications to make decisions in different areas.
(Cabrita & Frade, 2016) proposed an AHP-based solution to
the supplier selection problem using fourteen different crite-
ria. (Ren & Lützen, 2015) used AHP for fuel evaluation and
selection under nine criteria for emission reduction from ship-
ping. (Kilic, Zaim, & Delen, 2014) evaluated and selected the
best ERP system using an AHP-based solution to solve this
MCDM problem.
Hence, the analytical hierarchy process can be considered as
a strong decision-making tool that can be used to evaluate and
select the best action/alternative in multiple criteria decision-
making problems.

2.3. Data Characterization

Databases similarity assessment first requires the establish-
ment of data characterization criteria. Several previous works
have addressed the issue of database characterization. How-
ever, the definitions and criteria proposed differ from one
work to another, and the research has not resulted in unified
criteria.
In this context, (Alelyani, Liu, & Wang, 2011) proposed 4
characteristics and studied their effects on feature selection
stability. The proposed characteristics are the number of sam-
ples, features and classes, and the data distribution. (Bhatt,
Thakkar, & Ganatra, 2012) divided thirteen characterization
criteria into 2 different groups: phenotype characteristics deal-
ing with entropy and the noise-signal ratio, and characteris-
tics concerning the genotype of a dataset, divided into 2 cate-
gories:

• Simple Characteristics concern the attributes and instances’
numbers

• Statistical Characteristics that deal with the statistical as-
pect of data.

(Oreski, Oreski, & Klicek, 2017) characterized data by 11
characteristics in 5 different groups, consisting mainly of stan-
dard, data sparsity, statistical, information-theoretic, and noise
measures.
On the other hand, data quality has emerged as a fundamental
notion for characterizing data. (Strong, Lee, & Wang, 1997)
have defined high-quality data as data that is suitable for data
consumers. Thus, we can conclude that data with different
degrees of quality will lead to different results. (Redman,
1997) proposed four data quality characteristics most stud-
ied in the literature: accuracy, consistency, completeness, and
timeliness. (Omri, Al Masry, Mairot, Giampiccolo, & Zer-
houni, 2021) suggest that for PHM applications, data quality
is characterized by volume, accuracy and completeness.

3. PROPOSED APPROACH

The proposed methodology (Fig. 1) is composed of four dif-
ferent phases. The first phase includes the proposal of sim-
ilarity criteria and sub-criteria. The second phase is linked
to the PHM cycle and the processes that make it up. The
third phase details the criteria and sub-criteria weights calcu-
lation using AHP technique. The final phase is dedicated to
decision-making using the established methodology.

3.1. Problem modeling / Criteria setting

The first step consists of proposing similarity criteria accord-
ing to which the similarity will be evaluated. This step is also
called ’Problem modeling’ for AHP applications (Ishizaka &
Labib, 2011). In fact, it is recommended to structure the cri-
teria in a hierarchical structure to be able to focus on their
importance when assigning their weights (Ishizaka & Labib,
2011). A structure of sub-criteria assembled in clusters (cri-
teria) helps describe the problem more conveniently and re-
duces bias (Ishizaka, 2004).
To define criteria that are in line with this problem, we mainly
rely on the data characterization criteria proposed in the lit-
erature. In (Table 1), a non-inclusive list of 17 sub-criteria
divided into four criteria is proposed to evaluate the similar-
ity between databases. These criteria can be used fully or
partially, depending on the application or case study under
consideration.
In addition to the attributes outlined in existing literature,
we have introduced two supplementary sub-criteria, namely
’Data extension’ and ’Data format.’ Specifically, within the
context of a given system and application, data represent-
ing the system state may manifest in various types and for-
mats, such as images, signals, or tabular data. Disparities in
data format and extension necessitate distinct characteriza-
tions and treatments.
Furthermore, our research proposes a novel set of application-
related criteria, consisting of two sub-criteria. These crite-
ria aim to evaluate the domain (e.g., manufacturing, medical,
transportation) of the system depicted in the dataset, along
with discerning the data source—whether it originates from a
real-world application, a simulation, or a test bench.

3.2. PHM cycle modeling

In order to assign weights to each similarity criterion, we pro-
pose to, firstly, divide the studied PHM cycle into elementary
processes. In fact, the PHM cycle is composed of seven el-
ementary processes according to (Omri, Al Masry, Mairot,
Giampiccolo, & Zerhouni, 2020), namely data acquisition,
data processing, data assessment, diagnostic, prognostics, de-
cision support, and HMI. From data acquisition to decision
support and HMI, the importance of each of the established
criteria depends on the process.

3
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Figure 1. AHP based approach for datasets similarity evaluation

Table 1. Data similarity criteria

Criteria Sub-criteria
1. Number of attributes (Alelyani et al., 2011; Bhatt et al., 2012; Oreski et al., 2017)
2. Number of instances (Alelyani et al., 2011; Bhatt et al., 2012; Oreski et al., 2017)

Standard criteria 3. Number of classes (Alelyani et al., 2011; Bhatt et al., 2012; Oreski et al., 2017)
4. Number of binary features (Bhatt et al., 2012)

5. Data format
6. Data extension

7. Data distribution (Alelyani et al., 2011)
8. Features correlation (Bhatt et al., 2012; Oreski et al., 2017)

Statistical criteria 9. Multivariate normality (Oreski et al., 2017)
10. Mean Kurtosis of attributes (Bhatt et al., 2012)
11. Mean skewness of attributes (Bhatt et al., 2012)

12. Accuracy (Omri et al., 2021; Redman, 1997)
13. Completeness (Omri et al., 2021; Oreski et al., 2017)

Data quality criteria 14. Consistency (Redman, 1997)
15. Timeliness (Redman, 1997)

Application related 16. Field of application
criteria 17. Data source

For example, the data distribution a negligible impact on the
data acquisition process. However, this characteristic is very
important in the data processing and exploitation processes
(diagnostic and prognostic). Thus, the importance of each of
the criteria will be judged with respect to every PHM process
separately.

3.3. Criteria / Sub-criteria weights determination

Notation:

• Pi : Elementary process i (i=1,..., L)
• Dh : Similar dataset h (h=1,..., Q)
• Cj : Criterion j (j=1,..., N)
• Xj,i : Weight of criterion j for process i
• SCk : Sub-criterion k (k=1,..., M)

4
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• Yk,i : Weight of sub-criterion k for process i

• Wk : Weight of sub-criterion k

• Mj : Number of sub-criterion related to the criterion j

• Zh,k : Similarity score of the candidate dataset h with
the target dataset with respect to the sub-criterion k

• Rh : Similarity score of the candidate dataset h with the
target dataset.

In the AHP technique, a ratio scale is used to derive, two by
two, the criteria’s and sub-criteria’s importance. This com-
parison, unlike techniques that use interval scales, requires
no units (Ishizaka & Labib, 2011) and assures a more accu-
rate decision than comparing all the criteria at once.
The pairwise comparison of criteria, and every group of sub-
criteria, is realized using Saaty’s 1-9 scale for pairwise com-
parison (Saaty, 2005) described in Table 2.

Table 2. Saaty’s 1-9 scale for pairwise comparison

Intensity of importance Definition
1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance

To determine the weights of N criteria for the elemental pro-
cess Pi, An NxN matrix is created, where aj1,j2 describes the
importance of criterion Cj1 over criterion Cj2. Therefore,
for all j1 and j2, aj1,j2 is the inverse of aj2,j1 and aj1,j1 = 1.




1 a1,2 .. a1,N
a2,1 1 .. a2,N
.. .. .. ..

aN,1 .. aN,N−1 1


 (1)

This procedure is carried out to deduce the relative impor-
tance of the criteria by comparing them two by two using the
fundamental scale of importance intensity. The weight Xj,i

of criterion Cj in relation to the process Pi is calculated us-
ing equation 2.

Xj,i =

∑N
j2=1(

aj1,j2∑N
j1=1 aj1,j2

)

N
(2)

Similarly, the sub-criteria relating to each criterion are com-
pared two by two, and the weight of each sub-criterion in
relation to the Pi process is calculated using equation 4




1 b1,2 .. b1,Mj

b2,1 1 .. b2,Mj

.. .. .. ..
bMj,1 .. bMj,Mj−1 1


 (3)

Yk,i =

∑Mj
k2=1(

bk1,k2∑Mj
k1=1 bk1,k2

)

Mj
×Xj,i (4)

At the end of this procedure, the weight of each criterion/sub-
criterion is given, showing their importance for each elemen-
tary process of the PHM cycle.
In order to deduce the weight of a sub-criterion for the whole
cycle, an average of these weights is calculated (equation 5).

Wk =

∑L
i=1 Yk,i
L

(5)

3.4. Similarity score calculation

In this final step, the similarityZh,k of every candidate dataset
Dh with the studied dataset regarding each sub-criterion k
is evaluated. The assessment is done using the fundamental
scale of importance intensity (Table 2).
For quantitative criteria, an odd number between 1 and 9 is
assigned, depending on the decision-maker’s expertise. On
the other hand, for qualitative criteria, only two possible val-
ues can be given, 9 for two data sets with similar attributes
and 1 otherwise.
Finally, a normalized similarity score of each candidate dataset
Rh is calculated using equation 6. The higher the similarity
score, the more the concerned dataset is similar to the target
dataset. A similarity score of 1 means that the two compared
datasets have identical characteristics.

Rh =

∑M
k=1 Zh,k ×Wk

9
(6)

4. ILLUSTRATIVE CASE STUDY

The proposed database similarity assessment methodology
will be applied to a case study of bearing failure databases
available online.
A bearing is a machine component that lessens friction be-
tween moving elements in mechanical engineering. It is fre-
quently used in wheels or axles to support and guide a rotating
or oscillating shaft. Bearings can be subject to various fail-
ures, manifested by cracks, wear marks, chips, and abnormal
noises. These failures can significantly affect the mechanical
and energy sectors’ capacity to operate, level of safety, and
financial aspect (Nectoux et al., 2012).
In the context of PHM applications for bearing condition prog-
nosis, (Nectoux et al., 2012) provided a database for the IEEE
PHM 2012 Prognostic Challenge. The experiments were car-
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ried out on the PRONOSTIA platform at the Femto-ST In-
stitute, and the results present 9 features relating to run-to-
failure tests of 17 bearings.

4.1. Proposed criteria and PHM cycle modeling

For the application under consideration, based on the criteria
summary table (Table 1), eleven sub-criteria split among three
criteria were proposed. The sub-criteria relating to the stan-
dard criteria were retained, except for the number of classes.
This selection is justified by the studied databases, which
were not originally designed for classification purposes and
lack class labels. In addition, the application-related criteria
were also retained with the proposal of two additional criteria
specific to this application, namely the number of operating
conditions applied and the number of tested bearings. More-
over, two of the data quality sub-criteria were used in this
case study. The completeness was evaluated as the ratio of
non-empty cells over all available cells, and the accuracy was
assessed as the presence or absence of noise.
For this application, the PHM cycle was simplified to 3 ele-
mentary processes, namely the data acquisition, the data pre-
processing, and the prognostics processes.

4.2. Similar databases collection

A collection of four databases, available online, for the same
applications, was carried out.
The first dataset (Kaggle, 2023) is provided by Quantum com-
pany in collaboration with Kharkiv Polytechnic Institute. It
consists of 3-axis vibration measurements of 112 rotating bear-
ings.
The second dataset (Qiu, Lee, Lin, & Yu, 2006) is a run-to-
failure dataset of four bearings under one operating condition,
provided by Qiu et al. Eight features related to the vibration
and the temperature of the bearings were collected to study
their health state.
The third data set (CWRU, .) is provided by Case Western
Reserve University and presents ten statistical features related
to measurements of 21 bearings under fixed operating condi-
tions that manifested ten possible types of faults.
Finally, the fourth database presents recordings of the accel-
eration of a high-speed bearing used for wind turbines over
30 days (6 seconds daily). These recordings were made un-
der two operating conditions.
Table 3 details the selected dataset characteristics in relation
to the criteria and sub-criteria chosen for the study.

4.3. Criteria and sub-criteria weights calculation

As mentioned in section 3, and in order to determine the
sub-criteria weights, a pairwise comparison of the importance
of the criteria for every elementary PHM process was per-
formed.
Table 4 details the process of comparing importance and cal-

culating criteria weights for the data acquisition process.
The criteria weights were calculated using equation 2, after
constructing the comparison matrix. The application crite-
rion contributes the most to selecting a similar dataset for the
data acquisition process. In addition, a similarity in the appli-
cation criterion is strongly preferred to the quality criterion.
In fact, a different application may require another data acqui-
sition system. Moreover, as seen in Table 4, no two criteria
are of equal importance for the acquisition process.
Table 5 compares the criteria importance and weights in the
data preprocessing process. In contrast to the data acquisition
process, the application criterion has an insignificant weight
compared to standard and quality criteria, indicating a lower
priority in this context. Conversely, the quality criterion holds
the highest significance in selecting an appropriate dataset
in the preprocessing process, holding nine times more im-
portance than the application criterion and three times more
significance than the standard criterion. These findings align
with expectations, as the preprocessing process rarely depends
on applications and focuses mainly on data quality and stan-
dard characteristics.
The weights of each family of sub-criteria were then deter-
mined for each elementary process of the PHM cycle. This
is done by comparing them two by two using the 1-9 scale
for pairwise comparison and then, by applying equation 4 to
incorporate the weights of the associated criteria.
Table 6 shows the weights of the standard sub-criteria for the
data acquisition process. The number of features is found
to be the most important sub-criterion to assess the similarity
between two datasets concerning the data acquisition process.
In fact, features (variables) are collected using acquisition de-
vices like sensors. These devices are costly and require stud-
ies to set them up and to ensure data acquisition. This sub-
criterion is therefore the most important for this PHM pro-
cess. The number of features sub-criterion is considered to
be very strongly important than the number of instances, ex-
tremely important than the data extension sub-criterion, and
moderately important than the data format sub-criterion.
The data format is the second most important standard sub-
criterion to assess datasets similarity in relation to the data ac-
quisition process. It is strongly more important than the num-
ber of instances and the number of binary features, and mod-
erately more important than the data extension sub-criterion.
The Standard sub-criteria importance and weights for the prog-
nostic process are described in Table 7. Similarly to the ac-
quisition process, the number of features criterion is the most
important factor in determining databases’ similarity in re-
lation to the prognostic process. Additionally, the data ex-
tension is the least impacting factor in both processes. The
second most important standard sub-criterion is the number
of binary features in this context. It is moderately more im-
portant than the number of instances and data format criterion
and highly more important than the data extension criterion.
The final weights of all the considered sub-criteria for the
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Table 3. Collected datasets characteristics

Target dataset Candidate Candidate Candidate Candidate
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Number of attributes 7 13 8 10 2
Number of instances 18196480 10265700 4415488 2048 29,286,800
Number of binary features 0 0 0 0 0
Data format tabular tabular text tabular binary data container
Data extension .csv .csv text .csv .mat
Field of application Academic Industrial Academic Industrial energy industry
Data source test bench test bench test bench test bench real life
Number of operating conditions 3 3 1 1 2
Number of bearings tested 17 112 4 21 1
Completeness 100,00 % 100,00 % 100,00 % 100,00 % 100,00 %
Accuracy noised X noised X noised

Table 4. Criteria matrix and weights for the data acquisition
process

Standard Application Quality Criteria
weights

Standard 1 1/3 3 0,2605
Application 3 1 5 0,6333
Quality 1/3 1/5 1 0,1062

Table 5. Criteria matrix and weights for the preprocessing
process

Standard Application Quality Criteria
weights

Standard 1 7 1/3 0,2946
Application 1/7 1 1/9 0,0567
Quality 3 9 1 0,6486

whole PHM cycle are detailed in Table 8.
The accuracy sub-criterion is found to be the most impor-
tant. Since the scores are normalized, then a weight of 0,3603
means that this sub-criterion contributes by 36,03% to the
final decision about datasets similarity. The following sub-
criteria are the number of tested bearings, the number of oper-
ating conditions, and the number of collected features. These
four sub-criteria contribute by more than 75% to the final de-
cision.

4.4. Similarity score calculation and decision-making

In this final step, the similarity of every candidate dataset
with the target dataset is evaluated with respect to every sub-
criterion using the fundamental scale of importance intensity
(Table 2).
Similarity based on qualitative criteria is assessed using the
Saaty scale. In other words, if both datasets have the same
attribute, a rating of 9 is assigned; otherwise, a rating of 1 is
assigned.
For example, for the data format sub-criterion, two candidate
datasets are of the same format as the target dataset, so they
got a similarity score of 9. The other two datasets are of dif-

ferent formats (text and binary data container), leading to a
weak similarity score of 1.
A score of similarity, according to every sub-criterion, be-
tween each candidate dataset and the target dataset is given.
Afterward, the weights deducted in the previous step are used
to get a similarity score for every candidate dataset 8.
The second dataset (Qiu et al., 2006) is found to be the most
similar dataset to the target dataset (Nectoux et al., 2012)
with a similarity score of 0,7143. However, the first can-
didate dataset (Kaggle, 2023) is the least similar dataset to
the target dataset. This is mainly caused by the difference in
the accuracy sub-criterion, the number of tested bearings and
the number of features. These sub-criterion were found to
be three of the four most important comparison sub-criteria.
Therefore, a low score in these attributes leads to a weak over-
all similarity score.
If a simple normalized mean of the similarity scores is cal-
culated, the first candidate dataset will obtain a higher score
of 0,7172, meaning that it is the most similar dataset. This
shows the importance of assigning weights to the comparison
sub-criteria.
It is important to note that, although the fourth dataset is the
only one originating from the real world, it was not selected.
This decision stems from the fact that the ’data source’ crite-
rion is just one of several simulation criteria used in the se-
lection process. Moreover, the target dataset itself is derived
from a simulation, rendering dataset number 4 dissimilar in
terms of data source. Our aim is to select the dataset that
most closely resembles the target dataset, rather than simply
identifying the best dataset.

5. DECISION RELIABILITY

The methodology outlined in this study hinges upon conduct-
ing pairwise comparisons of both criteria and sub-criteria to
ascertain their respective weights. These comparisons are
based on subjective judgments provided by the decision-maker.
Consequently, it becomes important to assess the consistency
of these judgments. Consistency, within the context of the
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Table 6. Standard sub-criteria matrix and weights for the data acquisition process

Number of Number of Number of Data Data Criteria
instances features binary features format extension weights

Number of instances 1 1/7 1/3 1/5 3 0,0740
Number of features 7 1 5 3 9 0,5048
Number of binary features 3 1/5 1 1/5 3 0,1163
Data format 5 1/3 5 1 3 0,2581
Data extension 1/3 1/9 1/3 1/3 1 0,0468

Table 7. Standard sub-criteria matrix and weights for the prognostic process

Number of Number of Number of Data Data Criteria
instances features binary features format extension weights

Number of instances 1 1/5 1/3 3 7 0,1449
Number of features 5 1 3 7 9 0,4992
Number of binary features 3 1/3 1 3 7 0,2298
Data format 1/3 1/7 1/3 1 7 0,0962
Data extension 1/7 1/9 1/7 1/7 1 0,0299

Table 8. Final weights and similarly scores of the candidate datasets

Sub-criteria Sub-criteria
weights

Candidate
dataset 1

Candidate
dataset 2

Candidate
dataset 3

Candidate
dataset 4

Number of instances 0,0156 5 3 1 5
Number of features 0,1008 3 7 5 1
Number of binary features 0,0224 9 9 9 9
Data format 0,0584 9 1 9 1
Data extension 0,0177 9 5 9 1
Accuracy 0,3603 1 9 1 9
Completeness 0,0721 9 9 9 9
Field of application 0,0354 5 9 5 3
Data source 0,0276 9 9 9 5
Number of operating conditions 0,1229 9 3 3 7
Number of bearings 0,1668 3 3 7 1
Similarity score 0,4787 0,7143 0,4863 0,6244

Analytic Hierarchy Process (AHP), denotes the extent to which
the pairwise comparisons rendered by decision-makers ex-
hibit logical coherence and absence of contradictions. Incon-
sistencies in judgments bear the risk of yielding unreliable
weight assignments, thereby potentially skewing the subse-
quent similarity evaluations.
Several works have addressed the problem of consistency of
AHP matrices. One way to deal with this is by determining
the Consistency Ratio (CR) (Pant, Kumar, Ram, Klochkov,
& Sharma, 2022; Franek & Kresta, 2014). First, the Consis-
tency Index (CI) is computed according to equation 7:

CI =
λmax −N
N − 1

(7)

with λmax representing the largest eigenvalue of the pairwise
comparison matrix and N indicating the matrix size (number
of criteria or sub-criteria).
Using pre-defined tables (Table 9), the Random Index (RI)
corresponding to the matrix size is determined. The Consis-
tency Ratio (CR) is then calculated by dividing CI by RI. A

CR value below 0.1 signifies acceptable consistency in judg-
ments, while values exceeding 0,1 may indicate potential in-
consistencies requiring further scrutiny or adjustment.
As an example, the consistency ratio of the criteria pairwise
comparison matrix is 0,03 for the data acquisition process and
0,07 for the preprocessing process. These results demonstrate
that the weights of the resulting criteria are consistent and can
be used to reliably determine criteria weights.
On the other hand, the consistency ratio of the standard sub-
criteria matrix for the prognostic process is 0,11 meaning that
the comparison need to be adjusted in order to get a consistent
judgment of the sub-criteria weights.

6. CONCLUSION

In this work, a database comparison approach was proposed
to find a solution to the problem of lack of data for PHM ap-
plications. Indeed, for this field of study, and in order to de-
velop a data-driven PHM solution, datasets need to be avail-
able, containing all the variables describing the system under
study and complying with quality standards. In reality, this is
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Table 9. Random index for the AHP consistency ratio (Saaty, 1980)

Number of rows 1 2 3 4 5 6 7 8 9
RI 0 0 0,58 0,90 1,12 1,24 1,32 1,41 1,45

not always the case.
Therefore, we have proposed an approach for assessing the
similarity between a target dataset and a set of datasets avail-
able online. A set of criteria has been proposed, based on data
characteristics. As the criteria are not equally important for
judging similarity, a weight for each criterion is determined
using the analytical hierarchy process. The similarity of the
datasets is then scored against each criterion, and a normal-
ized score is calculated for each dataset.
The proposed approach has been applied to an illustrative
case, where the similarity of four datasets with a bearing op-
erating database has been evaluated. The application leads to
calculating similarity scores for each dataset and selecting the
most similar one.
This work presents a first step towards solving the problem
of lack of data for PHM applications. It makes it possible to
design a PHM solution for a given system without the need
to use data directly from that system.
On the other hand, this proposal is limited by the subjectiv-
ity of the decision-maker. The latter, responsible for rating
similarity and judging the importance of criteria, may be bi-
ased and lead to subjective decisions. We therefore recom-
mend that weights and scores be allocated by several experts
at the same time, in order to limit the subjectivity of decision-
makers.
In addition, considering the limitations of our current method-
ology, future studies may employ fuzzy techniques to reduce
the uncertainty of the decision. Furthermore, in this work, we
proposed a non-exhaustive list of criteria, other criteria can
also be used, namely the maturity of the data for example,
which leads to the generalization of the approach to various
fields and applications.
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ABSTRACT 

The paper focuses on PHM in the maritime industry, 
specifically on the maintenance of uncrewed vessels, in 
contrast to the more commonly discussed navigation. The 
paper examines the potential challenges of removing the 
maintenance crew and the potential benefits that can result 
from this major change in operations. 
The removal of the primary maintenance team from a vessel 
necessitates an increase in monitoring and analysis that can 
be realised by the techniques of PHM. By looking from the 
perspective of stakeholders, the challenges and opportunities 
of PHM implementation become clearer. In comparing the 
challenges that faced other industries with the maritime 
industry, roadmaps and proposals can be drawn up for vessel 
owners. There is a correlation between the phased removal of 
the engineering crew and the increases in monitoring that is 
required.  Current large vessels that do not carry passengers 
can operate with UMS (un-manned machinery space) for 
limited periods. To allow this a specific set of sensors referred 
to as E0 (Engineers-zero) must be established and 
maintained. This E0 sensor set forms the basis for what is 
needed to allow UMS for longer periods of time. The critical 
equipment, as deemed by class societies, is monitored by E0. 
Acquiring the data from the E0 sensor set and performing 
PHM analysis on the data allows remote engineers to 
accurately determine the current and future state of critical 
equipment. This equipment list needs to be expanded. 
Causality based risk modelling is employed to establish a data 
driven critical equipment list and minimum sensor set to 
cover the maximum amount of failure modes. This builds on 
the current required E0 sensor set. 

With a conventional maintenance system onboard a vessel 
the crew are doing a lot of the sensing. The crew act as 
intermediaries between various systems, taking data from one 
system to help diagnose another system, making a change to 
one system to help improve another system. The maintenance 
crew must balance the interfaces of each system so that a 
harmony or equilibrium can be achieved. This balancing act 
is part of what makes a PHM study on a vessel so interesting. 
Many systems onboard a vessel have a sole purpose to 
support the crew. With the removal of the crew these support 
systems can also be removed, simplifying the overall 
engineering of the vessel. 
The methodology that has been used to assess the above 
points is to create a framework for the design and deployment 
of PHM to marine assets. The framework relates to RAM 
(Reliability, Availability, Maintainability) and considers 
stakeholder points of view and their inputs’ implications. In 
developing the framework, the stakeholder group is realised. 
The framework compares the ‘As-Is’ conventional method 
against the proposed PHM framework. The conclusions are 
that the E0 philosophy can be expanded upon to facilitate the 
integration of PHM. Also, the paper concludes that a PHM 
deployment framework gives the maritime industry a basis 
for using this modern technique for machinery health. Lastly, 
the paper shows that PHM is a vital element to uncrewed 
vessels. 

1. INTRODUCTION 

In this paper we will investigate a way to use the principles 
of RAM (Reliability Availability Maintainability) to 
facilitate uncrewed vessel operations. The focus of the paper 
is going to be only on the uncrewed Engineering operations, 
not on the Navigational operations. 
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The motivations for conducting this study are, 

1. The maritime industries move to leverage modern 
technology to reduce environmental impacts of 
shipping is a major motivator for this study. 

2. To offer a method for enabling remote engineering 
of uncrewed vessels both in terms of the RAM 
driven PHM system and organisational architecture. 

3. To increase safety at sea by reducing the number of 
crew needed to locally operate the vessels. 

To validate the decision to move to a RAM enabled PHM 
maintenance system, it is important to carry out a comparison 
between different maintenance systems. To do this, key 
performance indicators (KPI) need to be established to track 
and compare the differences in performance of each, also, 
standardizing resources needed into categories. 

 
Table 1: Generic Maintenance System KPI's 

 
KPI Description 

Availability Actual and predicted 
availability are critical to 
commercial operations 

Human reliance / human 
error 

How reliant the system is 
on individual humans 

Unplanned maintenance 
tasks 

Quantity and frequency of 
unplanned maintenance 
tasks 

Planned maintenance tasks Quantity and frequency of 
planned maintenance tasks 

Set up cost Cost of setting up the 
maintenance system 

Running costs Cost of running the 
maintenance system 

Maintenance Costs Cost of maintaining the 
asset during its lifetime 

 
Table 1 above shows a list of KPI’s that can be used to 
compare maintenance systems. This is not a definitive list, 
but serves as a overarching view of a maintenance systems 
efficiency. 
Each of the evolutions of the proposed maintenance systems 
will be compared on the above KPI’s with results in the 
appendix of this paper. 
Other metrics that can be considered are: 
 

• Time 
• Environmental 
• Complexity 
• Sustainability 

 
The maintenance landscape in the maritime industries is due 
for an overhaul. Remote Engineering is becoming a factor. 
This paper aims to show a possible way forward 

This paper uses a typical 70 – 100 meter length overall vessel 
designed to have an operational lifespan of 20 years as an 
example asset. 

To recap on the evolution of maintenance so far, from 1920 
to now we can see that cost and availability have always 
been the biggest drivers. As a high level over view the 
following is a view of these evolutions. Figure 1 shows how 
maintenance systems have progressed since “run to failure” 
where a machine was only repaired, rather than maintained. 
To Dynamic Maintenance, where failures are identified in a 
juvenile state, allowing operators to plan corrective action 
and impose mitigating actions to prolong the asset life prior 
to maintenance. 

2. MAINTAINING A VESSEL 

 
Figure 1. Evolution of Maintenance Systems 

 
Figure 1 also shows that as the system evolves maintenance 
can be done at targeted times when it is most effective, this 
optimises the maintenance and improves asset availability. 
This optimisation culminates in a system that can mitigate the 
failure to prolong asset life so that maintenance intervals can 
be fixed. 
 
Classification societies guide and ensure that ships are 
maintained to certain standards. For ships, classification 
societies provide classification services that involve 
assessing the structural integrity, safety, and performance of 
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vessels according to their rules and regulations. These 
services include: 

• surveys at various stages of a ship's life, including 
during construction, after delivery, and during 
operation. these surveys verify that the ship 
complies with class rules and standards. 

• regular surveys are conducted to ensure that the ship 
remains in compliance with class requirements 
throughout its operational life. these surveys cover 
aspects such as hull integrity, machinery, electrical 
systems, and safety equipment. 

• guidelines and requirements for implementing 
maintenance management systems onboard ships 
are also provided by classification societies. these 
systems help shipowners and operators manage 
maintenance activities effectively to ensure the 
continued safe operation of the vessel. 

• condition monitoring and predictive maintenance, 
allowing ship operators to identify potential issues 
before they lead to failures or downtime. 

• assistance and support to shipowners in 
understanding and complying with relevant 
regulations and standards, including international 
conventions and flag state requirements. 

2.1. Classification Society Methodology 

Classification societies assist ship owners in improving 
maintenance to support increased safety. This starts by 
assigning critical equipment. Criticality assessment is carried 
out to comply with standards such as NORSOK Z-008 PSA, 
ISM code 10.3 and OVMSA. For the analysis, generally, all 
onboard maintainable items are included. A risk-based 
assessment is then carried out in terms of impact to health, 
environment, operation, property, MASS capability. 

PHM is currently included in Class Society documentation, 
but there is little in the way of guidance. The generic view is 
that PHM can provide valuable information for corrective 
and preventative action, inclining operations adjustment 
(Shipping, 2018). 

Paper based analysis is used (rather than model based) to risk 
assess equipment and deem it critical if needed. While RAM 
is not used in its entirety by classification societies, they are 
considering reliability and safety analysis as part of a 
certification process of a vessel. 

Classification Societies also issue vessels with ‘notations’ 
which indicate to clients the level of quality or performance 
the vessel has achieved. DNV for example issue a Condition 
Monitoring System notation if the vessel can prove 
compliance to specific equipment health requirements. At 
time of writing there is no PHM notation. 

3. UNMANNED MACHINERY SPACES (UMS) 

Unmanned Machinery Spaces (UMS) are engine rooms or 
machinery spaces on ships that are designed and equipped to 
operate without the continuous presence of personnel. This 
means that machinery and systems are automated and 
monitored remotely from a control room, reducing the need 
for crew members to be physically present in these spaces. 
One of the classifications and notations associated with UMS 
is the E0 (Engineers Zero) notation. 

3.1. Key Features of UMS with E0 Notation: 

Advanced Automation: UMS with E0 notation feature 
advanced automation systems that control and monitor 
machinery and systems in the engine room. Redundant 
systems and fail-safe mechanisms are implemented to ensure 
continuous operation and minimize the risk of failure. 

Machinery and systems are monitored remotely from control 
rooms or other locations onboard the ship. Automated alarm 
and alert systems notify onboard personnel or shore-based 
monitoring centres of any abnormalities or emergencies. 

Emergency procedures and backup systems are in place to 
respond to emergencies or system failures, including the 
ability to remotely intervene or override automated systems 
if necessary. 

Ships with UMS, including those with the E0 notation, must 
comply with relevant regulations and guidelines governing 
unmanned or partially unmanned operations, such as those 
issued by the International Maritime Organization (IMO) and 
flag state authorities. 

4. ENGINEERS ZERO (E0) 

For a typical vessel between 70 and 100 meters, the E0 
monitoring and alarm list is a comprehensive set of internal 
alarms for various systems and components on a ship. These 
alarms are designed to monitor the status of critical 
machinery, systems, and equipment, and they provide alerts 
in case of abnormalities or failures. The following is a 
breakdown of the categories and some examples of alarms 
existent on UMS with E0 capability. 

Internal Alarms: These alarms are related to the ship's 
internal systems and components. 

Earth Failure Alarms: These alarms indicate a potential earth 
(ground) failure in specific components, such as controllers 
and power supplies. 

Power Failure Alarms: These alarms notify of power failures 
in specific components, such as controllers and power 
supplies. 

Fuel Oil System Alarms: These alarms monitor the fuel oil 
system, including tank levels, overflows, and pressure. 

Main Propulsion Alarms (Port and Starboard): These alarms 
relate to the main propulsion systems, including power 
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supply failures, low oil pressure, high temperatures, and 
warnings regarding control systems. 

Generator Set Alarms: These alarms monitor various 
parameters of generator sets, including fuel levels, water 
pressure, oil pressure, temperatures, overspeed, and abnormal 
conditions. 

Lube Oil System Alarms: These alarms monitor the lube oil 
system, including separator alarms and overflow alarms. 

Cooling System Alarms (Sea Water and Fresh Water): These 
alarms monitor the cooling systems, including low pressure 
alarms for sea water and freshwater systems and low-level 
alarms for expansion tanks. 

Compressed Air System Alarms: These alarms monitor the 
compressed air system, including low-pressure alarms for 
starting air receivers and quick-closing cabinets. 

Bilge System Alarms: These alarms monitor bilge levels in 
various compartments throughout the ship. 

Main Switchboard Alarms: These alarms monitor the main 
switchboard for various failures and abnormalities in power 
supply and distribution. 

Miscellaneous Alarms: These alarms cover a range of 
miscellaneous systems and components, including 
communication errors, black-out bus failures, and controller 
failures. 

These alarms are crucial for maintaining the safe and efficient 
operation of the vessel by promptly alerting crew members to 
any issues that may arise within the ship's systems. Typical 
maintenance intervals are having a monthly occurrence for 
E0 alarms. 

Overall, there will be approximately 450 alarms across the 
systems described above. With all these in place, a vessel can 
apply for E0 notation and operate with unmanned machinery 
spaces for certain periods of time. The rules around when a 
vessel can operate in UMS are also not described in this 
paper. 

5. EXPANSION ON E0 FOR UNCREWED SHIPS 

Having the E0 notation in place allows the engineering staff 
to rely on the automation system to alert them to critical 
issues onboard. Expanding on this principle can form a basis 
for much longer periods of UMS operation. To build upon 
this principle to facilitate uncrewed operations the 
maintenance and monitoring strategy of ships needs to be 
changed. 

5.1. Dynamic Positioning 

It is also worth mentioning dynamic position (DP) systems in 
the context of this investigation. DP is used to keep a vessel 
in location. There are 3 grades for the DP capability, as shown 
below. 

Table 2: Dynamic Positioning Grades 
DP1 Position Keeping 

DP2 DP1 + any single 
component failure and 
vessel remains 100% 
capable of position keeping 

DP3 DP2 + Any single 
compartment failure and 
vessel remains 100% 
capable of position keeping 

 

It is worth mentioning the DP grades here because they 
require a certain level of redundancy. To be classed as a DP3 
vessel the vessel must be designed in such a way that if any 
compartment is lost the vessel is still 100% capable. This 
could be a fire in an engine room for example. The 
philosophies on DP grade can also be expanded and 
contribute to a foundation for RAM of uncrewed vessels.  

6. VESSEL MAINTENANCE 

Vessel maintenance covers the vessel itself and the systems 
installed onboard. There are systems necessary for the vessel 
to operate, and to support the crew. The SFI coding system is 
used in most cases to group the maintenance tasks into the 
following parent categories. Table 3 below outlines the high 
level SFI categories and the average number of tasks in each. 

Table 3: - tasks per vessel system category 

Category Average Number of 
Tasks 

1. Ship General 20-50 

2. Hull 150-200 

3. Equipment for Cargo 10-50 

4. Ship Equipment 200-600 

5. Equipment for Crew and 
Passengers 

300-500 

6. Machinery Main Components 100-500 

7. Systems for Machinery Main 
Components 

300-600 

8. Ship Common System 100-300 

9. Payload Equipment. Depends on Payload 
types. 
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7. CONVENTIONAL MAINTENANCE SYSTEMS 

Here we look at the typical modern conventional method of 
maintaining a vessel.  

A conventional vessel uses a combination of planned, 
preventative, corrective and breakdown maintenance 
strategies. The two primary sources of information are the 
PMS (Planned Maintenance System) and the Engineers 
observations. A general overview of this process is shown in 
figure 2 below. 

 
Figure 2. Conventional Maintenance System 

 

7.1. Conventional Maintenance System Description 

The system shown in figure 2 has the relationship between 
the onboard maintenance team and the asset to be maintained 
at the centre. Physical metrics of the asset are relayed to the 
engineers by an integrated automation system. This system 
also facilitates control of the asset. The assets running hours 
are maintained in the PMS which issues jobs to the onboard 
maintenance team. The team also react to faults and failures 
as they are observed. The PMS is linked to a shoreside system 
that assists the “office” in planning yard periods and vessel’s 
availability to clients. The effectiveness of this system relies 
on the team onboard. 

7.2. Method of Performing Maintenance 

Maintenance is generally performed by an onboard team of 
engineers. If more extensive maintenance is needed 
specialists from OEM’s are brought in. with this maintenance 
strategy there is a lot of reactive maintenance being done or 

planned maintenance that has no connection to the actual 
health of the asset. 

Maintenance tasks are issued by the PMS and carried out by 
appropriate member of the engineering team. The onboard 
team monitor spares and consumable usage and submit orders 
when stock is running low. Certain items are classed as 
critical spares by a classification society to ensure that the 
safety critical equipment has spares onboard at all times.  

Below is a summary of a typical maintenance team on a 
conventional vessel between 70 and 100 meters in length. 

Table 4: Average Annual Cost of Engineering Team on 
Conventional Vessel 

Position Quantity Qualification Average 
annual 

cost 

Motor Man 2 Marine 
Engineer 
operator 

license or 
similar 

$70,000 

Third 
Engineer 

2 3 years college $100,000 

Second 
Engineer 

2 4 years college $150,000 

Chief 
Engineer 

2 5 years college $210,000 

Electro 
Technical 

Officer 
(ETO) 

2 3 years college $150,000 

 

In Table 4. we can see that the total average cost of the 
onboard maintenance team, including flights and other travel 
is $680,000 over an anticipated life span of 20 years 
engineering crew costs amount to $13,600,000. This is one of 
the costs that uncrewed operations can mitigate. 

A  summary of the other resources required for a 
conventional maintenance system over a presumed 20 year 
life span. 

Table 5: Example summary of average OPEX for 
conventional maintenance 

Resource Cost Over 20-
year Asset 
Life Span 

Engineering Crew Costs $13,600,000 

Dry Dock / docking $2,000,000 
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Dry Dock specific Maintenance tasks $6,000,000 

OEM Maintenance $10,000,000 

General maintenance spares and 
consumables 

$90,000,000 

Total $121,600,000 

 

Table 5 shows average operational expenditure for 
maintenance of a typical lean crewed 70m-100m length 
overall vessel. 

The yearly quantity of maintenance tasks varies through an 
assets lifetime, as can be seen in Figure 3 below.  

 
Figure 3. Number of maintenance tasks over asset lifespan 

 
Figure 3 shows the average number of jobs for both planned 
and unplanned maintenance tasks. The scale is from first 
launch to end of life for the vessel, the vessel in the example 
is designed to have a 20 year life span. The general trend is a 
high number of jobs that decreases during the infancy of the 
asset, component failure during this period is often referred 
to as infant mortality. The trend flattens out after the first 2 to 
3 years and then rises again as the asset starts to age. Figure 
2 also shows some higher peaks in planned maintenance jobs, 
these are jobs that have been completed during the vessels 5 
yearly dry docking, with this maintenance philosophy the 5 
yearly dry docking is unavoidable down time, so grouping 
maintenance tasks to coincide with this improves efficiency.  
 

With a conventional maintenance strategy as outlined in 
Figure 1 there is not much room to improve the efficiency of 
maintenance, there can be no reduction in spares, no 
extension of maintenance periods and no improvement in 
efficiency of systems for carbon footprint reduction. 
However, having a full complement of engineering staff 
onboard the asset means there is little need for maintenance 
management. 
 
The data for number of planned jobs is taken from 
consolidation of OEM maintenance tasks that are 
recommended in the user manuals across all systems 
integrated to the vessel. 
 
The data on unplanned maintenance tasks is obtained from 
historical entries in planned maintenance systems. Each task 
that is conducted onboard must be recorded in the planned 
maintenance system, whether it was a planned or unplanned 
task. Because of the nature of unplanned tasks the data is an 
average from historical data only. 

7.3. Controls and Management 

A conventional maintenance system is primarily managed by 
the chief engineer (CE) onboard the vessel. The CE keeps 
track of upcoming planned maintenance and ensures the 
correct spares will be available. The CE usually organises 
OEM maintenance also. There will be an office based team 
managing major planned maintenance intervals such as the 5 
yearly dry docking, in cooperation with the onboard CE.  

The controls that are in place to ensure maintenance is done 
correctly are mostly down to the CE onboard either checking 
the work or trusting the engineering team. Because the CE 
cannot check every single detail, they must be confident in 
the team. This is why the engineers onboard must have 
certificates of competency that are revalidated every 5 years, 
to ensure that they are still competent to perform the 
maintenance activities assigned to their role. 

7.4. System Health Indicators and Key Performance 
Indicators 

In a conventional maintenance system, the SHI are primarily 
observations by the crew. The Automation system can alert 
the crew to a parameter reaching a set point, for example if 
temperature increases to 50 degrees an alarm is triggered. The 
setpoints are controlled, especially for the E0 alarms. Once 
an alarm is triggered diagnosis is done by the maintenance 
crew using tools and human senses. Some trending is possible 
within the IAS on modern ships, although the majority of 
vessels operating may not be capable of trending a metric. 

The SHI/KPI are selected following literature review and 
consolidating the metrics that are generally used. The values 
against each of the KPI/SHI are estimated based on 
achievements made by similar PHM implementation in other 
industries against historical data from vessel maintenance. 
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Table 6 below shows example KPI’s / SHI’s for a 
conventional maintenance system. 

 

Table 6: Conventional Maintenance System Metrics 
KPI / SHI Description 

Availability 292 days per year potential 

Human reliance / human 
error 

5 humans obtaining 
information for 
maintenance 

Unplanned maintenance 
tasks 3200 tasks 

Planned maintenance tasks 2500 tasks 

Set up cost $250,000 – one time cost 

Running costs $500,000 – yearly running 
costs 

Maintenance Costs $500, 000 – yearly spares / 
consumables 

 

 

8. CONVENTIONAL CONDITION BASED OR RELIABILITY 
BASED MAINTENANCE SYSTEM 

The next step up from the maintenance system previously 
discussed starts to bring in condition monitoring. According 
to  Lloyds Register only 17% of classed ships operate with an 
approved PMS, and only 12% of these use condition 
monitoring, leaving ~2% of classed ships with a condition 
monitoring system in place (Shorten, 2012). This means that 
as of 2012 only 12% of registered vessels operate using the 
Conventional Philosophy described in section 6.0 of this 
paper, and only 2% are using the system described in this 
section. This data is 14 years old at time of writing, so should 
be considered out of date, however this is the most recent 
formal data on the usage of CMS in the maritime industry. 

Below is a generic example of including condition 
monitoring into the maintenance system of a vessel. 
 

 
Figure 4. Conventional Condition Based Maintenance 

System layout 
 

8.1. Conventional Condition Based Maintenance System 
Description 

Building on the description in section 6.1, there is now the 
addition of a condition monitoring System (CMS) as can be 
seen in Figure 4. The output of the CMS is raw data that must 
be analysed. The “insights” that are generated from the 
analysis can be used to extend maintenance by sending to 
classification society and guiding the maintenance actions of 
the onboard team. 

Correct application of CMS is vital for this maintenance 
system to work. Covering the asset with sensors is expensive 
and ineffective. The typical system of this type on vessels 
uses a vibration probe and measurements are taken at 
intervals. This method allows human error from the start as 
measurements are not always taken consistently with the 
asset in the same state. A RAM approach here delivers 
effective designs for CMS based on data driven reasons. 
Digital twins can be used for design of CMS for efficient 
sensor sets to cover the maximum amount of failure modes. 
Failure modes must be properly understood and categorized 
at this stage. Failure to properly design the CMS at this stage 
of evolution will increase costs and complexity of 
maintaining the asset. Typically, the CMS is applied to large 
rotating machines and vibration is the only sensing type. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 87



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

8 

8.2. Method of performing Maintenance.  

Many CMS systems found in the maritime industry are not 
fixed, instead a portable sensor is used to take vibration 
readings. One of the maintenance crew is tasked with 
carrying out the measurement. This manual measurement 
introduces many human errors and means continuous 
monitoring is not possible. Once measurements are taken 
they are uploaded back to a land based office and then 
transferred to a 3rd party analytics provider. When potential 
faults are identified the company is informed who then 
inform the vessel and action can be taken. Due to the potential 
errors in measurement the results are often in accurate and so 
trust in the system does not develop. Often the system is 
abandoned and only the necessary readings are taken with 
little to no action from results. 

8.3. System Health Indicators 

As well as those mentioned in the previous iteration, this 
strategy can produce vibration health indicators. 

Table 7: Conventional Condition Based Maintenance 
System Metrics 

KPI / SHI Description 

Availability 292 days per year potential 

Human reliance / human 
error 

5 humans obtaining 
information for 
maintenance 

Unplanned maintenance 
tasks 3000 tasks 

Planned maintenance tasks 2800 tasks 

Set up cost $300,000 – one time cost 

Running costs $680,000 – yearly running 
costs 

Maintenance Costs $500, 000 – yearly spares / 
consumables 

9. PROGNOSTIC HEALTH MANAGEMENT MAINTENANCE 
SYSTEM 

In this section we look at the inclusion of prognostics in the 
maintenance strategy. It is important to note that this is where 
significant divergence occurs between a RAM enabled 
maintenance system and one that has not taken into account 
the nature of RAM. 

Figure 5 below shows a general example layout of a 
PHMMS.  

 
Figure 5 - Prognostic Health Management Maintenance 

System layout 
 

9.1. Prognostic Health Management Maintenance 
System Description 

We can see in figure 5 that the asset to be maintained is now 
broken into components and parts. Condition monitoring is 
applied to all components and parts. Covering the asset in 
monitoring sensors produces a lot of data. The monitoring 
system itself becomes complex and expensive. We can also 
see in figure 5 that the onboard maintenance team is relying 
on observations and prognostics only. Relying on total 
coverage for PHM eliminates the need for other maintenance 
strategies such as run to failure, but many failure modes, 
especially in the electronics domain, cannot be detected by 
readily available sensors. 

9.2. Method of Performing Maintenance 

As failure modes are detected action will be taken. In an ideal 
total PHM system all maintenance is done proactively and for 
data driven reasons 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 88



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

9 

9.3. System Health Indicators 

In this strategy the state of each failure mode for each system 
can be presented to the operator. For example, failure mode 
A may have not been detected, whereas failure mode B may 
be 10% of the way to critical failure of the system. As well as 
this the onboard team will use observations for system health 
indication. 

Table 8: PHMMS metrics 
KPI / SHI Description 

Availability 328 days per year potential 

Human reliance / human 
error 

5 humans obtaining 
information for 
maintenance 

Unplanned maintenance 
tasks 2800 tasks 

Planned maintenance tasks 2300 tasks 

Set up cost $1,000,000 – one time cost 

  

Running costs $680,000 – yearly running 
costs 

Maintenance Costs $500, 000 – yearly spares / 
consumables 

 

Table 8 shows the average metrics for this maintenance 
system. For this particular strategy it is important to note the 
complexity of the monitoring system and the cost to set this 
up. At this level the monitoring system its self is likely to 
experience failures just due to the amount of sensors and the 
probability MTTF.  

Due to complexity, cost, and the amount of time it would take 
to set this up. 

10. RAM ENABLED PREDICTIVE MAINTENANCE SYSTEM 

We now look at the culmination or sweet spot system, a RAM 
enabled PHM system. The diagram below shows an example 
general layout of such a system. 

Figure 6. RAM enabled PHM Maintenance System layout 
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10.1. RAM Enabled Maintenance System Description 

This system has many parts as can be seen in figure 6, but 
there is potential for harmony. The main difference between 
this and the previous system is in the design. Here targeting 
is done through RAM. No longer are we blanketing the asset 
in sensors, now we are using advanced design methods to 
create the minimum sensor set to cover the maximum failure 
modes. Digital risk and function twins are used to facilitate 
the sensor suit design and simulate effectiveness. 

RAM shows us that certain components benefit from certain 
maintenance strategies depending on criticality, cost, 
redundancy and other factors. 

10.1.1. Digital Twins 

Following a concise RAM strategy generates details on the 
types of tools that can be used. Digital twins can play an 
important role in PHM design and assist in enabling effective 
PHM. 

Digital twins are an aspect that is gaining momentum in the 
realms of PHM (Kammal Al-Kahwati, 2022) there are many 
advantages to using digital twins as part of machinery health 
management as Al-Kahwati explains There is an important 
point that is hinted at in Al-Kahwati’s paper, that is 
availability. In order for the techniques in PHM to be given 
serious consideration by industry there must be a quantifiable 
gain. Availability of an asset is one such quantifiable metric, 
(the other two main areas being Reliability and 
Maintainability – RAM) Availability of a system is essential 
for a solid business case (Kammal Al-Kahwati, 2022). 
(Mulugeta Weldezgina Asres, 2022) AnoP is becoming 
increasingly linked to a concept known as Industry 4.0 
(Mulugeta Weldezgina Asres, 2022) the ability to detect 
causal based anomalies of complex systems is critical to both 
the systems health and the quality of the system output.  
Using a multivariant causality-based anomaly prediction 
system as part of prognostic health management is about as 
advanced as system health prediction can get. 
 

10.2. Method of Performing Maintenance 

With this system the maintenance is still performed by the 
onboard maintenance team, however the maintenance is 
much more targeted. Spares holding can be reduced and 
potentially only ordered once degradation indicators are 
presented to the team. Systems and components deemed as 
non-critical and low cost are still replaced or repaired only 
when they fail, which in some cases is the most effective 
strategy. For example, light bulbs / tubes or LED’s are run to 
failure items. 

10.3. System Health Indicators 

The health indicators are tuned per system. One system may 
only present human observable indicators, while another may 

present complete failure mode status through additional 
sensor sets. The indicators across the system of systems that 
is a vessel are optimised. 

Table 9:  RAM Enabled Predictive Maintenance System 
Metrics 

KPI / SHI Description 

Availability 347 days per year 
potential 

Human reliance / human 
error 

<4 humans obtaining 
information for 
maintenance 

Unplanned maintenance 
tasks 1000 tasks 

Planned maintenance tasks 3000 tasks 

Set up cost $500,000 – one time 
cost 

Running costs $610,000 – yearly 
running costs 

Maintenance Costs $400, 000 – yearly 
spares / consumables 

 

11. RAM / PHM MAINTENANCE SYSTEM FOR LEAN / 
UNCREWED VESSELS (MASS) 

The last iteration of this maintenance system evolution is to 
tie the lean / uncrewed operational model to the RAM / PHM 
model. 

 
Figure 7. RAM / PHM system for MASS with onboard 

maintenance team removed 
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Figure 7 above shows the removal of the humans. Despite the 
sophisticated technology this removal leaves a gap between 

information and action. Figure 8 shows an example of how 
this gap may be filled by remote operations. 

 
Figure 8. RAM / PHM system for MASS with onboard maintenance team replaced by remote operations 

 

11.1. RAM / PHM Maintenance System For Lean / 
uncrewed Vessels (MASS) system description 

The system its self is the same as the previous system, 
however the decision making has been moved to a shore 
based facility and the maintenance actions are now being 
performed by a specialist team that are only onboard when 
the vessel is in port. Figures 7 and 8 show that a RAM enabled 
PHM system facilitates lean / uncrewed operations while the  

 

 

 

need for lean / uncrewed operations validates the use of a 
RAM enabled PHM maintenance system. 

11.2. Method of Performing Maintenance 

With this system a shore side team are given instructions on 
what maintenance actions need to be done prior to joining the 
vessel. The list is completed and the team leave the vessel 
prior to her leaving port. These actions include those 
described with the previous system in section 10. 
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11.3. System Health Indicators 

The same indicators are generated as in section 10 but 
without the human observations.  Summary can be seen in 
table 10 below. 

 
Table 10 : RAM / PHM Maintenance System for Lean / 

Uncrewed Vessels (MASS)) 
KPI / SHI Description 

Availability 356 days per year 
potential 

Human reliance / human 
error 

Potentially 0 humans 
obtaining information 
for maintenance 

Unplanned maintenance 
tasks Potentially 0 tasks 

Planned maintenance tasks 3000 tasks 

Set up cost $600,000 – one time 
cost 

Running costs $360,000 – yearly 
running costs 

Maintenance Costs $300, 000 – yearly 
spares / consumables 

12. DISCUSSIONS 

A conventional Maintenance system is reliant on the 
maintenance crew onboard the vessel. The cost of the crew is 
high, and including the systems to support the crew onboard 
adds size and cost to the vessel. Diagnostics can be time 
consuming and there is a high amount of reactive 
maintenance. Having such a highly qualified maintenance 
crew onboard the vessel means the maintenance is self-
managed onboard. 

The general coverage of CMS and acceptance of PHM is a 
subject that can be heavily discussed. The latest numbers on 

CMS coverage are 14 years old, publications such as DNV’s 
titled Beyond Condition Monitoring in the Maritime Industry 
is a fantastic snap shot of the state of CMS coverage around 
the same time as the coverage survey was conducted by 
Lloyds (Knut Erik Knutsen, 2014) does this suggest a new 
survey is needed? 

It is also worth discussing the practical and theoretical 
implications to an asset and to an organisation if a RAM 
enabled PHM driven Maintenance system is employed. 
Practically for the asset there will be component changes to 
conform to the RAM strategy, spares holdings will change 
and additional sensor sets will be added. Systems that are not 
normally integrated may need to be integrated under a RAM 
/ PHM maintenance system. 

For the organisation there will need to be adjustments, both 
in the personnel skills and in the connections between 
departments. A new way of handling services will need to be 
developed including department and logistics handling to 
create the enhanced service team required to service an 
uncrewed vessel. 

In theory, the gaps that an organisation faces and the gaps that 
the asset faces can be realised by proper assessment that takes 
into account RAM. This assessment must be carried out with 
appropriate subject matter experts in order to ensure the asset 
and the organisation are ready for the adoption of this new 
maintenance / operations aware design approach. 

Table 11 below aims to summarize the KPI’s and impact on 
them by the difference maintenance strategies. Taking into 
account the details from the processes presented in the 
previous sections. The cost figures associated with these 
KPI’s were averaged from typical industry quotes related to 
maintenance upgrades and new build design. The costs will 
vary dependent on the vessel class, its anticipated modes of 
operation, and the age of the vessel if considering retro fit.  
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Table 11 : KPI / SHI summary 

 
 

Below are 3 consolidated graphs showing the general trend 
across the 

 
Figure 9.  combined cost of each evolution over 1 year 

 
Figure 10. Combined tasks of each evolution over 1 year 

 

 
Figure 11. Potential asset availability using each evolution 

over 1 year 

KPI Metric / Unit

Availability
days availability per 

year
325 325 350 350 358

Human reliance / 
human error

maintenance staff 
needed onboard

5 5 5 4 0

Unplanned 
maintenance tasks

average number of 
tasks per year

3200 3000 2800 1000 0

Planned maintenance 
tasks

average number of 
tasks per year

2500 2800 2300 3000 3000

Set up cost
average dollars one 

time cost
250000 300000 1000000 500000 600000

Running costs
average dollars per 

year
680000 680000 680000 610000 360000

Maintenance Costs
average dollars per 

year
500000 500000 500000 400000 300000
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Figure 9 assists in demonstrating that a ROI is only feasible 
if RAM is included in PHM design. 

Not using RAM could be a contributor to advanced 
monitoring system utilization being abandoned in many cases 
in the maritime industry due to a negative ROI 

 

Figure 11 lets us consider the worth of an average day rate 
for the vessel. For example, take a day rate of $20,000, this 
gives a maximum of $7.3M generation. The income potential 
difference between a conventional maintenance system and a 
RAM enabled PHM maintenance system can be 10% which 
in this example equates to $660,000 per year additional 
potential income. If we take a conservative look at this and 
realise only 5% additional availability, the additional income 
will offset the cost of setting up a RAM enabled PHM system 
in 2 years. In addition to increased income potential there are 
decreases in costs that can be maximised by designing the 
vessel to be lean / uncrewed. There is also the increased 
reliability of the asset and increased availability prediction 
accuracy that can have major impacts on reputation. 

While a RAM enabled PHM system is most effective when 
combined with the lean / uncrewed option it also enables the 
lean / uncrewed option and so these two technologies 
combined with their associated philosophies are bound 
together and are mutually beneficial. 

When looking at the setup costs for PHM the following must 
be considered. 

The PHM approach without using RAM is fraught with 
danger leading to high costs, high amounts of data. The 
extreme nature of this strategy could mean that components 
that were traditionally low cost run to failure items are now 
being monitored by an expensive and complex system. In this 
case maintenance / replacement costs will increase. 

The design approach is another point of discussion, using 
digital twins and how to combine the data driven approach 
with subject matter experts to perfect the design. Extensive 
“tuning” must be done to ensure the best fit for each system 
onboard the vessel, this can be done much faster using digital 
twin technology. 

Below is a generalised list of considerations for 
implementing a PHM system on any system onboard a vessel. 

Table 3: PHM system components 
SYSTEM COMPONANT 

Analysis Software 

Analysis Engineer 

Analysis Training 

Analysis Computer 

Analysis Modelling 

Data Acquisition Sensors 

Data Acquisition Cabling 

Data Acquisition Cabinets 

Data Acquisition DAQ's 

Data Acquisition Servers 

Data Acquisition UPS 

Data Acquisition Transmission 

Data Analytics Purchasing Service 

Data Analytics Developing Service 

Data Analytics Training 

Data Analytics Engineer 

Data Analytics Storage 

 

Table 11 shows an example of the components required to set 
up the proposed system, in addition the company itself must 
be setup to handle prognostics. 

12.1. Implementation Examples 

The proposed move to a RAM enabled PHM maintenance 
system should be employed if shipping owners have a need 
to increase asset availability. An implementation example 
would be a shipping company that is renewing / replacing 
vessels and wants the new vessels to have higher availability, 
reduced running costs, and remote capability, either lean or 
uncrewed. 

Another example would be a vessel owner seeking to build 
more advanced uncrewed vessels and requiring a 
maintenance system that can facilitate the nature of uncrewed 
vessels. 

12.2. Next Steps 

The proposed move to RAM enabled maintenance systems 
can have wide reaching implications for the maritime 
industry, from ship builders and operators, to crew and 
service technicians, and then to assurance and insurance 
providers. 

Ship builders can benefit from RAM enabled designs by 
offering increased reliability, operators share the same 
benefit. The crews serving onboard will be conducting 
maintenance in different ways. Assurance and insurance 
providers can benefit from the machinery health on demand 
that is achievable with the data produced by a RAM enabled 
PHM maintenance System. The future implications of the 
proposed system warrant extensive discussion in order to 
maximise the benefit to all stakeholders. 
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13. CONCLUSIONS 

This paper describes a possible model for an advanced 
maintenance system that enables lean / uncrewed vessel 
operations. It also describes the evolutionary steps that have 
occurred to reach the proposed system. 

Contributions to this paper are: 

1. Articulation of maintenance strategies typically 
found in the maritime industry sector (including 
mapping of typical actives by stakeholders). 

2. A snapshot of a generalised PHM value model 
targeted at the maritime industry sector. 

One conclusion that can be seen is that a pure PHM approach 
is not effective and should be avoided. We can also conclude 
that the maritime industry is due for CMS coverage / 
utilisation / acceptance surveys, including acceptance of 
PHM from both engineering and cultural perspectives. The 
third conclusion from this paper is that there is a sweet spot 
for maintenance that can only be achieved by design, and that 
a concise RAM philosophy is an appropriate tool for assisting 
in the design and enabling a PHM system for vessels.  

We can also conclude that there are existing elements 
onboard the vessel to build upon to facilitate lean / uncrewed 
operations, such as E0 and UMS notations. 

The last conclusion is that a RAM enabled PHM maintenance 
system both supports and is validated by lean / uncrewed 
vessel operations and is a major contributor to asset 
availability increase. 
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15. NOMENCLATURE 

AnoP - Anomaly Prediction 
CBM - Condition Based Maintenance / (Condition Based 
Monitoring) 
CM - Corrective Maintenance 
CMS - Condition Monitoring System 
DNV - Det Norske Veritas – (Risk Management & Quality 
Assurance) 
ETO - Electro Technical Officer 
IAS - Integrated Automation System 
ISM - International Safety Management Code  
IVHM - Integrated Vehicle Health Management 
KPI - Key Performance Indicator 
MAD - Maintenance Aware Design 
MTTR - Mean Time To Repair 
PHM - Prognostic Health Management 
PM - Predictive Maintenance 
PMS - Planned Maintenance System 

PSA - Petroleum Safety Association 
RAM - Reliability, Availability, Maintainability 
RCM - Reliability Centred Maintenance 
ROI - Return On Investment 
SFI - The SFI Code is an international classification standard 
used in shipping. 
SHI – System Health Indicator 
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ABSTRACT

System overheating is a common problem in electric equip-
ment, as degradation of contacts lead to an increase in Ohmic
resistance and increased thermal losses. Temperature mea-
surements are widely employed to monitor a device’s health
status, to estimate its remaining useful life, and to inform
maintenance strategies. An issue that is special to electrical
distribution networks is the varying heating power, which is
in turn due to changes in the current. This results in varying
temperatures, which in addition can often be delayed com-
pared to the currents. Simple threshold-based diagnostics
approaches are therefore not reliable for detecting faults in
contacts. It is common to analyze the thermal behavior of
electric devices using thermal networks, for both design and
diagnostic purposes. Unfortunately, identifying the parame-
ters of thermal networks from measured temperature data is a
challenging problem, mainly due to identifiability issues and
to numerical instabilities in parameter estimation. We pro-
pose an alternative data-driven strategy to compute the state-
of-health of electrical devices which does not resort to ther-
mal networks. Our approach consists in informing physics-
based reduced models of the thermal response with sensor
data. We show that our method is linked to the thermal net-
work approach but avoids the full identification of the system,
leading to better stability as well as less computational effort
in the determination of its parameters. Rigorous testing with
synthetic and experimental data confirms the efficacy of our
methodology.

1. INTRODUCTION

The effective monitoring of the operational health of elec-
tric devices is of utmost importance to guarantee the secure
and steady functioning of industrial facilities (Hoffmann et
al., 2020). Among the vulnerabilities encountered by these

Giacomo Garegnani et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

devices, the issue of overheating due to Joule’s effect stands
out prominently. A significant portion of the heat generated
within these devices comes from electric contacts. The dete-
rioration of contacts results in an increase in their electrical
contact resistance (ECR), which, in turn, triggers pronounced
overheating. Such overheating not only disrupts operational
stability but also exposes the devices to the imminent risk of
irreparable harm.

With the rise in connectivity of industrial devices – the in-
dustrial internet of things – the potential of monitoring al-
gorithms for predictive maintenance has grown considerably.
In the present context, temperature data can be leveraged to
prevent excessive overheating and monitor the health state of
devices. While simple algorithms monitor the temperature
and raise alerts based on critical levels, the dynamic nature of
the thermal response to time-dependent current loads yields
more insight into the root cause of the problem.

The method we propose in this report is computationally light
and memory-efficient (in contrast to numerical solvers of par-
tial differential equations), and is robust when confronted with
real data (unlike thermal networks). Despite its simplicity,
we believe this method can be effectively used for making
thermal predictions and detect anomalous behavior for a wide
range of electric devices.

Thermal networks can be cumbersome to set up and train
(O. M. Brastein et al., 2019; O. Brastein et al., 2020; Boodi
et al., 2022), but they are nevertheless a flexible tool to model
the temperature response of the device. Conversely, the me-
thod which we propose here does not allow to predict tem-
peratures away from the sensor and requires some dedicated
training of the response of each device using a specific cur-
rent profile. Memory-wise, the method also requires some
limited storage of past current values. Finding a mathemati-
cal equivalence of thermal networks and the proposed method
may therefore lead to the development of a method that com-
bines the two approaches and retains the advantages of both.

1
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The remainder of this article is as follows. In Section 2 we in-
troduce the thermal kernel method, focusing on how to cope
with noise in the data, and on how to infer variations in the
ECR values. The equivalence of the kernel method and the
thermal network approach is then discussed in Section 3. In
Section 4 we test the method against synthetic data, checking
the accuracy of the method as well as its robustness against
model misspecification and noise in temperature data. Fi-
nally, in Section 5 we draw our conclusions and propose an
outlook for future work.

2. THE THERMAL KERNEL METHOD

We consider an electric device which is equipped for simplic-
ity with a single temperature sensor (see Section 2.4 below for
the case of multiple sensors). We model the over-temperature
T at the sensor location for a new and healthy device as

T (t) =

∫ t

0

k0(t− s) I2(s) ds, (1)

where k0 is an unknown kernel function, and where I denotes
the electric current, which we assume to satisfy I(t) = 0 for
all t ≤ 0. Note that k0 can be seen as a Green function of
the thermal problem, and I2 is proportional to the thermal in-
put due to Joule’s law of heating. The kernel k0 captures all
linear thermal influences on the temperature measured by the
sensor, and in particular the heat generated both by bulk con-
ductors (e.g., busbars in electric devices) and the heat gener-
ated at imperfect contacts, which are both proportional to I2.
The existence of such a kernel function is guaranteed if we
assume that the system is linear both with respect to the heat
flow and the dependency on I2.

Let N be the number of electrical contacts in the device, and
denote by ∆Ri the variation (typically an increase) of the
ECR in the i-th contact for i = 1, . . . , N . Then, we assume
that there exist kernels ki for all i = 0, 1, . . . , N such that the
temperature at the sensor location reads

T (t) =

∫ t

0

k0(t− s)I2(s) ds

+
N∑

i=1

∆Ri

∫ t

0

ki(t− s)I2(s) ds.
(2)

With the formula in Eq. (2), we assume that the thermal re-
sponse at the sensor location of the device after contact degra-
dation is encoded by the kernel

k∆(t) = k0(t) +
N∑

i=1

∆Riki(t), (3)

where the kernels ki(t) model the thermal response due to
a change of resistance at contact i. The kernel functions ki
for i = 0, 1, . . . , N are unknown and depend on the device

geometry, on how heat is exchanged with the surrounding en-
vironment, and on the thermal interconnections of the device
components.

2.1. Determination of the kernel functions

In order to determine the kernel functions we use the response
of the system to a step excitation, i.e., by imposing a constant
current I(t) = I0 for all t ≥ 0. First, we fix ∆Ri = 0 for all
i and derive both sides of Eq. (1) with respect to t to obtain

k0(t) =
Ṫ (t)

I20
. (4)

Note that the temperature derivative Ṫ may not be available
from sensor data, but can easily be reconstructed in practice
by means of a finite difference formula from the measured
temperature T . Note that numerical differentiation may am-
plify noise on the signal. We tackle this issue in Section 2.2
below. Given k0 we can then determine the remaining N ker-
nels by increasing the ECRs by a known quantity one by one.
Indeed, if it holds I(t) = I0 and ∆Rj = 0 for all j ̸= i for a
fixed index i, we have from Eq. (2)

Ṫ (t) = (k0(t) + ∆Riki(t)) I
2
0 .

If the ECR increase ∆Ri is known and we measure the cor-
responding temperature T , then the kernel ki is given by

ki(t) =
1

I20∆Ri

(
Ṫ (t)− I20k0(t)

)
. (5)

It might be unpractical or impossible in some scenarios to
increase the ECR by a known quantity. Determining kernel
functions may then involve data generation through a high
fidelity simulation.

2.2. Noisy or short temperature data: Exponential fit

Let us assume that the temperature T is observed for a finite
time interval 0 ≤ t ≤ tend and that observations are subject
to measurement noise. In this case, the kernel k0 given by
Eq. (4) (and similarly the kernels ki, i = 1, . . . , N ) should
be post-processed to obtain a smooth kernel that can also be
evaluated for times t > tend. For this purpose, we can in-
troduce the natural assumption that k0 is given by an infinite
sum of negative exponential functions, as in

k0(t) =
∞∑

j=1

aj exp(−λjt),

where aj ∈ R, λj ∈ R+ for all j = 1, 2, . . .. We then truncate
the sum to an integer number Nexp of exponential functions
and write

k̃0(t) =

Nexp∑

j=1

aj exp(−λjt).

2
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A suitable value Nexp can be chosen with a model selection
algorithm. Finally, we determine aj and λj by maximizing
the likelihood of the noisy kernel k0 given by Eq. (4) applied
with the data sequence T . This ansatz can be motivated by the
equivalence between thermal networks and kernels (or more
in general by any finite-dimensional approximation of the full
heat problem). More details can be found in Section 3.

The approach of fitting exponential functions to k0 could be
problematic in case temperature data are corrupted by noise.
Indeed, noise is amplified when computing the time deriva-
tive Ṫ of the temperature. In this case, it is more robust to fit
directly the temperature data T , which under the assumption
above is approximated by

T̃ (t) = I20

Nexp∑

j=1

aj
λj

(1− exp(−λjt)) .

We can therefore fit the curve above directly to the tempera-
ture data and determine the values of aj and λj which fully
define the kernel function k0.

We can repeat the same reasoning for the kernels {ki}Ni=1

modeling the thermal response at the sensor location due to
(additional) heat generated at the contacts. We make the guess
that for all i = 1, . . . , N it holds

ki(t) =

Nexp∑

j=1

aij exp(−λijt).

Manipulating Eq. (5) with similar calculations as above we
obtain

T (t)− I20
∫ t

0

k0(t− s) ds

= I20∆Ri

Nexp∑

j=1

aij
λij

(1− exp(−λijt)) .

The left-hand side of this equation is known. Fitting the co-
efficients aij and λij to data then defines the kernel ki. Note
that this approach assumes that the coefficients λ are indepen-
dent of each other for k0 and each ki. Since the thermal time
scales should be the same for the nominal value of the re-
sistance and increased resistances by linearity, the values λij
should be shared by the fit to k0. A more robust approach,
which we do not investigate here, would therefore consist in
fitting the kernel functions simultaneously.

2.3. Inference of the resistance variations

In this section, we describe how knowledge of the kernel
functions can be combined with temperature data to infer on-
line a variation of the ECR of the N contacts, and conse-
quently deduce their health status. Assume that all the kernels
ki have been determined and denote for i = 0, . . . , N by Ki

the integrated quantity

Ki(t) =

∫ t

0

ki(t− s)I2(s) ds,

where I is the measured current. Then, we can rewrite Eq. (2)
as

T (t) = K0(t) +
N∑

i=1

∆RiKi(t). (6)

Assume that the current and the temperature at the sensor
have been measured on a set of times t = (t0, t1, . . . , tM ),
where tj = ts · j and ts is the sampling time. We can then
assemble M -dimensional vectors

T = T (t), Ki = Ki(t),

where T (t) = (T (t0), T (t1), . . . , T (tM ))⊤. Using the vec-
torial notation, the discrete version of Eq. (6) is

T = K0 +

N∑

i=1

∆RiKi.

An estimator ∆̂R ∈ RN of the vector of ECRs can be defined
as the least square estimator

∆̂R = argmin
∆R
∥K∆R− (T−K0)∥ , (7)

where K is the M × N matrix with columns Ki for i =
1, . . . , N . The minimization problem is overdetermined when-
ever M ≥ N , i.e., the number of time instants for the mea-
surements exceeds the number of contacts in the system, which
is most likely verified. Hence, the estimator in Eq. (7) should
be determined as the solution of the N ×N linear system

K⊤K∆̂R = K⊤(T−K0).

Note that in real applications we expect the values of ∆Ri to
increase rather than decrease due to contact degradation. A
physically meaningful solution could therefore be enforced
by using the constrained minimizer

∆̂R = arg min
∆R≥0

∥K∆R− (T−K0)∥ ,

where the symbol ≥ is meant component-wise.

2.4. Multiple temperature sensors

We now consider a device which is equipped with multiple
temperature sensors, and explain how more information can
be leveraged to obtain a possibly more precise estimation of
variations in the ECRs.

Assume that we have J temperature sensors. The temperature

3
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of each sensor j = 1, . . . , J can be expressed as

T j(t) =

∫ t

0

kj0(t− s)I2(s) ds

+
N∑

i=1

∆Ri

∫ t

0

kji (t− s)I2(s) ds.

Note that the resistance increase ∆Ri is common for all sen-
sors, as contacts are the same. Conversely, the temperature re-
sponse is different across sensors, hence typically kj1i ̸= kj2i
for j1 ̸= j2. Kernels kji can be determined as outlined in Sec-
tion 2.1 for each i = 0, . . . , N and j = 1, . . . , J . Similarly
to Section 2.3, we then write Tj = T j(t) and Kj

i = Kj
i (t)

where

Kj
i (t) =

∫ t

0

kji (t− s)I2(s) ds.

Calling Kj theN ×M matrix whose columns are the vectors
Kj

i for i = 1, . . . , N , we have J linear equations for ∆R

Kj∆R = Tj −Kj
0, j = 1, . . . , J.

In order to compute the least square solution ∆̂Rwe assemble
a NJ ×M matrix K and NJ vectors T and K0 by stacking
vertically the J equations as

K =




K1

K2

...
KJ


 , T =




T1

T2

...
TJ


 , K0 =




K1
0

K2
0

...
KJ

0


 .

The least square estimate ∆̂R is then the solution of the N ×
N linear system

K⊤K∆̂R = K⊤ (T−K0) ,

and similarly to the single-sensor case a non-negative con-
straint can be imposed to the least-square solution. We note
that in this case we expect an improvement by enforcing the
time scale parameters to be the same across resistances when
performing an exponential fit as in Section 2.2.

3. EQUIVALENCE WITH THERMAL NETWORKS

Thermal networks have been used to model the temperature
of electric devices, and to infer health status given temper-
ature measurements (Stosur et al., 2016). In this section,
we describe how our approach simplifies thermal networks,
whose parameters are notoriously difficult to estimate from
data (O. M. Brastein et al., 2019; O. Brastein et al., 2020;
Boodi et al., 2022). For a general discussion on identifiability
of linear models, we refer the reader to (Raue et al., 2014).

We call thermal network a model which splits the device into
an integer number Nc of compartments, whose temperature
is assumed to be sufficiently homogeneous to be described

by a single over-temperature Ti, for i = 1, . . . , Nc. We as-
sume that the i-th compartment has a heat capacity Ci for
i = 1, . . . , Nc. The compartments are thermally intercon-
nected so that the heat flowing between the compartments
indexed by i and j is proportional to their temperature differ-
ence with a constant hij . If two compartments are not directly
connected thermally, we trivially set hij = 0. Moreover, we
assume that the heat flowing towards the environment is pro-
portional to the over-temperature Ti with a constant αi. Fi-
nally, we assume that all elements in the network represent
parts of the device which are subject to an electrical current
I = I(t), so that the thermal input to the i-th element is given
by ui(t) = RiI

2(t) by Ohmic heating. Under these assump-
tions, the over-temperature Ti of the i-th compartment of the
network, for i = 1, . . . , Nc, satisfies the ordinary differential
equation (ODE)

CiṪi(t) =

Nc∑

j=1,j ̸=i

hij(Tj − Ti)− αiTi + ui(t). (8)

In this section, we show how the temperature evolution of
each compartment in a thermal network satisfies Eq. (1), i.e.,
there exist kernels ki0 such that

Ti(t) =

∫ t

0

ki0(t− s)I2(s) ds, (9)

for each i = 1, . . . , Nc, and that the kernel function can be
written as a sum of exponential functions as in Section 2.2.
Hence, a system whose thermal response can be described ac-
curately by a thermal network can also be described by ther-
mal kernels, with the advantage that in the kernel approach
less parameters need to be determined from temperature mea-
surements.

To start the derivation, we notice that the ODE system Eq. (8)
can be written in matrix form as

CṪ(t) = HT(t) +RI2(t), (10)

where T is a vector with the temperatures of all compart-
ments, where R is a Nc-dimensional vector containing the
values of the resistances, and where C and H are appropriate
matrices containing the values of the coefficients h, α and C.
Let us rewrite Eq. (10) as the generic linear system

Ṫ(t) = −AT(t) + F(t), (11)

where A = −C−1H and F(t) = C−1RI2(t). Let T(0) =
T0 be a known initial condition. It is simple to verify by
differentiation that the solution of Eq. (11) is given by

T(t) = e−AtT0 +

∫ t

0

e−A(t−s)F(s) ds, (12)

where we denote by e−At the matrix exponential to distin-

4
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guish it from the scalar exponential (e.g., et).

The matrix A is not symmetric but it is diagonalizable with
real eigenpairs.1 Recall that for any diagonalizable matrix
A = VΛV−1, where V is the matrix with the eigenvectors
{vj}Nc

j=1 of A as columns, and Λ = diag(λ1, . . . , λNc) is the
matrix of the eigenvalues, it holds

e−At = Ve−ΛtV−1 = Vdiag
(
e−λ1t, . . . , e−λNc t

)
V−1.

This implies that if (λ, v) is an eigenpair of A, then (e−λt, v)
is an eigenpair of e−At. Let w be an arbitrary vector in RNc

and let {cj = (V−1w)j}Nc
j=1 be the components2 of w in the

basis formed by the eigenvectors of A, i.e., the scalars such
that

w =

Nc∑

j=1

cjvj .

Hence, applying e−At to w gives

e−Atw =

Nc∑

j=1

cje
−Atvj =

Nc∑

j=1

cje
−λjtvj .

Assume for simplicity and without loss of generality that T0 =
0. Replacing the decomposition above into Eq. (12) with
w = C−1RI2(s) shows that

T(t) =

∫ t

0

Nc∑

j=1

cjvje
−λj(t−s)I2(s) ds,

where cj = (V−1C−1R)j . Hence, the temperature of the
i-th compartment satisfies

Ti(t) =

∫ t

0

Nc∑

j=1

αije
−λj(t−s)I2(s) ds,

where αij = Vijcj . This shows that the temperature of the
i-th compartment can be indeed written as in Eq. (9) for

ki0(t) =

Nc∑

j=1

αije
−λjt,

1Since A = −C−1H, with H symmetric and C diagonal and positive
definite, we can write

A = C−1/2ÃC1/2,

where Ã = −C−1/2HC−1/2. The matrix Ã is real and symmetric, and
hence can be diagonalized with real eigenpairs, which in turn implies that
A is diagonalizable with real eigenpairs.

2Since the matrix A is in general not symmetric, the vectors V do not form
a orthonormal basis of RNc . If A is symmetric, it holds V−1 = V⊤ and

cj = (V−1w)j =

Nc∑

i=1

(V⊤)jiwi =

Nc∑

i=1

Vijwi = ⟨vj ,w⟩,

where ⟨·, ·⟩ is the Euclidean scalar product, which gives the more recogniz-
able decomposition on a basis of orthonormal eigenvectors.

which is a sum of exponential functions as the approxima-
tions we employ in Section 2.2. Consider now that for each
k = 1, . . . , Nc the resistance of the k-th compartment in-
creases by a quantity ∆Rk. We can write the overall kernel
defining the temperature of the i-th compartment as

ki(t) =

Nc∑

j,k=1

Vij

(
V−1C−1

)
jk
Rke

−λjt

+

Nc∑

j,k=1

Vij

(
V−1C−1

)
jk

∆Rke
−λjt.

We see that ki has the form of the kernel of Eq. (3) with

kik(t) :=

Nc∑

j=1

Vij

(
V−1

)
jk
e−λjt,

which is the kernel associated to an increase in the k-th re-
sistance as seen by the i-th element of the thermal network.
Note that since the resistances do not appear in the expression
of the system matrix A = −C−1H, the time scales λj in the
kernels kik are the same as the ones of the original kernel.

3.1. Generalization: kernel structure of thermal problems

The considerations above for thermal networks and the kernel
structure of their solution applies more widely. In a linear
approximation, heat transfer can be described by

CṪ = LT+ u, (13)

where L is an operator describing both heat conduction H
and coupling to the ambient α, and u is the heat injected in
the system. In the specific case of a thermal network, the tem-
peratures are vectors and the operators (finite dimensional)
matrices. However, this equation may also describe a temper-
ature field with a partial differential operator describing heat
conduction on a physical domain Ω. For x ∈ Ω, the local
operator C = C(x) is the specific heat capacity and the dif-
ferential operator L(x) = −∇k(x) · ∇ − k(x)∆ describes
heat conduction with a space-dependent heat conductivity k
defined on Ω.

Note that Eq. (13) is linear in temperature, the operator L
is self adjoint due to the symmetric nature of heat diffusion,
and the field C is a (local) positive scalar. Normalizing the
temperature T̃ = C1/2T and multiplying Eq. (13) by C−1/2,
we see that the operator occurring on the right hand side of
the equation for T̃ (C−1/2LC−1/2) is also self-adjoint. The
spectral theorem then guarantees that this operator has real
eigenvalues and orthogonal eigenfunctions that span the full
space. Formally, the solution can be expressed in terms of the
exponential operator eLt as

T̃ =

∫ t

0

eL(t−s)ũ(s) ds, (14)

5
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where ũ = C−1/2u. For practical calculations, one has to
expand in the eigenvectors as shown in the explicit example
above. The general solution (14) has the same structure as
the thermal kernels (1), which is hence a generic form for this
type of linear heat diffusion problems. Therefore the expo-
nential form of the kernel function can be derived indepen-
dent of the assumption of an underlying thermal network as
an approximation taking the dominant eigenmodes of L into
account.

4. NUMERICAL EXPERIMENTS

In this section, we present a series of numerical experiments
demonstrating the usefulness, accuracy, and robustness of our
approach.

4.1. Scenario 1: Simple network

The first test setup we employ in experiments is represented
schematically in Fig. 1(a). We consider an electrical device,
e.g., a power protection device such as a breaker or a switch,
which protects an electrical installation. The device connects
the installation to a power source (e.g., the grid) with two
electric contacts between busbars, one per side of the device.
We assume that the device is equipped with a temperature
sensor. We consider the problem of monitoring the ECR of
the two contacts using the temperature sensor of the device.

In order to simulate this scenario, we use a three-compartments
thermal network as shown in Fig. 1(b). In the network, the
center element represents the device, and the lateral elements
the two contacts. We suppose that the three compartments
are exposed to the same ambient temperature Tamb, which
we assume without loss of generality to be equal to zero.

Cont. 1 Device Cont. 2

Po
w

er
so

ur
ce

In
st

al
la

tio
n

Temperature sensor

I(t) I(t)

(a)

C1, T1 C2, T2 C3, T3

Tamb Tamb Tamb

R1I
2
1 R2I

2
2 R3I

2
3

α1 α2 α3

h12 h23

(b)

Figure 1. Setup for numerical experiments. (a) Schematic
representation of a power protection device connecting an in-
stallation to a power source with two electric contacts. (b)
Thermal network used to simulate the scenario.

The values of the coefficients Ci, αi, Ri for i = 1, . . . , 3, as
well as of the hij for (i, j) ∈ {(1, 2), (2, 3)}, given in Table
1, are fixed to values which are realistic for a typical electric
device. We determine the base kernel k0 associated with the
temperature sensor placed on the device fixing I = 1kA and
simulating the network temperatures for 0 ≤ t ≤ 5 h. Simu-
lated data are obtained with an implicit numerical discretiza-
tion of Eq. (10) on a time grid with time step equal to 1min.
We then extract the device temperature T2 and compute k0
using Eq. (4), where Ṫ2 is computed by finite differences. We
determine the kernels k1 and k3 associated to an increase of
R1 and R3 following the procedure outlined in Section 2.1
with ∆Ri = Ri, i.e., we double the ECR value to determine
the kernel associated to a fault in the i-th contact.

Table 1. Coefficients of the thermal network in Fig. 1.

α [WK−1] R [µΩ] C [JK−1] h [WK−1]

1 1.0 100 3500 –
2 2.0 50 3500 –
3 3.0 100 3500 –
12 – – – 0.75
23 – – – 0.55

We measure the error on the i-th resistance as

erri =

∣∣∣∆̂Ri −∆Ri

∣∣∣
Ri +∆Ri

, (15)

where ∆̂Ri is the inferred increase in resistance and Ri is
the nominal value of the i-th resistance (i.e., before increase).
Note that the numerator in the right-hand side of Eq. (15) is
equal to |Ri + ∆̂Ri − (Ri +∆Ri)|, i.e., the absolute differ-
ence between the increased resistance and its inferred value.
Hence, the error metric above is a relative error between the
inferred and the true values of the increased resistance, rather
than the resistance increase.

We generate 200 values of resistance increases (∆R1,∆R3)
randomly as ∆Ri ∼ U(0, Ri), independently for i = 1, 3.
This means that the ECR degrades in all experiments, with
values up to twice the original. For each pair of increases in
the resistances, we generate 12 hours of temperature T2 with
sampling time 1min, always with the same current I defined
by

I(t) =





1 kA, t ≤ 1 h,

0 kA, 2 h < t ≤ 5 h,

0.7 kA, 5 h < t ≤ 9 h,

0.3 kA, t > 9 h.

(16)

The error in the estimation procedure, computed using Eq.
(15), is summarized with boxplots in Fig. 2(a). We see that
both resistances are estimated very accurately over the whole
dataset of 200 experiments. Specifically, the error on R1

never exceeds 0.1%, and the error on R3 never exceeds 1%.
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We repeat the same experiment but increase either R1 or R3

while keeping the other resistance to its nominal value. We
repeat the inference 200 times per resistance with random in-
crements as above. This experiment is relevant for applica-
tions, as the ECR of one contact only could undergo a rapid
degradation, while all others could stay constant. Results,
given in Figs. 2(b) and 2(c), demonstrates that also in this
case the inference procedure is very accurate in determining
the increased resistance values.

(a) (b) (c)

Figure 2. Percentage relative error in inference of two in-
creased resistances given one temperature sensor. (a) Simul-
taneous increase of R1 and R3. (b) Only R1 is increased. (c)
Only R3 is increased. Model configurations given in Fig. 1,
test setup given in Section 4.1. Box-plot whiskers indicate
1.5 times the interquartile range, dots indicate outliers.

4.2. Scenario 2: The impact of adding a sensor

We consider a more complex configuration consisting of a
thermal network with 6 compartments connected on a line,
i.e., such that hij = 0 if j /∈ {i − 1, i + 1} for i, j =
1, . . . , 6. We assume that all parameters appearing in Eq. (8)
are known, including nominal resistance values. Nominal pa-
rameter values are of the same magnitude as those of Table 1.
Similarly to Section 4.1, we then increase randomly the resis-
tances up to double their value and infer the increase increase
with the procedure described in Section 2.3. The current used
to excite the network with increased resistances is given in
Eq. (16). We compare results obtained observing one tem-
perature of the network only, T2, and with two temperatures,
T2 and T6. Note that when we observe one temperature we
have one kernel k0 and 6 additional kernels for the increase
of Ri, i = 1, . . . , 6. When we observe two temperatures,
we have one base kernel per sensor, and 6 additional kernels
corresponding to an increase in resistance per sensor, for a to-
tal of 14 kernel functions. We recall that the method to infer
the resistance increase with multiple sensors is described in
Section 2.4.

Results, given in Fig. 3, demonstrate that errors can be as
high as 60% on the fifth and sixth resistance (using the metric
of Eq. (15)) when only the temperature R2 is measured. This
is because the thermal impact of the sixth compartment on

the second is weak, and diluted by heat diffusion through the
network. If we observe both T2 and T6, the error on all resis-
tances is extremely low in most cases (below 0.01%), except
of some outliers for which the error is above 50% error on
R6. This experiment nevertheless shows the benefit of equip-
ping an electric device with an additional temperature sensor,
especially if the device consists of many components that are
thermally interconnected.

4.3. Scenario 3: Model misspecification

The method we present in this report to determine contact re-
sistances relies on accurate determination of the kernel func-
tions k0 and ki for i = 1, . . . , N . In a realistic setting, the
kernel k0 can be simply determined by applying a step current
and measuring the temperature increase, or with any other
system identification approach using data measured on the
real device. For the kernels ki, instead, we would need to in-
crease artificially each resistance by a known quantity before
applying a step current. It could be difficult, or unfeasible,
to obtain such a controlled increase in practice, especially in
a device-specific fashion. We could instead determine ker-
nels that fit an entire fleet of devices, modulo the variability
due to different installations. Specifically, we could use an
experimental or simulated setup to determine universal resis-
tance kernels k̃i that are common to a whole fleet of devices,
maintaining a base kernel k0 that is specific to an individual
installed device. The inferred resistances are then obtained as
the solution to the linear system

K̃⊤K̃∆̂R = K̃⊤(T−K0), (17)

where K̃ is built as in Section 2.3 using the fixed, univer-
sal kernels k̃i. The major concern with this approach is the
misspecification between the real kernel function k0 and the
universal ones ki, especially in terms of incompatible time
scales.

Summarizing, the procedure that we propose to deal with in-
stallation specificity would consist of the following steps:

• Determine a universal base kernel k̃0 in an experimental
or simulated setup;

• Use k̃0 to determine universal kernels k̃i for each resis-
tance that needs to be monitored;

• For each installation of the device, redetermine device-
specific base kernel k0 applying constant current load;

• When needed, infer an increase in resistances using Eq.
(17).

We test the procedure above using the three-compartment net-
work of Fig. 1, with coefficients given in Table 1. In order to
simulate installation-specific conditions, we modify multiple
times the value of the coefficients αi as α̃i ∼ logN (αi, σ),
for i = 1, . . . , 3, where a large value of σ mimics devices
that are very sensitive to different installations. We consider
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(a) Compartment 2 sensed (b) Compartments 2 and 5 sensed

Figure 3. Inference of five resistances varied simultaneously in a six-compartment network. (a) One temperature sensor. (b)
Two temperature sensors. Test setup given in Section 4.2. Box-plot whiskers indicate 1.5 times the interquartile range, and dots
indicate outliers.

σ = 0.4, 0.2, 0.1, 0.05, and for each of these values we gen-
erate 200 values at random of the coefficients α to simulate
200 installations of the same device. Then, we infer the resis-
tances R1 and R3 using Eq. (17). Note that we do not apply a
resistance increase in this case, and just attempt to infer how
impactful is a change of the nominal conditions onto the ker-
nels.

Results, given in Fig. 4, demonstrate that re-calibrating only
the base kernel k0 for each installation is sufficient for keep-
ing good accuracy in the inference of the resistances. More-
over, we see that a good inference result (below 1% except
some outliers) can be achieved even for devices that are sub-
ject to high variability when installed (see the spread in tem-
perature development in case σ = 0.4). We note that lower
installation specificity results in smaller variability in the in-
ferred resistances (see the width of the box-plots in case σ =
0.05).

4.4. Scenario 4: Noisy data

In all experiments above, we employed noiseless data for de-
termining the kernel functions and for estimating the resis-
tances in the model. In this section, we assess the impact of
these two sources of noise on the estimation variability. We
consider the simple three-element network of Fig. 1 with pa-
rameters as in the experiments above. We compute the base
kernel k0 and the kernels ki associated to resistances i = 1, 3
by perturbing the temperature response to a step current with
a Gaussian source of noise ηk ∼ N (0, σ2

k), where σk > 0.
Then, we excite the system with the current profile of Eq. (16)
and perturb the temperature response with a Gaussian source
of noise ηd ∼ N (0, σ2

d), where σd > 0. We then infer the
resistance increase without changing its value in the model,
i.e., data is generated by imposing ∆Ri = 0. We repeat
the experiment for noise scales σd and σk ranging between
10−4 and 10−1, and for each combination of σk and σd we
repeat the experiment M = 50 times. At each j-th repeti-

tion, we record the estimated resistance variations ∆̂R
(j)

1 and

∆̂R
(j)

3 . We measure variability in the estimation as the sum
of the population standard deviations of the two estimated re-
sistance increases, i.e.,

variability = std

({
∆̂R

(j)

1

}M

j=1

)
+std

({
∆̂R

(j)

3

}M

j=1

)
,

where std(·) denotes population standard deviation. We re-
peat the estimation twice: once with raw kernel functions
computed with Eqs. (4) and (5), and once by fitting expo-
nential functions as explained in Section 4.4

Results, given in Fig. 5, demonstrate that the method we de-
velop here is robust with respect to random sources of noise.
As expected, the variability is a growing function of both σk
and σd. We remark that fitting exponential functions to the
kernels has a beneficial effect on the inference accuracy. In-
deed, it can be noticed in Fig. 5 that the variability is slightly
lower when thermal kernels are fitted with exponential func-
tions.

5. CONCLUSION

We introduced a novel method based on thermal kernels to
monitor the condition of an electric device given temperature
measurements. This method allows the calculation of tem-
peratures at specific locations for general linear heat diffusion
problems including thermal networks, for which we demon-
strated an equivalence analytically.

Thermal kernels are simple to fit to data due to their non-
parametric nature, which prevents issues of poor identifiabil-
ity. Indeed, the parameters of thermal networks as simple as
the one of Fig. 1 can be cumbersome or even impossible to
determine if only one of the compartments equips a tempera-
ture sensor, unless good priors on the parameters are available
due to physical considerations or from the results of high-
fidelity and high-cost simulations. This issue is completely
circumvented by thermal networks, which absorb the effects
of all the parameters of an equivalent network approach into

8
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Figure 4. Results for four scales of model misspecification σ. Experiment setup in Section 4.3.

(a) Fitted kernels (b) Raw kernels

Figure 5. Estimation variability as a function of noise in the
determination of the kernel functions (σk, horizontal axis),
and in the data used for estimating the resistance values (σd,
vertical axis). The contour values are in µΩ (a): Exponential
fit for the kernel functions. (b): Raw kernel functions. Exper-
iment setup in Section 4.4.

a simple data-driven linear transfer function.

We believe that thermal kernels should be preferred to ther-
mal networks to monitor the linear heat sources (e.g., electri-
cal resistances) of devices that are not equipped with a multi-
tude of sensors, which would be required to fit the parameters
of the network.

We suggest that future investigation may exploit the equiva-
lence of thermal kernels and networks, e.g., to study whether
knowing the former can be beneficial to improve the identifi-
ability of the latter.

REFERENCES

Boodi, A., Beddiar, K., Amirat, Y., & Benbouzid, M. (2022).
Building thermal-network models: a comparative anal-
ysis, recommendations, and perspectives. Energies,
15(4), 1328.

Brastein, O., Ghaderi, A., Pfeiffer, C., & Skeie, N.-O. (2020).
Analysing uncertainty in parameter estimation and pre-
diction for grey-box building thermal behaviour mod-

els. Energy and Buildings, 224, 110236.
Brastein, O. M., Lie, B., Sharma, R., & Skeie, N.-O. (2019).

Parameter estimation for externally simulated thermal
network models. Energy and Buildings, 191, 200–210.

Hoffmann, M. W., Wildermuth, S., Gitzel, R., Boyaci, A.,
Gebhardt, J., Kaul, H., . . . Tornede, T. (2020). Inte-
gration of novel sensors and machine learning for pre-
dictive maintenance in medium voltage switchgear to
enable the energy and mobility revolutions. Sensors,
20(7), 2099.

Raue, A., Karlsson, J., Saccomani, M. P., Jirstrand, M., &
Timmer, J. (2014). Comparison of approaches for pa-
rameter identifiability analysis of biological systems.
Bioinformatics, 30(10), 1440–1448.

Stosur, M., Szewczyk, M., Sowa, K., Dawidowski, P., & Bal-
cerek, P. (2016). Thermal behaviour analyses of gas-
insulated switchgear compartment using thermal net-
work method. IET Generation, Transmission & Distri-
bution, 10(12), 2833–2841.

BIOGRAPHIES

Giacomo Garegnani is a scientist at ABB
corporate research. He obtained a PhD in
Mathematics from EPFL in 2021, with a
thesis on inverse problems involving partial
and stochastic differential equations, and on
probabilistic numerical methods. His re-
search interests include uncertainty quantifi-
cation of numerical solvers, model identifi-

ability, and statistical inference for condition monitoring.

Kai Hencken is a corporate research fellow
at ABB corporate research. He obtained a
PhD in Theoretical Physics from the Uni-
versity of Basel in 1994. He was a post-doc
at the University of Washington from 1995
to 1997 and at the University of Basel from
1997 to 2005, where he received his Habil-
itation in 2000 and is a lecturer since. In

2005 he joined the theoretical Physics group at ABB corpo-

9

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 105



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

rate research. His research interests include the combination
of physical modeling with statistical methods to solve prob-
lems related to industrial devices, as well as developing diag-
nostics and prognostics approaches.

Frank Kassubek obtained a PhD in Physics
from the University of Freiburg in 2000
(“Electrical and Mechanical Properties of
Metallic Nanowires”). At ABB corporate
research, he works on a wide range of top-
ics including modeling of electrical systems
and sensors, plasma and arc physics, and
PHM topics.

10

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 106



 

1 

A Practical Example of Applying Machine Learning to a Real 
Turbofan Engine Issue: NEOP 

Zdenek Hrncir1 and Chris Hickenbottom2 

1Honeywell International, Brno, Czech Republic 
zdenek.hrncir@honeywell.com 

2Honeywell International, Phoenix, AZ, USA 
chris.hickenbottom@honeywell.com 

 
ABSTRACT 

There are high expectations for the use of Machine Learning 
algorithms in Engine Health Management, but the practical 
application for use with turbofan engines is often hindered by 
small sample sizes and noisy data.  This paper discusses a 
case in which Machine Learning techniques were combined 
with domain expertise to develop a classifier called Non-seal 
Erratic Oil Pressure (NEOP).  This classifier is used as an 
engineering tool to support manual review of engines flagged 
with Honeywell’s OPX (Oil Pressure Transducer) algorithm.  
The purpose of the classifier is to assist a human in analyzing 
engine trend data from the HTF7000 turbofan engine, when 
the OPX algorithm identifies an engine with erratic oil 
pressure.  The NEOP history provides an additional data 
source when deciding if aft sump maintenance is needed to 
replace a worn carbon seal, or if the erratic signal is 
associated with some other cause.  The OPX algorithm has 
enabled the prevention and avoidance of costly unscheduled 
engine failures resulting in millions of dollars in documented 
savings, and the NEOP algorithm helps to ensure that the 
conclusions from the OPX process continue to result in the 
appropriate engines being identified for maintenance 
inspection and corrective action. 

1. INTRODUCTION 

Data science and machine learning techniques hold great 
promise in the realm of proactive engine health monitoring, 
but currently there is a considerable gap between the 
conceptual possibilities and real-world results.  This paper 
discusses an example where machine learning techniques, 
guided by domain expertise, were successfully utilized to 
produce an algorithm with real value. 

Honeywell Aerospace manufactures the HTF7000 turbofan 
engine that powers several super-mid-size (SMS) business 
jets.  Honeywell also develops Engine Health Monitoring 
algorithms to detect anomalies in the trends for those engines, 
indicating the presence of an incipient fault.  These 
algorithms provide business jet operators with the ability to 
perform maintenance before the incipient fault progresses 
into a disruption to flight operations.  A good example of 
these algorithms is the Carbon Seal Bimodality algorithm 
from  OPX (Oil Pressure Transducer).  Previous work 
(Hickenbottom, 2022) showed that this algorithm has proven 
very effective at detecting accelerated wear in the carbon seal 
near the number 4 bearing in the turbine section.  It has 
correctly identified hundreds of engines with excessive 
carbon seal wear and allowed thousands of others to remain 
in service given evidence of healthy seals. 

Once the Carbon Seal Bimodality algorithm and support 
process matured to the point that it can detect very small 
levels of seal wear, it became more prone to pick up other 
causes which present similar symptoms.  After identifying a 
few false positive indications of carbon seal wear, a machine 
learning algorithm was developed to classify variability in oil 
pressure residual signature as either caused by Seal Wear, or 
Other Cause. 

2. HISTORY OF CARBON SEAL BIMODALITY 

The Carbon Seal Bimodality algorithm initially came into 
existence because of a need to detect incipient faults in the 
Oil Pressure Transducer (i.e., OPX).  The first step was to 
correct the measured oil pressure because the measured 
pressure varies greatly with the oil temperature and engine 
operating regime.  These normal variations can mask changes 
in oil pressure which are the symptoms of engine faults.  The 
objective when developing the oil pressure correction logic 
was to use data science methods to analyze field data and 
identify the primary drivers of variation in the measured oil 
pressure.  Once we determined the most ‘correctable’ 

Zdenek Hrncir et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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operating regime and we accounted for variations due to 
environmental conditions, we derived a model from field 
data.  Comparing each oil pressure measurement to this 
model resulted in the Oil Pressure/Temperature Residual 
(OilPT Residual) CI, which is trended over time, with the 
initial intent of detecting incipient faults in the oil pressure 
transducer.  By analyzing a handful of known OPX sensor 
failures we determined that a faulted sensor will often cause 
a shift or drift in OilPT Residual before the sensor fault 
progresses to the level detectable by the engine controller.  
Figure 1 is an example of the signature for a faulted oil 
pressure sensor. 

 
Figure 1. Trend of OilPT Residual with faulted oil 

pressure sensor 
 

As we analyzed fleetwide trends of the OilPT Residual CI, 
we started to notice a unique pattern, where over time the CI 
would start to split into two separate populations, which 
would continue to diverge.  Figure 2 is an example of an 
OilPT Residual trend with a bimodal distribution.  The term 
bimodal refers to the two distinct peaks in the probability 
density function on the right side of the figure. 

 
Figure 2. Bimodal distribution of OilPT Residual 

 

As we searched for an explanation for this signature, we 
started thinking about the fact that the measured oil pressure 
is not an absolute measurement but is in fact a delta-pressure 
relative to the aft sump pressure.  This implies that a 
perceived drop in oil supply pressure could be the result of an 
increase in the aft sump pressure.  Next, we investigated the 
hypothesis that whatever might be causing the higher sump 
pressure would return to normal after hot section 
maintenance.  To test this, we did a fleet run and identified 
several engines that had high bimodality at some point, which 
then went away abruptly.  We then investigated the 

maintenance records for those engines and confirmed that the 
disappearance of bimodality correlated with the timing of hot 
section maintenance.  This represented significant evidence 
to support the hypothesis that an increase in aft sump pressure 
is the cause of bimodality. 

Once it became clear that hot section maintenance was 
causing the bimodality to reset, we started looking more 
closely at a carbon seal in the aft sump.  An opportunity to 
inspect an engine with high bimodality presented itself and 
the condition of the carbon seal unlocked the mystery of 
OilPT Residual bimodality.  Figure 3 shows the first carbon 
seal removed proactively based on bimodality in the OilPT 
Residual trend.  Note that the pressure balance features seen 
on the top half of the picture on the right were originally 
present in the bottom half as well. 

 
Figure 3. Worn carbon seal 

 

With this new understanding of the correlation between 
bimodality and carbon seal wear, we conducted a fleet run 
and identified engines with varying degrees of carbon seal 
wear.  As more engines with bimodality were inspected, the 
relationship between bimodality and carbon seal wear 
became even clearer.  The strong correlation between 
bimodality and seal wear allowed the Service Related 
Difficulty investigation to focus on the engines with the 
highest level of wear, avoiding a fleetwide campaign of all 
fielded engines to replace the carbon seals with a new design.  
We began proactively removing carbon seals, which 
provided additional details to assess seal wear progression.  
Increased seal wear may result in secondary damage to the 
LP stub shaft (see Figure 4), which can increase maintenance 
costs.  Being able to detect wear and replace the seal prior to 
this secondary damage results in significant maintenance cost 
savings.  Since the operator can replace the seal while the 
engine is on the aircraft and wear occurs over hundreds of 
hours of operation, early detection also allows operators to 
address the issue without affecting their flight operations.  
The opportunistic maintenance from these alerts has resulted 
in millions of dollars in cost avoidance and improved aircraft 
uptime and availability.  
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Figure 4. Expensive secondary damage to stub shaft 

3. NEED FOR NEOP ALGORITHM 

At first, only those engines with the most severe seal wear 
were flagged to have their carbon seals replaced.  As the 
improved-design carbon seals became more readily 
available, the bimodality threshold was gradually made more 
sensitive, such that more carbon seals were replaced earlier 
in their wear progression.  This increased sensitivity means 
that variability in the data due to causes other than carbon seal 
wear can drive the bimodality measurement over the 
threshold. 

Figure 5 is an example where an OilPT Residual trend is 
bimodal, but the bimodality is driven by a cause other than 
carbon seal wear.  In this case, an alert was generated based 
on a very conservative assessment of the trend.  Even though 
the review team felt it was unlikely that carbon seal wear was 
causing the bimodality on an engine with so few hours, the 
decision was made to enter the engine to inspect the carbon 
seal.  This inspection revealed a healthy carbon seal, meaning 
that the alert was a False Positive. 

 
Figure 5. Bimodality driven by non-seal (“Other”) cause 
 

Prior to this case, the carbon seal bimodality algorithm had 
not resulted in any False Positive alerts to the aircraft 
operators.  There were other examples of OilPT Residual 
trends with high variability, but they were visually 
determined to not fit the signature of carbon seal wear.  
Figure 6 is an example of a trend which was flagged by the 
algorithm, but manually overridden based on visual review 
by a domain expert. 

 
Figure 6. Expert determined bimodality not driven by 

seal wear 
 
In some cases, it was easy for the review team to conclude 
that the variability in OilPT Residual was not caused by 
carbon seal wear, but in other cases it was not as clear.  Figure 
7 shows an example where visual review of the data did not 
result in an obvious conclusion.  Because of the earlier False 
Positive, and the increasing number of cases where visual 
review of the data did not reveal an obvious conclusion, the 
team began investigating if a Machine Learning algorithm 
could be trained to distinguish carbon seal wear from other 
causes of variability in the OilPT Residual trend.  This 
algorithm became known as NEOP (Non-seal Erratic Oil 
Pressure). 
 

 
Figure 7. Cause of bimodality not obvious 

 

4. ALGORITHM STRUCTURE 

The NEOP algorithm is based on iterative development that 
progressed along with increased knowledge about collected 
oil system data and demand for further explanation of 
observed deviations from the model available at that time.  
The simplified diagram shown in Figure 8 involves the 
following steps: 

• Data Filtering: this step applies known oil measuring system 
design limits to filter out invalid data, fuse data from multiple 
sources and in general assure that time series pressure and 
temperature data are of high quality. 

• Oil Pressure Correction: applies known design factors that 
contribute to variability in measured Oil Pressure.  These 
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corrections are not driven by data, they were engineered 
based on domain knowledge.  

• Oil P/T Curve Residual:  applies simple regression model 
that was trained from data across the fleet.  The model 
captures the relation between oil pressure and temperature.  
This step eliminates the effect of oil viscosity on the flow of 
oil through the system and sensed oil pressure. Oil 
temperature is the data source that influences viscosity and 
can be smoothly correlated to oil pressure.  

• Shift Adjustment Logic: applies detection of sudden shifts 
in Oil Pressure Residual to determine if there was a 
maintenance action to adjust oil pressure.  This logic then 
eliminates the effect of the maintenance action to allow 
proper assessment of bimodality.   

• Bimodality Detection Logic: OilPT Residual range proved 
to be good indicator of carbon seal wear. 

• Calculate NEOP Features:  extracts features for Non-seal 
Erratic Oil Pressure detection.  Features are discussed in 
detail in section 7. 

• Predict NEOP Class scores: Support Vector Machine 
classifier was trained and applied.  One of its benefits over 
other classification techniques available in the legacy 
development environment in use (MATLAB 2015) is its 
ability to produce class scores, or confidence.  These class 
scores are used to plot a continuous trend of the classification 
result, which is more informative than a binary output from 
decision trees, for example.   

 
Figure 8. Structure of NEOP algorithm 

 

5. TRAINING DATA 

Aircraft engines are relatively low volume and high 
reliability assets.  As a result, a very common problem when 
developing a diagnostic algorithm using a machine learning 
approach is shortage of training data for the fault cases.  
There is a huge imbalance between healthy and fault data.  
For the NEOP classifier training there were only a handful of 
engines exhibiting bimodality that, based on ground truth, 
could not be attributed to carbon seal wear.  We’ll denote 
these cases as “O” or Other Cause of bimodality.  To describe 
the data, we used these groups: 

• Healthy data: OilPT Residual with smooth trendline 

• Severe carbon seal wear: OilPT Residual with very large 
bimodality in trendline 

• “S” - Seal wear: OilPT Residual trend before the carbon seal 
replacement exhibiting the pattern of medium wear of the 
seal.  See Figure 9. 

• “O” - Other cause of bimodality (non-seal erratic oil 
pressure): OilPT Residual trend with known healthy seal but 
showing bimodal behavior that would be detected by 
Bimodality Detection logic and (incorrectly) marked as 
medium seal wear.  See Figure 10. 

Note that Figure 2 shows the characteristic progression 
through different data groups: from healthy data through “S” 
(Seal wear) to severe carbon seal wear.  

The goal of this setup was to narrow down the classification 
problem to either class “S” or “O”.  This classification is only 
necessary during a portion of the fault progression.  In early 
phases of wear, the bimodality range is low, and the original 
algorithm will correctly decide not to flag the engine for 
maintenance.  For the advanced phases of wear, the fault 
signature changes, which would require the classification 
technique to learn a different pattern.  Since the review team 
can visually classify advanced wear due to the signature over 
time, we decided to make a simplifying decision to focus the 
NEOP algorithm only on the middle phase of wear 
progression.  As a result, severe carbon seal wear was 
excluded from the “S” group.   

 
Figure 9. Training data example: “S” – Seal wear 
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Figure 1010. Training data example: “O” - Other cause 

Each engine that was included in the dataset provided one or 
more data series belonging to one of the groups.  This led to 
variable lengths of OilPT Residual data series.  To obtain a 
reasonable number of training samples we took several 
windows of 50 datapoints from each series.  These windows 
were partially overlapping. The window size and overlapping 
step was chosen carefully to balance the need of having 
enough training samples and the need to have those samples 
be reasonably independent.         

6. CONFIGURATION MANAGEMENT OF TRAINING 
DATASETS 

As discussed in the Society of Automotive Engineers 
Aerospace Information Report AIR6988, Artificial 
Intelligence in Aeronautical Systems: Statement of Concerns, 
one of the key considerations for developing and maturing a 
Machine Learning algorithm in an application like this is 
configuration management of training datasets.  While 
configuration management and versioning of software 
modules is a well-understood activity in aerospace, 
configuration management and versioning of training and 
validation datasets used for machine learning is not as 
mature.   

To ensure that the ML results were reproducible, and to 
enable iterative improvements as new cases became available 
for training, a repository was set up to store and version-
control datasets.  Standard naming conventions and processes 
were established so that multiple software developers could 
access the datasets and replicate each other’s results. 

7. FEATURES 

Features are calculated for the moving window, which moves 
along the timeline.  The size of the window was set to be 
consistent with the bimodality detection logic: samples from 
50 consecutive take-offs.  This window is large enough to 
account for the fact that the bimodality signature in data was 
seen to temporarily cease for many consecutive datapoints.  

The following features based on OilPT Residual were 
included in the final set: 

• Range: this simple feature assures consistency with the 
previously implemented seal wear bimodality detector.   

• Sigma (standard deviation): supplement to range feature.  

• Gaussianity (fitness to gaussian distribution): this is the key 
measure that helps distinguish between noisy unimodal data 
and bimodal distribution.     

• Skewness: it was observed that when bimodality starts 
occurring, the “S” class appears to have more evenly 
distributed datapoints between high and low OilPT Residual 
populations (skewness close to zero).  While “O” class 
samples appear to have more occasional drops in OilPT 
Residual (negative skewness).  

• Scatteredness: none of the measures listed above considers 
the order of datapoints inside the window.  Although 
scatteredness is not a formally defined statistical measure, it 
is what we call what was implemented as RMS (Root Mean 
Square) of differences between consecutive points.  This 
measure gives high values when OilPT Residual values are 
alternating between low and high values.  This behavior is 
expected in medium seal wear.  Domain knowledge of how 
the seal physically behaves in the engine (a worn seal 
randomly settles in one of two extreme positions where it’s 
sampled during takeoff) enabled us to engineer this custom 
feature.   

These features calculated on “S” and “O” training datasets 
were used to train the final Support Vector Machine classifier 
with Gaussian (or Radial Basis Function - RBF) kernel.  
Hyperparameter Kernel Scale was used to prevent overfitting 
to the training data.  By tuning the kernel scale, we 
intentionally trained a medium-to-coarse model (in 
MATLAB Classification Learner terms) for the price of 
slightly decreased accuracy of the learned classifier.  This 
setting was chosen to compensate for the fact that training 
samples were not perfectly independent, because they were 
taken from a limited set of engines.  This fine-tuning is one 
example of using engineering experience and evaluation of 
individual plot results with analysts, rather than pure 
optimization of a goal metric, which is common in ML tasks 
with an abundant and balanced set of training data.  

8. EXAMPLE CASES 

To illustrate how the NEOP output is interpreted, 4 real cases 
are discussed here.  The first example, shown in Figure 11, is 
a straightforward case where the NEOP output (shown as 
‘classification confidence metric’ in the third data series) is 
consistently above zero, indicating that the level of 
bimodality (shown as ‘Range’ in the second data series) can 
be attributed to real seal wear.  This is useful to the review 
team because it increases confidence that an engine flagged 
for seal wear will not result in a False Positive disruption. 
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Figure 11. Consistently classified as seal wear 

 

The second example, shown in Figure 12, illustrates how 
real-world limitations in data can affect the NEOP output.  In 
this case there were large gaps in the data history.  This 
caused the NEOP output to incorrectly interpret shifts as 
‘other cause’, but the review team was able to use the NEOP 
output not affected by the data gaps to confirm that the carbon 
seal was worn.  This is a good example where even when the 
ML algorithm encounters data outside of its training, an 
expert reviewer can still make sense of the data. 

 
Figure 12. Large gaps in the data history 

 

The third example, shown in Figure 13, is typical of the cases 
which motivated the creation of the NEOP algorithm.  The 
bimodality range exceeds the threshold for seal wear, but the 
engine is known to have a healthy seal.  The NEOP history in 
cases like this allows the review team to override the alert for 
carbon seal wear.  Since there is no known operational impact 

associated with the ‘other cause’ classification, no 
supplemental maintenance is recommended. 

 

 
Figure 13. Healthy seal case with correct classification 

 

The fourth example, shown in Figure 14Figure 13, is a case 
where the NEOP output moves back and forth between seal 
wear and ‘other cause’.  This is because the outliers which 
drive the bimodality range are intermittent, with periods of 
normal seal wear in between.  By looking at the NEOP 
history, the review team can determine the true level of seal 
wear, and override the alert driven by the ‘other cause’ 
outliers. 

 
Figure 14. Intermittent outliers causing alternating 

classification 
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9. COMBINING MACHINE LEARNING WITH DOMAIN 
EXPERTISE 

One of the fundamental lessons we’ve learned is that in 
applications like health monitoring of turbofan engines, 
synergy can be achieved when data scientists work closely 
with domain experts.  Figure 1515 shows how these two 
groups of people make each other better.  Data scientists are 
often able to use Machine Learning to identify relationships 
(correlations) between data.  Domain experts can usually help 
the data scientist understand which correlations are 
meaningful (i.e., identify causation), and which correlations 
are trivial or meaningless.  In doing this, the domain expert 
often learns more about their system, which in turn enables 
them to provide improved guidance for the next round of data 
science or machine learning. 

 
Figure 1515. Synergy between Data Science and Domain 

Expertise 
 

In the case of the NEOP algorithm, several decisions were 
made by a domain expert to simplify the problem statement.  
For example, rather than requiring the algorithm to output a 
single answer, we recognized that showing the time-history 
and allowing a person to make a judgement is sufficient for 
the review team to decide on whether to flag an engine for 
seal wear.  Another example is how the training data was 
limited to the time when OilPT Residual is between 8 and 13 
psid.  The data scientist learned that the algorithm did not 
train well across all OilPT Residual ranges.  The domain 
expert recognized that there is a particular band of ranges 
where the interpretation is most critical, and the data scientist 
was able to refine the algorithm to focus on this area.  The 
outputs from this refinement then helped the domain expert 
understand what is physically happening on the engine in 
these areas. 

There are many examples where this synergy results in the 
data scientist making the domain expert more informed, and 
the domain expert contributing to making the data science 
more effective, which then provides additional information 
and feeds the cycle.  The key is to have interactions early and 
often between the data scientist and the domain expert.  This 
has proven to be much more effective than either a domain-
independent data science approach or a purely expert-driven 
approach.  For NEOP, this has resulted in the review team 

reviewing NEOP results 1-2 times per week, with the NEOP 
outputs being the key factor in the decision of whether to 
enter the engine in roughly 90% of those cases.  Without this 
algorithm, many of those cases could result in unnecessary 
maintenance or failure of a carbon seal in flight. 

10. CONCLUSION 

As can be seen from the examples above, the NEOP output 
requires expert interpretation.  Even though the algorithm 
does not provide a precise classification 100% of the time, it 
does provide valuable information which is of a practical 
benefit to the review teams.  Often it is the simplifying 
assumptions/decisions like this which can move a potential 
machine learning approach from a great concept to a usable 
algorithm.  With time, additional algorithm training could 
improve the ability of the NEOP algorithm to consistently 
classify the cause of wear, with less dependency on a domain 
expert; but even without improvement, the current algorithm 
has proven very valuable when the review team is faced with 
a signature that is difficult to explain. 
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ABSTRACT

Wind turbines (WTs) play an essential role in renewable en-
ergy generation, and ensuring their reliable operation is es-
sential for sustainable energy production and reduction of lev-
elized cost of energy. In this context, the field of prognos-
tics and health management (PHM) is a powerful tool to pre-
dict and assess the health status of WT components, thereby
enabling timely maintenance and reducing downtime. The
study begins with an overview of WT components studied,
including the blades, gearbox, generator, and bearings, and
their common failure modes. For each component, various
remaining useful life (RUL) estimation methods are explored,
categorizing them into physics-based, data-driven, and hybrid
methods. Despite the potential benefits, the application of
PHM strategies in WTs is currently limited. Although PHM
strategies have been present for years, their development in
WTs remains a challenge. These key challenges are pre-
sented, including uncertainty management, integrating phys-
ical knowledge into models, variable operational conditions,
data issues and system complexity.

1. INTRODUCTION

To meet the European Commission’s target of achieving cli-
mate neutrality by 2050, reducing the levelized cost of energy
(LCOE) is vital. According to the International Renewable

Jokin Cuesta et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Energy Agency (IREA, 2023), operation and maintenance
(O&M) costs, which include fixed and variable components,
typically constitute between 10% and 30% of the LCOE for
most wind industry projects as of 2022. This underscores
the importance of optimizing maintenance activities for wind
turbines (WTs). It involves the transition from traditional cor-
rective and preventive maintenance approaches to predictive
maintenance strategies, where maintenance tasks are sched-
uled based on the real-time and projected condition of compo-
nents. In this context, the field of prognostics and health man-
agement (PHM), which covers various techniques to mon-
itor the evolution of component wear, plays a critical role.
Through PHM, it becomes possible to forecast remaining use-
ful life (RUL) of components using historical and current op-
erational data (Ferreira & Gonçalves, 2022).

To effectively implement PHM strategies for WTs, it is es-
sential to explore their target components and their failure
modes. The main components of a WT’s drivetrain include
the rotor, gearbox, and generator, which are interconnected
via the low-speed shaft (LSS) and high-speed shaft (HSS)
(see Figure 1). The gearbox, generator, and rotor blades are
identified as the most critical subsystems, both onshore and
offshore, based on downtime analysis (Dao, Kazemtabrizi, &
Crabtree, 2019). Moreover, failures associated with the gear-
box, rotor blades, and generator represent a higher expendi-
ture, in that specified order (Tazi, Châtelet, & Bouzidi, 2017).

The main failure modes that affect these components are the
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Figure 1. Schematic diagram of the components explored in
this paper. Readapted from (Jiang et al., 2017).

following:

• Blades: fatigue, corrosion, and aerodynamic imbalance/
asymmetry (Catelani, Ciani, Galar, & Patrizi, 2020).

• Gearbox: abrasive wear, pitting, cracking, scuffing oil
leakage, insufficient lubrication (Owolabi, Madushele,
Adedeji, & Olatunji, 2023; Olabi et al., 2021).

• Generator: overspeed, overheat, wear, excessive vibra-
tion, rotor asymmetries, bar break, electrical problems
(Olabi et al., 2021; Lydia & Edwin Prem Kumar, 2023).

• Bearings: axial cracking, spalling, pitting, brinelling (fre-
tting) (Owolabi et al., 2023).

Based on the needs for PHM implentation in WT compo-
nents, the scope of this review paper is to provide an in-depth
analysis of the methodologies, algorithms, and techniques
used to estimate the RUL of components within WT com-
ponents. The aim of this review is to present works published
from 2018 to March 25, 2024, thereby gathering recent ad-
vancements and trends in PHM specific to critical wind com-
ponents, including blades, gearboxes, bearings, and genera-
tors. By addressing these challenges and providing a com-
prehensive review of the current state-of-the-art, this paper
aims to contribute to a better understanding of the complex-
ities and future research trends involved in developing RUL
prognostics for wind turbines. The paper is structured as fol-
lows. Section 2 consolidates the research efforts made in the
prediction of RUL classified by the component to which the
techniques are applied; finally, Section 3 focuses on conclu-
sions and key challenges.

2. PROGNOSTICS. RUL ESTIMATION

Prognostics refers to the examination of fault symptoms to
forecast future conditions and RUL within designed parame-
ters (ISO, 2012). This section aims to gather the works done

for accurate prediction of RUL in WT components, classi-
fying the methods into physics-based, data-driven and hy-
brid. The applications of components found coincide with
the most critical components in terms of dowtime and repair
costs mentioned above, classified in blades, gearbox, genera-
tor, other bearings (which include predictions of RUL of bear-
ings whose location is not specified) and those that consider
WT as a system. It is important to note that most of the works
found focus on bearing prediction, many of them located on
the HSS. These can be gearbox high-speed bearings, gearbox
intermediate-speed bearings, and generator bearings (Z. Liu
& Zhang, 2020). When the paper introduced specifies the
location of these, they are included in the gearbox/generator
subsection. If not, they are included in other bearings.

The distribution of eighty-one papers among years and com-
ponents can be found in Figure 2. It can be seen that data-
driven approaches are the most common ones to predict the
RUL of WT components, and there is an increasing trend
towards using hybrid models (Figure 2a). Furthermore, the
components most studied have been the gearbox and the gen-
erator, respectively (Figure 2b). Figure 3 gathers all the meth-
ods found in the literature, classified by type and component.

2.1. Blades

WT blades are engineered for a minimum of 20-year lifespan,
resulting in load cycles between 10 millions and one billion,
making them very susceptible to fatigue (Moroney & Verma,
2023). Twelve studies have been found to estimate the RUL
of WT blades.

2.1.1. Physics-based models

Physics-based models have been used for WT blades RUL es-
timation. Studies such as (Saathoff, Rosemeier, Kleinselbeck,
& Rathmann, 2021) and (Moroney & Verma, 2023) employed
aeroelastic load simulations, and durability and damage toler-
ance analysis (DADTA), respectively, to quantify the effects
of factors like blade pitch misalignment, and material fatigue
on RUL.

Furthermore, one of the most widely used physics-based tech-
niques has been Kalman filtering. (Muto, Namura, Ukei, &
Takeda, 2019) proposed a method that combines load mon-
itoring with dynamic response estimation, enhancing the ac-
curacy of RUL evaluation with Kalman filter (KF). (Boutrous,
Puig, & Nejjari, 2022) introduced an innovative model-based
prognostics procedure, leveraging zonotopic KFs to quantify
uncertainties in degradation propagation. Moreover, (Vettori,
Lorenzo, Peeters, Luczak, & Chatzi, 2023) presented an adap-
tive noise augmented KF approach, addressing challenges in
noise calibration for joint input-state estimation. Their method
demonstrated superior performance in virtual sensing (VS)
applications in diverse structural scenarios.

2

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 115



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

��
�	

��
�


��
��

��
��

��
��

��
��

��
��

�

�

��


��
��
���

��
��
�

�������������
�����������
������

(a) Number of papers found in this review, categorized by modeling
approach (physics-based, data-driven, and hybrid), over the years.
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(b) Percentage distribution of RUL prediction techniques found
across WT components.

Figure 2. Classification of papers in this review: a) by year and type b) by component.

2.1.2. Data-driven models

Among data-driven methods that have been used to estimate
the RUL of WT blades, particle filter (PF)-based approach-
es offer a dynamic and versatile solution. Studies conducted
by (Valeti & Pakzad, 2018, 2019), (Jaramillo, Gutiérrez, Or-
chard, Guarini, & Astroza, 2022), and (Lee, Roh, & Park,
2022) demonstrated the efficacy of PF in accurately predict-
ing RUL of blades under varying conditions, including fa-
tigue damage and dynamic loading scenarios. Alternatively,
various methodologies that employ data-driven strategies, par-
ticularly those using artificial intelligence (AI), presented dif-
ferent avenues. For instance, the work introduced by (Yue,
Ping, & Lanxin, 2018), an end-to-end model based on con-
volutional neural network (CNN) combined with long short-
term memory (LSTM) networks, exemplifies such approaches.

2.1.3. Hybrid models

Hybrid models offer promising results for an accurate predic-
tion of the RUL of WT blades. (Rezamand et al., 2021a) in-
troduced an integrated fuzzy-based failure prognosis method,
leveraging recursive principal component analysis (PCA), a
wavelet-based probability density function (PDF) estimation,
a Takagi-Sugeno (T-S) fuzzy system, and a Bayesian algo-
rithm. Their approach enabled real-time predictions by cap-
turing blade failure dynamics, categorizing nonlinear degra-
dation trends, and estimating RUL for each trend, culminat-
ing in an aggregated prediction for the entire system. Ap-
plied to supervisory control and data acquisition (SCADA)
data from real wind farms, the methodology demonstrated ro-
bust performance, outperforming traditional Bayesian meth-
ods and effectively modeling nonlinear failure dynamics. In
another study, (C. Peng, Chen, Zhou, Wang, & Tang, 2020)
focused on improving the accuracy of icing failure prediction

in WT blades through a novel balancing algorithm based on
boundary division synthetic minority oversampling technol-
ogy (BD-SMOTE) and a multi-step prediction process using
multiple Elman neural networks (ENNs).

2.2. Gearbox

Gearboxes operate under harsh environmental conditions, in-
cluding vibrations from turbine-side components and wind,
as well as fluctuations from the load through the generator,
while stepping up the speed from the LSS to meet the require-
ments of the HSS that drives the generator (Salameh, Cauet,
Etien, Sakout, & Rambault, 2018). Their failures contribute
to around 20% of WT downtime (Lydia & Edwin Prem Ku-
mar, 2023); therefore, it is essential to accurately predict their
RUL. Twenty-nine works have been identified.

2.2.1. Physics-based models

In the field of WT gearbox reliability estimation, only one
work has been found in the literature. (Pagitsch, Jacobs, &
Bosse, 2020) presented a pioneering approach for modeling
WT gearboxes with minimal parameters, emphasizing its util-
ity in estimating RUL and facilitating real-time condition mon-
itoring (CM). The determination of forces and bending mo-
ments acting on the main components involves using informa-
tion on non-torque loads from the rotor sub-model and rotor
torque from the SCADA data record. These inputs are then
employed to calculate inner loads on machine elements in the
gearbox, using rigid beam models and analytical basic equa-
tions for a three-stage WT gearbox intermediate-speed shaft
bearing forces. Finally, the modified life rating as defined in
ISO 281:2007 is applied to predict RUL.
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Figure 3. Techniques found in papers to predict RUL of WT components. The five categorical boxes correspond to, in order:
blades, gearbox and its bearings, generator and its bearings, other bearings, and the WT as a system. The components high-
lighted with a black background represent those studied with the corresponding technique.

2.2.2. Data-driven models

Data-driven methodologies have gained attention to predict
RUL of gearboxes. These approaches use advanced statistical
methods, such as PF and regressions, and AI techniques such
as advanced LSTM networks and artificial neural networks
(ANNs).

Statistical PF methods have shown promising results. (J. Wang,
Gao, Yuan, Fan, & Zhang, 2019) proposed an approach that

integrates a PF with an expectation maximization algorithm,
effectively predicting bearing defects from vibration signals
in a 2MW WT gearbox. This method quantifies uncertainty
in predictions, reduces false alarms, and highlights the impor-
tance of Bayesian inference for effective prognosis. (Cheng,
Qu, Qiao, & Hao, 2019) introduced an enhanced particle filter
(EPF) algorithm tailored for bearing RUL prediction in a 2.5
MW doubly fed induction generator (DFIG)-based WT gear-
box. The EPF algorithm overcomes particle impoverishment
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issues, demonstrating superior performance compared to tra-
ditional PF methods. Additionally, (J. Wang, Liang, Zheng,
Gao, & Zhang, 2020) proposed a Bayesian framework inte-
grating fault prognosis and PF-based RUL estimation, effec-
tively predicting RUL while quantifying uncertainties.

The construction of a robust health indicator (HI) is crucial
for effective RUL prediction. Methodologies often combine
signal processing and statistical modeling to extract informa-
tion from sensor data. Then, the trend of these indexes is
estimated using different algorithms. For instance, (Praveen,
Shah, Pandey, Vamsi, & Sabareesh, 2019) developed a HI
from vibration signatures using wavelet transform and PCA,
achieving high RUL prediction accuracy with an exponential
degradation model. On the other hand, (Lázaro, Yürüen, &
Melero, 2020) constructed a SCADA-based functional indi-
cator (FI) methodology using Gaussian mixture copula model
(GMCM) from SCADA signals.

Several studies have explored AI methods to predict RUL of
gearboxes in WTs. Some of them have compared various
techniques to determine the most effective approach. For in-
stance, (Tayade, Patil, Phalle, Kazi, & Powar, 2019) explored
regression models, such as support vector regression (SVR)
and random forest (RF) regression, augmented with PCA for
feature selection, demonstrating the superior accuracy of RF
over SVR in early fault detection and performance degra-
dation prediction. (Carroll et al., 2019) employed ANNs,
support vector machines (SVMs), and logistic regression to
predict failures, with ANNs outperforming other methods in
accuracy, especially when using SCADA and vibration data.
(Elasha, Shanbr, Li, & Mba, 2019) focused on gearbox bear-
ing prognosis, demonstrating the superiority of exponential
and polynomial regression models over multilayer ANNs, par-
ticularly in terms of root-mean-square error (RMSE) and R2

coefficient. Lastly, (Elforjani, 2020) conducted a comprehen-
sive comparison of machine learning (ML) techniques, re-
vealing that Gaussian process (GP) exhibited the lowest error
levels compared to decision trees, SVM and a feedforward
ANN.

Traditional LSTM networks have widely been used for time
series forecasting; nevertheless, they show some limitations
in RUL prediction. Several recent works have aimed to ad-
dress these issues, recognizing the challenges posed by their
inability to effectively capture global trends over time and
tap into backward and forward connections within time series
data. (Shen, Tang, Li, Tan, & Wu, 2022) introduced the multi-
head attention bidirectional-long-short-term-memory (MHA-
BiLSTM), which incorporates a multi-head attention mech-
anism to dynamically weigh circulating data between cells,
thereby enhancing the network’s ability to focus on infor-
mation crucial to the degradation process. In another study,
(Xiang, Qin, Liu, & Gryllias, 2022) proposed the automatic
multi-differential learning deep neural network (ADLDNN),

leveraging a measurement level division unit and a multi-
branch convolutional neural network (MBCNN) to address
the varying input contributions over time, demonstrating su-
perior performance over existing methods. (Xiang, Qin, Luo,
& Pu, 2022) proposed the spatio-temporally multidifferen-
tial network (SMDN), which used temporally multidifferen-
tial LSTM (TMLSTM) and spatially multidifferential CNN
(SMCNN) sub-networks to capture spatio-temporal informa-
tion effectively, achieving superior performance in RUL pre-
diction. Furthermore, (Xiang, Qin, Luo, Wu, & Gryllias,
2023) presented the concise self-adapting deep learning net-
work (CSDLN), which integrates a multi-branch 1D involu-
tion neural network (MINN) and a multi-head graph recur-
rent unit (GRU) to dynamically extract hidden features and
adaptively learn them, resulting in enhanced RUL prediction
accuracy. In addition, (B. Li, Tang, Deng, & Zhao, 2021)
introduced the self-attention ConvLSTM (SA-ConvLSTM),
which combines ConvLSTM architecture with a self-attention
mechanism to selectively focus on important information and
improve training efficiency and prediction accuracy. More-
over, (Z. Wang, Gao, & Chu, 2022) presented the pre-inter-
action LSTM, designed to enhance the capture of sequential
features in time-series limited samples, especially during pe-
riods of interrupted continuous feature. Lastly, (Xiang, Li,
Luo, & Qin, 2024) introduced the multi-cellular long short-
term memory (MCLSTM) to obtain distinct distributions of
monitoring data and utilized domain adversarial and active
screen mechanisms for transfer learning.

Efforts have been made to select suitable features and con-
struct a HI to enhance RUL estimation with AI. Qin et al. in-
troduced the shape-characteristic similarity autoencoder (SM-
SAE) network to automatically extract HI curves with spe-
cific shape characteristics from raw sensing data, thereby im-
proving degradation trajectory characterization (Qin, Yang,
Zhou, Pu, & Mao, 2023). Similarly, He et al. present the self-
calibration temporal convolutional network (SCTCN) model,
leveraging multidomain feature extraction and a self calibra-
tion module for improved prediction accuracy, even with lim-
ited time series data (He, Su, Tian, Yu, & Luo, 2022).

One of the important data sources for predictive maintenance
in WTs is SCADA data. (Verma, Zappalá, Sheng, & Wat-
son, 2022) extensively explored the use of high-frequency
SCADA data, employing advanced techniques to address im-
balanced operational regimes and enhance detection capabil-
ities in WT gearbox failure prediction, and using ANN-based
normal behaviour model (NBM) and one-class SVM. In con-
trast, (Bermúdez, Ortiz-Holguin, Tutivén, Vidal, & Benalcázar-
Parra, 2022) present an ensemble neural network model, com-
bining a two-dimensional CNN for spatial information ex-
traction and an LSTM network for spatio-temporal feature
analysis. The model was trained only on data from SCADA
(Bermúdez et al., 2022).
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2.2.3. Hybrid models

Gearboxes have been the components to which most hybrid
models found in this work have been applied. Desai et al.
demonstrated the potential of integrating bearing-specific data
from physics-based models with conventional SCADA data
to enhance bearing failure prognostics (Desai, Guo, Sheng,
Phillips, & Williams, 2020), highlighting significant improve-
ments in F1 score and AUC. However, they suggested further
refinement by developing individual models for each bear-
ing type. Similarly, Mehlan et al. presented a VS method
designed for online load monitoring and subsequent RUL as-
sessment of WT gearbox bearings within a digital twin (DT)
framework (Mehlan, Nejad, & Gao, 2022). The virtual sen-
sor integrates data from readily available sensors in the con-
dition monitoring system (CMS) and SCADA system with a
physics-based gearbox model, employing multiple state esti-
mation methods for load estimation and the Palmgren-Miner
model for RUL assessment.

(Pan, Hong, Chen, & Wu, 2020) proposed a novel hybrid
methodology which integrated deep belief network (DBN),
self organizing feature maps (SOMs) and PF, DBN-SOM-
PF. Their approach showcased superior performance in accu-
rately predicting degradation tendencies and reducing RUL
uncertainty. Moreover, (Cheng, Qu, & Qiao, 2018) intro-
duced an adaptive neuro-fuzzy inference system (ANFIS)-
based PF, demonstrating its superiority over traditional re-
current neural networks (RNNs). Their study addressed chal-
lenges in varying speed conditions through signal resampling,
enhancing fault diagnosis effectiveness. (Qiao & Qu, 2018)
also employed an ANFIS model in fault prognosis, showcas-
ing accurate trend prediction validated by a gearbox run-to-
failure test. Moreover, (Z. Li, Zhang, Kari, & Hu, 2021) pro-
posed a comprehensive evaluation function combined with
SOM network to construct a HI curve for gearbox-side high-
speed shaft bearings (HSSB), then a Bayesian update model
and expectation maximization algorithm were employed for
RUL estimation. The model demonstrated superior accuracy
in RUL prediction compared to SVR. Lastly, (Zheng et al.,
2024) presented a multi-stage RUL prediction model tailored
for WT planetary gearboxes, emphasizing interpretability and
achieving promising results in real-world scenarios.

Finally, (Guo et al., 2020) integrated physics-domain models,
SCADA data, and wind plant failure records to forecast the
probability of failure for individual gearbox bearings. Focus-
ing on bearing axial cracking, the study considers frictional
energy accumulation and electrical power generation as prog-
nostic metrics. The lumped-parameter gearbox model calcu-
lates gearbox bearing radial loads and displacements at any
given torque, then Weibull distribution of the accumulated
damage threshold of the accumulated energy is determined
statistically.

2.3. Generator

Generators are labeled as critical components, as the O&M
costs caused by the premature failure of the main compo-
nents of WT generators can represent a significant portion
–around 10-20%– of the overall energy expenses for a WT
project (Cao et al., 2018). Twenty-six studies have been iden-
tified to predict the RUL of this component.

2.3.1. Physics-based models

Within physics-based models to predict the RUL of WT gen-
erators, Kalman smoother (KS) method has been uniquely
identified. (Saidi, Ali, Benbouzid, & Bechhofer, 2018) intro-
duced an integrated prognostics methodology for WT HSSB
prognosis, focusing on bearing failure prognosis driven by
excessive shaft vibration. Their approach used a usage model
based on Paris’ law and a KS to estimate RUL, addressing
inherent phase delay cancelation from Kalman filtering for
improved accuracy and smoother estimated with confidence
bounds.

2.3.2. Data-driven models

In statistical methodologies, in both studies carried out by
(P. Wang, Long, & Wang, 2020) and (Farhat, Chaari, Chiemen-
tin, Bolaers, & Haddar, 2022), the prediction of RUL for WT
generator bearings is accomplished primarily through the im-
plementation of exponential degradation models. Wang et al.
used a fusion method based on PCA to construct a HI, which
serves as a crucial metric reflecting the degradation level.
This HI, alongside features extracted from vibration data and
statistical analyzes such as monotonicity analysis and hier-
archical clustering, contributes to accurate RUL estimation.
Similarly, Farhat et al. also used an exponential degrada-
tion model for RUL prediction, initializing parameters based
on healthy data and iteratively updating them as degradation
progresses, obtaining a dynamic HI selection with good ac-
curacy.

In their research, Rezamand et al. focused on reliability met-
rics for WT generators and real-time RUL prediction for crit-
ical bearings. In their study from 2019, (Rezamand, Car-
riveau, Ting, Davison, & Davis, 2019) explored reliability
metrics using truncated WT generator data from a 100 MW
wind farm, employing Weibull and accelerated life testing
analysis to identify best-fitted distribution models and pro-
pose predictive PDF and hazard functions for the generator
group. Subsequently, in their 2020 study, (Rezamand, Ko-
rdestani, Carriveau, Ting, & Saif, 2020) introduced a novel
real-time Bayesian RUL prediction algorithm, incorporating
comprehensive feature extraction, selection, and signal de-
noising techniques. It demonstrated superior performance
over single-feature-driven Bayesian algorithms through ex-
perimental case studies, offering an improved approach to
provide accurate RUL predictions by combining information
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from various single features using an ordered weighted aver-
aging (OWA) operator.

The use of the Wiener process to predict RUL is apparent
in several studies focusing on WT bearing health prognosis.
(Hu et al., 2018) proposed an RUL prediction model based on
the Wiener process and inverse Gaussian distribution, specif-
ically targeting rear bearings of a 1.5 MW WT generator. By
establishing an inverse Gaussian distribution function and de-
riving drift and diffusion parameters, the model effectively
predicts RUL based on temperature monitoring data, offer-
ing valuable insights for maintenance decision-making. In
a similar approach, (M. Liu, Dong, & Shi, 2023) addressed
challenges associated with traditional vibration data by in-
troducing a nonlinear Wiener degradation model integrated
with physical and data knowledge. Their approach, which in-
corporates multi-sensor temperature data fusion and Bayesian
analysis, demonstrated superior accuracy and reliability com-
pared to conventional models. Furthermore, (Song, Youliang,
Kai, Cheng, & Tao, 2020) employed both linear and nonlin-
ear Wiener processes to construct dynamic monitoring and
performance degradation models, intricately linking bearing
temperature parameters, wind speed, and time. Lastly, (Lan et
al., 2023) developed a precise RUL prediction method for WT
generator bearings using a nonlinear Wiener process. Their
approach used the 3σ criterion for online monitoring, consid-
ering a two-stage evolution of bearing performance parame-
ters.

Other statistical techniques have been used to improve RUL
prediction and health state estimation in WT systems. (Y. Peng,
Bi, & Wang, 2023) developed a model integrating an en-
hanced two-phase Box–Cox transformation into the switch-
ing state-space model, capturing nonlinear degradation with
phase transition behavior. Their adaptive parameter learn-
ing method dynamically estimated transformation parame-
ters, phase transition positions, and predicted uncertainty. In
a different approach, (Peter, Zappalá, Schamboeck, & Wat-
son, 2022) proposed a framework combining data prepro-
cessing, anomaly detection, and time series forecasting us-
ing SCADA signals and one-class SVM. Time series is then
forecasted using an autoregressive integrated moving average
(ARIMA) mode. Additionally, (Kramti, Saidi, Ali, Sayadi, &
Bechhoeferer, 2019) leveraged PF-based Bayesian inference
with advanced signal processing methods like spectral kurto-
sis and high order statistics for health state estimation of the
generator-side HSSBs, demonstrating promising results for
RUL estimation.

On the use of AI, Cao et al. have contributed significantly
to the field of WT generator bearing RUL prediction with a
series of innovative approaches. In their 2018 work, (Cao et
al., 2018) introduced the interval whitenization Gaussian pro-
cess (IWGP) method, which integrates interval whitenization
and Gaussian process algorithms to forecast RUL under non-

stationary operating conditions. This method showcased no-
table improvements over SVR and ANN techniques. Build-
ing upon this foundation, their subsequent study proposed a
more comprehensive methodology, incorporating empirical
mode decomposition (EMD) for signal denoising and fault
development featuress (FDFs) extraction, followed by SVR
modeling (Cao, Qian, & Pei, 2019). Expanding further, their
latest work introduced the parallel gated recurrent unit with
dual-stage attention mechanism (PDAGRU) model coupled
with a novel uncertainty quantification method, enhancing
both prediction accuracy and uncertainty assessment (Cao,
Zhang, Meng, & Wang, 2023). By integrating a dual-stage at-
tention mechanism and employing kernel density estimation
and Monte Carlo dropout, their approach achieved remark-
able RUL prediction accuracy.

The use of neural networks (NNs) in prognostics of HSSB in
WT generators has shown promising results in recent stud-
ies. (Kramti, Ben Ali, Saidi, Sayadi, & Bechhoefer, 2018)
introduced an ENN architecture, employing statistical time-
domain features extracted from vibration signals as inputs.
Their model demonstrated reliable performance even in the
presence of noisy measurements. Expanding on this work,
(Kramti et al., 2021) proposed a novel feature selection me-
thod based on monotonicity, trendability, and prognosability
metrics, enhancing the robustness of their ENN-based prog-
nostic model. Similarly, (Merainani, Laddada, Bechhoefer,
Chikh, & Benazzouz, 2022) developed an ENN-based ap-
proach, incorporating a novel HI derived from spectral shape
factor entropy and the Teager energy operator. Furthermore,
(Hayder & Saidi, 2021) proposed a deep learning (DL)-based
approach using a multilayer NNs, emphasizing the signifi-
cance of kurtosis as a HI.

Authors also have contributed ensembled AI models to im-
prove the accuracy of predictions. (Pandit & Xie, 2023) intro-
duced an innovative approach combining sparrow search al-
gorithm (SSA) with SVM, RF regression, and Gaussian pro-
cess regression (GPR). Their model, driven by vibration sig-
nal analysis and feature selection based on monotonicity, ex-
hibited high performance. In contrast, (Du, Jia, Yu, Shi, &
Gong, 2023) addressed the limitations of traditional CNN
models in extracting critical features for RUL prediction of
bearings. They proposed a CNN prediction model enriched
with a global attention mechanism (GAM) to enhance pre-
diction accuracy. By transforming one-dimensional vibration
signals into two-dimensional image data suitable for CNN
processing and incorporating a HI constructed based on time-
domain degradation characteristics, their approach significant-
ly improved RUL prediction performance.

(Dameshghi & Refan, 2021) presented an innovative frame-
work for prognosis, focusing on the failure behavior of the
DFIG due to rotor electrical asymmetries. Their approach
integrates the CMS module with the prognosis module, em-
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ploying agents like the degradation trend index to enhance
RUL prediction accuracy. Using a particle swarm optimiza-
tion (PSO)-least squares (LS)-SVM method, with parame-
ter tuning for LS-SVM optimization and a radial basis func-
tion (RBF) kernel. In a related study, (Kamarzarrin, Refan,
Amiri, & Dameshghi, 2022) introduced a novel method for
fault prognosis related to DFIG rotor winding, leveraging fea-
ture level fusion and adaptive thresholding based on process
parameters. Their approach used classical time and frequency
domain features to represent degradation behavior, with fault
prognosis conducted using PSO-LS-SVM. Experimental val-
idation, including simulated breakdown scenarios and com-
parisons with SVM- and NN-based approaches, showcases
superior performance.

In their collective effort, the research group lead by Reza-
mand and Kordestani presented a comprehensive approach to
predicting the RUL of WT generator bearings, addressing the
challenges posed by varying operating conditions and uncer-
tainty in prediction horizons. (Rezamand et al., 2021b) in-
troduced a prognostic method integrating real-time SCADA
data and vibration signals to assess the influence of environ-
mental conditions on bearing failure dynamics, coupled with
an adaptive Bayesian algorithm for RUL forecasting . In par-
allel, (Kordestani et al., 2022) proposed a feature extraction
approach from vibration signals, followed by Bayesian RUL
determination and high-level fusion methods such as the Hur-
wicz operator and Choquet integral to integrate RUL values
and mitigate uncertainty.

2.3.3. Hybrid models

Only one work has been found aiming to predict RUL for
WT generators with hybrid models, carried out by (Mehlan,
Keller, & Nejad, 2023). A DT framework is introduced for
the virtual sensing of WT hub loads. The research focuses
on the estimation of aerodynamic hub loads, monitoring ac-
cumulated fatigue damage, and predicting the RUL of high-
speed shaft generator side bearings. Using various data-driven
regression models (linear regression (LR), SVR and tree en-
sembles) and a low-fidelity physics-based model, the bearing
fatigue damage and RUL is based on ISO 281, which defines
the equivalent dynamic load for cylindrical roller bearings.
Then, long-term damage is obtained with Palmgren-Miner.

2.4. Other bearings

Eight works identified address the prediction of RUL of WT
bearings that have not been previously listed, others have not
been specified. All of them are included in this section. For
instance, (Moynihan, Liberatore, Moaveni, & Khan, 2021)
presented a physics-based approach to estimate RUL of main
shaft bearings, employing strain measurements collected from
blades and validated using real WT data, and fatigue life anal-
ysis is conducted using Miner’s rule.

Within data-driven methods, (Jellali, Maatallah, & Ouni, 2022)
proposed a method using temperature, viscosity, dynamic load,
and fatigue damage for RUL prediction of WT main bear-
ing, achieving high accuracy rates with a LR. The work of
(Teng et al., 2020) emphasized a model-based approach us-
ing an improved unscented PF to study bearings located in
the gearbox high-speed shaft, generator driven end, and gen-
erator non-driven end. This was done through measurement-
centric methods, enhancing applicability for on-site WT sce-
narios. Moreover, (X. Li et al., 2023) built upon this foun-
dation by introducing a method integrating degraded feature
fusion models, threshold determination techniques, and self-
constraint state-space estimator (SCSSE) to further enhance
RUL prediction accuracy. (Encalada-Dávila, Puruncajas, Tu-
tivén, & Vidal, 2021) developed an advanced prognostic ap-
proach, also ANN-based NBM, that relies solely on SCADA
data to predict main bearing failure, enabling strategic main-
tenance scheduling several months in advance. Lastly, (Le,
Lee, Dinh, & Park, 2024) compared similarity based model,
employing an LSTM model, and degradation model, using
LR and a stochastic exponential random model. The degra-
dation models showed better performance. Lastly, (Bousebsi,
Medoued, & Saidi, 2023) addressed RUL prediction for HSSB
using the KS method. By incorporating Paris’ Law and the
KS, their method achieved enhanced accuracy in tracking de-
gradation trends across five states.

Finally, (Yucesan & Viana, 2022) introduced the physics in-
formed neural network (PiNN), a hybrid model for bearing
fatigue damage accumulation. This was embedded as a RNN
cell, where reduced-order physics models used for bearing
fatigue damage accumulation, standardized bearing life for-
mula found in ISO 281, and NNs represented grease degrada-
tion mechanism that quantifies grease damage that ultimately
accelerates bearing fatigue.

2.5. Wind turbine as a system

Other six works have considered the drivetrain of a WT as a
system. (Benmoussa, Djeziri, & Sanchez, 2020) proposed an
integrated fault diagnosis and prognosis approach for WTs,
employing a physics-based model, multi-class SVM classi-
fication, and a similarity-based method for RUL estimation
without prior knowledge of degradation profiles. This method
demonstrates effectiveness in handling uncertainties and tran-
sient operating modes, validated through a laboratory case
study on a 750 kW WT. Similarly, (Binsbergen, Soares, Ped-
ersen, & Nejad, 2022) developed a comprehensive physics-
and SCADA-based model for RUL estimation in the WT driv-
etrain. By employing techniques such as load duration distri-
bution and Miner’s rule, their approach offers a holistic eval-
uation of the drivetrain’s health and expected RUL.(de Souza
Pereira Gomes et al., 2024) employed a RF model predic-
tion, which sequentially conducts binary classification stages
to determine if input samples represent conditions leading to
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a failure event within a specified time period.

In their series of works, (L. Wang, Cao, Xu, & Liu, 2022) pro-
posed innovative methodologies aimed at improving RUL es-
timation within the drivetrain of WTs. First, they introduced
the gated graph convolutional network (GGCN), focusing on
multi-sensor signal fusion and precise RUL prediction. By
leveraging spatial-temporal graphs constructed from multi-
sensor signals, the GGCN effectively captured both temporal
and spatial dependencies crucial for understanding degrada-
tion states. Furthermore, (L. Wang, Cao, Ye, & Xu, 2023)
addressed the need for uncertainty quantification by incorpo-
rating a quantile regression layer, providing confidence in-
terval estimated essential for maintenance planning. Build-
ing upon this foundation, their subsequent work introduced
the Bayesian large-kernel attention network (BLKAN) to en-
hance RUL prediction and uncertainty quantification for bear-
ings. The BLKAN balanced computational efficiency with
long-range correlations and channel adaptability, employing
Bayesian large-kernel convolutions and variational inference
to infer probability distributions of model parameters. Fi-
nally, (L. Wang, Cao, Ye, Xu, & Yan, 2024) presented the
dual-view graph Transformer (DVGTformer), which enhances
RUL prediction accuracy by fusing information from multiple
sensors to capture complex degradation patterns. By integrat-
ing temporal and spatial perspectives through cascading lay-
ers of a graph transformer, the DVGTformer achieved supe-
rior performance compared to existing state-of-the-art meth-
ods.

3. CONCLUSIONS AND FUTURE DIRECTIONS

This review illustrates the dynamic field of RUL estimation
for WT components, showcasing the evolution and diversity
of methodologies and their respective challenges. The com-
prehensive analysis of eighty-one papers published since 2018
on RUL prediction models reveals a clear alignment with the
identified critical subsystems and failure modes within WT
systems in Section 1. The predominant focus on predicting
the RUL of gearboxes (35.8%), generators (32.1%), blades
(14.8%), and associated bearings aligns the findings from the
downtime analysis and failure costs in the introduction, where
these components emerged as the most critical.

Physics-based, data-driven, and hybrid models have been iden-
tified to achieve an effective prognosis, all gathered in Figure
3. When the underlying physics of the system is known, e.g.,
bearing fatigue analysis with Miner´s rule, physics-based me-
thods offer interpretable results and accuracy without the need
for large amounts of data. It is difficult, though, to obtain ro-
bust physics-based models of these complex systems. Data-
driven methods, while requiring less physical knowledge, can
effectively quantify prognosis uncertainty and process high
dimensional data, though they may lack interpretability and
generalize poorly with limited data, a common occurrence in

many WT datasets, where data availability is often sparse or
low quality. Hybrid methods combine the advantages of var-
ious approaches, but may face challenges in model selection
and characterization of uncertainty. Figure 2a illustrates that
data-driven methodologies are predominant in predicting the
RUL of WT components, with a growing inclination towards
hybrid models.

While the primary objective of these models is to improve the
accuracy and robustness of their predecessors, significant bar-
riers remain. The challenges outlined in our review of RUL
estimation methods for wind turbine components were de-
rived from an extensive analysis of existing literature and re-
search findings. Through a systematic review process, recur-
ring obstacles were identified and categorized into five dis-
tinct groups: inherent uncertainty management, integration
of physical knowledge, consideration of variable operational
conditions, data issues and complex system dynamics. This
classification was based on the underlying nature of the chal-
lenges and their impact on prognostic accuracy and reliability.
The distribution of papers that address these issues is shown
in Figure 4 (one paper can address more than one challenge).
These are discussed below.

1. Uncertainty from various sources, such as sensor noise
and model variability, is a key obstacle. Thus, its quan-
tification is essential to reduce the impact of uncertain-
ties throughout maintenance optimization and decision-
making. Techniques such as Bayesian belief networks
(BBNs) and Monte Carlo methods aimed at minimizing
it.

2. Integration of physical knowledge. The integration of
underlying physics of the system is gaining attention to
obtain higher accuracy and credibility of the prognosis,
as shown in the hybrid methods subsections. However,
there remains a need for further research and enhance-
ment. Methods to integrate physical knowledge into NNs
such as PiNNs offer promising avenues for accurate and
interpretable prognostics (Chen, Ma, Zhao, Zhai, & Mao,
2022). In the industrial application facet, RUL prediction
techniques have been applied to a number of important
fields, including but not limited to aerospace systems, in-
dustrial robots, wind power systems, high-speed trains,
etc. (H. Li, Zhang, Li, & Si, 2024), but there still re-
mains a significant challenge in fully implementing these
techniques within the components of WTs. However,
there are some key limitations and challenges in model
property aspects, which (Xu, Kohtz, Boakye, Gardoni,
& Wang, 2023) summarized into five types: model selec-
tion, model structure, model parameter, model optimizer,
and model prediction.

3. Variable operational conditions. WTs operate in dy-
namic environments characterized by fluctuating wind
speeds, changing loads, and varying environmental con-
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Figure 4. Amount of papers addressing challenges in WT component RUL prediction.

ditions. Such variability not only impacts the perfor-
mance and wear of individual components, but also com-
plicates the prediction of their future reliability and the
accuracy of RUL models, often trained with similar op-
erating conditions. The need for continuous online learn-
ing underscores the urgency for novel algorithms and
hardware architectures (Elattar, El-Brawany, Elminir, I-
brahim, & Ramadan, 2023). In this context, transfer
learning and domain adaptation present an opportunity to
adapt models to varying operating conditions, although
challenges remain to ensure prediction accuracy across
different equipment (Ramezani et al., 2023). Therefore,
the transferability assessment of different domains con-
tinues to pose a substantial challenge.

4. Data issues. Noisy measurements and a notorious lack
of high-quality data are among these challenges. These
difficulties are compounded by the scarcity of samples
and monitoring data, which makes accurate predictive
modeling even more challenging. Moreover, in many
cases, only SCADA data are available, which presents
a notable barrier, aggravated by the limited and low fre-
quency samples, and the unbalanced nature of the con-
dition data available for analysis. To overcome these
obstacles, researchers must navigate the complexities of
fusing multi-sensor signals to enrich the available data
sources. Several papers within this study employ method-
ologies for multi-signal feature extraction and dimension-
ality reduction, such as PCA. However, it is beyond the
scope of this review to delve into these techniques.

5. System complexity. WT are inherently complex sys-
tems, characterized by a multitude of interconnected com-
ponents, as mentioned in the introduction. On one hand,
multiple faults in a single component are a frequent oc-
currence, which are not considered in academic studies.
On the other hand, the degradation process should take

into account the way different components interact. To
gain interpretability, more signal processing procedures
could also be applied to the machine degradation process.

As research progresses, it is essential to address the identi-
fied challenges systematically, paying particular attention to
the critical components within WT components. The imple-
mentation of PHM will facilitate the development of a robust
predictive maintenance plan, which will contribute to the re-
duction of LCOE associated with O&M costs, thus aligning
with the objectives of achieving green transition goals.
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Verma, A., Zappalá, D., Sheng, S., & Watson, S. J. (2022).
Wind turbine gearbox fault prognosis using high-
frequency scada data. Journal of Physics: Conference
Series, 2265(3), 032067.

Vettori, S., Lorenzo, E. D., Peeters, B., Luczak, M. M.,
& Chatzi, E. (2023, Feb.). An adaptive-noise aug-
mented kalman filter approach for input-state estima-
tion in structural dynamics. Mechanical Systems and
Signal Processing, 184, 109654.

Wang, J., Gao, R. X., Yuan, Z., Fan, Z., & Zhang, L. (2019).
A joint particle filter and expectation maximization ap-
proach to machine condition prognosis. Journal of In-
telligent Manufacturing, 30(2), 605-621.

Wang, J., Liang, Y., Zheng, Y., Gao, R. X., & Zhang, F.
(2020, Jan.). An integrated fault diagnosis and prog-
nosis approach for predictive maintenance of wind tur-
bine bearing with limited samples. Renewable Energy,
145, 642-650.

Wang, L., Cao, H., Xu, H., & Liu, H. (2022). A gated graph
convolutional network with multi-sensor signals for re-
maining useful life prediction. Knowledge-Based Sys-
tems, 252, 109340.

Wang, L., Cao, H., Ye, Z., & Xu, H. (2023, Oct.).
Bayesian large-kernel attention network for bearing re-
maining useful life prediction and uncertainty quantifi-
cation. Reliability Engineering and System Safety, 238,
109421.

Wang, L., Cao, H., Ye, Z., Xu, H., & Yan, J. (2024, Jan.).

Dvgtformer: A dual-view graph transformer to fuse
multi-sensor signals for remaining useful life predic-
tion. Mechanical Systems and Signal Processing, 207,
110935.

Wang, P., Long, Z., & Wang, G. (2020). A hybrid prognostics
approach for estimating remaining useful life of wind
turbine bearings. Energy Reports, 6(9), 173-182.

Wang, Z., Gao, P., & Chu, X. (2022). Remaining useful
life prediction of wind turbine gearbox bearings with
limited samples based on prior knowledge and pi-lstm.
Sustainability (Switzerland), 14(19), 12094.

Xiang, S., Li, P., Luo, J., & Qin, Y. (2024). Mi-
cro transfer learning mechanism for cross-domain
equipment rul prediction. IEEE Transactions on
Automation Science and Engineering, 1-11. doi:
10.1109/TASE.2024.3366288

Xiang, S., Qin, Y., Liu, F., & Gryllias, K. (2022, July). Auto-
matic multi-differential deep learning and its applica-
tion to machine remaining useful life prediction. Reli-
ability Engineering and System Safety, 223, 108531.

Xiang, S., Qin, Y., Luo, J., & Pu, H. (2022). Spatiotempo-
rally multidifferential processing deep neural network
and its application to equipment remaining useful life
prediction. IEEE Transactions on Industrial Informat-
ics, 18(10), 7230-7239.

Xiang, S., Qin, Y., Luo, J., Wu, F., & Gryllias, K. (2023).
A concise self-adapting deep learning network for ma-
chine remaining useful life prediction. Mechanical Sys-
tems and Signal Processing, 191, 110187.

Xu, Y., Kohtz, S., Boakye, J., Gardoni, P., & Wang, P. (2023).
Physics-informed machine learning for reliability and
systems safety applications: State of the art and chal-
lenges. Reliability Engineering and System Safety,
230(108900). doi: 10.1016/j.ress.2022.108900

Yucesan, Y. A., & Viana, F. A. (2022, May). A hybrid
physics-informed neural network for main bearing fa-
tigue prognosis under grease quality variation. Me-
chanical Systems and Signal Processing, 171, 108875.

Yue, G., Ping, G., & Lanxin, L. (2018). An end-to-end
model based on cnn-lstm for industrial fault diagno-
sis and prognosis. In 2018 international conference
on network infrastructure and digital content (ic-nidc)
(p. 274-278).

Zheng, H., Deng, W., Song, W., Cheng, W., Cattani, P., & Vil-
lecco, F. (2024). Remaining useful life prediction of a
planetary gearbox based on meta representation learn-
ing and adaptive fractional generalized pareto motion.
Fractal and Fractional, 8(1), 14.

BIOGRAPHIES

Jokin Cuesta holds a degree in physics
by the University of the Basque Country -
Euskal Herriko Unibertsitatea (EHU-UPV,
2020). He furthered his education with a

14

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 127



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

focus on data science master at Universi-
tat Oberta de Catalunya (UOC, 2023) in
Barcelona. He is currently engaged in the
pursuit of an industrial PhD at the Artificial

Intelligence and Data area in Ikerlan and the Control, Data,
and Artificial Intelligence (CoDAlab) group in the Depart-
ment of Mathematics at Universitat Politècnica de Catalunya.
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ABSTRACT 
As a key component of rotating parts, rolling bearings largely 
determine the operation safety of equipment. However, in 
practical applications, because the degradation trajectory of 
rolling bearings cannot be truly characterized, the existing 
model cannot accurately describe the degradation trajectory 
of rolling bearings, resulting in the running state of rolling 
bearings cannot be directly evaluated. Therefore, a method of 
rolling bearing state assessment based on deep learning 
combined with Wiener process is proposed in this paper. 
Firstly, a deep network model is constructed by deep learning 
to mine the degradation information of rolling bearings. 
Secondly, the mined degradation information is fused, and 
then the degradation indicator used to characterize the 
degraded trajectory of the rolling bearing is constructed. Then, 
based on Wiener process, the degradation model of rolling 
bearing is established to describe the degradation mode of 
rolling bearing. Finally, the constructed degradation indicator 
is input into the established degradation model to predict its 
RUL, and then the running state of the rolling bearing is 
evaluated. 

1. INTRODUCTION 

During the operation of mechanical equipment, due to the 
influence of many factors, mechanical equipment will 
inevitably degrade. This degradation process generally 
occurs first in components that produce relative motion, 
especially rolling bearings(Zhu et al. 2024). Therefore, in 
order to ensure that mechanical equipment always serves in a 
safe state, it is very necessary to evaluate the operating status 
of rolling bearings. The remaining useful life (RUL) 
prediction method has been recognized as a basic and 
effective method for state assessment of rolling bearings(Li 
et al. 2024). (If the RUL of the rolling bearing can be 
predicted, the current service status of the rolling bearing can 
be assessed) Currently, in the field of prediction of the RUL 

of rolling bearings, scholars have proposed a series of life 
prediction methods of rolling bearings, but generally they can 
be divided into methods based on expert knowledge base, 
data-driven, physical models and hybrid methods(Wang et al. 
2023). 

The method based on expert knowledge base achieves 
prediction by comparing the similarity between the observed 
data and the previously defined fault database through expert 
system or fuzzy system(Qin et al. 2023). For example, Qin et 
al. proposed a two-stage RUL prediction method based on 
similarity, constructing a degradation indicator (DI) of 
bearings through a multi-head self-attention mechanism, and 
comparing the constructed DI with other bearing degradation 
indexes in the expert knowledge base, thereby realizing the 
prediction of the RUL of the bearing(Qin et al. 2023). Xia et 
al. proposed a hybrid Gaussian-evidence hidden Markov 
model that integrates expert knowledge and condition 
monitoring information to predict the RUL of bearings under 
the framework of belief function theory(Xiahou, Zeng, and 
Liu 2021). These methods often require special knowledge 
about the fault data, however obtaining this knowledge is 
expensive in practice. The data-driven method uses the 
historical status data of the equipment to extract characteristic 
information related to the status changes of the monitored 
object. Through statistical analysis, pattern recognition, 
machine learning and other technologies, it attempts to 
simulate the fuzzy functional relationship between sensor 
data and equipment status, and then realize the status 
assessment and RUL prediction of the monitored object(Li et 
al. 2022). For example, Cheng et al. extracted nonlinear 
features from bearing vibration signals and inputted them into 
convolutional neural networks to evaluate the health status of 
bearings, and combined them with relevant vector machines 
to predict the RUL of bearings(Cheng et al. 2021). Yoo et al. 
used continuous wavelet transform to convert bearing 
vibration signals into image signals and input them into 
convolutional neural networks for predicting the RUL of 
bearings(Yoo and Baek 2018). Ren et al. used deep self-
coding neural networks to compress the time-frequency 
wavelet features of rolling bearings and predict the RUL of 
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rolling bearings(Ren et al. 2018). However, these methods 
need to establish the state characterization function of the 
rolling bearing, and with the increase of the prediction time 
span, the characterization ability of the model decreases, and 
the prediction accuracy of the RUL decreases. The physical 
model method is based on the mathematical representation of 
the physical behavior during the degradation process to 
predict the degradation performance and RUL of the bearing. 
For example, Kogan et al. established a multi-body dynamics 
model of rolling bearings based on classical dynamics and 
kinematic equations to describe the health degradation 
process of rolling bearings under different faults and predict 
their RUL by fitting its degradation process(Kogan et al. 
2015). Qian et al. improved the Paris-Erdogan model and 
constructed a multi-time scale degradation model to track the 
changes in the degradation rate of the bearing in different 
time periods to predict the RUL of the bearing(Qian, Yan, 
and Gao 2017). These methods can provide accurate 
prediction results, it still requires an in-depth understanding 
of the physical characteristics of the bearing and the 
prognosis of the bearing. The accuracy depends heavily on 
the accuracy of the physical model used. The hybrid 
prediction method is a RUL prediction method that combines 
the advantages of physical models and data drivers(Wang et 
al. 2020). Wang et al. constructed a new scalable two-stage 
linear/nonlinear composite model to describe various 
degradation behaviors of bearings through a hybrid data- and 
model-driven method, and predicted the RUL of bearings by 
using a long and short time memory network(Wang, Cui, and 
Wang 2022). Rezamand et al. defined the role of 
environmental conditions in the dynamics of bearing failure. 
They achieved the RUL prediction of faulty bearings through 
vibration signal recognition and fault dynamics 
analysis(Rezamand et al. 2021). The hybrid prediction 
method can effectively simulate the degradation process of 
rolling bearings. However, these methods complicate the 
algorithm and is limited by the physical behavior of the 
rolling bearing during the degradation process, which in turn 
leads to modeling difficulties.  

Due to the limitations of different methods, the unclear 
exploration of the failure mechanism of rolling bearings, the 
lack of degradation data, and especially the neglect of 
historical operating data of rolling bearings in normal service, 
these methods cannot accurately evaluate the service status 
of rolling bearings. There are two reasons for this. First, the 
degradation characteristics used cannot accurately represent 
the degradation trajectory of rolling bearings; second, the 
degradation model used cannot map the failure mechanism of 
rolling bearings. Due to the powerful feature extraction 
ability of convolutional neural networks, by stacking multiple 
convolutional and pooling layers, more and more abstract and 
advanced features can be gradually extracted. This 
hierarchical feature extraction can better capture the 
degradation information of bearings, thereby improving the 
performance of the model. In addition, due to the excellent 

non monotonic characteristics of the Wiener process, it can 
effectively describe the local fluctuation characteristics on 
the degradation path of bearings. Therefore, in order to 
overcome the limitations of the above methods, this paper 
proposes a rolling bearing state assessment method based on 
deep learning combined with Wiener process, starting from 
the construction of degradation indicators of rolling bearings 
and the failure mechanism mapping of the model. This 
method first constructs a degradation indicator extractor for 
the full- life cycle of rolling bearings based on one-
dimensional convolutional neural. Secondly, a mapping 
model between its degradation trajectory and RUL is 
established based on the Wiener process. Then, using DI to 
estimate the unknown parameters in the model, the RUL 
prediction of the rolling bearing at different monitoring 
points is completed. Finally, the status evaluation of the 
rolling bearing is realized through the prediction results at the 
current moment. 

2. METHOD PROPOSED 

2.1. DI construction method  

Convolutional neural network is a type of deep neural 
network, which consists of multiple neural network layers. 
Each layer consists of multiple neurons that are connected to 
the neurons in the previous layer. Convolutional neural 
networks usually contain three types of layers: convolutional 
layers, pooling layers, and fully connected layers. Because 
the dimensional convolutional neural network has good 
information mining and weight sharing capabilities(She and 
Jia 2019). Therefore, this paper constructs the bearing 
degradation index of the rolling shaft based on the one-
dimensional convolutional neural network. The specific 
construction method is as follows: 

Let  1 2 1, , T
m M−X XX X represent the full-life vibration 

signal of the M group of rolling bearings, and 

,1 ,2 , 1 ,, ,
T

i i i i n i N− =  X x x x x  be the full-life cycle signal of 
the i-th group, where N is the number of sampling times of 
the bearing. Therefore, the whole life vibration signals of the   

group of rolling bearings can generate 
1

M

i
i

N
=
  group of 

samples. As shown in Figure 1, samples are input into the 
constructed one-dimensional convolutional neural network 
(1DCNN) in batches to perform convolution normalization 
and other operations. Finally, a neuron is connected to the 
output end to represent the current service status of the rolling 
bearing. In this way, the collected samples are sequentially 
input into the constructed one-dimensional convolutional 
neural network to obtain the degradation index that 
characterizes the degradation trajectory of the rolling bearing. 
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Figure1. DI construction process 

2.2. State Assessment Method 

The Wiener process has good statistical properties. Therefore, 
this paper establishes a degradation model of rolling bearings 
based on the Wiener process to describe its degradation 
state(Ta et al. 2023). The degradation process of the rolling 
bearing is described based on the Wiener process as shown in 
Equation (1), where ( )y t  represents the degradation state of 
the rolling bearing at time t, and 0y  is the initial state of the 
rolling bearing. a is the drift coefficient, which represents the 
difference between similar rolling bearings and obeys the 
normal distribution 2( , )a aN   .  bt is the degradation trend 
term describing the severity of rolling bearing degradation, 
where b  is a fixed coefficient. c is the diffusion coefficient, 
which represents the degree of fluctuation when the rolling 
bearing degrades, and ( )B t  is the standard Brownian motion 
(BM), which represents the inherent variability of the random 
degradation process over time. The fluctuation term describes 
the uncertainty when the rolling bearing degrades and obeys 
the normal distribution 2(0, )N c t . 

0( ) ( )by t y at cB t= + +  (1) 

In order to ensure that rolling bearings always operate safely. 
Therefore, as shown in equation (2), the RUL kl  of the 
rolling bearing at time k  is defined based on the first hitting 
time(Cheng et al. 2023), where   is the failure threshold. 

( ) ( ) inf :k k k kl l y l t y t y= +  =  (2) 

According to the characteristics of BM and the definition of 
the RUL of the above formula, the probability density 
function (PDF) of the RUL of the rolling bearing at any time 
is shown in Equation (3)(Si et al. 2012). 
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where ( ) ( ) bb
k k k kA l t l t= + − , ( ) ( ) ( ) 1b

k k k k kB l A l l b t l −= − +  

and ( ) ( )k kw t w y t= − . After obtaining the PDF of the RUL. 
As shown in equation (4), the pseudo life is first integrated 
and averaged, and then the RUL of the rolling bearing at time 
is obtained(Hu et al. 2020). Then use equation (5) to evaluate 
the service status of the bearing at the current moment, pastT  
represents the length of time the bearing has been in service 
relative to the current moment, kBC  represents the service 
status of the bearing at the current moment, and the closer 

kBC  is to 100%, the healthier the bearing is. 

( )
0k k k kL l f l dl


=   (4) 
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k

t k

B
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L
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+  (5) 

According to formula (3) and (4), if the RUL of the rolling 
bearing at the current time is obtained, the values of 
parameters 2, ,a a b   and 2c  need to be estimated. The 
parameters 2, ,a b c  can be obtained using the mapping 
model (1) as the fitting function. The parameter 2

a  can be 
obtained by the maximum likelihood estimation method. 
According to the nature of Wiener process, sample 

 1: 1 2, ,N Ny y y=y  follows multivariate normal 

distribution, let 1 2, ,
Tb b b

Nt t t =  Λ , then its mean and 
variance are shown in equation (6): 
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Obtain the PDF of the multivariate normal distribution 
according to Equation (6) and take the logarithm of both sides 
to obtain the likelihood function containing unknown 
parameters. Then use the likelihood function to partially 
derive the parameter 2

a , and make the equation equal to 0. 
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The solution expression for parameter 2
a  is obtained as 

shown in Equation (7): 

( ) ( )
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Q
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2.3. Method framework 

The proposed method is shown in Figure 2. This method first 

divides the obtained full-life data into 
1

M

i
i

N
=
  samples 

according to the number of collections, and performs data 
processing on each sample to remove abnormal points and 
avoid interference with the DI construction model. Secondly, 
input the processed data into the constructed 1DCNN in 
batches to train the network until the network converges. 
Then, the trained network is used as the DI extractor of the 
rolling bearing, and the newly collected data is input into the 
DI extractor in sequence according to the number of sampling 
times, so as to obtain the DI describing the historical 
operating status of the rolling bearing. Then, use the historical 
DI data of the rolling bearing to estimate the unknown 
parameters in the mapping model, and bring them into 
equations (3) and (4) to obtain the RUL of the rolling bearing 
at the current moment. Finally, equation (5) is used to 
evaluate the current service status of the rolling bearing. 

 

Figure2. Method framework 

3. EXPERIMENT 

In order to verify the effectiveness of the method, this paper 
uses two sets of public full-life rolling bearing data sets for 
verification. The constructed DI is quantitatively analyzed 

using robustness (Rob), monotonicity (Mon), trendability 
(Tre) and comprehensive evaluation methods (Com)(Ta et al. 
2023). If these four evaluation indicators are larger, it means 
that the constructed DI can better characterize the 
degradation trajectory of the bearing. Similarly, in order to 
analyze the prediction results from a quantitative perspective, 
this paper uses root mean square error (RMSE), adaptability 
(R2), mean absolute error (MAE) and cumulative relative 
accuracy (CAR) to analyze the prediction results. The smaller 
the RMSE and the MAE, the better the prediction effect; the 
larger R2 means the model has stronger adaptability; the 
greater the CAR, the better the prediction effect. 

3.1. Case 1 

Case 1 uses the full-life bearing data provided by the IEEE 
PHM 2012 Challenge to verify the method. Experimental 
data comes from PRONOSTIA experimental bench. This 
data set contains a total of 17 sets of accelerated degradation 
experimental data of rolling bearings, which were completed 
under three working conditions, as shown in Table 1. The 
operating conditions of the 17 sets of rolling bearings are 
shown in Table 2. 

Table1. Operating conditions table 
Condition 
number Conditions 1 Conditions 2 Conditions 3 

Rotating 
speed 1800 rpm 1650 rpm 1500 rpm 

Apply load 4000 N 4200 N 5000  

Table2. IEEE PHM 2012 Dataset 
Data set Conditions 1 Conditions 2 Conditions 3 
Training 
set 

Bearing1_1  Bearing2_1  Bearing3_1  
Bearing1_2  Bearing2_2  Bearing3_2  

Test set 

Bearing1_3 Bearing2_3 Bearing3_3  
Bearing1_4 Bearing2_4  
Bearing1_5 Bearing2_5  
Bearing1_6 Bearing2_6  
Bearing1_7 Bearing2_7  

In this experiment, each group of bearings used two vibration 
sensors to collect data. The sampling frequency was 25.6kHZ, 
the sampling interval was 10 seconds, and the duration of 
each sampling was 1 second. In this experiment, this paper 
uses Bearing1_3 as a test sample, and the others as training 
samples to train the network, and continuously adjust the 
network parameters until the network converges. Bearing1_3 
data samples are input into the DI extractor successively, and 
the output DI are smoothed successively. The DI of 
Bearing1_3 is shown in Figure 3. The constructed DI is 
compared with the 7 commonly used DI of rolling bearings. 
The comparison results are shown in Table 3 (Proposed 
method (M1), Degenerate angle (M2), Maximum value (M3), 
Mean absolute value (M4), Root mean square (M5) Root 
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amplitude (M6), Standard deviation (M7) Variance (M8)). It 
can be seen from the table that the DI constructed using the 
proposed method has good Tre, Rob and Mon. Because the 
range of these three evaluation indicators is between [0,1]. 
Therefore, the three of them are added to form a Com. 
Judging from the comprehensive indicator column in the 
table, the DI constructed in this paper is the best. 

 

Figure3. Bearing1_3 DI 

Table3. Performance comparison of 8 DIs 

 Rob Mon Tre Com 

M1 0.9932 0.8484 0.8867 2.7283 

M2 0.9932 0.1276 0.4102 1.531 

M3 0.9797 0.4599 0.7402 2.1798 

M4 0.9737 0.3571 0.7402 2.0710 

M5 0.7311 0.4207 0.8216 1.9734 

M6 0.5934 0.0113 0.2156 0.8203 

M7 0.9931 0.4233 0.8145 2.2309 

M8 0.9909 0.4382 0.7979 2.2270 

Bearing1_3 conducted a total of 2375 samples in the 
experiment. In order to make the intervals between each 
condition monitoring (CM) point equal, this paper took the 
first 2300 samples as test samples, in which the monitoring 
interval was 100. Finally, Bearing1_3 was monitored 23 
times according to the service process of the bearing. The k-
th CM point represents the service status of the bearing at 
time k, and the previous k-th CM point represents the 
historical service status of the bearing at time k. The 
constructed DIs are input into the PDF of the RUL in batches 
and the corresponding unknown parameters are estimated. 

The obtained PDF of the RUL is shown in Figure 4. It can be 
seen from the figure that with more and more historical data, 
the PDF becomes more and more convergent, indicating that 
the credibility of the prediction is getting higher and higher. 

 

Figure4.   PDF of RUL 

 

Figure5. Prediction results at different CM points 

Table4. Quantitative analysis of prediction results 

RMSE R2 MAE CAR 

63.5707
（2.76%） 0.9908 60.5620

（2.63%） 0.8610 

As can be seen from Figure 5, the prediction results of 
different CM points are close to the actual RUL of the rolling 
bearing Bearing1_3. It can be seen from Table 4, the RMSE 
of the prediction result is only 2.76%, the MAE is 2.63%, R2 
is close to 1, and the CAR is 86.10%. The above analysis 
results show that the method has good accuracy. In addition, 
Figure 6 shows the service status of the rolling bearing 
Bearing1_3 at different CM points. It can be seen from the 
figure that the service performance of the rolling bearing 
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Bearing1_3 gradually decreases as its service time becomes 
longer. It also illustrates the effectiveness of this method for 
evaluating the service status of rolling bearings. 

 

Figure6. Bearing1_3 service status 

3.2. Case 2 

Case 2 uses the public data set of XJTU-SY for verification. 
This data set contains a total of 15 sets of full-life bearing 
data. The sampling frequency is 25.6 kHz, the sampling 
interval is 1min, and each sampling is 1.28 seconds long. In 
the same verification method as Case 1, 14 sets of bearings 
are used as training samples and 1 set is used as test samples. 
The test sample is Bearing 3_1. The DI of Bearing 3_1 
obtained after the final test is shown in Figure 7. It can be 
seen from the figure that although the DI produces large local 
volatility, the overall Tre and Rob show good performance. 
In addition, the performance comparison of different DIs in 
Table 5 also proves that the DI constructed by this method 
has good representation performance. 

 

Figure7. Bearing1_3 DI 

 

Table5. Performance comparison of 8 DIs 

 Rob Mon Tre Com 

M1 0.9431 0.7887 0.9530 2.6848 

M2 0.9968 0.0292 0.1321 1.1581 

M3 0.9919 0.0252 0.3321 1.3492 

M4 0.9919 0.0996 0.3423 1.4338 

M5 0.6331 0.0548 0.0941 0.7820 

M6 0.5731 0.0236 0.1641 0.7608 

M7 0.9960 0.1204 0.3419 1.4583 

M8 0.9961 0.1064 0.3427 1.4452 

Bearing 3_1 took a total of 2538 samples. In order to keep the 
monitoring interval unchanged, the first 2500 sampling 
points were taken for verification, and a total of 25 times of 
monitoring were conducted. The RUL of PDF for each 
monitoring is shown in Figure 8. It can be seen from the 
figure that with more and more historical data, the PDF 
becomes more and more convergent, which shows that the 
credibility of the prediction is getting higher and higher. This 
leads to the same conclusion as Case 1. 

 

Figure8.   PDF of RUL 

Figure 9 shows the results of the actual life and predicted life 
of Bearing 3_1 at different monitoring points. It can be seen 
from the figure that the deviation at some CM points is larger, 
and the deviation at some CM points is smaller. This is 
because the constructed DI has greater volatility at this CM 
point, which in turn leads to a greater deviation between the 
prediction results and the actual results. However, from the 
overall prediction effect, the prediction results are gradually 
closer to the actual prediction results. As can be seen from 
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Table 6, the RMSE of the prediction result is 9.72%, MAE is 
7.10%, R2 is 0.8865, and CAR is 77.01%. The above analysis 
results show that the method has good accuracy. Figure 10 is 
the result of mapping the predicted RUL to service 
performance, and then determines the service status of the 
bearing. It can be seen from the figure that as the service time 
of the bearing increases, the performance of the bearing 
gradually decreases. Although there was a "recovery" during 
the period, this can be considered as the self-healing behavior 
of the bearing during service. Therefore, this method can well 
evaluate the service status of bearings. 

 

Figure9. Prediction results at different CM points 

Table6. Quantitative analysis of prediction results 

RMSE R2 MAE CAR 

242.9127
（9.72%） 

0.8865 177.4692
（7.10%） 

0.7701 

 

Figure10. Bearing1_3 service status 

4. CONCLUSION 

In order to evaluate the service status of rolling bearings, this 
paper proposes a rolling bearing status evaluation method 
based on deep learning combined with Wiener process. Since 
the existing DIs cannot characterize the degradation 
trajectory of rolling bearings. This paper uses a 1DCNN to 
extract the DIs of rolling bearings. Aiming at the problem of 
the RUL of rolling bearings, this paper constructs a 
degradation model of rolling bearings based on the Wiener 
process, and uses its PDF to estimate the RUL of rolling 
bearings. The RUL of the rolling bearing is mapped to its 
service status, thereby completing the service status 
assessment of the rolling bearing. This paper uses the IEEE 
PHM 2012 public data set to verify the method. The 
experimental results show that the extracted DI has good 
trend and monotonicity, and the service status assessment of 
the rolling bearing has good accuracy. However, the 
contribution of this paper is limited. From the verification 
results, the bearing prediction accuracy is largely determined 
by the constructed DI and the complexity of the model. 
Therefore, the follow-up work of this paper will start from 
mining the degradation information of bearings and 
establishing more complex prediction models to improve the 
prediction accuracy of bearings. 
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ABSTRACT 

In practical bearing fault diagnosis, labeled fault data are 
difficult to obtain, and limited samples will lead to training 
overfitting. To address the above problems, a semi-
supervised fault diagnosis method based on graph 
convolution is proposed. Firstly, the KNN graph construction 
method based on Euclidean distance (ED-KNN) is used to 
achieve label propagation. Then, a graph convolutional 
network framework based on dot product attention 
mechanism (GPGAT) was constructed to enhance the 
weights of high similarity nodes and diagnose bearing faults. 
The proposed method is validated on a public bearing dataset. 
The results show that the proposed method can make full use 
of very few labeled samples for fault diagnosis. Compared 
with other state-of-the-art methods, the proposed method 
achieves better diagnosis performance. 

1. INTRODUCTION 

Rotating machinery plays a crucial role in manufacturing, 
industrial robotics, transportation, and other fields. Bearings, 
as vital components of rotating machinery, may lead to 
significant economic losses if they fail. Bearings generate 
vast amounts of data during operation, and how to extract 
useful information from this data has become a hot topic in 
bearing fault diagnosis research in recent years n (Zhang et 
al., 2023). Intelligent fault diagnosis is an automated 
reasoning process based on data-driven approaches. In recent 
years, various deep learning models have been successfully 
applied to intelligent fault diagnosis (Jiao et al., 2020). 
However, their effective training relies on a large amount of 
labeled data, which is quite challenging in practical fault 
diagnosis (Yang et al., 2023). In engineering, labeling and 

screening data are time-consuming tasks, making it essential 
to study high-precision bearing fault diagnosis methods 
under extremely scarce labeled samples.  

Semi-supervised learning can leverage a small number of 
labeled samples to learn the information contained in the vast 
majority of unlabeled samples. In recent years, it has been 
widely studied in intelligent fault diagnosis in mechanical 
systems. Ding et al. (2023) trained multiple GANs to 
eliminate abnormal cases, thereby enhancing the 
performance of small-sample fault diagnosis in a semi-
supervised manner. Yu et al. (2020) investigated a data 
augmentation method based on consistency regularization, 
which achieved fault diagnosis of bearings in cases where 
labeled samples are limited. Zhang et al. (2019) proposed an 
Active Semi-Supervised Learning GAN (ASSL-GAN), 
which minimizes the loss function through alternate updates 
to achieve higher accuracy. These methods can to some 
extent address the challenge of insufficient labeled samples 
in fault diagnosis tasks. 

In recent years, with the flourishing development of 
Graph Neural Networks (GNNs) (Scarselli, F. et al., 2019), 
graph-based semi-supervised algorithms have gradually 
become a research hotspot. A graph based semi supervised 
learning algorithm propagates labeled data labels to 
unlabeled data by constructing a graph. The following paper 
provides a similar method implementation. Xie et al. (2022) 
utilized multi-scale graph convolution to aggregate multi-
scale information of labeled samples and introduced an 
attention mechanism to form a new adaptive feature fusion 
layer. They proposed the Semi-supervised Multi-Scale 
Attention Graph Convolutional Network (MSA-GCN) for 
fault diagnosis and achieved satisfactory results. Kavianpour 
et al. (2022) addressed the issues of insufficient labeling of 
fault diagnosis data, changing operating conditions, and data 
loss in practical applications by aligning subdomains of the 
same class. They proposed a semi-supervised method based 

 This is an open-access article distributed under the terms of the Creative 
Commons Attribution 3.0 United States License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided 
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on Autoregressive Moving Average (ARMA) filter graph 
convolution, adversarial adaptation, and Multi-layer Multi-
kernel Local Maximum Mean Discrepancy (MK-LMMD). 
The above literature demonstrates the unique advantages of 
Graph Neural Networks in semi-supervised learning. 
However, this research still faces challenges such as high 
labeling rates and model instability under extreme labeling 
conditions, and there are still some shortcomings in feature 
mining for low-labeled samples, limiting its practical 
application. 

In response to the scenario of fault diagnosis with 
extremely few labeled data, this paper proposes a network 
that combines Euclidean distance-based KNN graph (ED-
KNN) with dot product graph attention mechanism (DPGAT). 
By utilizing Euclidean distance to measure the distance 
between labeled and unlabeled samples, an accurate KNN 
graph is obtained. Then, the dot product attention mechanism 
is used to further increase the weights of neighboring nodes 
with high similarity, in order to learn the optimal 
representation of the graph. The proposed method is 
experimented on a publicly available bearing dataset. The 
results demonstrate that the proposed method achieves high-
precision classification of unlabeled data with minimal 
training on extremely few samples, indicating its significant 
engineering application value. 

2. RELATED THEORIES 

2.1. Graph neural networks 

Unlike convolutional neural networks (CNNs), graph neural 
networks (GNNs) are a class of learning models based on 
graph-structured data. They can define graph convolutions 
based on the connections between nodes in non-Euclidean 
space. The difference between CNNs and GNNs in terms of 
convolution can be intuitively illustrated as shown in Figure 
1. The involved graph structure can be simplified as follows: 

 ( , )G H A=  (1) 

Here, ×
1 2{ , , , } n d

nH R=    h h h represents the set of nodes; n 
is the number of nodes; d is the dimensionality of the input 
node features; n nA R  represents the adjacency matrix 
representing the connections between nodes. The graph 
convolutional layer updates node features by aggregating 
neighboring node features. Typically, given the input graph 
G, the convolutional layer outputs a new set of node features 

1 2{ , , , } n d
n R  =      H h h h  with dimension d   . The graph 

convolutional layer can be represented as: 

 Γ( ,Υ({ | }))i i j ih h j N = h  (2) 

Among them, Ni is the number of neighboring nodes of 
node hi; Γ( ) represents nonlinear layers; Y( ) represents a 
certain node aggregation pattern.  

2.2. Semi-supervised Learning with GNN 

Graph-based semi-supervised learning typically involves 
establishing explicit relationships between labeled data and a 
large amount of unlabeled data using a graph structure, where 
data points are represented as vertices and the similarity 
between points is represented as edges. The constructed 
graph is then inputted into a graph neural network to obtain 
feature-level representations of the graph and its nodes. These 
graph-level or node-level features are then fed into a classifier 
for classification and fault diagnosis. This process leverages 
the graph structure to effectively utilize both labeled and 
unlabeled data for semi-supervised fault diagnosis. 

3. PROPOSED METHOD  

3.1. ED-KNN  

Graphs can represent the similarity relationships between 
samples. Initially, the time-domain vibration signals 
collected from bearings are segmented via multiple sampling. 
Subsequently, these segments are transformed into 
frequency-domain signals using Fast Fourier Transform 
(FFT). The KNN graph is constructed by assessing the 
adjacency between labeled and unlabeled samples using 
Euclidean distance. The distance metric formula utilizing 
Euclidean distance is: 

 
1
22

1
( , )

d

i ii i
l

d yx xis y
=

 
 − 
 

=
 

(3) 

Where ix  represents the feature of the central node and 

iy  represents the neighboring node of ix . For a certain 
central node ix x , the distance values between it and other 
neighboring nodes are arranged in ascending order: 

1 1 1{ ( , ),...., ( , )},( ... )n n nD dis x y dis x y dis dis =       (4)   

The neighboring nodes of node x are selected through k-
nearest neighbors, denoted as: 

 1 2Top k { , ,...., }kx x x  − =  (5) 

Top-k represents the set of k-nearest neighbors of ix , 
where k is the number of nearest neighbors. Through 
experiments, it has been found that when k is set to 5, the 
quality of the constructed graph is satisfactory. By 
constructing the ED-KNN graph, each time k unlabeled data 
points are assigned pseudo-labels. This step establishes an 
intrinsic graph structure connection between labeled and 
unlabeled observed data, which can be regarded as a form of 
label propagation process. 

When applying KNN nearest neighbor search, the sample 
set consists of all the samples from the bearings in that sample 
set. The connecting nodes are selected based on the proximity 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 138



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

3 

determined by distances, where the top K nearest neighbors 
are chosen. 

ED-KNN graph construction utilizes the similarity of 
feature vectors among samples to establish connections 
between them. By exploiting the joint dependencies between 
labels, label information is propagated along these 
connections, enabling the assignment of pseudo-labels to 
unlabeled samples. This approach facilitates a more thorough 
exploration of limited label information, thereby augmenting 
the model's capacity to learn from label information. The 
intuitive workflow is depicted in Fig. 1. Among them, when 
constructing the training set, the ED-KNN graph is 
constructed with labeled data as the central node and 
unlabeled data as neighboring nodes. Due to the large number 
of unlabeled data, there will be unlabeled data that has not 
been assigned and will not participate in model training. 
Meanwhile, the same sample may also be repeatedly labeled 
and participate in the construction of graphs with different 
central nodes. It is worth noting that since we use the entire 
graph for training, Neighboring nodes output features 
through weighted output. Therefore, nodes that are 
repeatedly labeled will not affect training, as they will be 
assigned different node weights in different graphs. When 
constructing the test set, all unlabeled data points in the test 
set are sequentially used to calculate the Euclidean distance 
from all other samples, and the top K-nearest samples are 
selected as neighboring nodes. Therefore, the number of 
constructed graphs is the same as the number of samples in 
the test set. Labeled data is only provided during the training 
phase, while in the testing phase, there is no availability of 
labeled data. When performing convolution calculations after 
constructing a graph, it is necessary to ensure that the number 
of linked nodes is consistent, otherwise graph convolution 
calculations will be very difficult. Therefore, we construct a 
KNN graph based on the top 5 nearest neighboring nodes. In 
fact, calculating the distance between nodes, selecting nodes 
through counting, and selecting nodes through threshold are 
similar. 

 
Figure 1. The process of ED-KNN. 

3.2. DPGAT Diagnosis Framework  

This paper proposes utilizing the dot-product attention 
mechanism to better learn graph representations by 
computing the weights of neighboring nodes' influence on the 
central node. Let 1 2{ , , , }, F

N ih h h h h=    denote the input 
features of nodes, where N and F represent the number of 
nodes and the feature dimension, respectively. The output 
features of nodes are denoted as 1 2{ , , , }, F

N ih h h h h     =   .
F FW  represents the weight matrix of linear 

transformations applied at each node. Finally, softmax 
normalization is applied, followed by Leaky ReLU to 
introduce non-linearity. The output features of nodes are 
obtained using the following equation: 

 
i

i ij j
j N

 


= h Wh
 

(6) 

ij  signifies the attention coefficient from neighboring 
node j to central node i, reflecting the significance of node j 
with respect to node i. ij  is derived through SoftMax 
normalization of the attention parameter ije  for each edge. 
The expression for the attention coefficient of node pair (i, j) 
is given by: 
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The attention parameter ije  is obtained through the outer 
product attention mechanism, which originates from node 
representation learning (Kim, D., & Oh, A. , 2022). The outer 
product of a node with its transpose can be regarded as its 
attention score. The mathematical expression for the outer 
product attention mechanism is: 

 
T( )ij i je h h= W W       (8) 

Plugging it into Eq. (7) enables us to obtain the attention 
coefficients for each pair of nodes. 

 softmax( )ij ije =   (9) 

The features outputted by DPGAT are inputted into a fully 
connected (FC) layer to obtain the predicted label set. The 
prediction process can be represented as: 

 ( )i iz FC = h  (10) 

The loss function of the DPGAT is: 

 ( ) ( )1 ln( )I T t t
Class ii t iloss y z

I
= −  

 
(11) 

Here, I denotes the label index; T stands for the number 
of classes; ( )t

iy  represents the t-dimensional value of the true 
labels; and ( )t

iz  signifies the t-dimensional value of the 
predicted label iz . 

Central Node Edge node

fault type
labeled samples

Edge connection

Top–k nearest searching and edge  weighted
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3.3. The Overall Procedure  

The overall framework of the proposed method is shown in 
Fig. 2, with specific explanations as follows. 

1) Signal Acquisition: Collect vibration signals from 
bearings using sensors on the experimental platform. 

2) Graph Construction: Divide the collected vibration 
signals into multiple independent samples and split them 
into training and testing sets. The training set comprises 
a small amount of labeled data and real collected data, 
while the testing set consists only of unlabeled data. 
Utilize the ED-KNN method to obtain the KNN graph. 

3) Model Training: Construct a feature extraction network 
based on DPGAT. Obtain output features through Eq. (6). 
Input the training set sequentially into two DP-GAT 
layers and two FC layers, and obtain the predicted label 
set through Eq. (10). Then compute the loss using Eq. 
(11). 

4) Model Testing: Feed the unlabeled testing set into the 
trained model to obtain diagnostic results and compare 
them with other semi-supervised fault diagnosis methods 
based on common GNNs. 

 
Figure 2. The framework of proposed method. 

4. VALIDATION OF PERFORMANCE 

The effectiveness of the proposed method was validated 
through two semi-supervised fault diagnosis instances. In 
Case 1, the dataset from Case Western Reserve University 
(Smith et al., 2015) was utilized, while in Case 2, the dataset 
from the University of Ottawa (UofO) (Huang & Baddour, 
2018) was employed. To demonstrate the superiority of the 
proposed approach, it was compared with seven widely 

researched graph neural networks, including Basic GAT 
(Veličković et al., 2018), DGAT, Graph Transformer (Shi et 
al., 2021), GraphConv (Morris et al., 2019), ChebConv 
(Defferrard et al., 2016), GraphSage (Hamilton et al., 2017), 
and GEN (Li et al., 2016). The above methods are only for 
graph convolutional models and do not involve a semi 
supervised learning process. We put it into the semi 
supervision framework proposed in this paper (using ED-
KNN construction diagram) to verify the progressiveness of 
the proposed GPGAT. 

4.1. Case 1: CWRU Dataset 

The CWRU dataset was tested using SKF 6205 drive-end 
bearings. The sampling frequency of the accelerometer was 
48 kHz. The bearing loads were categorized as 0HP, 1HP, 
2HP, and 3HP, with corresponding speeds of 1797rpm, 
1772rpm, 1750rpm, and 1730rpm, respectively. The health 
conditions of the bearings included four forms: Inner Race 
Fault (IF), Rolling Element Fault (ReF), Outer Race Fault 
(OF), and Normal Condition (NC). For each health 
condition's vibration signal, a sampling length of 1024 and 
the same sampling interval are used to ensure that there is no 
repetition between the data, resulting in 400 samples. These 
400 samples were then randomly divided into training and 
testing samples at a ratio of 1:1. Verify the effectiveness of 
the proposed method through accuracy validation on the test 
set 
 

Table 1. Description of the CWRU dataset. 
 

Fault 
type Speed(rpm) Labeled samples 

and labeled rate Train  Test 

OF  

1730 4×1(0.25%) 4×
200 

4×
200 

IF 
ReF 
NC 

4.2. Case 2: UofO Dataset 

The dataset originates from the SpectraQuest Mechanical 
Fault Simulator at the University of Ottawa. Two ER16K ball 
bearings were installed to support the rotating shaft, which 
could be replaced with bearings in different health states. 
Accelerometers (ICP accelerometer, model 623C01) were 
placed on the experimental bearing housing for vibration data 
collection, while an incremental encoder (model EPC-775) 
measured the shaft speed. The signal sampling frequency was 
200 kHz, and each experiment lasted for 10 seconds, 
including both acceleration and deceleration processes. For 
Case 2, vibration signals from bearings in four different states, 
including three types of faults and normal condition, were 
selected. The length of each sample was 4096 sampling 
points. 
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Table 2. Description of the UofO dataset. 
 

Fault 
type  Speed(rpm) 

Labeled 
samples and 
labeled rate 

Train  Test 

OF  

846~1428 4×20(5%) 4×200 4×
200 

IF 
ReF 
NC 

4.3. Experimental Results 

To validate the superiority of the proposed construction 
method, the GPGAT was compared with seven others 
advanced GNN methods, and the average diagnostic 
accuracy is shown in Tables 3. In Case 1, the proposed 
GPGAT achieved a classification accuracy of 98.67%, which 
is 2.5% higher than the other best-performing method DGAT. 
In Case 2, the proposed GPGAT achieved a classification 
accuracy of 97.38%, which is 2.71% higher than the other 
best-performing methods GAT and ChebConv. The GPGAT 
proposed in this paper achieved better diagnostic accuracy 
compared to other graph convolution methods on both 
datasets, validating the effectiveness of the proposed 
approach. 

Table 3. The test accuracy on the Case 1 and Case 2. 
 

Method Case1 Case2 

GPGAT(Proposed) 98.67% 97.38% 

GAT 95.57% 94.87% 

DGAT 96.17% 90.38% 

Graph Transformer 90.58% 85.00% 

GraphConv 94.17% 93.63% 

ChebConv 95.14% 94.87% 

SAGE 95.83% 87.17% 

GEN 91.75% 91.37% 

 
To further demonstrate the diagnostic performance of the 

proposed method, we visualize the confusion matrix for Case 
2, as shown in Fig. 3. Each health state has 200 test samples. 
The horizontal axis represents the predicted labels, while the 
vertical axis represents the true labels, where 0-3 denote the 
four health states OF, IF, ReF, and NC listed in Table 2. It 
can be observed that for the multi-class classification task, the 
proposed method GPGAT exhibits the best diagnostic 
performance. 

 

 
(a) GPGAT(Proposed)                         (b) GAT                                  (c) DGAT                        (d) Graph Transformer 

 
(e) ChebConv                             (f) GraphConv                              (g) SAGE                                   (h) GEN  

 
Figure 3. Classification confusion matrix for Case 2. 

 
To better illustrate the feature extraction performance of 

the proposed method, the output feature vectors are reduced 
to two dimensions using T-SNE for Case 2, as shown in Fig. 
4. From (a), it can be seen that the four types of features 
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represented by the four colors have a good degree of 
aggregation, and the distance between each type is relatively 
far, indicating that the proposed GPGAT has a good feature 
extraction ability. The features extracted by GPGAT exhibit 
higher aggregation and greater distances from each other 

compared to other methods. The proposed method 
demonstrates better discriminative ability for all health states, 
and GPGAT maintains good diagnostic performance even at 
extremely low label rates. 

 

 
(a) GPGAT(Proposed)                         (b) GAT                                  (c) DGAT                      (d) Graph Transformer 

 
(e) ChebConv                          (f) GraphConv                              (g) SAGE                                  (h) GEN  

Figure 4. 2D visualization of the output features for all the methods on Case 2. 

4.4. Discussion on Labeled Rate and K-value 

To validate the effectiveness of the proposed method under 
small sample conditions, Case 2 dataset was trained and 
tested with labeled samples of 4, 8, 12, 16, and 20. The 
experiments were repeated ten times to obtain diagnostic 
accuracy. As shown in Fig. 5, it can be observed that as the 
label rate increases from 1% to 5%, the testing accuracy 
continues to improve. Even with a label rate of 1%, a fault 
diagnosis rate of 93.75% can be achieved, while a label rate 
of 5% yields a fault diagnosis accuracy of 97.38%. 
 

 
Figure 5. Accuracy of the proposed method with different 

low labeling rates. 
 

Next, we discuss the influence of the k value used to 
construct the ED-KNN. The k value represents the number of 
neighboring nodes connected to each central node when 
creating the KNN graph. Using the proposed method, 
experiments were conducted on the two datasets at a label 
rate of 1%. Fig. 6 shows the effect of different k values on the 
diagnostic accuracy of the proposed model. It can be 
observed that on both the CWRU and UofO datasets, the 
diagnostic accuracy reaches its highest value when k=5, with 
accuracies of 100% and 93.75%, respectively. On the CWRU 
dataset, the change in accuracy with increasing K values is 
not particularly significant. This is mainly because the 
CWRU dataset is collected under steady-state conditions 
with artificially injected bearing faults, resulting in clean data 
with very distinct fault characteristics. Therefore, even with 
smaller K values, a good label propagation efficiency can be 
maintained. In contrast, the UofO dataset is collected under 
time-varying conditions, with faults occurring naturally, 
making fault characteristics less pronounced. Hence, an 
appropriate K value is required for ED-KNN. A suitable K 
value ensures that as much unlabeled data as possible is 
incorporated into the graph while minimizing graph 
construction errors. 
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Figure 6. Diagnostic accuracy with different k values. 

5. CONCLUSION 

In response to the challenges faced by fault diagnosis under 
conditions of few samples, this paper proposes a new semi-
supervised fault diagnosis method. The proposed ED-KNN 
calculates the Euclidean distance and sorts the distances in 
order to obtain the nearest neighboring nodes. It achieves 
label propagation from labeled data to unlabeled data. The 
designed GPGAT assigns different importance information 
to neighboring nodes through the dot product attention 
mechanism, further enhancing the reliability of the graph. 
Experimental validation was conducted on the CWRU and 
UofO dataset. Comparative results indicate that: (1) ED-
KNN can effectively construct an undirected graph of labeled 
and unlabeled data, achieving label propagation. (2) The 
constructed GPGAT can assign different importance to 
neighboring nodes, thereby more accurately extracting node 
features and classification information from the KNN graph. 
(3) Compared with other state-of-the-art methods, the 
proposed approach can more accurately diagnose unlabeled 
samples under conditions of few or even extremely few 
samples. 
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ABSTRACT 

This research presents an integrated PHM system for 2,000 
rotating equipment units across press, car body, paint, and 
assembly lines in Hyundai/Kia factories. The system 
addresses limitations of individual monitoring systems by 
consolidating vibration, current, robot AI diagnostics, PLC 
backup status, and operational data. Vibration monitoring 
utilizes wired/wireless sensors, server storage, and automated 
analysis for trend detection and fault diagnosis. PLC data 
monitoring retrieves motor drive information (current, 
temperature, frequency, etc.) to predict equipment anomalies. 
Robot monitoring integrates with various manufacturers and 
tracks operational status, motor load, and alarms for 
maintenance and lifespan management. The PLC backup 
solution ensures proper backup functionality. The integrated 
PHM architecture manages data collection, analysis, 
diagnostics, reporting, and visualization, enabling 
comprehensive equipment health monitoring and proactive 
maintenance. 

1. INTRODUCTION 

The optimal approach to equipment maintenance in the 
factory involves a maintenance strategy divided into reactive, 
preventive, and predictive methods. Among these, predictive 
maintenance stands out as an effective way to anticipate 
failures through equipment condition monitoring [Paulina 
Gackowiec]. It provides timely insights into breakdown 
causes, which is increasingly vital due to the industrial 
internet of things. The shift from reactive to predictive 
maintenance represents an innovative process improvement. 
In the reactive maintenance method, urgent repairs must be 
carried out post-failure, degrading maintenance quality and 
endangering workers. Conversely, predictive maintenance 

enables preemptive action, preventing factory shutdowns. By 
monitoring conditions and analyzing root causes in advance, 
maintenance can be performed proactively, and equipment 
condition can be evaluated thereafter. Sudhanshu Goel's 
paper highlights the significant potential of condition 
monitoring in enhancing operational reliability, machine 
uptime, damage reduction, and operational efficiency at a 
lower cost [Sudhanshu Goel]. Equipment incipient faults 
often exhibit variations in temperature, vibro-acoustic 
signature, etc. Different condition monitoring techniques 
utilize dedicated sensing and data analysis tools to analyze 
specific operational characteristic variations [Figure 1]. 

 

 

Figure 1. Strategy changes from reactive to predictive 

Various sensing techniques such as temperature, pressure, 
flow, ultrasonic waves, vibration, and acoustic emission can 
be used to monitor the equipment condition. Among them, 
vibration monitoring can cover most of mechanical failures 
such as imbalance, mismatch, bearing defects, gears, 
looseness, noise, cracks, resonance, etc. [ ISO 18436-2:2014] 
[Figure 2]  

 

 

First Author (Deog Hyeon Kim) et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited. 
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Figure 2. Comparison of Condition monitoring technology  

 

For predictive maintenance, not all equipment is monitored. 
Instead, sensors, signal processing modules, and servers 
capable of collecting equipment status data are installed 
selectively, focusing on those that can lead to extended 
downtime failures. The primary target equipment includes 
conveyors, drop-lifters, air conditioner fans, robots, 
controllers, and communication systems. VMS, or Vibration 
Monitoring System, monitors vibration data at the 
equipment’s drive in real-time and can predict failures in 
advance. This system comprises a sensor unit for real-time 
vibration measurement, a signal processing module, a server 
for data collection and storage, and a monitoring device for 
status display. It is implemented on main equipment causing 
extended downtime failures (downtime exceeding 60 
minutes). Over 5,000 sensors are installed in more than 2,000 
machines across Hyundai/Kia factories worldwide. All 
system servers are connected to the company network, 
allowing authorized executives and employees to access data 
conveniently from anywhere, enabling real-time monitoring 
of equipment installed worldwide [Figure 3]. 

 

 
Figure 3. Vibration Monitoring System configuration 

 

Similar to vibration monitoring, an approach to determine the 
number of shorted turns based on the difference between the 
phase current of the healthy and faulty machine is proposed 
[Nandi, S., Toliyat]. Condition monitoring of rotating 
machinery is crucial for ensuring operational reliability and 
preventing catastrophic failures. While vibration monitoring 
has long been the primary method for detecting mechanical 
faults, current monitoring offers a complementary approach 
with distinct advantages. Current monitoring is 
comparatively inexpensive to implement and is well-suited 
for diagnosing electrical faults in motors and inverters. This 
system also includes development and application of current-
based condition monitoring technology to prevent electrical 
faults in rotating machinery. Technology for monitoring the 
current of the equipment's driving unit has been developed 
and implemented. However, challenges such as slow 
sampling of current data, the requirement for a large-capacity 
server, and a lack of diagnostic technology persist. To address 
this issue, a diagnostic function block capable of current 
analysis has been developed and deployed. Integrated within 
the PLC controller's code programs, this diagnostic function 
block receives various parameters including current, 
frequency, and control setting values of the equipment's 
driving unit as input. The output comprises diagnostic results, 
which are transmitted to the cloud server for analysis. The 
figure depicting the diagnostic function block is shown below 
[Figure 4]. 

 

 
Figure 4. diagnostic function block for current monitoring 

 

The increasing complexity and autonomy of robotic systems 
necessitate advanced condition monitoring techniques to 
ensure their reliable operation and prevent costly downtime. 
Traditional condition monitoring approaches often rely on 
centralized cloud-based data processing, which can lead to 
latency issues and communication bottlenecks. Edge 
computing offers a promising alternative by enabling real-
time data analysis and decision-making at the edge of the 
network, closer to the data source [Niklas Tritschler].  

This system involves installing vibration sensors on the 
motor and reducer of each axis of the robot and applying an 
autoencoder algorithm to assess anomaly scores. An edge 
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device was developed and utilized as a CMS (DAQ) to gather 
vibration data from the robot. Figure 5 illustrates the structure 
of robot vibration diagnosis system based edgeCMS system. 

 

 
Figure 5. Robot vibration diagnosis system with edgeCMS 

To monitor the condition of industrial robots, each 
manufacturer develops and provides a robot monitoring 
system. Hyundai(HRMS-Hyundai Robot Monitoring 
System), Yaskawa(Y-FAI) , Kawasaki(KRDS-Kawasaki 
Robot Diagnostic System), and Fanuc(ZDT-Zero Down 
Time system) robots are representative examples. The 
manufacturer's monitoring system typically displays basic 
operation information such as model and operation status 
graphs, along with notification history. It also provides alarm 
information and component replacement time when the 
reference value deviates from statistical norms. However, 
this system lacks failure prediction functionality. To address 
this, a Robot Predictive Maintenance System (RPMS) was 
developed. This system utilizes autoencoder models to learn 
normal states from manufacturer-provided robot monitoring 
data and identifies deviations from normal states [Figure 6]. 

 
Figure 6. Robot monitoring system 

 
The PLC(Programmable Logic Controller) program backup 
system is being implemented. It mainly consists of an agent 
PC managing program change points and a database storing 
the results. Hyundai/Kia factories employ PLCs from various 
manufacturers including Siemens, Rockwell, Mitsubishi, Fuji, 
and LS, and all systems managing program change points of 

these PLCs are in use. However, to address issues related to 
ineffective program backup when the agent PC is improperly 
managed, a cloud-based technology integrating agents and 
databases has been developed. This technology manages 
fluctuation points effectively. Figure 7 illustrates the 
structure of the PLC program backup system based on the 
cloud. 

 
Figure 7. PLC program backup system based on cloud 

 

2. INTEGRATED PHM SYSTEM 

As the equipment monitoring system is currently 
implemented as separate systems, managing equipment 
becomes cumbersome. This involves checking multiple 
individual systems separately to diagnose a single piece of 
equipment, and there is no comprehensive system for 
analyzing equipment data. To address these challenges, a 
next-generation integrated Prognostics and Health 
Management (PHM) system is being developed. This 
integrated PHM system, based on existing accumulated 
monitoring technology and diagnostic expertise, is being 
deployed in new factories within the Hyundai/Kia company. 

2.1. Configuration of Integrated PHM system 

The aim of the integrated PHM system is to consolidate 
equipment failure data monitoring and enhance failure 
diagnosis and analysis capabilities. The system comprises 
sections for equipment monitoring, diagnostic report 
management, fault diagnosis algorithms, and data 
transmission/reception interfaces. 

Equipment monitoring encompasses vibration, drive current, 
electrical equipment status, PLC program backup status, 
robot operation status, robot vibration status monitoring, 
alarm lists, and maintenance history inquiries. Additionally, 
it enables monitoring of equipment status trends and system 
resources through trend graphs. 

Diagnostic report management is linked with equipment 
abnormality alarm event management, facilitates automatic 
report generation and email dispatch of diagnostic reports, 
and integrates with the prevention task instruction module in 
ERP(SAP). 
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The analysis algorithms promote advanced analysis 
techniques, including time series trend analysis, 
frequency/pattern analysis, harmonic/rotational speed 
analysis, automatic vibration state analysis, and automatic 
failure type determination algorithms that detect sudden state 
changes. 

Utilizing the IoT(Internet of Things) platform and 
Hyundai/Kia's standard collection module, the system 
collects equipment state data and offers basic functions for 
efficient and reliable data management. These include alarm 
management, equipment registration, device control, data 
collection, and algorithm management. 

Currently, the integrated PHM system monitors 
equipment/robot vibration status, status of current, control 
panel status, network switch status, robot status, and PLC 
backup status. However, it can accommodate new monitoring 
solutions for equipment condition diagnosis. Figure 8 
illustrates the configuration of the integrated PHM system. 

 

 
Figure 8. Configuration of integrated PHM system 

 

Several data transactions and signal processing tasks are 
necessary for the integrated PHM system, including real-time 
data collection and analysis, CMS(Condition Monitoring 
System) device control, AI(Artificial Intelligence) algorithm 
execution, and accounting for network load and security 
considerations. Consequently, physical servers need to be 
configured for each factory. 

The integrated PHM server comprises a web/app server, a 
DB(Database) server, and an Factory Talk Linx Gateway 
server(Rockwell) for interfacing with current and electronic 
component data. Figure 9 illustrates the configuration of the 
integrated PHM server. 

 

 
Figure 9. Configuration of integrated PHM server 

2.2. Architecture of Integrated PHM system 

The architecture of the integrated PHM system is designed to 
collect, analyze, and present equipment source data. 
Vibration monitoring, robot monitoring, and PLC backup 
utilize dedicated servers, with data stored on these servers 
interfacing with the integrated PHM server via a DB-to-DB 
interface method. 

For collecting current/control panel state monitoring data, 
PLCs in the control panel gather and analyze necessary data 
using function blocks. This data is then collected by a 
dedicated collection server such as FTLinx GW and stored in 
the integrated PHM's InfluxDB using the OPC-UA protocol. 
FTLinx GW serves as a collecting tool for Rockwell systems, 
whereas different servers are required for PLCs from other 
manufacturers such as Siemens, LS, and Mitsubishi. 

Robot vibration data is collected from the edge CMS device, 
and the analysis result is transmitted to the integrated PHM 
server through a file collection batch process. As the results 
from edgeCMS are stored as files, the system must possess 
the capability to collect and manage files. 

The collected equipment status data undergoes backend 
analysis, including vibration and current abnormality 
diagnosis, diagnosis notification/report management, 
equipment status management, external system connection, 
data collection management, device/alarm management, and 
visualization data management. 

At the front end, functions such as factory map-based 
equipment management, equipment status 
management/alarm management, and equipment-based 
information data visualization are implemented. Further 
details are provided in Figure 10 below. 
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Figure 10. Architecture of Integrated PHM system 

2.3. Monitoring contents and user interface 

2.3.1. Main integral monitoring 

The integrated system encompasses various monitoring 
purposes and incorporates a user-friendly UI/UX application, 
incorporating different factors based on a map interface. This 
enhances efficiency for maintenance engineers. Additionally, 
AI PHM algorithms are integrated into the system, enabling 
automatic vibration detection and spectrum analysis, serving 
as powerful tools. Automatic email notifications of 
abnormalities further enhance maintenance efficiency.  

The main page of the integrated PHM system shows the 
equipment list, equipment status statistics (normal, caution, 
warning), daily alarm trends, shop-specific diagnostic result 
statistics, itemized diagnostic result statistics, and equipment 
status displayed on a map. Moreover, the system 
automatically presents analysis results on the main page to 
improve user intuition. Alarm history, diagnosis reports, 
action details, and maintenance work management content 
are also accessible on the main page. Specific and detailed 
results can be viewed by clicking on each menu. Figure 11 
provides an example of the integrated main page. 

 

 
Figure 11. Main page of Integrated PHM system 

2.3.2. Vibration monitoring 

The vibration monitoring analysis page configuration 
presents the average vibration level for each sensor along 
with the automatically calculated vibration variation. Sensors 
exhibiting significant changes are highlighted in red. 
Additionally, the page displays the equipment’s vibration 
trend over time and automatically analyzed results of 
frequency spectrum analysis. For detailed spectrum analysis, 
3D plots and heat maps are provided. Furthermore, the 
system features automatic generation and emailing of 
diagnostic reports [Figure 12]. 

 

 
Figure 12. Vibration monitoring page 

2.3.3. Current and control panel state monitoring 

For equipment current state monitoring, the system displays 
comprehensive analysis results of parameters such as current 
data and frequency data from the inverter driving the motor. 
These values indicate diagnostic results such as load current 
performance and fluctuations during machine operation. 
Additionally, the system enables monitoring of elements 
crucial for the inverter's lifespan, including IGBT, capacitor, 
and temperature. Sensor data for each location of the drop-
lifter equipment, responsible for moving the car up and down, 
is also presented for monitoring sensor status. Furthermore, 
the system organizes a page to monitor power, temperature, 
and lifespan of the main elements in the control panel [Figure 
13]. 

 
Figure 13. Current/Control panel monitoring page 
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2.3.4. Robot vibration monitoring 

The method for diagnosing the vibration state of robots 
differs from that of general equipment described earlier. 
Unlike conventional equipment, robots lack distinct 
movement patterns and have short constant speed sections, 
making diagnosis challenging with traditional vibration 
analysis methods. To address this, a vibration sensor is 
attached to each axis of the robot, and an AI algorithm, 
specifically the auto-encoder method, is employed to predict 
signal outliers. By utilizing an auto-encoder, the difference 
between normal and abnormal data can be transformed into a 
health index score, facilitating equipment state trend 
prediction. The figure below illustrates the monitoring of the 
robot's vibration status [Figure 14]. 

 

 
Figure 14. Robot vibration monitoring page 

2.3.5. Robot operation monitoring 

In the automotive manufacturing factory, there are 600 
industrial robots in the vehicle welding factory, 200 in the 
painting factory, and 100 in the assembly factory. A robot 
monitoring system is developed and installed in each factory 
to monitor the operation information and condition of the 
robots. Since monitoring the operation status, alarm history, 
and error information of hundreds of robots in individual 
systems is challenging, the system is configured to initially 
display key results in coordination with the integrated PHM 
system, allowing users to review detailed information in 
individual robot monitoring systems as needed [Figure 15]. 

 
Figure 15. Robot operation monitoring page 

2.3.6. PLC program backup monitoring 

The equipment controller utilizes PLC, primarily employing 
ladder programs. When equipment operation is altered, 
monitoring the normality of program backups is managed 
through the PLC backup status inquiry page. This page 
displays the location, equipment name, and final backup date, 
and indicates any communication issues or conditions if 
backups are not performed. The image below depicts the PLC 
backup status inquiry page [Figure 16]. 

 
Figure 16. PLC backup monitoring page 

3. PRACTICAL APPLICATION 

Various PHM technologies for monitoring and predicting 
equipment conditions are being implemented in production 
plants. Initially, an integrated PHM system, integrating these 
technologies, is being deployed in new factories within 
Hyundai/Kia. These include the HMGMA Plant under 
construction in Savannah, Georgia, as well as the 
Gwangmyeong EVO Plant, Ulsan EV Plant, and Hwaseong 
EVO Plant in Korea. Subsequently, monitoring will extend to 
enhance equipment uptime across mass production plants. 
Equipment monitoring and technical support are facilitated 
by the Equipment Monitoring Center at Hyundai Motor's 
Ulsan plant [Figure 17]. 

 
Figure 17. Equipment Monitoring Center in Hyundai motor. 

4. CONCLUSION 

Vibration and current monitoring are underway for 2,000 
rotating equipment units throughout Hyundai/Kia factories. 
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An integrated PHM system is being developed to streamline 
equipment management and analysis. It integrates data from 
various monitoring systems, including vibration, PLC, and 
robot diagnostics, facilitating trend detection and fault 
diagnosis. The system architecture encompasses components 
for data management, diagnostic reporting, and external 
system integration. We plan to continue activities using the 
integrated PHM system to efficiently monitor equipment 
status and dramatically improve downtime. 
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ABSTRACT

Condition monitoring of gears in gearboxes is crucial to en-
sure performance and minimizing downtime in many indus-
trial applications including wind turbines and automotive.
Monitoring techniques using indirect measurements (i.e. ac-
celerometers, microphones, acoustic emission sensors and
encoders, etc.) face challenges, including the defect inter-
pretation and characterization. Vision-based gear condition
monitoring, as a direct method to observe gear defects, has
the capability to give a precise indication of the starting point
of a potential surface failure, but suffers from the image an-
notations (to train a reliable vision model for automatic de-
fect detection of gears). In this paper, we propose an ac-
tive learning framework for vision-based condition monitor-
ing, to reduce the human annotation effort by only labelling
the most informative examples. In particular, we first train a
deep learning model on limited training dataset (annotated
randomly) to detect pitting defects. To select which sam-
ples have the highest priority to be annotated, we compute
the model’s uncertainty on all remaining unlabeled examples.
Bayesian active learning by disagreement is exploited to esti-
mate the uncertainty of the unlabeled samples. We select the
samples with the highest values of uncertainty to be annotated
first. Experimental results from defect detection of gears in
gearboxes show that with less than 6 times image annotations,
we can achieve similar performances.

1. INTRODUCTION

Detecting defects on gear surfaces is essential for maintaining
the safety, performance, and longevity of machinery, while

Wenzhi Liao et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

also ensuring quality control and minimizing downtime and
costs, especially for gearboxes in high-power-density ma-
chines (e.g., wind turbines). Many approaches exploit in-
direct measurements acquired from accelerometers, micro-
phones, acoustic emission sensors and encoders to monitor
the damage evolution in gears (Surucu, Gadsden, & Yawney,
2023; Feng, Ji, Ni, & Beer, 2023). However, this indirect way
of gear condition monitoring (e.g., vibration analysis) suffers
from relative indicators and setting good thresholds to accu-
rately track the gear damage (Surucu et al., 2023). Moreover,
the indirect measurements cannot well characterize the de-
fects (e.g., size, location, type) of the gears (Van Maele et al.,
2023). Vision monitoring, which is a direct method to ob-
serve defects has the capability to give a precise indication of
the starting point of a potential surface failure. Gear damage
is often validated using visual inspection with borescopes or
fibre scopes. However, such a system is used in some do-
mains (mainly in wind turbines) as a periodic maintenance
procedure but expensive equipment and permanent machine
stop is needed (Coronado & Fischer, 2015). Recent advances
in computer vision and machine learning have revolutionized
industrial maintenance practices, allowing for the develop-
ment of automated systems capable of visually inspecting
and analyzing gear surfaces. Vision-based approaches uti-
lize cameras and sensors to capture images or videos of gears
during operation, enabling the extraction of meaningful vi-
sual features for condition assessment (Allam, Moussa, Tarry,
& Veres, 2021; Qin, Xi, & Chen, 2023; Miltenović, Rakon-
jac, Oarcea, Perić, & Rangelov, 2022). This shift towards
visual inspection not only facilitates continuous monitoring
but also provides a more comprehensive understanding of
gear health by capturing subtle surface details and anoma-
lies. Massive image data can be acquired by high-speed cam-
eras for visual condition monitoring of gears. Deep learn-
ing, particularly convolutional neural networks (Allam et al.,
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Figure 1. More than 20 minutes were taken by our experts to annotate defect of pitting in a single frame of image. Two types
of defects were annotated for all images: micropitting (red), and pitting (cyan).

2021), has shown remarkable success in image-based tasks,
making it well-suited for gear surface defect detection. How-
ever, to train a reliable vision deep learning model for auto-
matic defect detection of gearboxes, a huge amount of im-
age data typically needs to be annotated, which is expensive
and time-consuming (Alzubaidi, Bai, Al-Sabaawi, & et al.,
2023). For example, it takes more than 20 minutes to anno-
tate all pitting defects in a single frame of image, as shown
in Figure 1. Moreover, image datasets acquired during full
lifetime degradation tests datasets contain many similar ex-
amples that bring no additional information to the diagnos-
tic model. To overcome these problems, the active learning
method was exploited to select the most informative indirect
signals (e.g., vibration, supervisory control and data acquisi-
tion) for gearbox fault diagnosis (Chen et al., 2019) or wind
turbine condition monitoring (Bao, Zhang, Hu, Feng, & Liu,
2023). Recent work on vision-based defect segmentation also
showed that active learning framework can reduce data stor-
age and labeling costs for imbalanced industrial datasets (Li
et al., 2023).

To reduce the cost on manual annotation, this paper proposes
an active learning framework to address the challenge of ac-
quiring labeled data by iteratively selecting the most infor-
mative images for annotation. To the best of our knowl-
edge, this paper is the first study to apply deep active learning
for vision-based gear defect segmentation/detection in gear-
boxes. Specifically, a few images (i.e. around 20) were ini-

tially annotated to train a deep learning model for defect de-
tection. To choose which gear images will be the first prior-
ity to be annotated, we then compute the model’s uncertainty
on all remaining unlabeled examples, where Bayesian active
learning (Atighehchian et al., 2022) by disagreement is ex-
ploited to estimate the uncertainty of the unlabeled samples.
The samples with the highest values of uncertainty will be
chosen to be annotated first. We repeat the image annotations
iteratively (e.g., top 10 images ranking according to the un-
certainty will be annotated in each iteration) until we achieve
a satisfactory performance.

The structure of this paper is as follows. Section 2 introduces
the active learning framework. Section 3 details the experi-
mental data collection and processing. The experimental re-
sults of defect detection on gear flanks are presented and dis-
cussed in Section 4. Finally, the conclusions of this paper are
drawn in Section 5.

2. METHODOLOGY

2.1. Deep segmentation model

To monitor the damage evolution in gears, our solution first
segments the damaged regions (defect) in the acquired im-
ages, then characterizes these damaged regions (change of
size, shape, depth, etc.). A Python library with Neural Net-
works for Image Segmentation based on PyTorch (SMP)
(Iakubovskii, 2019) is exploited for defect segmentation task

2
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in this paper, as it is an open-source library built on top of Py-
Torch, specifically tailored for semantic segmentation tasks
in computer vision. Semantic segmentation involves assign-
ing a class label to each pixel in an image, thus dividing the
image into distinct regions corresponding to different object
classes. Semantic segmentation is additionally assigning each
detected object a category and discriminates between objects
of the same category. SMP includes an efficient and flexi-
ble implementation of Feature Pyramid Network (FPN) (Lin
et al., 2017) for semantic segmentation tasks, combining low-
and high-resolution features via a top-down pathway to enrich
semantic features at all levels (multi-scale features). By lever-
aging multi-scale features and transfer learning, SMP-FPN
enables accurate and robust segmentation of objects in im-
ages across various scales and contexts, fitting perfectly with
the defect detection in the gears (defect area sizes changing).

The initial training dataset is very limited, since image anno-
tation of these defect in the gears are challenging and time
consuming. Therefore, we leverage pre-trained weights from
models trained on large-scale image datasets such as Ima-
geNet. The pre-trained weight of ResNet-18 (He, Zhang,
Ren, & Sun, 2016), with a convolutional neural network that
is 18 layers deep1, is exploited in our segmentation model.
The pre-trained model has been previously trained on more
than a million images from the ImageNet database and con-
tains the weights and biases that represent the features of
whichever dataset it was trained on. These low-level learned
features are often transferable to different data, including
gears. For example, a model trained on a large dataset of nat-
ural objects (e.g., bird, fish images) will contain learned fea-
tures like edges or textures that would be transferable defects
in gears, which helps improve the performance of the seg-
mentation model (especially with very small training sample
size).

2.2. Active learning for image annotation

Even with a pre-trained model, the segmentation perfor-
mances are still poor, especially for images mixed with two
classes of “micropitting” and “pitting”, as shown Figure 2,
regions of micropitting were misclassified into pitting (poor
performances in confusion matrix), while pitting defects were
misclassified into background. An easy and simple solution
to improve the performances is to add more annotated im-
ages into the training dataset. With a high-speed camera, we
can acquire more than 60 image per second, around 30,000
images for 8 hours. However, image annotation is time con-
suming for our experts (an image shown in Figure 1 may take
20 minutes to annotate), even with advanced annotation tool
CVAT 2. Since it is infeasible for an expert to annotate all
the acquired images, two challenges need to be solved: (1)
which images should be first annotated? (2) how many im-

1https://www.kaggle.com/datasets/pytorch/resnet18
2https://github.com/opencv/cvat

ages should be annotated for a reliable prediction?

Active learning aims to minimize the annotation effort re-
quired by selecting the most informative samples for anno-
tation, i.e., the samples that would most increase the model
accuracy. Active learning is a machine learning paradigm
where a model iteratively queries the user or a human anno-
tator for the labels of the most informative samples. This can
lead to significant savings in time and resources compared to
traditional approaches that rely on labeling large amounts of
data upfront or passive learning from a fixed dataset.

Many active learning approaches have been proposed
(Beluch, Genewein, Nürnberger, & Köhler, 2018; Kirsch,
Amersfoort, & Gal, 2019; Wan et al., 2023), but some of
these methods are either not scalable to large datasets or too
slow to be used in a more realistic environment (e.g., in a
production setup) (Atighehchian, Branchaud-Charron, & La-
coste, 2020). We exploit Bayesian Active Learning by Dis-
agreement (BALD) (Atighehchian et al., 2020) in this paper
to select the most informative samples for annotation. BALD
leverages Bayesian modeling to estimate the uncertainty of
a predictive model and selects samples where the model’s
predictions are most uncertain. In particular, BALD involves
calculating the mutual information between the model’s pre-
dictions and the model’s parameters, given the observed data.
Let D denote the labeled dataset, where D = (xi, yi)

N
i=1

with inputs xi and corresponding labels yi. Let θ represent
the model parameters, and fθ(x) denote the predictive dis-
tribution of the model. The BALD acquisition function is
defined as the mutual information between model parameters
and potential labels of unlabeled data x:

BALD(x) = I[y, fθ(x)]

= H[y]−Ep(fθ(x)|D)[H[y|fθ(x)]]
(1)

Where:

• I[y, fθ(x)] is the mutual information between the label
y and the model’s prediction fθ(x) for an unlabeled data
point x.

• H(y) is the entropy of the label distribution, measuring
uncertainty in the label predictions.

• Ep(fθ(x)|D) is the expectation over the posterior distri-
bution of the model given the current dataset D

• H[y, fθ(x)] is the conditional entropy of the label distri-
bution given the model’s prediction.

Intuitively, samples with higher BALD scores are those for
which the model’s predictions are most uncertain and thus
are most informative for learning. By querying such uncer-
tain samples, the model can learn more effectively with lim-
ited annotated data, leading to efficient data annotation for
model training. In a normal image annotation task, our expert
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(a)

(b)

(c)

Figure 2. Performances on segmentation model trained on a small training dataset. The confusion matrices in the right column
show the performances for three test images, 3 classes were defined by our experts in the images, with class label (color) 0:
background (dark), 1: micropitting (red), 2: pitting (cyan).

annotators will start annotate images according to their order
uploaded into a annotation tools (CVAT) or the project coor-
dinator will assign a certain number of images randomly to
each annotator. Compared to the active learning with random
selection of samples for annotation, the uncertainty score of
active learning with BALD tends to zero when reaching to
300 images in the first iteration, as shown in Figure 3. The
active learning process using BALD is iterative. After anno-
tating the selected samples and incorporating them into the
training set, the model is retrained, and the process repeats.
Over multiple iterations, the model becomes increasingly ac-
curate, and the uncertainty decreases, leading to more con-
fident predictions. The annotation loops will stop until the
end-users satisfy with the performances, which can be eval-

uated by either through a matrix on validation dataset, or by
manually interpretation on randomly selected images (if not
enough validation reference images). Figure 3(b) shows that
the uncertainty score of active learning with BALD tends to
zero after 180 images in the second iteration, while active
learning with random sample selection still needs to annotate
all images to achieve this. By focusing on samples where the
model’s predictions are most uncertain, BALD enables effi-
cient learning with limited annotated data.

4
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Table 1. Acquired images and manual annotations.

No. Teeth No. Annotated teeth No. Images No. Annotated Images No. Annotated Polygons
54 18 1370 438 1036

Table 2. Data split (within 18 annotated teeth, 438 annotated
images) for active learning.

Initial training dataset Tooth 1 (23 images)
Validation dataset Tooth 15 (31 images)
Test dataset Tooth 5 (31 images)
Pool dataset The other 15 teeth (353 images)

(a) (b)

Figure 3. Uncertainties scores by active learning with: (a)
random selecting samples for annotation, (b) BALD. Itera-
tion 1 means 10 annotated images are added into the initial
training dataset and retrain the model of active learning; iter-
ation 2 means 20 images are iteratively annotated and added
into the initial training dataset.

3. EXPERIMENTS DATA COLLECTION AND PROCESS-
ING

3.1. Data Collection

A dataset containing images of gears subjected to acceler-
ated lifetime tests was provided by ZF Wind Power. While a
brief description of the dataset acquisition is present here, the
reader is referred to the work of (Boemher, 2019) for further
details. The dataset consists of two accelerated lifetime tests,
and was generated on a standard FZG3 gear test rig at ZF
Wind Power. At selected moments of the test, the equipment
was stopped and images of both meshing gears were man-
ually captured using a Canon EOS 500D camera. Figure 4
illustrates the gear degradation of a gear flank throughout the
test. Two pairs of standard FZG C14 spur gears with 16 teeth
(pinion) and 22 teeth (wheel) were tested on each accelerated
lifetime test. In the first test, with total duration of 152h, the
test was stopped 31 times for acquiring the image of the gear
flanks. Meanwhile, on the second test with total duration of
250h, image acquisition was performed 23 times. A prior
qualitative assessment determined that the wheel of the first
test did not developed damage. Hence, the assessed dataset

3Forschungsstelle für Zahnräder und Getriebebau, which denotes the Gear
Research Center at the Technical University of Munich

is composed of 54 teeth: pinion (16) of first test, plus pinion
(16) and wheel (22) of the second test.

3.2. Experimental Setup

The accelerated lifetime testing procedure was designed to
generate micropitting and pitting wear on the visually moni-
tored gear surfaces. As shown in Table 1, 54 teeth were used
in experiments and a large amount of images was acquired
by our camera. After filtering the unclear images (i.e., blurry,
noisy, etc.) and pre-processing, we obtain 1370 images, of
which 438 images were annotated by our experts, as shown in
Table 2. The annotation effort varied according to the amount
of defects in each image, taking approximately 60 hours to
fully annotate the dataset (438 images), and in some cases up
to 30 minutes were required to annotate a single frame.

Two sets of experiments are compared:

• Fixed SMP: train the SMP-FPN models using Initial
training dataset + Pool dataset, totally 16 teeth, 376 an-
notated images;

• Active SMP: train the SMP-FPN model initially on Ini-
tial training dataset (Tooth 1, with 23 annotated images
in total)

Then a number of annotated samples (i.e. 10 in each iter-
ation) selected by active learning from the Pool dataset are
iteratively added into the training dataset, and the model is
retrained. Within active learning segmentation, we will com-
pare different methods to select samples for first priority to be
annotated, such as:

• Active SMP Random: select 10 images randomly in
each iteration;

• Active SMP BALD: select 10 images by using BALD
method in each iteration.

We set some parameters for model training as: batch size:
8, epochs: 100, learning rate: 0.0001. To reduce inherent
randomness in the training of deep networks, each experiment
runs five times for active learning.

For performance evaluations, we exploit the confusion ma-
trix (Powers, 2011) to report the performance of a segmenta-
tion model on a single image. This confusion matrix helps in
understanding where the segmentation model is making er-
rors, whether it is under-segmenting or over-segmenting cer-
tain classes, or if there are misclassifications between classes.
It is an essential tool for evaluating the effectiveness of seg-
mentation algorithms. To evaluate the segmentation models
on the whole test dataset, we exploit mean intersection over
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Figure 4. Example of images collected at selected moments of the test, showing the evolution on the gear degradation with the
test duration.

Figure 5. Mean and standard deviation mIoU of different seg-
mentation methods. Note: the Fixed SMP method is trained
by using fixed number of 376 annotated images; iteration 0
means the model of active learning is trained on Initial train-
ing dataset (Tooth 1 with 23 images); 10 images will be se-
lected in each iteration for annotation and then added into
the training dataset, the model with active learning will be
retrained (for example iteration 3 means 30 images are iter-
atively annotated and added into the Initial training dataset).
We repeated the active learning segmentation experiments 5
times.

union (mIoU), which measures the overlap between the pre-
dicted segmentation and the ground truth segmentation for
each class or object in the image (with Python implementa-
tion4). The value of the metric ranges from 0 to 1, higher
value indicates better performance on segmentation.

4. RESULTS AND DISCUSSIONS

Figure 5 compares the performances of segmentation models
trained by Fixed SMP and Active SMP. The changes of the
predicted segmentation maps by adding more annotated im-
ages into the training dataset can be found in Figure 6. We
take several test images as examples and show the segmenta-
tion results and their confusion matrices by using Fixed SMP
and active SMP BALD in Figure 7.

Based on Figure 5, we can find that with 53 annotated images
4https://lightning.ai/docs/torchmetrics/latest/segmentation/mean iou.html

(i.e. 3 iterations), active learning with BALD can achieve
similar performances as Fixed SMP (where more than 360
annotated images are used for training), which requires 6
times less annotated images for training, reducing more
than 6 times the manual annotation effort. Moreover, Ac-
tive SMP BALD performs better than Active SMP Random,
especially for the first 5 iterations, when a small number of
images are selected for annotations. This means that BALD
can select the most informative images (out of a large dataset)
for annotation when limited manpower is available for an-
notation. The model can learn more effectively with fewer
BALD selected images, leading to efficient data annotation
for model training. As more annotated images (more than
70 annotated images) are added into the training dataset, Ac-
tive SMP Random converges to similar performances as the
method of Fixed SMP, indicating the redundancy in the im-
age annotations. This is because images acquired during full
lifetime degradation for multiple teeth contain many similar
defects that bring no additional information for model train-
ing.

The segmentation models with active learning becomes more
stable, as more annotated images added into the training
dataset, as indicated by the changes of standard deviation
in Figure 5. However, there are scenarios where increasing
the training sample size (by adding more annotated images)
might seemingly degrade segmentation performance, defects
of “micropitting” appear in Figure 6-7 (Fixed SMP for the
third image) as more annotated images added. This may be
due to overfitting, the model should generalize better with
more training samples (that have similar distributions as the
test images). One solution is to add more images that are rep-
resentative of different classes into the pool dataset for active
learning.

Compared to the human expert annotations, the segmen-
tation results predicted by deep learning models (even for
Fixed SMP) need to be improved, regions of “micropitting”
and “pitting” are misclassified into background, whereas
some background regions are also misclassified into “micro-
pitting”, as indicated by the confusion matrices in Figure 7.
Challenges remain in predicting very tiny ”pitting” defects,
as well as images mixed with big “micropitting” defects and

6
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Figure 6. Prediction map changes as adding more annotated images (selected by BALD) into training dataset. 10 images will
be annotated in each iteration and then added into the training dataset.

Expert annotations Fixed SMP Fixed SMP active SMP BALD active SMP BALD

Figure 7. Performances on segmentation by fixed training number VS. active learning. Each row has one test image, column
1 shows highlighted annotated images by experts, column 2 and 3 show predicted segmentation maps and confusion matrices
by Fixed SMP, column 4 and 5 are predicted segmentation maps and confusion matrices by Active SMP BALD with three
iterations (53 training images).
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tiny ”pitting” defects.

5. CONCLUSIONS

This paper focus on training a reliable deep learning segmen-
tation model for defect detection in gears using less image
annotations. In particular, Bayesian Active Learning by Dis-
agreement (BALD) was exploited to select the most informa-
tive images for annotation iteratively until the satisfied perfor-
mances were achieved. Experimental results show that with
less than 6 times image annotations, we can achieve simi-
lar performances, leading to significant savings in time and
resources compared to traditional approaches that rely on la-
beling large amounts of data upfront. However, gear surfaces
exhibit a variety of defect types and patterns, and the suc-
cessful identification of these defects requires a model capa-
ble of learning intricate features and subtle variations. The
initial results in this paper can be extended by considering:
(1) uncertainties from human annotations (annotations may
be different by different human annotators in Figure 8), (2)
imbalance in class distribution (some classes have more an-
notations than the other classes), (3) data augmentation to in-
crease diversity in the training image dataset, (4) validation of
the active learning methods on wider applications using some
public datasets (e.g., ball screw drive surface defect dataset
(Schlagenhauf & Landwehr, 2021)) for more comprehensive
comparisons.

ACKNOWLEDGMENT

This research was supported by Flanders Make, the strategic
research centre for the manufacturing industry, and more pre-
cisely the SBO (Strategic Basic Research) project for QED
(Quantified Evolution of Degradation in gears, NO.: 2020-
1138). The authors would like to thank ZF Wind Power NV
for providing the gear image dataset that was used in this re-
search.

REFERENCES

Allam, A., Moussa, M., Tarry, C., & Veres, M. (2021). De-
tecting teeth defects on automotive gears using deep
learning. Sensors, 21(24).

Alzubaidi, L., Bai, J., Al-Sabaawi, A., & et al. (2023). A sur-
vey on deep learning tools dealing with data scarcity:
definitions, challenges, solutions, tips, and applica-
tions. Journal of Big Data, 10(46).

Atighehchian, P., Branchaud-Charron, F., Freyberg,
J., Pardinas, R., Schell, L., & Pearse, G.
(2022). Baal, a bayesian active learning library.
https://github.com/baal-org/baal/.

Atighehchian, P., Branchaud-Charron, F., & Lacoste, A.
(2020). Bayesian active learning for production, a sys-
tematic study and a reusable library.

Bao, C., Zhang, T., Hu, Z., Feng, W., & Liu, R. (2023). Wind

turbine condition monitoring based on improved active
learning strategy and knn algorithm. IEEE Access, 11,
13545-13553.

Beluch, W., Genewein, T., Nürnberger, A., & Köhler, J.
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ABSTRACT 

In automotive Powered Door Systems (PDS), the emergence 
of grinding and clicking noise over time is a common failure 
mode. This issue typically arises from design or assembly 
inconsistencies and intensifies due to wear or increased 
clearance at its component, becoming noticeable to 
passengers, and causing discomfort. Numerous automotive 
manufacturers conduct comprehensive durability tests to 
tackle such issues during the development. Conventional 
durability tests, however, rely on the manual effort such as 
visual and auditory inspection at regular intervals, hence, is 
subjective and inefficient. This study introduces a novel 
method by the prognostics and health management (PHM) 
approach to detect anomaly and assess its severity of the 
noise during the durability test of the PDS, which may 
improve the reliability of noise detection and reduces the test 
time by early termination using prognosis capability. The 
results demonstrate the potential, paving the way for its 
broader application across various domains to advance 
testing processes and reliability. 

1. INTRODUCTION 

In recent developments in the automotive industry, many 
components are electrified to enhance the user convenience. 
Prominent examples include power window, automatic 

tailgates, and power door systems. These systems, however, 
often have various forms of wear and joint failures, 
significantly impacting user satisfaction and perceived 
vehicle quality. 

Most issues with these components stem from design flaws 
or problems during the assembly process. To address these 
challenges and improve vehicle durability and reliability, 
automotive manufacturers conduct durability tests. 
Conventionally, these tests have relied on manual visual and 
auditory inspections performed at regular intervals, which are 
both subjective and inefficient. 

Prognostics and Health Management (PHM) technology has 
gained considerable attention across various industries, 
including aerospace, smart manufacturing, power plants, and 
transportation, for its potential to prevent failures, reduce 
operational costs, and facilitate predictive maintenance.(Choi, 
2014; Zio, 2022) The potential of PHM to enhance durability 
testing is substantial. In this paper, we discuss the application 
of PHM techniques and frameworks to durability testing, 
focusing on developing more accurate and automated 
diagnostic models. 

1.1. Power Door System (PDS) 

The case study presented in this paper focuses on the Power 
Door System (PDS), a feature designed to enhance user 
convenience in high-end vehicles. Figure 1 illustrates a 
vehicle equipped with the PDS on its rear door, showcasing 
the application of the PDS. This system automatically closes 
the door after a passenger enters. 

Jinwoo Song et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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Figure 1. Power door system installed on a vehicle 

The PDS is mounted on each door, and as shown in Figure 1, 
the ends of the spindles are connected into the pillar of 
vehicle. When the motor rotates, it drives the worm gear to 
turn the wheel gear. The relative motion then pulls the spindle, 
closing the door with a mechanism that takes about 3 seconds 
for the closure operation. 

In case of the poor design or manufacturing, the PDS can 
encounter issues such as a grinding or clicking noises during 
the door closing, which usually occurs after cycles of door 
closing. The grinding noise is a continuous rough sound 
heard throughout the closure. This noise is often caused by 
small pitting on the drive worm gear, as depicted in upper 
right corner of Figure 1. On the other hand, the clicking noise 
is a sharp sound heard at a certain moment during the door 
closing. It occurs due to clearance, wear or assembly damage 
between the pin and pin socket connecting to the body's pillar. 
These noises are characterized as periodic and impulsive, 
respectively. 

In order to determine the occurrence of these noises in the 
PDS, a durability test is conducted, incorporating both visual 
and auditory inspections at regular intervals. The method, 
however, is not reliable nor efficient due to the manual 
procedure. To overcome this, a diagnostic model is 
developed, thereby enhancing the reliability and functionality 
of the PDS. 

1.2. Sensor Selection 

To choose a sensor that can reveal useful features for the 
diagnosis, four sensors are considered for the potential 
candidates: motor current, motor rotation (hall sensor), and 
accelerometer attached to the PDS and to the body side. The 
current and hall sensor data are collected at a rate of 4 kHz, 
while the accelerometer data at 25.6 kHz. 

Figure 2 illustrates the signals captured by these sensors 
during the operation of PDS. Each graph within the figure 
represents the data from different sensors, plotted over time 
to show the dynamic changes in sensor readings as the door 
progresses through 3 repetitions of open and close motions. 

Upon comparison of these signals in terms of efficacy of 
diagnostic, consistency, strength and the convenience of 
installation, the accelerometer signals perpendicular to the 
body side is found appropriate for the study. Consequently, 

all the signals discussed in this paper are measured from this 
sensor. 

The rest of the paper is outlined as follows: Section 2 
introduces the PHM framework, Section 3 and 4 detail the 
process of developing diagnostic models for grinding noise 
and clicking noise, respectively. Lastly, conclusions are 
presented in Section 5. 

 
Figure 2. Various sensor signals of the PDS motion 

2. PHM FRAMEWORK 

In this section, the development procedure of diagnostic 
model and its application to test data are addressed. Figure 3 
illustrates the overall flowchart of the PHM process. It has 
two major phases: construction of the diagnostic model and 
its application. 
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Figure 3.  Flowchart of PHM framework 

In the construction phase, the first step is the collection of 
sensor signals and pre-processing. Two types of signal data 
are collected in the test: first is the discrete data for normal 
and faulty conditions. second is the continuous data from the 
normal to the failure. In a single set of signal data, not the 
whole period is exploited but only a segment is taken for a 
better feature extraction. This varies depending on the 
considered noise, which accounts for the symptoms and 
causes of failures as well as the operational mechanisms of 
the system. 

Next is the feature extraction and selection. Various features 
are extracted, including time domain, frequency domain, and 
domain-specific features.(Sim et al., 2020) Effective feature 
selection involves choosing the features with higher value of 
Fisher Discriminant Ratio (FDR) that can better distinguish 
the normal and faulty conditions in case of discrete data and 
the features with a higher Spearman correlation in case of the 
continuous data. 

Based on the selected features, a health index (HI) is 
constructed in the next step. While there are several 
approaches for this, Mahalanobis distance is employed in this 
study, which is useful when there are the normal features only. 
Thresholds for anomaly and failure are established for the HI, 
respectively, to effectively distinguish between the normal, 
warning and failure states. 

In the application phase, data from the test subjects are 
collected. Following the procedures defined in the diagnostic 
model, the HI is calculated and monitored to perform 
anomaly or fault detection. This systematic approach allows 
for precise and proactive management of system health. 

3. DIAGNOSIS MODEL FOR GRINDING NOISE 

To develop the diagnostic model for grinding noise, normal 
and faulty data sets are collected from three specific cases. 
Among these, case A involves less severe noise occurrence, 
while the cases B and C involve relatively severe noise 
occurrences. 

Table 1. grinding noise datasets 

Vehicle / 
Placement Class Features Case 

Vehicle1 / 
Front 

Normal - 
A 

Faulty Small grinding noise 

Vehicle1 / 
Rear 

Normal - 
B 

Faulty Loud grinding noise 

Vehicle2 / 
Rear 

Normal - 
C 

Faulty Loud grinding noise 

As described in Section 2, for the development of the 
diagnostic model, accelerometer which attached to the 
vehicle's body is utilized. Figure 4 presents simultaneous 
recordings of the motor’s relative rotational speed and 
vibration signals. It can be observed that the motor operates 
in three phases of acceleration, constant speed, and 
deceleration. 

 
Figure 4. Motor speed and accelerometer signal while 

closing 

Since the grinding noise occurs continuously during the 
closing operation, the signal over the whole period can be 
responsible for the noise. However, only a part with constant 
speed is chosen for the efficacy of feature extraction. 

Using the signal in constant speed, numerous candidate 
features are extracted as shown in Figure 5, in which the blue 
o and red x denote the normal and fault respectively. Note 
that all the features are normalized by Gaussian distribution. 
Among these, more significant features are selected that can 
distinguish the two classes more clearly. For this purpose, 
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Fisher discriminant ratio (FDR) is calculated, defined as 
follows. 

 
Figure 5. Features from each signal of four datasets 

𝐹𝐷𝑅 =
(𝜇1 − 𝜇2)

2

𝜎1
2 + 𝜎2

2
(1) 

where 𝜇𝑖  is mean value of feature, and 𝜎𝑖  is standard 
deviation of feature for i-th class. As a result, the root mean 
square (RMS) and Shannon entropy (SE) are recognized as 
the most important features. 

Using these selected features, an HI based on the 
Mahalanobis distance is constructed from the normal data as 
defined in the following equation. 

𝐻𝐼 = (𝐱 − 𝜇𝑛)
′𝐒𝑛

−1(𝐱 − 𝜇𝑛) (2) 

where 𝐱 is feature vector of input data, 𝜇𝑛 is mean of feature 
vector for normal data and 𝐒𝑛 is covariance matrix of feature 
for normal data. The results as shown in Figure 6, 
demonstrate a clear distinction between the normal and faulty 
data across all cases. Based on the HI values of the collected 
normal and faulty data, thresholds for anomaly and failure are 
established as the dotted blue and magenta lines, which are 
the normal HI at upper 95% confidence and fault HI at lower 
95% confidence levels, respectively. This diagnostic model 
can be utilized in the future tests to determine whether the 
product yields the grinding noise during the cycles of 
operation. 

 
Figure 6. Health index for three cases 

4. DIAGNOSIS MODEL FOR CLICKING NOISE 

To develop the diagnostic model for clicking noise, datasets 
are collected from both the front and rear doors of vehicles. 
The collected datasets are given in Table 2. Front door 
datasets include four discrete states: two normals and two 
faults, each collected from different PDS installed on two 
vehicles. In the table, Normal 1 and Normal 2 indicate no 
clicking noise. However, Normal 2 is with a subtle grinding 
noise. And Fault 1 indicates a small clicking noise, while 
Fault 2 indicates a significantly loud clicking noise. For the 
rear door, run-to-failure data are collected for up to 38,000 
cycles, from which the normal and fault are defined by those 
less than 10,000 and over 23,000 cycles based on the experts’ 
opinion. 

Table 2. Clicking noise datasets  

Vehicle / 
Placement Class Feature Case 

Vehicle1 / 
Front Normal1 - 

Front 

Vehicle1 / 
Front Normal2 Small grinding 

noise from motor 

Vehicle2 / 
Front Faulty1 Small clicking noise 

Vehicle1 / 
Front Faulty2 Loud clicking noise 

Vehicle2 / 
Rear 

Normal 
- 

(Cycle 0 ~ 10000) 
Rear 

Warning 
Tiny clicking noise 

(Cycle 10000 ~ 
23000) 
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Faulty 
Small clicking noise 

(Cycle 23000 ~ 
38000) 

As opposed to the grinding noise, clicking noise, 
characterized as an impulsive signal, typically occurs only at 
a certain moment during the door closing. To isolate these 
impulsive events, kurtosis in a short interval with 0.1 second 
is computed over a sliding time window, which is a widely 
used feature in vibration analysis for its ability to detect 
spikes in signals.(Cerrato-Jay et al., 2001; Honarvar & 
Martin, 1997) 

Figure 7 illustrates both the original and its kurtosis for the 
sound and vibration signal, respectively. In the analysis, 
signals at the beginning (0-0.3 seconds) and after 2.5 seconds 
are disregarded as they are those at the start and end of closing, 
respectively. In the upper two figures, it is observed that the 
moments when the noise is heard and when its kurtosis shows 
local peak are the same, as marked by the red explosion 
symbols. Based on this finding, the vibration signal is 
processed in the similar manner, which are given in the lower 
two figures. Interestingly, the moments when the kurtosis 
shows local peak are the same in the sound and vibration 
signals. Therefore, the kurtosis is used as the means to 
identify the moment of clicking noise, and the signal over a 
small time period of 0.1 second is taken for further processing 
towards the feature extraction. 

 
Figure 7. Raw signal and frame kurtosis for sound and 

vibration signal 

As in the previous section, several candidate features are 
extracted, from which the most significant ones are sought 
for. The results are in Figure 8, in which (a) are those for the 
front (normal 1 and fault 1 only), and (b) are for the rear 
(normal less than 3,000 cycles and fault over 33,000 cycles) 
are taken among the run-to-failure data). The blue o and red 
x denote the normal and fault respectively. In comparison 
with the grinding noise, the separation between the normal 
and fault both in the front and rear are less clear. 

  
(a) (b) 

Figure 8. Features from each dataset 

Nevertheless, the same procedure is taken to select the most 
important features, which are RMS (root mean square), P2P 
(peak-to-peak), and SE (Shannon entropy). The diagnostic 
performance by the HI made of these features are shown in 
Figure 9. In Figure 9(a), which is the result of front door, 
considerable overlap is found between the HI for normal 2 
(blue o) and fault 1 (magenta x). Furthermore, in the case of 
rear door as shown in Figure 9(b), clear increasing trend are 
not present towards the fault conditions. All these suggest 
that the selected features are not so effective to use to 
construct HI. 

 

  
(a) (b) 

Figure 9. Health Index from each dataset 

To discover more effective features, another attempt is made, 
which is the time-frequency analysis. Figure 10 displays a 
spectrogram of continuous wavelet transformation (CWT), 
obtained for the instant of 0.1 second centered at the clicking 
noise. The result reveals that the clicking noise occurs in a 
very short 10 ms time window at a certain frequency range. 
In order to quantify this into the feature and use it as the HI, 
total energy of the impulsive moments within specific time 
and frequency windows is used. The results are illustrated in 
Figure 11, in which the Figure 11(a) for the front door shows 
a better distinction between the normal and fault, and Figure 
11(b) for the rear door with run-to-failure presents a better 
increasing trend in HI, demonstrating the superiority of the 
CWT based approach over the time-based ones. 
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Figure 10. Spectrogram for click noise 

Despite these advancements, there remains considerable 
dispersion in the HI, which makes it still challenging to apply 
in the field. This variability could stem from various external 
factors that influence the occurrence of clicking noises. 
Further signal processing efforts to mitigate these influences 
or the identification of more effective features will be 
essential to enhance diagnostic accuracy. 

  
(a) (b) 

Figure 11. Health Index from new feature 

5. CONCLUSIONS 

In this study, prognostics and health management (PHM) 
approach such as the signal processing, feature extraction and 
selection, and construction of HI, was applied to develop 
diagnostic models for two representative faults occurring in 
the power door systems (PDS): grinding and clicking noises. 
These faults are characterized by a continuous rough sound 
and a sharp, transient sound during door closure, respectively. 

The method has facilitated the development of diagnostic 
models capable of detecting both types of noises, 
demonstrating the potential in the real-world applications. 

However, much more data are necessary to refine the model 
and validate its performance, which requires a lot of efforts 
in time and money. Particularly for the clicking noise model, 
the HI contains significant uncertainty, highlighting the 
necessity for exploring diverse approaches and possibly new 
features to enhance diagnostic accuracy. 

By integrating the PHM into the durability tests, we have 
showcased the potential for automation and quantitative fault 
assessment. If we can obtain comprehensive run-to-failure 
(RTF) data, it might also enable us to predict the remaining 
useful life of components, which could significantly reduce 

testing time by preemptively forecasting the occurrence of 
noise issues. 

 

Acknowledgments: 

This work was supported by NGV of Hyundai Motors 
company, which is greatly appreciated. 

 

References: 

Cerrato-Jay, G., Gabiniewicz, J., & Gatt, J. (2001). Automatic 
Detection of Buzz, Squeak and Rattle Events DJ 
Pickering MTS Systems, Noise and Vibration Division. 

Choi, J.H. (2014). A review on prognostics and health 
management and its applications. Journal of Aerospace 
System Engineering, 8(4), 7–17. 

Honarvar, F., & Martin, H. R. (1997). New Statistical 
Moments for Diagnostics of Rolling Element Bearings. 
http://www.asme.org/about-asme/terms-of-use 

Sim, J., Kim, S., Park, H. J., & Choi, J. H. (2020). A tutorial 
for feature engineering in the prognostics and health 
management of gears and bearings. Applied Sciences 
(Switzerland), 10(16). 
https://doi.org/10.3390/app10165639 

Zio, E. (2022). Prognostics and Health Management (PHM): 
Where are we and where do we (need to) go in theory 
and practice. Reliability Engineering and System 
Safety, 218. https://doi.org/10.1016/j.ress.2021.108119 

  

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 167



 1 

An Experiment on Anomaly Detection for Fault Vibration Signals 
Using Autoencoder-Based N-Segmentation Algorithm 

Kichang Park1 and Yongkwan Lee2 

1Intelligence Manufacturing Technology Institute, RESHENIE Co., Ltd., Suwon-si, Gyeonggi-do, 16229, Republic of Korea 
kc.park@reshenie.co.kr 

2Grand ICT R&D Center, Tech University of Korea, Siheung-si, Gyeonggi-do, 15073, Republic of Korea 
Ivan.lee@tukorea.ac.kr 

 
ABSTRACT 

Most manufacturing facilities driven by motors generate 
vibration and noise representing critical symptoms against 
facility malfunctioning conditions in the manufacturing 
industry. Due to the difficulty of obtaining abnormal data 
from facilities in manufacturing sites, many prior researchers 
who have studied predicting facility faults have adopted 
unsupervised learning-based anomaly detection approaches. 
Although these approaches have a strength requiring only 
data on from facility normal behaviors, it is not clear that the 
anomalies detected by an anomaly detection model are due to 
the real component faults. Also, the model performance is 
likely to change according to the diverse abnormal conditions 
of the given facility. In this paper, we took an experiment 
with a fault vibration simulator to measure the anomaly 
detection performance of a one-dimensional convolutional 
autoencoder model with different fault conditions. In the 
experiment, we used four different abnormal conditions: 
imbalance, misalignment, looseness, and bearing faults, 
which are the most frequently occurring facility component 
failures from the rotating machineries. Data were gathered 
from the simulator with the IEPE(Integrated Electronics 
Piezo-Electric) type sensor. We proposed the N-
Segmentation algorithm that performs anomaly detection in 
segmented frequency region according to corresponding 
component faults for better anomaly detection performance. 
In conclusion, the proposed algorithm showed about 15 times 
better anomaly detection rate than not applying it. 

1. INTRODUCTION 

Artificial Intelligence (AI) technologies are adopted in 
various field domains to replace human beings or improve 
legacy systems. The manufacturing sector has also gradually 
tackled AI-based anomaly detection (AD) approaches for 

facility monitoring and fault detection. (Kumar, Khalid, & 
Kim, 2022; Zhang, Lin, Liu, Zhang, Yan, & Wei, 2019). AI-
enabled facility monitoring systems are necessary to improve 
productivity, reduce costs, and ensure worker safety in 
manufacturing sites. Facility anomaly is an abnormal 
condition where defects or failures occur, and it can be 
determined and predicted by analyzing physical data 
measured during the facility operation from physical sensors 
such as those of vibration, current, and temperature. Since 
motors drive most manufacturing facilities, they generate 
various vibration signals during operation. These vibration 
signals represent a valuable basis for predicting whether the 
facility is in normal operations or defective status. When the 
vibration increases or becomes excessive, certain mechanical 
trouble has usually occurred. Since the vibration does not 
increase or become excessive for no reason, it is considered 
an indicator of machinery malfunction (Shreve, 1994). 
However, since the types of facility defects or failures are so 
diverse, obtaining sufficient data on facility defects and 
failures in manufacturing sites is impractical (Hiruta, Maki, 
Kato, & Umeda, 2021; Li, Li, & Ma, 2020). As a result, 
unsupervised learning approaches that use only data acquired 
when the facility is in a normal condition are very practical. 

As the fault situations are diverse and unsupervised AD 
models require reconstruction of input signals, there are two 
important considerations, namely, types of faults (Thi, Do, 
Jung, Jo, & Kim, 2020) and the reconstruction range 
(Amarbayasgalan, Pham, Theera-Umpon, & Ryu, 2020). 
Considering these points, we conducted a vibration AD test 
using a fault vibration simulator and an Integrated Electronics 
Piezo-Electric (IEPE) type vibration sensor. We collected the 
vibration data of the simulator's normal signals and abnormal 
signals generated under normal operation and conditions of 
imbalance, misalignment, looseness, and bearing faults. Then, 
we trained the normal signals with a one-dimensional 
convolutional autoencoder (1-D CAE) and measured the AD 
performance by normal signals and fault signals. We 
introduce the N-segmentation algorithm for the better AD 

Kichang Park et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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performance, which performs it by segmenting the frequency 
range into N different regions. The proposed algorithm can 
detect fault vibration signals with improved performance. 

2. BACKGROUND 

AI models are classified as supervised or unsupervised 
learning, depending on whether labels are used during the 
learning process. Applying supervised learning to AD 
requires data for all types of anomalies. Since gathering 
anomaly data for enough training is practically impossible, 
unsupervised learning using only the normal-condition data 
of the facility is more suitable, and the Autoencoder (AE) is 
representative of unsupervised learning (Lee, Lee, & Kim, 
2024; Wei, Jang-Jaccard, Xu, Sabrina, Camtepe, & Boulic, 
2023). AE is an AI model that learns how to produce output 
data as close as possible to the input data without data labels. 
Using a difference between the input data of the AE and the 
reconstructed data generated by the output data of the AE 
detects anomalies. In this case, the reconstruction error, the 
difference between the input data and the output data of the 
AE, is calculated by error functions such as mean absolute 
error (MAE), mean squared error (MSE), and root mean 
squared error (RMSE). 

Various research has been performed regarding AD using 
fault vibration signals. Wisal and Oh (2023) developed a new 
deep learning algorithm that utilized ResNet and 
convolutional neural networks to detect the unbalance of a 
rotating shaft for both binary and multiclass identification. 
Kamat et al. (2021) used random forest, artificial neural 
network, and AE to detect the bearing fault. Their experiment 
showed the AE provides the highest accuracy of 91% over 
the others. Ahmad et al. (2020) has taken experiment with 
AD for rotating machines by comparing a long short-term 
memory-based AE (LSTM-AE) and an isolation forest model. 
The experimental results on real-world datasets showed that 
the LSTM-AE achieved an average f1-score of 99.6%. Most 
previous works focused on developing the model achieving 
high accuracy for AD, but they are suggested within the 
limited fault environment or dataset. 

In vibration accuracy for condition monitoring, an IEPE-type 
sensor is usually capable of more precise vibration 
measurement than a Micro-Elector-Mechanical System 
(MEMS) type sensor. (Hassan, Panduru, & Walsh, 2024). In 
the previous research regarding AD by frequency 
segmentation, Park & Lee (2022) successfully performed AD 
by synthesizing the frequency domain data of the IEPE-type 
vibration sensor collected from the printing facility and the 
virtual frequency signals. However, for the objective 
performance evaluation of the approach, it is necessary to 
utilize data collected in a simulator environment like actual 
facilities, not a virtual signal. 

3. PROPOSED ALGORITHM 

We propose the N-Segmentation algorithm that detects 
abnormal vibration signals by segmenting the frequency 
domain measured by a vibration sensor into N frequency 
ranges. The algorithm uses N reconstruction errors and N 
thresholds to determine anomalies in the target vibration 
signal. The algorithm predicts whether the frequency section 
corresponding to each segment is a normal or an anomaly 
using the threshold that is the maximum reconstruction error 
value of the segment. Therefore, the algorithm can perform 
not only AD of the target signal but also AD of the segments. 
In other words, it can present additional information on which 
segment of the entire frequency range has an anomaly 
occurred. Here, N, the number of segmented frequency 
ranges, is a kind of hyperparameter designated by analysts, 
so applying various N values is necessary to measure the 
performance of a model like 1-D CAE through the proposed 
algorithm. Figure 1 shows a schematic diagram of the 
proposed algorithm when N is 4.  

 

 
Figure 1. N-Segmentation Algorithm (N=4) 

 

3.1. 1-Dimensional Convolutional Autoencoder 

1-D CAE is an AE composed of encoders and decoders using 
one-dimensional convolutional layers (Zhang, Wang, Yi, 
Wang, Liu, & Chen, 2021). Convolutional layers can learn 
the data with high accuracy when the data size is constant, 
such as image data with two-dimensional data shape of width 
and height in pixels. Compared with two-dimensional images, 
as one-dimensional input vectors like vibration signals 
contain intuitive data characteristics, it is a great opportunity 
to use deep learning-based methodology for AD (Chen, Yu, 
& Wang, 2020). In the case of the frequency domain data 
used in this study, a 1-D CAE model is applied to capture the 
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status of the simulator with the vibration signal having one-
dimensional 1024 numerical data. We developed the 1-D 
CAE model that consists of two 1-D convolution layers as 
encoder and two 1-D transposed layers as decoder using 
Python 3.10.9 and TensorFlow 1.12.0. Table 1 shows the 
structure of the model and hyperparameters. 

Table 1. Structure of the model and hyperparameters 

Layer # of 
Filters 

Kernel 
Size 

Activation 
Function 

1-D Conv. 64 8 RELU 
1-D Conv. 32 8 RELU 

1-D Trans. Conv. 64 8 RELU 
1-D Trans. Conv. 1 8 - 

 
Since MSE and RMSE can lead to higher weights given to 
higher errors, the model tends to be more sensitive to noise 
that might cause false positives (Kang, Kim, Kang, & Gwak, 
2021). In the reconstruction loss function for AE-based AD 
models, MAE is more appropriate than the other two 
functions (Xu, Jang-Jaccard, Singh, Wei, & Sabrina, 2021). 
Therefore, the loss function used in the training process using 
the model is MAE in Eq. (1). Here, 𝑛 denotes the number of 
numeric values contained in one vibration signal. 𝑋′ denotes 
the reconstructed signal from the model, and 𝑋 denotes the 
input signal to the model. 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑋′𝑖 − 𝑋𝑖|                             (1)

𝑛

𝑖=1

 

3.2. Thresholds 

Unsupervised learning-based AD requires a threshold to 
determine whether the vibration signal represents an anomaly. 
In the existing AD using AE, the maximum reconstruction 
error value (Kang, Kim, Kang, & Gwak, 2021; Wei, Jang-
Jaccard, Xu, Sabrina, Camtepe, & Boulic, 2023) or the 3-
sigma value (Lee, Lee & Kim, 2024; Panza, Pota, & Esposito, 
2023) among the reconstruction errors of the training data has 
been set as a threshold. In this case, the threshold has to be 
only one. However, in the proposed method, thresholds are 
generated as many as the number of segments N. Figure 2 
shows the reconstruction error distributions as a histogram 
for each segment of the training data when N is 4. The red 
vertical line in each histogram in Figure 2 represents the 
maximum reconstruction error used as a threshold to 
determine the anomaly in the segment. 

 

 
Figure 2. Reconstruction error distributions and thresholds 

(N=4) 

3.3. Anomaly Detection 

The proposed algorithm uses all N thresholds to detect the 
fault vibration signals among the test signals. If all the N 
reconstruction errors in the N segments of a target signal are 
lower than the corresponding thresholds, the signal is 
considered normal. Otherwise, it is a fault vibration signal. 
Figure 3 shows an example of the AD process of the proposed 
algorithm when N=2. 

 

 
Figure 3. Process of anomaly detection (N=2) 

 
The true-positive rate (TPR) in Eq. (2) was set to measure the 
performance of AD. Here, TP is the number of correctly 
predicted vibration signals, and FN is the number of 
incorrectly predicted ones. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                  (2) 

4. EXPERIMENT 

4.1. Setup 

The vibration signals were gathered with a fault vibration 
simulator and an IEPE-type sensor for about two months. The 
simulator is the AST-VFS product of AST company of the 
Republic of Korea, and the sensor is the Model 131.02 
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product of VibraSens company of France. The vibration 
signals were collected every two minutes and obtained by 
Vib-AiR, the wireless health monitoring solution of 
RESHENIE company of the Republic of Korea, through open 
platform communication-unified architecture (OPC-UA) 
protocol (Schleipen, Gilani, Bischoff, & Pfrommer, 2016). 
Figure 4 shows the experimental environment. In Figure 4, R 
and L in parentheses mean Right and Left, respectively. The 
sensor (red square in Figure 4) was set on the top of the right-
bearing housing of the simulator (blue square in Figure 4). 
The sensor can collect vibration signals in three-axis 
directions. In the experiment, only the Y-axis signals, which 
is the direction of rotation of the motor (the orange arrow in 
Figure 2), were used. 

 
Figure 4. The fault vibration simulator and the IEPE sensor 

 

4.2. Data Description 

The dataset includes normal vibration signals at the motor 
rotation speed of 1,500 RPM and four fault vibration signals: 
imbalance, misalignment, looseness, and bearing faults. 
Table 2 summarizes the 16 simulator settings for generating 
fault signals. In Table 2, settings #1 to #6 are the conditions 
for the imbalance. Setting #7 is for the misalignment. Settings 
#8 to #10 are for the looseness. Finally, settings #11 to #16 
are for the bearing faults. 

 
Table 2. Simulator settings for the faults 

No Setting 
#1 Attaching 1.7g mass to the right disk 
#2 Attaching 1.7g mass to the left disk 
#3 Attaching 1.7g mass to each disk 
#4 Attaching 6.25g mass to the right disk 
#5 Attaching 6.25g mass to the left disk 
#6 Attaching 6.25g mass to each disk 
#7 Set to 1.2mm 

#8 Loosening the left bearing housing 
#9 Loosening the right bearing housing 

#10 Loosening both bearing housing 
#11 Applying outer wheel defect bearing to the left 
#12 Applying outer wheel defect bearing to the right 
#13 Applying inner wheel defect bearing to the left 
#14 Applying inner wheel defect bearing to the right 
#15 Applying ball defect bearing to the left 
#16 Applying ball defect bearing to the right 

 
One vibration data has 1,024 features that are numerical 
values representing amplitudes of each frequency from 0 to 
243.76Hz. Figure 5 (a) is an example of the normal vibration 
data, and Figure 5 (b) is the result of visualizing it. 

 
Figure 5. An example of the normal data 

 
Figure 6 shows the sample fault signals collected from the 
simulator using the sensor. Figure 6 (a), Figure 6 (b), Figure 
6 (c), and Figure (d) are the results of the visualization of the 
signals collected under the imbalance of setting #1, the 
misalignment of setting #7, the looseness of setting #8, and 
the bearing fault of setting #11, respectively. These fault 
signals in Figure 6 showed different patterns in the number 
of peaks and amplitude values of peaks compared to the 
normal vibration signal in Figure 5(b). However, most 
frequencies in all signals showed very low amplitudes close 
to zero, except for a few frequencies. These frequency data 
characteristics affect the reconstruction results of the model 
and can consequently influence the AD performances. 
 

 
Figure 6. Example of the fault signals 
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A total of 21,365 vibration signals were collected from the 
simulator, of which 17,624 (82.5%) vibration signals were 
used as training data and 3,741 (17.5%) vibration signals as 
test data. Table 3 shows a detailed description of the dataset. 
Normal vibration signals of 17,624 training data and 481 test 
#1 data in Table 3 were generated when the motor in the 
simulator rotated at 1,500 RPM without applying fault 
condition settings described in Table 2. Test data used in tests 
#2 to #17 in Table 3 were generated from the operating 
conditions of the simulator with settings #1 to #16 in Table 2, 
respectively. In summary, the AD performances were 
measured with TPR for a total of 17 test cases (tests #1 to #17 
in Table 3) in the experiment. The experiment was conducted 
in two cases: with and without the proposed algorithm. 

Table 3. Description of the dataset 
Purpose Type # of Data 
Training Normal 17,624 

Test 

#1 Normal 481 
#2 Imbalance (setting #1) 154 
#3 Imbalance (setting #2) 279 
#4 Imbalance (setting #3) 120 
#5 Imbalance (setting #4) 213 
#6 Imbalance (setting #5) 230 
#7 Imbalance (setting #6) 184 
#8 Misalignment (setting #7) 241 
#9 Looseness (setting #8) 319 

#10 Looseness (setting #9) 118 
#11 Looseness (setting #10) 265 
#12 Bearing Fault (setting #11) 138 
#13 Bearing Fault (setting #12) 251 
#14 Bearing Fault (setting #13) 127 
#15 Bearing Fault (setting #14) 269 
#16 Bearing Fault (setting #15) 196 
#17 Bearing Fault (setting #16) 156 

 

5. EXPERIMENTAL RESULTS 

5.1. Anomaly Detection without N-Segmentation 

Figure 7 shows the results of AD for the test data (Test #1 to 
#17 in Table 3) when the N-Segmentation algorithm is not 
applied. The blue dots and the red horizontal line in Figure 7 
represent the MAE values for the test data and the threshold, 
respectively. Therefore, the dots above the threshold line 
mean predicted anomalies. The normal vibration signals 
(Test #1 in Figure 6) were exactly predicted as normal 
vibration signals. On the other hand, the performance of AD 
for the fault vibration signals (Test #2 to Test #17 in Figure 
7) was too low. A few data were detected as anomaly signals 
in misalignment (Test #8 in Figure 7) and looseness (Test #10 
and Test #11 in Figure 7), where TPRs were measured as 0.21, 
0.19, and 0.05, respectively. Except for these cases, no 
detection was made for the rest of the anomalies. Overall, AD 

performances with the traditional approach using the model 
were too poor. 

 

 
Figure 7. Result of anomaly detection without N-

Segmentation 

5.2. Anomaly Detection with N-Segmentation 

As mentioned in Section 3.3, the proposed algorithm finally 
determines an anomaly signal by OR operation of AD results 
in segmented frequency ranges. Since the IEPE sensor 
collected a frequency signal of 0-243.76Hz, the segments are 
made by dividing the frequency range evenly. Figure 8 shows 
AD results in the segmented frequency ranges when N is 4: 
0~60.76Hz (Figure 8 (a)), 61~121.76Hz (Figure 8 (b)), 
122~182.76Hz (Figure 8 (c)), and 183.76Hz (Figure 8 (d)). 
In the example, as shown in Figure 8 (c) and Figure 8 (d), the 
proposed algorithm can detect most anomalies belonging to 
misalignment (Test #8 in Figure 8 (c)) and imbalance (Test 
#5 and Test #7 in Figure 8 (d)) compared to Figure 7. AD 
performance with the proposed algorithm has improved 
dramatically in these faults compared to the results of Figure 
7. 
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Figure 8. Result of anomaly detection with N-Segmentation 

(N=4) 
As mentioned before, because N is a kind of hyperparameter, 
the proposed algorithm needs to be confirmed by changing N. 
Figure 9 shows the AD performance of the algorithm 
according to the change in the N value. When N is zero in 
Figure 9, the TPRs indicate AD results of not applying the 
proposed algorithm. The AD performance with N-
Segmentation shows higher TPR scores than without it in all 
fault cases: imbalance (Figure 9 (a)), misalignment (Figure 9 
(b)), Looseness (Figure 9 (c)), and Bearing Faults (Figure 9 
(d)). Especially when N was 8, the TPRs for imbalance (Test 
#7) and misalignment (Test #8) improved dramatically from 
0.01 to 0.99 and 0.21 to 1, respectively. In this case, the TPR 
for all fault signals was 0.40, and the proposed algorithm 
detected 1,301 anomalies among a total of 3,260 anomalies. 
On the other side, the traditional approach without the 
proposed algorithm just detected 87 anomalies. 

 

 
Figure 9. Performance of anomaly detection by N 

6. DISCUSSION 

The results of the experiment can be summarized as follows. 
First, the N, the number of segmentations, did not affect the 
AD performance for the normal vibration signals in the test 
data. Regardless of N, the TPRs for the normal vibration 
signals were always measured as 1. Second, even if anomaly 
signals were the same fault type, the TPRs for the same fault 
signals showed differences according to the specific settings. 
Overall, anomaly signals measured in higher physical 
changes near the sensor were relatively better detected (see 
Table 2, Table 3, and Figure 9). Therefore, when detecting 
facility faults using a vibration sensor, the position of the 
sensor must be carefully determined. Third, the proposed 
algorithm can improve the performance of the unsupervised-
based AD. In our experiment, the proposed algorithm 
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detected about 15 times fault vibration signals in the best case 
(N=8) than N=0. Even in the worst case (N=14), it could 
detect fault vibration signals more than 8 times. Fourth, the 
proposed algorithm not only detects the fault vibration 
signals with better performance but also provides additional 
information about the frequency range in which the anomaly 
occurred (see Figure 8). This information can be used to 
predict the type of facility failure. 

7. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed the N-segmentation algorithm, 
which uses segmented frequency ranges to enhance facility 
fault detection performance. To measure the algorithm 
performance, we collected the frequency domain data of the 
vibration signal with the fault vibration simulator using the 
IEPE-type sensor. We trained the normal vibration data in the 
collected vibration signal using the 1-D CAE model and 
performed AD for the normal vibration data and four types of 
fault vibration data: imbalance, misalignment, looseness, and 
bearing faults. We detected up to 15 times more anomalies 
with the proposed algorithm than without it. The results show 
that the proposed algorithm is effective in AD for fault 
vibration signals. However, this study has limitations in 
applying only the 1-D CAE model and experimenting in the 
simulation environment. In future research, we aim to 
improve the proposed algorithm by comparing other machine 
learning models, and we will adopt it to facilities and 
equipment operating in real manufacturing sites. 
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ABSTRACT

Understanding the current health condition of complex sys-
tems and their temporal evolution is an important step in prog-
nostics and health management (PHM). However, when man-
aging a fleet of complex systems, variations arising from man-
ufacturing, environmental factors, mission profiles, and main-
tenance practices result in diverse health index (HI) trajecto-
ries. Therefore, in PHM, it is essential not only to identify
common fleet-wide trends but also to account for individual
asset-level variations when inferring HIs.

While several data-driven approaches exist for inferring indi-
vidual asset-level HIs from unsupervised run-to-failure degra-
dation data (see e.g. (Djeziri, Benmoussa, & Zio, 2020)),
little research has been devoted to deriving analytical proba-
bilistic representations of HIs that encompass both fleet-level
trends and individual asset-level fluctuations. This paper aims
to bridge this gap by addressing the research question of how
to obtain an analytical representation of probability distribu-
tions for the time to reach intermediate degradation levels,
using run-to-failure data or incomplete degradation trajecto-
ries from a fleet of complex systems.

In this work, it is assumed that suitable, asset-specific HI
curves have been inferred through a fusion of deep learning
techniques and prior expert knowledge of degradation physics
(e.g., (Bajarunas, Baptista, Goebel, & Chao, 2023)). Given
this context, we derive an analytical probabilistic description

Pierre Dersin et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

of the health index (HI) that reflects both fleet-wide trends and
asset-specific conditions in the cases of Gamma or Weibull
time-to-failure (TTF) distributions. Our approach involves
defining HIs with a power law function, enabling the mod-
eling of TTF and time to reach intermediate degradation lev-
els. Moreover, we also detail the procedure for estimating the
power law exponent from field data through regression analy-
sis and conduct a sensitivity analysis regarding this exponent.

To illustrate our methodology, we present two case studies
based on the N-CMAPPS dataset of turbofan engines and Li-
ion batteries, validating the aforementioned assumptions and
illustrating our methodology steps.

1. INTRODUCTION

An important step in prognostics and health management of
complex industrial systems is inferring their current health
condition. To this end, a normalized health index is often de-
fined as a metric that measures the degree of degradation of
equipment. Conventionally, a value of 1 for the health in-
dex corresponds to perfect health, and a value of 0 to a failed
state. An intermediate value characterizes a state where the
item is still operating but less than perfectly. If the health
index captures the physical condition of the asset correctly,
the time evolution of the health index is an appropriate means
for performing prognostics, i.e., predicting the evolution of
a degradation, eventually up to a failure, and the time until
that failure, or remaining useful life (RUL). Therefore, the
health index for an asset constitutes a key tool for mainte-
nance decision-making, as it enables health assessment (in
particular, degradation severity) and prognostics.

1
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The derivation of HIs has traditionally depended on extract-
ing key features from condition monitoring (CM) data and
integrating them with a physical understanding of the asset to
create a health index (Atamuradov et al., 2020). This practice,
while effective, is heavily reliant on domain-specific knowl-
edge, presenting a significant barrier to scalability and adapt-
ability across different systems. To address these limitations,
diverse data-driven approaches have been proposed for es-
timating HI from condition monitoring data. For instance,
supervised learning models have been applied when dealing
with datasets that contain labels of HIs (Roman, Saxena, Robu,
Pecht, & Flynn, 2021). Similarly, residual techniques that
identify deviations from a system’s expected behavior (Ye &
Yu, 2021; Hsu, Frusque, & Fink, 2023) offer another path-
way, albeit contingent on the existence of a representative
dataset of ”healthy” state labels- an often challenging pre-
requisite in industrial settings due to difficulties in obtain-
ing a representative data for complex systems. Recently, un-
supervised methods combining deep learning methodologies
with traditional reliability engineering principles in the form
of explicit, analytical representation of the health index have
shown promise in inferring asset-specific HI (Bajarunas et al.,
2023; Yang, Habibullah, & Shen, 2021; Qin, Yang, Zhou, Pu,
& Mao, 2023). Therefore, these recent works highlight the
potential of leveraging the extensive body of reliability engi-
neering theory, alongside deep learning algorithms, to model
RUL dynamics effectively. An in-depth study of RUL dynam-
ics and uncertainty, based on reliability theory, is reported in
(Dersin, 2023).

In this work, our objective is to provide a theoretical founda-
tion for constructing a robust analytical HI that reflects both
fleet-wide trends and asset-specific conditions. By doing this,
we aim to enable the integration of reliability engineering
models in machine learning algorithms by providing an an-
alytical probabilistic description of the HI. Addressing this
objective involves answering the following question: How to
find an analytical description for a time-dependent health in-
dex integrating random parameters to capture asset variabil-
ity and align with observed times to reach various degrada-
tion severity levels including the time to failure?

Hence, in this work, we assume the availability of time-to-
failure (TTF) distributions for a fleet of assets. Given this
assumption, we formulate the problem in a general context
and provide an analytical solution when the TTF follows a
Gamma distribution or a Weibull distribution. In this sce-
nario, with a health index defined by a power law featuring
either an inverse-Gamma or a Fréchet-distributed coefficient,
as the case may be, we demonstrate that the time to reach any
intermediate degradation level follows a Gamma or Weibull
distribution, respectively, sharing the same shape parameter
as the TTF. Moreover, the scale parameter explicitly depends
on the degradation level. We also detail the procedure for es-
timating the power law exponent from field data through re-

gression analysis and conduct a sensitivity analysis regarding
this exponent.

To validate our methodology, we present case studies focus-
ing on the N-CMAPPS turbofan and randomized usage Li-ion
batteries datasets. The results confirm the proposed method-
ology and highlights its practical applications. Obtaining an
explicit, analytical representation of the health index, includ-
ing the random variability among assets, is a definite advance
over the state of the art that offers a major advantage. The pro-
posed approach enables maintenance decision-making with
minimal computational demand.

The paper is organized as follows: Section 2 presents the
methodology used in this work; we first formulate the prob-
lem in Section 2.1 and present a resolution method in Section
2.2. We then delve into specific cases involving Gamma (Sec-
tion 2.3) and Weibull distributions (Section 2.4), followed by
a discussion on estimating the power law exponent control-
ling the shape of degradation for both analyzed distributions
(Section 2.5) . Case studies from the N-CMAPSS and ran-
domized battery usage datasets illustrate our approach (Sec-
tion 3), with sensitivity analysis on the power law exponent
(Section 4). The paper concludes with a summary of our find-
ings and suggestions for future research in Section 5.

2. METHOD

This section provides a detailed explanation of the method-
ology used to derive an analytical description of the HI. The
process is divided into several steps, which are outlined below
and visually summarized in Figure 1

2.1. Problem Statement

A degradation phenomenon can be described by an HI, which
evolves with time i.e., HI(t), usually monotonically, from a
perfect health condition to a failed state. Perfect health corre-
sponds to a value HI(t) = 1, and failure is deemed to occur
at the first time t, for which HI(t) hits 0.

Given a plausible probability distribution for the time to fail-
ure, denoted T , which is derived from available data or prior
knowledge, it is desired to find a family of probability dis-
tributions for the times Ts needed for the HI to reach any
intermediate health level s,

0 < s < 1 (1)

In other words, given a prior probability distribution, condi-
tional upon HI(0) = 1, for the time to failure T ,

T = inf[t : HI(t) = 0] (2)

find, for any intermediate level s, the probability distribution
for Ts:

2
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Figure 1. Flowchart illustrating the different steps of the
proposed method along with the context of its applicability.
(Previous work) The methodology assumes the availability
of asset-specific Health Index (HI) derived from CM data, for
instance, based on Bajarunas et al. (This work) The process
of estimating begins with the assumption of a prior plausi-
ble Time to Failure (TTF) distribution (Gamma or Weibull
models) and a probabilistic parametric model of a Health In-
dex (h(b, p, t)). Based on these assumptions, we derive the
analytical forms of the distributions describing the time re-
quired for the HI to reach any specified intermediate health
level (TTS), thus providing a comprehensive statistical frame-
work to model a degradation process. (Future work) The es-
timation of probabilistic, asset-specific failure times through
extrapolation of individual HI’s is suggested as a possible ap-
plication of the derived analytical HI.

Ts = inf[t : HI(t) = s] (3)

2.2. Resolution Method: General Principle

LetR(t) denote an assumed reliability function. Then a prob-
abilistic model for HI(t), as a non-increasing function of t,
is selected, and the condition P [T > t] = R(t) is imposed.
Finally, Eq. (3) is applied to obtain the distribution of Ts:

Rs(t) = P [Ts > t] (4)

Let us consider the following parametric model for the health
index:

HI(t) = h(p1, p2, ...pn; t) (5)

with an assumed functional form h, where some of the pa-
rameters p1, p2, . . . , pn are random variables.

Then, it should be noted that

h(p1, p2, ...pn; t) > 0 (6)

is equivalent to
T > t (7)

therefore the following condition is imposed:

P [h(p1, p2, ...pn; t) > 0] = R(t) (8)

with the right-hand side of Eq. (8) known.

Similarly, the condition Ts > t is equivalent to HI(t) > s
and hence from Eq. (8), one derives

P [h(p1, p2, ..., pn; t) > s] = Rs(t) (9)

for any value of s between 0 and 1.

The method is quite general and can be applied to any TTF
distribution. In the next two subsections, the method is de-
tailed and illustrated on two frequently encountered families
of TTF distributions: Gamma and Weibull, respectively.

2.3. Gamma Case

Let us consider the case when the time to failure follows a
Gamma distribution with shape parameter β and rate param-
eter λ. The Gamma reliability function for time T (Nachlas,
2017) can be expressed as:

R(t) = 1− γ(λt;β)

Γ(β)
(10)

where γ(λ.t;β) stands for the incomplete Euler gamma func-
tion.

A health index is sought, HI(t), such that the time for the HI
to reach the value 0 is Gamma-distributed.

We shall now show that a solution is provided by the follow-
ing power law for the health index:

h(b; p; t) = 1− (bt)p (11)

3
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with a positive exponent p and a random variable b with an
inverse-gamma distribution with shape parameter β and scale
parameter λ (b has the dimension of a frequency, i.e., the in-
verse of a time, so does λ). The health index defined by Equa-
tion (11) decreases monotonically from 1 to 0 as the time or
usage variable t increases from 0 to 1

b . It is a convex function
of t if p < 1 and a concave function if p > 1 ( and linear in
the limit case of p = 1). The property that b has an inverse-
Gamma distribution is equivalent to 1

b having a Gamma dis-
tribution with parameters β (shape) and λ (rate).

Denoting by T the time to failure, there follows from the
above health index definition that

P [T > t] = P [(bt)p < 1] = P [bt < 1] = P [
1

b
> t] (12)

Since 1
b is Gamma distributed , the right-hand side of (12) is

the Gamma reliability function at time t, with shape and rate
parameters respectively equal to β and λ. Therefore, it has
been proved that the definition (11) for the health index leads
to a Gamma-distributed time to failure. .

Now let us look at the distribution of the time for the health
index to reach a level s, between 0 and 1.

Let us denote that first hitting time Ts.

P [Ts > t] = P [h(b; p; t) > s] = P [1− (bt)p > s] (13)

Equation (13) is equivalent to:

P [Ts > t] = P [(bt)p < 1− s] = P [
1

b
>

t

(1− s) 1
p

] (14)

Since 1
b is Gamma (β,λ) distributed, it follows from (10) that,

RTs(t) = P [Ts > t] = 1−
γ( λt

(1−s)
1
p
;β)

Γ(β)
(15)

Therefore it has been shown that Ts has a Gamma distribu-
tion with shape factor β, and rate parameter λs given by the
following function of s and the exponent p:

λs =
λ

(1− s) 1
p

(16)

The problem stated in the beginning has thus been solved in
the case when the time to failure has a Gamma distribution.
The mathematical expectations of Ts and that of the health
index HI(t) are then derived explicitly, as follows, from the

properties of the gamma distribution and the inverse-gamma
distribution (Llera & Beckmann, 2016):

E(Ts) =
β

λs
=
β

λ
(1− s) 1

p (17)

which can also be written as :

E(Ts) = E(T )(1− s) 1
p (18)

To derive the expectation of the health index HI(t); we now
use properties of the inverse-gamma distribution. If X has
an inverse-gamma distribution with parameters β and λ, the
nth-order moment of X is given (Llera & Beckmann, 2016)
by:

E(Xn) = λn
Γ(β − n)
Γ(β)

(19)

as long as

n < β

Therefore

E[HI(t)] = 1− E(bp)tp = 1− (λt)p
Γ(β − p)
Γ(β)

(20)

assuming the exponent p to be smaller than the shape factor
β.

2.4. Weibull Case

We shall now consider the case where the time to failure fol-
lows a 2-parameter Weibull distribution. Denoting β and η
the shape and scale parameters, respectively, this corresponds
to the well-know reliability function:

R(t) = e−(t/η)β (21)

For the health index, let us take the following power law,
slightly different from the one taken in the Gamma distribu-
tion case, for reasons which will become apparent:

h(b; p; t) = 1− btp (22)

where p is a positive exponent, and b is a random variable.
It will be seen that, if b has a Fréchet distribution (Fréchet,
1927; Ramos, Louzada, Ramos, & Dey, 2020), then the time
to failure is Weibull distributed.

Indeed, by definition of the Fréchet (also known as ”inverse
Weibull”) distribution, if the random variable b is Fréchet-
distributed with scale parameter λb and shape parameter βb,
then:

4
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P [b > u] = 1− exp[−( u
λb

)−βb)] (23)

The shape parameter βb is dimensionless, and the scale pa-
rameter λb has the dimension of t to the power of (−p), just
as the coefficient b.

Then, by substituting
u = t−p (24)

in (23), the following is obtained :

P [HI(t) > 0] = P [b < t−p] = exp[−(λbtp)βb ] (25)

and this expression must be equated to P [T > t], which
is assumed to be the reliability function of a two-parameter
Weibull variable (η ,β).

Therefore, the parameters of the Fréchet distribution for b are
obtained as follows:

λb = 1/ηp (26)

βb = β/p (27)

as it can be verified by substituting the right-hand sides of
(26) and (27) respectively for λb and βb in (25). Then the dis-
tribution of Ts, the first hitting time of level s, can be derived
as well, for any value of s between 0 and 1.

P [Ts > t] = P [HI(t) > s] (28)

= P [1− btp > s] = P [b < (1− s)t−p] (29)

Therefore, by substituting for u in (23) the value (1 − s)t−p

and using (26) and (27),

P [Ts > t] = exp[−(tp/ηp(1− s))
β
p ] (30)

or
P [Ts > t] = exp[−(1− s)− β

p (
t

η
)β ] (31)

It is seen that (31) describes the reliability function of a Weibull
random variable with: 1) the same shape factor β as the dis-
tribution of T ; 2) A scale factor ηs expressed as follows as a
function of s , the scale factor η of T and the exponent p:

ηs = η(1− s) 1
p (32)

Thus, the problem stated in the beginning has also been solved
in the Weibull distribution case.

Accordingly, the mathematical expectation of the first hitting
time Ts is obtained:

E(Ts) = η(1− s) 1
pΓ(1 +

1

β
) (33)

Equation (33) can also be formulated as

E(Ts) = E(T )(1− s) 1
p (34)

which is the same as in the Gamma-distribution case (18).
Also, the expectation of the health index HI(t) at time t can
be derived from the expectation of the random coefficient b,
assumed Fréchet distributed:

E(b) =
1

ηp
Γ(1− p

β
) (35)

Therefore

E(HI(t)) = 1− E(b)tp = 1− (
t

η
)pΓ(1− p

β
) (36)

The quantiles of b can also be derived. The x-percent quantile
is Bx:

Bx =
1

ηp(−lnx) p
β

(37)

In particular, the median (50-percent quantile) is given by:

B0.5 =
1

ηp(ln2)
p
β

(38)

2.5. Estimation of Exponent p from Data

From (32), there follows, by taking logarithms,

log(1− s) = p log(
ηs
η
) (39)

Therefore, after estimating ηs from the data sample for vari-
ous values of s, the regression coefficient of log(1 − s) with
respect to log(ηs

η ) will provide an estimation of p. Also, tak-
ing (34) into account,

log(1− s) = p log(
E(Ts)

E(T )
) (40)

Therefore, in order to estimate p, it is equivalent to estimate
E(Ts) from the data samples corresponding to several values
of s and then run the linear regression of log(1 − s) with re-
spect to log(E(Ts)

E(T ) ). The regression coefficient (slope) is the
best estimate of p. The same method applies in the Gamma
distribution case since the dependence of E(Ts) on s is the
same in both cases (see Section 2.3).

2.6. Incomplete Degradation Trajectories

Our method for obtaining an analytical form of the HI does
not require run-to-failure condition monitoring data 1. Let us

1If no failures are observed the HI has a different meaning as it is normalized
with respect to the most degraded unit in the fleet.
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consider u as the smallest threshold ofHI(t) observed for all
units in the fleet. Then in equation (34), instead of consider-
ing the expected TTF, E(T ), we would consider the expected
time to hit the common threshold E(Tu). The revised equa-
tion would be:

E(Ts) = E(Tu)
(1− s)1/p
(1− u)1/p (41)

Where E(Ts) is the sample arithmetic mean for each value
s > u. When u = 0, this is equivalent to Eq. 34. The
exponent p can be estimated from linear regression in

log(1−u)−log(1−s) = p(log(E(Tu))−log(E(Ts))) (42)

3. CASE STUDIES

3.1. Turbofan

The New Commercial Modular Aero-Propulsion System Sim-
ulation (N-CMAPSS) dataset (Arias Chao, Kulkarni, Goebel,
& Fink, 2021) offers comprehensive degradation trajectories
of turbofan engines until failure. Among the dataset’s eight
subsets, we focus on DS003, characterized by a failure mode
impacting the efficiency and flows of both low-pressure and
high-pressure turbines.

The N-CMAPSS dataset characterizes degradation at the com-
ponent level across initial, normal, and abnormal degradation
stages. Consequently, an HI is calculated through a non-
linear mapping of operational margins under reference con-
ditions. System failure is determined when the HI reaches 0.
The dataset also accounts for between-flight maintenance by
allowing improvements in engine health parameters within
specified limits. The ground truth HI is shown in Figure 2,
and will be used to verify the findings of Section 2.3 and 2.4.
Estimating the HI using condition monitoring data as high-
lighted in (Bajarunas et al., 2023) is also possible.

Figure 2. Observed HI in N-CMAPSS DS03 Dataset

The Akaike Information Criterion (AIC) (Akaike, 1974) was
used to compare the goodness of fit with different probabil-
ity distributions (Weibull, Gamma, Exponential), see Table

1. When a statistical model is used to represent the process
that generated some data, some information is lost. The AIC,
based on information theory, estimates the amount of infor-
mation lost. It deals both with overfitting and underfitting by
taking model simplicity into account as well as goodness of
fit. The AIC is defined by

AIC = −2log(maxL) + 2P (43)

where the term log(maxL) denotes the maximum value of the
log-likelihood function, and P is the number of parameters in
the model ( for instance,for Weibull or Gamma, P is equal to
2). In our example, the best value of the AIC was obtained
with the Gamma distribution for the time to failure as well as
the time to reach level s for s ranging from 0 to 0.8. The AIC
value for Weibull distribution is almost identical. In contrast,
the AIC value for the exponential distribution is much higher.

Using the Maximum Likelihood Estimation technique, we es-
timated the best-fit Gamma parameters for various s thresh-
olds. Figure 3 shows the estimated βs and λs values for
s = [0, 0.1, 0.2, ..., 0.8]. The results validate the conclusion
presented in Section 2.3: the distribution of the first hitting
time Ts shares the same shape factor β = 52.83 as the distri-
bution of failure times T . Additionally, the rate parameter λs
is a function of s and λ of T . We determined p = 3.35 fol-
lowing the description provided in Section 2.5. The wide con-
fidence intervals of βs and λs can be primarily attributed to
the limited number of observations (15 run-to-failure curves),
rather than to the choice of the Gamma distribution, which we
have demonstrated to be the most suitable among the alterna-
tive distributions investigated.

We then estimated the best-fit Weibull parameters for vari-
ous s thresholds. In Figure 4, we estimated βs and ηs using
s = [0, 0.1, 0.2, ..., 0.8]. The results validate the conclusion
presented in Section 2.4: the distribution of the first hitting
time Ts shares the same shape factor β = 7.32 as the distri-
bution of failure times T . Additionally, the scale parameter
ηs is a function of s and η of T .

Figure 5 illustrates the mean, median, and 90% quantile of
HI(t), as described by equations (36) and (37). Notably, we
observe that the median closely aligns with the ground truth
HI within the dataset.

3.2. Battery

The methodology proposed in this study was further validated
using a dataset obtained from the NASA Ames Prognostics
Center of Excellence repository, specifically focusing on bat-
tery usage patterns (Bole, Kulkarni, & Daigle, 2014). This
dataset includes information collected from individual 18650
LCO cells undergoing various charging and discharging cy-
cles following randomized protocols.

Batteries commonly exhibit several physical aging mecha-
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(a) βs

(b) λs

Figure 3. The Gamma distribution shape factor βs and the
rate parameter λs for various HI thresholds for N-CMAPSS
dataset.

Table 1. AIC of distribution fits for CMAPSS turbofan case
study.

s AIC Gamma AIC Weibull AIC Exponential
0 118 120 161

0.1 117 120 161
0.2 117 120 160
0.3 116 119 159
0.4 115 118 158
0.5 114 116 156
0.6 112 114 154
0.7 109 112 151
0.8 106 108 147
0.9 116 113 127

nisms such as graphite exfoliation, electrolyte loss, solid elec-
trolyte interface layer formation, continuous thickening, and
lithium plating, among others (Sui et al., 2021). These aging
processes lead to two primary changes in battery behavior:
capacity degradation and increased internal resistance. In this
analysis, our focus will be on capacity degradation as the key
health index for the batteries under investigation.

The HI of a battery is defined as the ratio between its cur-
rent capacity and the nominal capacity (Q/Qnominal). The
battery’s capacity can be determined by reference discharge
cycles conducted at a constant current (I). The current ca-
pacity is calculated as the integral of current over the entire

(a) βs

(b) ηs

Figure 4. The Weibull distribution shape factor βs and the
scale factor ηs for various HI thresholds for N-CMAPSS
dataset.

Figure 5. The mean, median, and 90% quantile of the health
index obtained from Weibull distribution.

reference discharge cycle, denoted as
∫
t
I .

In this work, the failure of a battery (HI = 0) is defined once
the capacity ratio is less than 60%. The initial HI of the bat-
tery is equal to the initial capacity ratio. Figure 6 shows the
estimated HI of the NASA battery dataset.

The AIC values of three different distribution fits are shown
in Table 2. The best fit was obtained with Gamma distribu-
tion for the time to failure as well as the time to reach level s
for s ranging from 0 to 0.9. The AIC value for Weibull dis-
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Figure 6. Observed HI in NASA battery dataset

tribution is almost identical,in contrast with the exponential
distribution AIC, much higher.

We employed the Maximum Likelihood technique to estimate
the best-fit Gamma parameters for various s thresholds. In
Figure 7, we estimated βs and λs using s = [0, 0.1, 0.2, ..., 0.8].
Once more, we illustrate that a reasonably good approxima-
tion for the shape parameter βs of the first hitting time is the
shape parameter β of T. Following the estimation of p = 0.94,
we demonstrate that the rate parameter λs varies with s and
λ. Since p < 1, the HI curve is now convex, as observed.

(a) βs

(b) λs

Figure 7. The Gamma distribution shape factor βs and the
rate parameter λs for various HI thresholds for NASA battery
dataset.

The best-fit Weibull parameters for various s thresholds are
shown in Figure 8. Once again, we show that a reasonably
good approximation for the shape parameter of the first hit-
ting time βs is the shape parameter β of the failure time T and
that the scale parameter ηs varies with s and η as expected.

(a) βs

(b) ηs

Figure 8. The Weibull distribution shape factor βs and the
scale factor ηs for various HI thresholds for NASA battery
dataset.

Table 2. AIC of other distribution fits for NASA battery case
study.

s AIC Gamma AIC Weibull AIC Exponential
0.0 118 121 151
0.1 111 118 146
0.2 104 112 140
0.3 102 108 135
0.4 97 102 128
0.5 84 93 118
0.6 67 75 109
0.7 62 70 99
0.8 54 60 89
0.9 44 50 71

4. SENSITIVITY ANALYSIS

Sensitivity analysis has been conducted on the N-CMAPSS
dataset, to investigate the effect of the exponent p in the para-
metric model of the health index.

For the Gamma case, it is immediate from (16) that, for given
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s, λs is a decreasing function of p (for p greater than, or equal
to 1). In the limit of p going to infinity, λs converges to λ.
For the Weibull case, a similar conclusion is drawn, but in-
stead from (32) it follows that, for given s, ηs is an increasing
function of p.

From (18) and (34) it follows that for both considered distri-
butions the average time to reach threshold s, E(Ts), is an
increasing function of p, as illustrated in Figure 9.

For both distributions, when p increases, the average value of
the HI is first higher than, and subsequently (for greater val-
ues of the time variable t), lower than, the HI corresponding
to a lower value of p. Increasing p corresponds to delaying
the decrease in HI, i.e., delaying the onset of the degradation;
but, once the degradation occurs, it is more sudden. See Fig-
ure 10 for an illustration.

Figure 9. Gamma and Weibull distribution E[Ts] as a func-
tion of s for three values of p. N-CMAPSS dataset.

5. CONCLUSION AND PERSPECTIVES

This study has successfully addressed the problem of analyt-
ically modeling health indices (HI) in cases where the time-
to-failure follows either a Gamma or Weibull distribution. By
leveraging observed health index trajectories over time and
specifically the failure times, we have derived an analytical
form for the health index that is consistent with these observa-
tions. Additionally, we provided an analytical expression for
the distribution of the time to reach any intermediate degra-
dation level.

The availability of closed-form expressions for the health in-
dex is highly beneficial for implementing predictive main-
tenance strategies, particularly for estimating the remaining
useful life (RUL) distribution. Furthermore, once a health in-
dex function is derived for a particular application, it can po-
tentially serve as a foundation for similar applications, such
as the same asset under different operating conditions or a
slightly modified asset. Without an analytical characteriza-
tion, a new health index would need to be learned from scratch
for each new dataset.

(a) Gamma distribution E[HI(t)] as a function of t for three values
of p. N-CMAPSS dataset.

(b) Weibull distribution E[HI(t)] as a function of t for three values
of p.

Figure 10. Sensitivity to various p for the turbofan case study.
N-CMAPSS dataset.

Future work could extend this approach to other TTF distri-
butions and other HI formulations by applying the general
methodology outlined in Section 2.2. Additionally, an im-
portant extension of this work could be the use of quantile
regression and extrapolation of the HI from individual degra-
dation trajectories. More broadly, the analytical health in-
dex approach represents a significant advancement in survival
analysis, offering opportunities to integrate machine learning
techniques, particularly ’deep survival’ methods, with tradi-
tional reliability engineering.

REFERENCES

Akaike, H. (1974). A new look at the statistical model
identification. IEEE transactions on automatic control,
19(6), 716–723.

Arias Chao, M., Kulkarni, C., Goebel, K., & Fink, O. (2021).
Aircraft engine run-to-failure dataset under real flight
conditions for prognostics and diagnostics. Data, 6(1),
5.

Atamuradov, V., Medjaher, K., Camci, F., Zerhouni, N., Der-
sin, P., & Lamoureux, B. (2020). Machine health in-
dicator construction framework for failure diagnostics

9

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 184



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

and prognostics. Journal of signal processing systems,
92, 591–609.

Bajarunas, K., Baptista, M., Goebel, K., & Chao, M. A.
(2023). Unsupervised physics-informed health indica-
tor estimation for complex systems. In Annual confer-
ence of the phm society (Vol. 15).

Bole, B., Kulkarni, C. S., & Daigle, M. (2014). Adaptation
of an electrochemistry-based li-ion battery model to ac-
count for deterioration observed under randomized use.
In Annual conference of the phm society (Vol. 6).

Dersin, P. (2023). Modeling remaining useful life dynamics in
reliability engineering. CRC Press,Taylor and Francis.

Djeziri, M. A., Benmoussa, S., & Zio, E. (2020). Re-
view on health indices extraction and trend model-
ing for remaining useful life estimation. Artificial In-
telligence Techniques for a Scalable Energy Transi-
tion: Advanced Methods, Digital Technologies, Deci-
sion Support Tools, and Applications, 183–223.
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mum. Ann. de la Soc. Polonaise de Math..

Hsu, C.-C., Frusque, G., & Fink, O. (2023). A comparison of
residual-based methods on fault detection [Conference
Paper]. In C. S. Kulkarni & I. Roychoudhury (Eds.),
Proceedings of the annual conference of the phm so-
ciety 2023 (Vol. 15). s.l.: PHM Society. (15th An-
nual Conference of the Prognostics and Health Man-
agement Society (PHM 2023); Conference Location:
Salt Lake City, UT, USA; Conference Date: October 28
- November 2, 2023) doi: 10.3929/ethz-b-000636893

Llera, A., & Beckmann, C. F. (2016). Estimating an inverse
gamma distribution. arXiv:1605.01019v2.

Nachlas, J. (2017). Reliability engineering- probabilistic
models and maintenance methods, 2d edition. CRC
Press,Taylor and Francis.

Qin, Y., Yang, J., Zhou, J., Pu, H., & Mao, Y.
(2023). A new supervised multi-head self-attention
autoencoder for health indicator construction and
similarity-based machinery rul prediction. Ad-
vanced Engineering Informatics, 56, 101973. doi:
https://doi.org/10.1016/j.aei.2023.101973

Ramos, P., Louzada, F., Ramos, E., & Dey, S. (2020).
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ABSTRACT 

This paper aims to explore the use of recent approaches of 
deep learning techniques for anomaly detection of potential 
failure modes in a cooling water pump working in a gas-
combined cycle in a power plant. Two different deep learning 
techniques have been tested: neural networks and 
reinforcement learning. Two virtual digital twins were 
developed with each family of deep learning techniques, able 
to simulate the behavior of the cooling water pump in the 
absence of pump failure modes. Each virtual digital twin 
consists of several models for predicting the expected 
evolution of significant behavior variables when no 
anomalies exist. Examples of these variables are bearing 
temperatures or vibrations in different pump locations. All 
the data used comes from the SCADA system. The main 
features and hyperparameters in the virtual digital twins are 
presented, and demonstration examples are included. 

1. INTRODUCTION 

The early anomaly detection of failure modes in a power 
plant is a key factor in mitigating their effects on its 
operation, maintenance, and, in general, potential costs not 
planned. This problem has been studied intensively in the 
scientific literature for some time. Today, the availability of 
a large amount of data and the development of different 
machine learning techniques have propitiated their increasing 
use for early anomaly detection. References (Chavan & 
Yalagi, 2023), (Pang, Shen, Cao, Van Den Hengel (2021)), 
or (Nassif, Talib, Nasir & Dakalbab (2021)) are some 
examples of literature reviews in this area. 

 

Also, anomaly detection with respect to the expected normal 
behavior is a crucial input for a data-driven, efficient 
prognostics and health management program (PHM) as is 
inferred from references (Maior, Araújo, Lins, Moura &. 
Droguett, 2023), (Ochella, Shafiee & Dinmohammadi, 2021) 
and (Calvo-Bascones, Sanz-Bobi & Welte, 2021). These 
references are based on machine learning techniques as the 
main tools to reach their objectives.  

In line with these principles, this paper presents a digital twin 
of a cooling water pump (CWP) working in a power plant 
able to emulate normal behavior through a set of 
characteristic variables when the pump is in normal 
operation. The variables predicted are those that were 
considered important for the detection of anomalies that 
could cause failure modes. The digital twin was developed 
using two different families of deep learning techniques 
(Bishop & Bishop, 2024): neural networks and reinforcement 
learning. The use of reinforcement learning techniques in this 
field is less known, and this paper explores its potential by 
comparing the results obtained with a more extended method 
based on deep neural networks. 

The paper is organized as follows: Section 2 describes the 
foundations of the study. Section 3 presents the digital twins 
developed and the methodology used. Section 4 shows the 
anomaly detection results based on the digital twins. Finally, 
Section 5 presents the more relevant conclusions reached. 

2. STUDY FOUNDATIONS 

The objective of the analysis presented in this paper is to 
detect anomalies as soon as possible in the behavior expected 
for a Cooling Water Pump (CWO) working in a combined 

Miguel A. Sanz-Bobi et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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cycle of a power plant. Even when the paper is focused on the 
case of a CWP, the idea is to develop a procedure that can be 
easily extended to other components in the power plant. A 
CWP (Bowman & Bowman, 2021) is an important 
component whose objective is to cool the steam from the 
water turbine in an enthalpic process that contributes to the 
improvement of the water-steam cycle efficiency in the 
power plant. The process of monitoring if the pump is 
working as expected in normal behavior for any working 
condition is based on the consideration of the most typical 
failure modes that could appear in this type of pump. A 
Failure Mode and Effects Analysis  (FMEA) (Huang, You, 
Liu & Song, 2020) suggested the main observable variables 
that could indicate the presence of an anomaly and that can 
be summarized by monitoring the vibrations in the pump 
axes, temperature in bearings, and currents in the electrical 
motor. As it is known, all of these potential failure modes 
have an important critical impact on keeping the pump in 
healthy condition. 

This information has been used to support the development 
of a virtual digital twin to predict, in any working condition, 
the expected values of the vibrations in the axes of the pump, 
the temperature in its main bearings, and the currents in the 
electrical motor. This virtual digital twin is based on several 
models that characterize the relationships between variables 
to monitor for possible anomalies and the working conditions 
of the power plant. The list of variables predicted by the 
models developed follows: 

 Prediction of vibration in axis X 

 Prediction of vibration in axis Y 

 Temperature  of the bearing on the electrical motor 
side 

 Temperature of the bearing on the pump side 

 Temperature  of pump thrust bearing 

 Current in the electrical motor 

The inputs to all the models correspond with the power 
generated by the steam turbine of the combined cycle power 
plant, which is the most important flow to cool, and the 
temperature in the electrical motor representing the work 
developed by the pump. The CWP is a high-pressure pump 
that is horizontal, centrifugal, and multistage. The pump and 
its motor are mounted on a common structural steel bedplate. 
Its behavior is monitored from a control room of the power 
plant where the variables measured in the CWP are 
accessible. 

3.  DIGITAL TWIN MODELS 

Two redundant virtual digital twins (Jones, Snider, Nassehi, 
Yon & Hicks, 2020) were developed for the CWP. Both aim 
to simulate the CWP when it works in normal conditions. The 
emulation of the expected values for anomaly detection of the 

target variables is based on a double redundant strategy that 
uses two different families of deep learning algorithms 
supporting the models cited: deep learning neural networks 
and deep reinforcement learning. The datasets used for the 
creation of the models behind the digital twin correspond to 
three years of the CWP operation that here will be called year 
1, year 2, and year 3. Year 1 will be used for learning the 
relationships to model, and the other two years will be used 
for checking the behavior of the digital twin of the pump, 
simulating its behavior. Python is the programming language 
used in both versions of the CWP digital twin. 

The following subsections will present the results reached by 
these two types of algorithms. 

3.1. CWP digital twin based on Deep Learning Neural 
Networks (DLNN) 

As previously mentioned, six models were created using deep 
learning neural networks. The procedure followed was 
similar in all the cases; for this reason, only one case will be 
described as an example of the method followed. If the whole 
set of models is used, more than one type of anomaly related 
to one failure mode could be detected. The example case 
described here is the estimation of the bearing temperature at 
the mechanical axis on the side of the connection to the 
electrical motor. The dataset used for training is Year 1. The 
input variables were the power generated by the steam water 
and the temperature in the electrical motor, which represents 
the working conditions of the CWP. After preprocessing and 
scaling the data, the Optuna open software tool (Akiba, Sano, 
Yanase, Ohta & Koyama, 2019) was used to find a 
convenient architecture and hyperparameters of the deep 
learning neural network. Tables 1 and 2 present the main 
characteristics of the neural network architecture and the 
most significant hyperparameters. 

Table1. Deep Learning Neural Network. Architecture 
 

Layer Layer 
type 

Number of 
neurons 

Activation 
function 

1 Dense 40 Sigmoid 

2 Dense 25 Sigmoid 

4 Dense 1 Sigmoid 

4 Output 1 Linear 

 
Table 2. Algorithm Implemented  

 
Language Python 
Main Library Keras and Tensorflow 
Loss function Mean Squared Error 
Optimiser Adam, learning_rate=0.001, epsilon=1e-8 
Training Epochs=500, steps per epoch=100  
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Figure 1 shows the result of the relationship learned between 
the input and output variables based on data from  Year 1. 
Both real and predicted values of the bearing temperature are 
very close. Their difference or error is in Figure 2. It shows 
that the most part of the error is the interval [-1, 1] ºC. It 
suggests a good simulation performance for this part of the 
digital twin. The axis X is in samples separated by 10 
minutes. 

 
Figure 1. Real and predicted values for the bearing 

temperature using Year 1 data. 
 

 
Figure 2. Error observed between real and predicted values 

for the bearing temperature using Year 1 data. 
 

As a confirmation of the goodness of the model obtained to 
predict the bearing temperature,  Figure 3 presents how good 
the prediction of this variable is when data used were not 
included during the creation of the model. Once again, the 
real and predicted values are very close, concluding that the 
model created is valid to simulate the bearing temperature in 
the normal behavior of the CWP. Also, this confirms that no 
overfitting issues are present. The errors observed are in the 
same range of values observed with the training dataset, and 

the same conclusion is reached for the Year 2 dataset. This 
confirms that this model can be used as a virtual twin of part 
of the CWP. 
 

 
Figure 3. Real and predicted values for the bearing 

temperature of the dataset Year 3 not used in training. 
 

3.2. CWP digital twin based on Deep Reinforcement 
Learning (DRL) 

Once the CWP digital twin was developed using DLNN, a 
completely different type of algorithm was studied to cover 
the same objective. The idea was to explore Reinforcement 
Learning (RL) techniques for elaborating a digital twin of the 
CWP. At present, these techniques are not used very often in 
diagnosing industrial processes, and the number of 
publications about them is very limited. 

Reinforcement Learning (Sutton & Barto, 2018) is a 
technique where an agent acts in an environment. It has a 
state, and it can make an action. After each action, the 
environment provides it with its new state and a reward 
corresponding to how good the action was. Therefore, the 
agent learns the parameters of a Quality function and makes 
new actions according to it. The agent has a multidimensional 
state space and a multidimensional action space. Figure 4 
represents a schema of the basic cyclic process used in RL. 

Figure 4 represents the correspondence between the main 
elements of RL. The objective is to build the same models 
described for the case DLNN. Here, the state is the input data 
used by the models. The action is the prediction of the 
behavior of the pump, considering its different working 
conditions. The environment gives a reward to penalize how 
far the prediction is from the real value and gives a new state, 
which is the new entrance data. The action space is 
continuous because a real value represents it. There are 
several RL algorithms; however, due to the continuous nature 
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of the problem to be managed, a Twin Delayed Deep 
Deterministic Policy Gradient algorithm (TD3) was selected. 
Details of the method and a pseudocode can be found in 
(Fujimoto, van Hoof & Meger, 2018). 

 

 
Figure 4. Basic learning cycle of Reinforcement Learning. 

 

With the TD3 algorithm, the agent needs two deep neural 
networks to decide on its action. The PolicyNetwork 
determines an action to take. It takes the input data and 
returns the action, and the Q_network determines the 
Q_value of the action. It takes the input data and the action 
and returns the Q_value. During the training phase of the 
algorithm, the gradient for training the Q_network is 
calculated based on a linear combination between the reward 
and the prediction of the algorithm. The PolicyNetwork is 
trained based on the variation of the Q_network. The 
Q_Network weights are initialized between -3 and 3. The 
PolicyNetwork weights are initialized between -0,3 and 0,3. 
The networks are composed of three linear dense layers with 
a relu activation function.  

Table 3. TD3 Hyperparameters 
 

Algorithm Hyperparameter Value 

Training episodes 100  

Steps per episode 100  

Exploration factor 0.1 

Replay buffer size 1032 

Batch size 1024 

Delayed steps for updating the policy network 
and target networks 

10 

Size of hidden layers for networks 64 

Learning rate Q_network 3e-4 

Learning rate Polocy_network 3e-4 

Reward scale 100. 

 

Table 3 presents the values used for the main 
hyperparameters of the TD3 algorithm. Keras and tensorflow 
were used for the implementation of the TD3 algorithm. The 
reward in RL is essential to guide the correct learning 
process. The reward design is based on a function of 6 levels 
depending on the absolute difference between the real and 
predicted values observed for the output variable of the 
model. The reward ranges from 100 for differences lower 
than 0.001, till -1500 for differences higher than 0.3. 

Figure 5.a shows the result of the relationship learned 
between the input and output variables based on data from  
Year 1. Both real and predicted values of the bearing 
temperature are very close. Their difference or error is in 
Figure 5.b It shows that the most part of the error is the 
interval [-1, 1] ºC. It suggests a good simulation performance 
for this part of the digital twin.  

 
Figure 5.a. Real and predicted values for the bearing 
temperature using Year 1 data and TD3 algorithm. 

 

 
Figure 5.b. Error observed between real and predicted 

values for the bearing temperature using Year 1 data and 
TD3 algorithm. 
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Figure 6 confirms the model goodness using RL to predict 
the bearing temperature when the data used, Year 2, were not 
included in the model training process. Once again, the real 
and predicted values are very close, concluding that the 
model created with the RL algorithm TD3 is also 
appropriated to simulate the bearing temperature in the 
normal behavior of the CWP. The errors observed are in the 
same range of values observed with the training dataset, and 
the same conclusion is reached for the Year 3 dataset. This 
confirms that this model can be used as a virtual twin of part 
of the CWP. 
 

 
Figure 6. Real and predicted values for the bearing 
temperature using Year 2 data and TD3 algorithm. 

 

3.3. Comparative results of both CWP digital twins: 
DLNN and DRL 

Once both virtual digital twins were obtained to simulate the 
CWP performance, one of the objectives of this study was 
reached, which was the comparison between the use of 
DLNN and DRL techniques. As mentioned, the use of DRL 
for this type of problem is not too extended. The results 
obtained have demonstrated that DRL is a reasonable option 
in terms of simulation of the behavior of a real industrial 
component. Table 4 shows the mean and standard errors 
obtained in C degrees in all the cases studied with both deep 
learning methods. It can be observed that the values are 
within the accuracy of any temperature sensor used in 
industry, and both methods can be used with similar 
confidence for detecting deviations concerning the normal 
behavior expected. 

However, the main objective of this study is the early 
detection of possible anomalies that can cause failures. The 
next section will show how the digital twins can be used for 
that.  

Table 4. Mean and standard errors obtained  
Year 1 Year 2 Year 3 

Mean_DLNN 0,03600 -0,26709 0,16897 

Std_DLNN 0,71556 1,36557 1,24222 

Mean_TD3 -0,14583 -0,04837 -0,04837 

Std_TD3 0,68032 0,04842 0,99234 

 

4. ANOMALY DETECTION AND RISK ASSESSMENT 

The digital twins described in the previous section and their 
good performance permit the application of a redundant 
strategy for robust anomaly detection. It is important to note 
that the algorithms used for both digital twins are completely 
different, even when they observe the same information. It 
seems clear that if both coincide in detecting an anomaly in 
the behavior expected, its certainty should be high. Also, if 
both observe normal behavior. In the case of a discrepancy, 
careful monitoring must be observed for the new coming 
data. Redundancy is key for preventing false alarms in 
anomalies detected.  

Another important point to note is that the digital twins were 
developed to learn the normal behavior in the CWP operation 
expressed by several values of variables observed in the 
SCADA system. If, for some of these variables, the value 
observed is not similar to the value predicted by the digital 
twin, then an abnormal behavior is present that has to be 
investigated. In fact, the variables observed and predicted 
were selected as direct indicators of the presence of possible 
failure modes.  

The models obtained by DLNN and DRL techniques simulate 
very well the normal behavior expected for the output 
variables; however, they show small discrepancies between 
real and predicted values, such as those presented in Table 4. 
In order to prevent false alarms in both cases, confidence 
bands, according to the error observed in the training models, 
were defined for monitoring new data differently from those 
used for training. These confidence bands were adopted 
around the 3 times the standard deviation of the error 
observed in training. Any new prediction inside these bands 
means that there is no behavior different from this expected 
for the variable predicted.  

Figure 7 shows an example of the upper and lower confidence 
bands (straight lines) for the error observed in the prediction 
of Year 3 data that were not used for learning. In this figure, 
the error is inside the confidence bands, concluding that the 
temperature in this pump bearing is as expected and no 
anomaly is present. The same approach of confidence bands 
is applied to any model inside each digital twin. 
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Figure 7. Error inside confidence bands: the behavior 

observed is similar to the expected one. 
 

The main objective of this section is to present the ability of 
both digital twins to detect anomalies. In order to reach this 
goal, an artificial abnormal behavior was introduced in Year 
3, simulating an increase in the temperature in the bearing 
studied in the previous section that could be the result of an 
incipient failure mode due to the wearing of balls in the 
bearing or weak lubrication. In this case, only an isolated 
possible failure mode is considered, leaving the problem of 
simultaneous failure modes open for further studies. Figure 8 
shows the predicted and real values of the bearing 
temperature in the mechanical axis of the  CWP digital twin 
based on DLNN. In the right part of the figure, there is a 
significant deviation between real and predicted values that 
alert about abnormal temperature behavior for the observed 
working conditions. 

 
Figure 8. Real and predicted values by the DLNN digital 

twin. An anomaly is detected at the end of the period. 
 

The deviation with respect to the normal behavior is observed 
in detail in Figure 9, where the confidence bands of the error 
are also represented. On the left part of the figure, there is a 
very clear deviation with respect to the normal behavior 
expected, meaning that the temperature in the bearing is 
higher than normal for the current working conditions. Also, 
it is possible to observe the current fingerprint of the detected 
anomaly, keeping only the information in Figure 9 that is out 
of the upper confidence band. This is presented in Figure 10, 
where an increase of about 2.5 ºC degrees in the last 50 days 
(6000 samples) is observed, and its trends will be called “risk 
of the failure mode” in this paper. This information is 
precious for an approach to implement a data-driven 
maintenance program. 

 
Figure 9. Error inside confidence bands: the behavior 
observed is similar to the expected one. DLNN case. 

 

 
Figure 10. Risk of failure mode based on DLNN digital 

twin. 
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The performance of the digital twin based on DRL is similar 
to that described for the digital twin based on DLNN. Figures 
11, 12, and 13 present these results. 

Figure 14 presents the superposition of the risk presented in 
Figures 10 and 13. The objective is to check if some digital 
twin detects the anomaly condition presented earlier. 
According to this figure, both virtual digital twins are able to 
detect the anomaly at the same time. The error observed from 
the DLNN digital twin seems to be slightly higher, but in any 
case, it is not significant in ºC units. This confirms the 
reliability and robustness of the method for anomaly 
detection based on these digital twins built using different 
deep learning techniques. 

 

 
Figure 11. Real and predicted values by the DRL digital 
twin. An anomaly is detected at the end of the period. 

 

 
Figure 12. Error inside confidence bands: the behavior 

observed is similar to the expected one. DRL case. 
 

 
Figure 13. Risk of failure mode based on DRL digital twin. 

 

 
Figure 14. Comparison of risks observed with DLN and DRL 
digital twins. 

 
Figure 15. Zoom of the interest zone of Figure 14. 
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5. CONCLUSION 

This paper has presented two virtual digital twins for anomaly 
detection in a CWP. The objective of creating two digital 
twins was double. First, the performances between DLNN 
and DRL were compared because the use of DRL is not well-
known yet in this field, and it could have some advantages 
over the well-known DLNN method because it would need 
less data for training. The conclusion is that DRL techniques 
can be used as an alternative option for the DLNN. Second, 
using two digital twins based on different techniques could 
robust the anomaly detection process, preventing false 
alarms. This was verified and confirmed with an example of 
isolated failure. Additionally, the fingerprint of the detected 
anomaly can be used as an indicator of risk for a failure mode 
and alert maintenance people about this fact, giving the basis 
for a data-driven approach supporting the maintenance and 
asset management of industrial processes. 

The results of this paper open several future studies, such as 
the analysis of the performance of the digital twins when 
several failure modes appear simultaneously and the 
propagation of their effects. Also, the use of the profiles of 
the risk of failure modes and their integration in maintenance 
promises to implement new maintenance plans. 

  

ACKNOWLEDGEMENT 

The study has been developed with the scientific and 
economic support of the ENDESA Chair of Artificial 
Intelligence Applications to Data-driven Maintenance. 

REFERENCES 

Akiba T., Sano S., Yanase T., Ohta T. & Koyama M. (2019). 
Optuna: A Next-generation Hyperparameter 
Optimization Framework. Proceedings of the 25th ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining. Pages 2623–2631. 
doi:10.1145/3292500.3330701 

Bishop C. & Bishop H. (2023). Deep Learning - Foundations 
and Concepts. Springer Cham.doi:10.1007/978-3-031-
45468-4 

Bowman, C.F., & Bowman, S.N. (2021). Engineering of 
Power Plant and Industrial Cooling Water Systems. 
CRC Press. doi: 10.1201/9781003172437 

Calvo-Bascones P., Sanz-Bobi M.A. & Welte T.M. (2021). 
Anomaly detection method based on the deep knowledge 
behind behavior patterns in industrial components. 
Application to a hydropower plant. Computers in 
Industry, Vol. 125, 103376. doi: 
10.1016/j.compind.2020.103376. 

Chavan, V.D. & Yalagi, P.S. (2023). A Review of Machine 
Learning Tools and Techniques for Anomaly Detection. 
In: Choudrie, J., Mahalle, P.N., Perumal, T., Joshi, A. 
(eds) ICT for Intelligent Systems. ICTIS 2023. Smart 

Innovation, Systems and Technologies, Vol 361. 
Springer.  

Fujimoto S., van Hoof H. & Meger D (2018). Addressing 
function approximation error in actor-critic methods. 
Proceedings of the International Conference on Machine 
Learning. Vol. 80 Proceedings of the 35th International 
Conference on Machine Learning, PMLR 80: 1587-
1596. 

Huang J., You J., Liu H. & Song M (2020). Failure mode and 
effect analysis improvement: A systematic literature 
review and future research agenda. Reliability 
Engineering & System Safety.Vol. 199,106885. 
doi:10.1016/j.ress.2020.106885 

Jones D., Snider C., Nassehi A., Yon J. & Hicks B. (2020) 
Characterising the Digital Twin: A systematic literature 
review. CIRP Journal of Manufacturing Science and 
Technology, Vol. 29, Part A, pp 36-52. 
doi:10.1016/j.cirpj.2020.02.002. 

Maior C. B. S., Araújo L.M.M, Lins I.D., Moura M.D.C. & 
Droguett E.L. (2023), Prognostics and Health 
Management of Rotating Machinery via Quantum 
Machine Learning. IEEE Access, Vol. 11, pp. 25132-
25151, doi: 10.1109/ACCESS.2023.3255417.  

Nassif A.B., Talib M.A, Nasir Q. & Dakalbab F.M. (2021), 
Machine Learning for Anomaly Detection: A Systematic 
Review. IEEE Access, vol. 9, pp. 78658-78700 doi: 
10.1109/ACCESS.2021.3083060. 

Ochella S., Shafiee M. & Dinmohammadi F. Artificial 
intelligence in prognostics and health management of 
engineering systems (2022), Engineering Applications 
of Artificial Intelligence, Vol. 108, 104552, doi: 
10.1016/j.engappai.2021.104552 

Pang G., Shen C, Cao L.& Van Den Henge, A (2021). Deep 
Learning for Anomaly Detection: A Review. ACM 
Computing Surveys. Vol. 54. Issue 2-38 pp 1-38 
doi:10.1145/3439950 

Sutton R.S & Barto A.G. (2018). Reinforcement Learning. 
An Introduction. The MIT Press. 

 

BIOGRAPHIES  

Miguel A. Sanz-Bobi is currently a 
Professor with the Computer Science 
Department, and also a Researcher with 
the Institute for Research and 
Technology (IIT), both within the 
Engineering School, Comillas Pontifical 
University, Madrid, Spain. He shares his 
time between teaching and research in 

topics related to the artificial intelligence field applied to 
diagnosis and maintenance of industrial processes. He has 
been the main researcher in an important number of industrial 
projects related to the diagnosis of industrial processes, 
incipient detection of anomalies based on models, knowledge 
acquisition and representation, and reliability and predictive 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 194



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

9 

maintenance. All these projects have been based on a 
combination of artificial intelligence, new information 
technologies, and machine learning techniques. 

Sarah Orbach is currently a student in the 
Engineering School CentraleSupelec. She 
mainly studied physics and computer 
science. During a gap year, she did two 
internships. The first one in collaboration to 
an Open Source web development project 
and the second in artificial intelligence with 

the Institute for Research and Technology (IIT) within the 
Engineering School, Comillas Pontifical University, Madrid, 
Spain. She is now specializing in bioengineering. 

F. Javier Bellido-Lopez is an Electrical 
and Automatic-Electronic engineer 
from the Polytechnic University of 
Madrid (UPM). He is currently studying 
Physics and is a Researcher with the 
Institute for Research and Technology 
(IIT) of  the ICAI Engineering School, 
Comillas Pontifical University, Madrid, 
Spain. His areas of interest include the 
application of Artificial Intelligence 
techniques to the monitoring and 

diagnosis of industrial processes, Data Analysis, Machine 
Learning. 

Antonio Muñoz San Roque is 
currently a Professor with the 
Electronics and Communications 
Department, and also a Researcher with 
the Institute for Research and 
Technology (IIT), both within the ICAI 
Engineering School, Comillas 
Pontifical University, Madrid, Spain. 

His areas of interest include the application of Artificial 
Intelligence techniques to the monitoring and diagnosis of 
industrial processes, Time series forecasting, Machine 
Learning, and Electricity markets analysis. 

Daniel González-Calvo is currently 
responsible for data-driven maintenance in 
the centralised maintenance unit at Iberia 
at ENEL/ENDESA. He obtained his 
master's degree in industrial engineering 
from the University of La Laguna and his 
PhD in industrial engineering (industrial 
doctorate) from the same university. He 

has worked on data projects for insular power generation 
systems and research on related data analysis techniques. His 
scientific and technical work has resulted in several 
publications and conferences. His areas of interest include 
predictive maintenance, industrial process optimisation and 
artificial intelligence applied to the energy sector. 

Tomás Alvarez-Tejedor is currently 
Head of Thermal Maintenance Iberia at 
ENEL/ENDESA. He obtained his BSc, 
PhD degree in Engineering and MBA - 
Master in Business Administration at the 
Polytechnic University of Madrid 
(Spain) and his MSc - Master Science in 
The Gas Turbine Engineering Group at 

Cranfield University (UK). He has been working in the 
Spanish Electricity Market for more than thirty years and his 
background covers R&D projects on Advanced Power 
Generation Systems, Power Generation Asset Management 
and Combined Cycle and Gas Turbine Technology. His 
scientific and technical work are summarized in more than 
one hundred technical publications and conferences (EPRI, 
ASME, ETN, PowerGen,..etc). His areas of interest include 
the application of Artificial Intelligence techniques to power 
generation asset management. 

 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 195



Contrastive Metric Learning Loss-Enhanced Multi-Layer
Perceptron for Sequentially Appearing Clusters in Acoustic

Emission Data Streams
Oualid Laiadi1, Ikram Remadna2,3, El yamine Dris1, Redouane Drai1, Sadek Labib Terrissa2, and Noureddine Zerhouni4

1 Research Center in Industrial Technologies (CRTI), Cheraga, P.O. Box 64, Algiers 16014, Algeria
oualid.laiadi@gmail.com

2 LINFI Laboratory, University of Biskra

3 National School of Artificial Intelligence (ENSIA) Algiers, Algeria
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ABSTRACT

Conventional structural health monitoring methods for inter-
preting unlabeled acoustic emission (AE) data typically rely
on generic clustering approaches. This work introduces a
novel approach for analyzing sequential and temporal acous-
tic emission (AE) data streams by enhancing a Multi-Layer
Perceptron (MLP) with a contrastive metric learning loss func-
tion (MLP-CMLL)and Time Series K-means (TSKmeans) clus-
tering. This dual approach, MLP-CMLL with TSKmeans,
is crafted to refine cluster differentiation significantly. This
method is designed to optimize cluster differentiation, bring-
ing similar acoustic patterns closer and distancing divergent
ones, thereby improving the MLP’s ability to classify acous-
tic events over time. Addressing the limitations of traditional
clustering algorithms in handling the temporal dynamics of
AE data, MLP-CMLL with TSKmeans approach provides
deeper insights into cluster formation and evolution. It promises
enhanced monitoring and predictive maintenance capabilities
in engineering applications by capturing the complex dynam-
ics of AE data more effectively, offering a significant ad-
vancement in the field of structural health monitoring. Through
experimental validation, we apply this method to character-
ize the loosening phenomenon in bolted structures under vi-
brations. Comparative analysis with two standard clustering
methods using raw streaming data from three experimental
campaigns demonstrates that our proposed method not only
delivers valuable qualitative information concerning the time-
line of clusters but also showcases superior performance in

Oualid Laiadi et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

terms of cluster characterization.
Keywords: acoustic emission (AE), sequentially appear-
ing clusters, data streams, structural health monitoring,
contrastive metric learning, multi-layer perceptron (MLP)

1. INTRODUCTION

Structural Health Monitoring (SHM) is essential to ensuring
the safety, longevity, and efficient maintenance of engineer-
ing structures across civil, mechanical, and aerospace fields.
This discipline employs advanced technologies to proactively
detect and address damages, aiming to avert catastrophic fail-
ures and optimize maintenance efforts. Among various SHM
applications, the precision monitoring of bolted connections
is particularly critical, given its profound impact on the struc-
tural integrity and stability of significant constructions such
as bridges, aerospace structures, and wind turbines (Bolognani
et al., 2018).

The vulnerability of bolted connections to loosening—and
the profound implications of such—was dramatically under-
scored by the 2015 collapse of a 129-meter wind turbine in
Sweden (Swedish Accident Investigation Authority, 2017).
This incident, attributed to bolt looseness, resulted not only in
significant financial loss but also highlighted the urgent need
for early detection systems to prevent such disasters. While
traditional bolt inspection techniques are effective, they are
notably labor-intensive and can significantly interrupt opera-
tional workflows. This has led to a shift toward non-destructive
testing (NDT) methods (Hoła & Sadowski, 2022), particu-
larly the use of acoustic emission (AE) sensors (Sun, Yang,
Li, & Xu, 2023; P. Xu, Zhou, Liu, & Mal, 2021; D. Xu, Liu,
Li, & Chen, 2019), as more efficient alternatives.

1
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AE sensors are distinguished by their ability to detect stress-
induced changes within materials, offering a sophisticated
means of identifying potential damages or loosening. Re-
search, such as that conducted by Wang et al. (Wang, Song,
Wang, & Li, 2013), demonstrates a correlation between AE
signal energy and the axial load of bolts, enabling precise de-
tection of bolt looseness through analysis of energy dissipa-
tion and signal amplitude. However, AE signals’ complex-
ity, marked by significant variations in amplitude and energy,
coupled with susceptibility to environmental noise and in-
terference, poses a significant challenge (Fu, Zhou, & Guo,
2023). Relying solely on a single AE characteristic often
falls short in accurately reflecting bolt tightness. Therefore,
there’s a pressing need to develop innovative methods capa-
ble of quantifying AE signals’ nonlinear characteristics and
accurately interpreting bolt looseness, underscoring the de-
mand for advanced analytical techniques.

The vast quantities of AE signals within data streams present
a significant challenge in identifying ground truth, rendering
supervised learning methods impractical for AE data interpre-
tation or anomaly detection (Ramasso, Denoeux, & Cheval-
lier, 2022; Ramasso, Placet, & Boubakar, 2015). This ne-
cessitates a pivot towards unsupervised learning techniques,
such as K-means, fuzzy C-means (FCM), and Gaussian Mix-
ture Models (GMM), to extract actionable insights from AE
data. Among these approaches, Gaussian Mixture Models se-
quentially (GMMSEQ), introduced by Emmanuel Ramasso
et al. (Ramasso, Denoeux, & Chevallier, 2022), stands out by
incorporating temporal dynamics into the clustering of un-
labeled AE data, thereby significantly enhancing parameter
estimation related to damage progression.

Recent advancements highlight the growing significance of
unsupervised and self-supervised learning methods, with a
notable focus on contrastive metric learning. This approach
harnesses the inherent similarities and contrasts within data
to facilitate learning without the necessity for explicit labels,
marking a pivotal shift toward more efficient representation
learning (Saunshi, Plevrakis, Arora, Khodak, & Khandeparkar,
2019). By comparing input samples and manipulating their
representations within the embedding space—drawing simi-
lar samples closer and distancing dissimilar ones—contrastive
representation learning streamlines the learning process. It
sidesteps the conventional need for labeling each sample, in-
stead utilizing a pre-established similarity distribution to clas-
sify inputs into positive or negative pairs (Hassani & Khasah-
madi, 2020).

Building on these insights, we propose a novel method that
leverages the power of a Multi-Layer Perceptron (MLP) en-
hanced with a contrastive metric learning loss (MLP-CMLL),
to adeptly handle AE data streams, particularly those exhibit-
ing sequentially appearing clusters. The proposed MLP-CMLL
approach, rooted in the principles of contrastive metric learn-

ing, aims to differentiate between similar and dissimilar fea-
tures within the AE data, generating robust feature embed-
dings without the need for explicit labels. These embeddings
serve as a powerful foundation for clustering, enabling our
system to dynamically identify and group sequentially ap-
pearing clusters of AE data. By applying time series k-means
clustering algorithm (TSKMean) (Huang et al., 2016), we
can effectively cluster AE events based on both their feature
similarities and their temporal characteristics. This integra-
tion enables the detection of sequentially appearing clusters,
a common occurrence in AE data streams, thereby providing
deeper insights into the material’s behavior and the efficacy
of the monitoring system.

The remainder of this paper is organized as follows: Section
2 introduces the proposed MLP-CMLL method, along with
their respective data preprocessing methods. Section 3 de-
scribes the dataset and provides an analysis of experimental
results. Finally, the main findings of this study are summa-
rized in Section 4 along with a description of future work
perspectives.

2. PROPOSED METHOD

In this section, we delineate the architecture of the proposed
framework, which aims to classify bolt tightening levels through
the analysis of acoustic emission data streams. Figure 1 illus-
trates the overarching architecture of our proposed approach,
specifically designed for clustering bolt tightening levels based
on acoustic emission data streams. Subsequently, we will
elaborate on the intricacies and functional components of the
proposed framework, detailing each block’s contribution to
the overall system.

2.1. AE signal Preprocessing & Feature Extraction

The preprocessing and feature extraction of AE signals is
a critical step in analyzing the raw data stream, performed
through a three steps, initially outlined in (Kharrat, Ramasso,
Placet, & Boubakar, 2016). The process begins with the data
stream undergoing an initial filtration stage, employing a fifth-
order high-pass filter with a cutoff frequency of 10 kHz and
a passband ripple of 0.2 dB, effectively eliminating the DC
component from the data.

• Step 1: Wavelet filtering Utilizing wavelet denoising
on 250,000 sample frames achieves an optimal balance
between computational efficiency and denoising quality.
The chosen Daubechies ”dB45” wavelet, featuring 90
coefficients and 14 decomposition levels, effectively iden-
tifies AE signal onsets (Kharrat et al., 2016). This step
includes applying the soft Donoho-Johnstone universal
threshold to the wavelet coefficients and adjusting for
level-dependent noise, alongside correcting for any group
delay introduced by the filtering process. Figure 2 dis-
plays the raw signal and denoised signal.

2
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Figure 1. The general architecture of the proposed approach for bolt tightening level clustering.

• Step 2: Hit Detection Procedure aims to identify the
start and end of each AE signal post-filtering based on
amplitude thresholds (1.2 mV in this case). This step en-
sures that only relevant AE events are selected for analy-
sis, utilizing specific counters (”HDT” 1100 µs and ”HLT”
80 µs) to accurately demarcate signal boundaries (Kharrat
et al., 2016).

Figure 2. Raw signal and denoised signal.

• Step 3 Feature Extraction: Each detected AE signal
is then analyzed to extract an extensive set of features,
encompassing time-based and frequency-based charac-
teristics (Kharrat et al., 2016; Sause, Gribov, Unwin, &
Horn, 2012; Gonzalez Andino et al., 2000) such as rise
time, counts, PAC-energy, amplitude, frequency metrics,
signal strength, and energy distributions across specified
frequency intervals. Figure 3 shows an AE signal and

some typical features. Additional features include the
Renyi number from the scalogram analysis using a Mor-
let wavelet and the frequency at maximum energy, pro-
viding a detailed signal characterization suitable for fur-
ther analysis.

Figure 3. AE signal and some typical characteristics.

2.2. Embedding Features via MLP based on Contrastive
Metric Learning Loss (MLP-CMLL)

This subsection will describe the proposed MLP based on the
Contrastive Metric Learning Loss (MLP-CMLL) method. In
the following, we will mention the details of our algorithm for
learning a best loss metric based on an unsupervised metric
learning with unlabeled data. The proposed contrastive met-
ric learning framework is based on the combination of two
methods, unsupervised EASE metric learning (Zhu & Ko-
niusz, 2022a) and Generalized Laplacian Eigenmaps (Zhu &
Koniusz, 2022b).

3
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Let X ∈ Rn×m be an unlabeled AE data of n samples and
m features. We propose a new MLP based on Contrastive
Metric Learning Loss (MLP-CMLL) framework for unsuper-
vised network embedding. To compute the loss function of
the MLP framework, we calculate the logdet of scatter matri-
ces based on the similarity and the dissimilarity (adjacency):

Θ∗ = argmin
Θ

Rank (Ssim (X))− Rank (Sdis (X)) (1)

Eq. (1) aims to compute a metric loss Θ for each epoch that
maximizes the similarity between similar features and mini-
mizes the dissimilarity between dissimilar features.

Let:
Sdis = fΘ(X)⊤LdisfΘ(X) and Ssim = fΘ(X)⊤LsimfΘ(X)
Then the LogDet relaxation becomes:

Θ∗ = argmin
Θ

log det
(
I+ αfΘ(X)⊤LsimfΘ(X)

)

− log det
(
I+ αfΘ(X)⊤LdisfΘ(X)

)

= argmin
Θ

log det(I+ αSsim)− log det(I+ αSdis)

(2)

where I ensures I+αfΘ(X)⊤LfΘ(X) > 0 as fΘ(X)⊤LfΘ(X)
may be Sm

+ leading to det
(
fΘ(X)⊤LfΘ(X)

)
= 0. Thus, we

use log det(I+ αS) as a smooth surrogate for Rank(S).

Lsim =I− Ãsim ∈ Sn
+,

Ldis =I− Ãdis ∈ Sn
+.

(3)

Let us also define normalized graph Laplacian matrices in
Eq. (2) as in Eq. (3). Let D−1/2AD−1/2 = Ã and D =
diag (d1, · · · , dn), where di =

∑
j Aij . We explain how we

obtain Asim and Adis later in the text. From equations Eq.
(3) and Eq. (2) we have:

Lsim − Ldis =(I− Ãsim)− (I− Ãdis)

=Ãdis − Ãsim,
(4)

As Lsim − Ldis = Ãdis − Ãsim , we obtain:

Θ∗ = argmin
Θ

log det
(
I+ αfΘ(X)⊤ÃdisfΘ(X)

)

− log det
(
I+ αfΘ(X)⊤Ãsim fΘ(X)

)
,

(5)

where Asim and Adis are two different measurements with
the opposite effect. Thus, we introduce parameter α > 0 to
balance the impact of these both terms.

Dissimilarity Matrix. Although one might design a linear
projection based on the similarity relationship alone, we use
both the dissimilarity information and the similarity matrix
for learning a metric loss. Intuitively, in the context of a
K-clustering task with n unlabeled samples and Mi queries
for each cluster, we are addressing a problem where (n =
K × Mi) samples are to be clustered into K groups. Here,

off-diagonal entries are understood to signify distinct entities,
whereas on-diagonal entries indicate identical entities. Thus,
we form a dissimilarity matrix as the adjacency matrix of a
densely connected graph:

Adis =
1

n
ee⊤ − I, (6)

where e is an (n)-dimensional all-ones vector and I is the
identity matrix.

Similarity Matrix. To measure the similarity between the
pairs of samples, one has to choose a distance (or similarity
measure) that will perform well in the clustering setting.

The typical choice for the measure of similarity is the RBF
function Zij = exp

(
−∥fθ (xi)− fθ (xj)∥22 /σ

)
, σ > 0 but

the RBF function alone does not capture the structure of data.
In this work, we claim that for the K-cluster learning task, the
expected similarity matrix should be a K-block diagonal ma-
trix. However, the similarity matrix based on the RBF kernel
has no blockdiagonal structure.

Low-Rank Representation (LRR) (Liu, Lin, & Yu, 2010) ex-
presses each data point xi as a linear combination of other
points, xi =

∑
j ̸=i Zijxj , and uses the representational co-

efficient (|Zij |+ |Zji|) /2 to measure the similarity between
xi and xj . LRR takes the correlation structure of data into ac-
count, and finds a low-rank representation instead of a sparse
representation. In this work, the LRR is applied in the fol-
lowing rank minimization problem:

argmin
Z

∥fθ(X)− fθ(X)Z∥2F s.t. rank(Z) = K. (7)

Eq. (7) is solved in two stages: 1) Z = V⊤V, where V
is obtained from the skinny SVD of fθ(X) = UΣV⊤, and
2) for each row of V, one only keeps top-K absolute largest
entries of Σ. Given the feature matrix fθ(X), we obtain the
representation matrix Z by solving Eq. (7). The similarity
matrix is defined as Wsim = |Z| − diag(|Z|).
We provide our implementation in Alg. 1. The proposed
algorithm targets unsupervised network embedding by em-
ploying contrastive metric learning loss to enhance similarity
among similar features while reducing dissimilarity among
different ones. Central to this framework are the LogDet re-
laxation and Low-Rank Representation (LRR), both aimed at
achieving an embedding that accurately captures the inherent
structure of unlabeled data. This structured approach outlines
a comprehensive step-by-step methodology for implementing
the MLP-CMLL method, specifically designed to optimize
metric learning loss in scenarios involving unlabeled datasets.

2.3. Time Series K-Means for clustering

Following the generation of high-dimensional embedded fea-
tures via MLP-CMLL, with each feature vector comprising

4
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Algorithm 1 MLP based on Contrastive Metric Learning
Loss (MLP-CMLL)

1: Input: X ∈ Rn×m: Unlabeled AE data of n samples and
m features.

2: Initialize: Predefined MLP architecture, α > 0.
3:
4: Compute Similarity and Dissimilarity Matrices based

on Laplacian Matrices:
5: Sdis = fΘ(X)⊤ÃdisfΘ(X)

6: Ssim = fΘ(X)⊤ÃsimfΘ(X)
7:
8: Optimization:
9: while not converged do

10: Solve for Θ∗ minimizing:

Θ∗ = argmin
Θ

log det
(
I+ αfΘ(X)⊤ÃdisfΘ(X)

)

− log det
(
I+ αfΘ(X)⊤ÃsimfΘ(X)

)

= argmin
Θ

log det(I+ αSsim)− log det(I+ αSdis)

11: Update MLP parameters.
12:
13: Adjust Matrices (Ssim and Sdis) Based on MLP-

embedded features.
14: end while
15:
16: Output: MLP-embedded features F (transform X into

feature-embedded space using best fΘ(.)).

1024 dimensions, the next crucial step involves dimensional-
ity reduction and the application of time series k-means for
effective clustering. Singular Value Decomposition (SVD)
(Wall, Rechtsteiner, & Rocha, 2003; Furnas et al., 2017) is
employed to reduce the dimensionality of these embeddings,
enhancing computational efficiency and preserves the essen-
tial characteristics of the embedded features.

Upon completing the dimensionality reduction, we employ a
sliding window technique to integrate the time series k-means
algorithm, a pivotal step for clustering AE data streams that
exhibit temporal dependencies. This method involves seg-
menting the reduced feature set into overlapping windows, al-
lowing for the dynamic nature of AE data to be captured over
time. The sliding window approach (SW) organizes the data
into sequences of a specified window size. We empirically
choose the SW size as 50, with a step size (1) dictating the
overlap between consecutive windows. This structuring is es-
sential for maintaining the temporal continuity of AE events,
facilitating the identification of clusters that evolve over time.

By applying time series k-means (Huang et al., 2016) to these
windowed sequences, we can effectively cluster AE events
based on both their feature similarities and their temporal
characteristics. This integration enables the detection of se-
quentially appearing clusters, a common occurrence in AE
data streams, thereby providing deeper insights into the ma-

terial’s behavior and the efficacy of the monitoring system.

3. EXPERIMENTATION AND RESULTS

3.1. Acoustic emission dataset Description

The ORION-AE dataset (Ramasso, Verdin, & Chevallier, 2022)
was obtained through a test rig known as ORION. The ORION
is specifically designed to mimic the loosening phenomena
commonly observed in bolted joints of structures in various
industries, including aeronautics, automotive, and civil engi-
neering. It is composed of two metallic plates linked together
by three M4 bolts (as shown in Figure 4, enabling the simu-
lation of bolt loosening under vibrational stress.

Figure 4. Setup description: part dimensions, sensors posi-
tions, bolts positions

The ORION-AE data are dynamically loaded with a vibra-
tion shaker and monitored with a laser vibrometer for veloc-
ity measurements and three AE sensors (micro80, F50A, mi-
cro200HF). The sensors sampled data at a rate of 5 MHz, pro-
ducing datasets ranging from approximately 1.4 to 1.9 GB.

The ORION-AE dataset was generated by manually loosen-
ing a bolt on a test assembly and then subjecting it to 120
Hz harmonic vibrations, to simulate operational conditions.
The experiment explored seven levels of bolt tightness (T1:
5cNm, T2: 10cNm, T3: 20cNm, T4: 30cNm, T5: 40cNm,
T6: 50cNm, T7: 60cNm), with AE transients recorded for
10 seconds at each level. This procedure was repeated five
times, resulting in five campaigns/datasets (B, C, D, E, and
F), each with seven classes with 70 s of data for different sen-
sors. Each campaign recorded varying numbers of signals,
totaling 10,866; 9,461; 9,285; 15,628; and 17,810 signals, re-
spectively. Note that, for campaign C, the level of bolt tight-
ness 20 cNm is missing.

The seven tightening levels can be used as a ground truth
when designing learning methods. This makes this dataset
useful for developing and testing clustering and classification

5
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methods for interpreting acoustic emission data.

For the purposes of this paper, analysis was focused exclu-
sively on the micro-200-HF sensor, and only campaigns B, C
and E were utilized to measure the performance of the cluster-
ing method. Figure 5 displays the tightening levels, acoustic
emission and laser vibrometer data superimposed for mea-
surements ”B” and sensor micro-200-HF (variable C).

Figure 5. Tightening levels, acoustic emission and laser vi-
brometer data superimposed for measurements ”B” and sen-
sor micro-200-HF (variable C).

3.2. Evaluation metrics

To properly evaluate the performance of clustering algorithms,
such as TimeSeriesKMeans, on our test dataset, we use a va-
riety of metrics. These metrics, as suggested by literature
(Maulik & Bandyopadhyay, 2002), include:

• Silhouette Score evaluates cohesion within clusters and
separation between them.

• Davies-Bouldin Index measures the average similarity
between each cluster and its most similar cluster.

• Adjusted Rand Index, Normalized Mutual Informa-
tion (NMI), Homogeneity, Completeness, and V-Measure
compare the clustering results to a ground truth, provid-
ing a measure of how well the clustering matches actual
categories in the data.

3.3. Performance analysis

To demonstrate the effectiveness of the proposed unsuper-
vised MLP-CMLL, we conduct numerous experiments to show
the effectiveness of our embedded features compared to three
different features, including raw data (AE signal Preprocess-
ing & Feature Extraction), PCA (Kherif & Latypova, 2020)
and SVD (Wall et al., 2003; Furnas et al., 2017). Tables 1,
2, and 3 show performance metrics for Campaigns B, C and
E using different features over the TSKMeans cluster with
sliding window.

Table 1. Performance metrics for Campaign B using different
features over TSKMeans cluster with sliding window.

Method ARI Silhouette DBI NMI Completeness
RAW 0.818 0.296 1.394 0.842 0.844
SVD 0.818 0.296 1.394 0.842 0.844
PCA 0.818 0.296 1.394 0.842 0.844
MLP-CMLL 0.875 0.335 1.278 0.884 0.884

Table 2. Performance metrics for Campaign C using different
features over TSKMeans cluster with sliding window.

Method ARI Silhouette DBI NMI Completeness
RAW 0.700 0.317 1.244 0.784 0.786
SVD 0.700 0.317 1.244 0.784 0.786
PCA 0.700 0.320 1.230 0.784 0.786
MLP-CMLL 0.949 0.418 1.079 0.929 0.929

Table 3. Performance metrics for Campaign E using different
features over TSKMeans cluster with sliding window.

Method ARI Silhouette DBI NMI Completeness
RAW 0.738 0.228 1.743 0.800 0.805
SVD 0.738 0.228 1.743 0.800 0.805
PCA 0.738 0.228 1.743 0.800 0.805
MLP-CMLL 0.854 0.300 1.700 0.866 0.867

In the three tables 1, 2, and 3, the consistent outperformance
of MLP-CMLL across all campaigns underscores the poten-
tial of sophisticated neural network-based feature extraction
methods in enhancing clustering performance. It suggests
that MLP-CMLL can adaptively learn and highlight the most
relevant features for clustering, outpacing traditional dimen-
sionality reduction techniques in capturing the essential struc-
tures of various datasets. Furthermore, the relatively close
performance of SVD, PCA, and RAW methods across the
campaigns might reflect their limitations in dealing with com-
plex data structures or their potential redundancy when the
raw data is already amenable to effective clustering. Analyz-
ing three campaigns using various feature extraction meth-
ods within a TSKMeans cluster with a sliding window ap-
proach reveals consistent trends across performance metrics.
The MLP-CMLL method consistently outperforms the other
methods (RAW, SVD, PCA) in all evaluated metrics — Ad-
justed Rand Index (ARI), Silhouette score, Davies-Bouldin
Index (DBI), Normalized Mutual Information (NMI), and Com-
pleteness—indicating superior clustering effectiveness. The
RAW, SVD, and PCA methods display nearly identical per-
formance across most metrics and campaigns, suggesting sim-
ilar capabilities in handling clustering tasks. MLP-CMLL’s
higher scores across all metrics highlight its ability to capture
more complex patterns and nonlinearities that linear meth-
ods might miss, resulting in better-defined and more accu-
rately clustered data groups. This underlines the importance
of method selection in data clustering to achieve optimal re-
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Table 4. Performance metrics of different clustering methods for Campaign B using MLP-CMLL embedded features with (w/)
and without (w/o) sliding window.

Method ARI Silhouette DBI NMI Completeness
GMM (w/o) 0.676 0.406 1.007 0.810 0.809
Kmeans (w/o) 0.623 0.436 1.000 0.786 0.795
MLP-CMLL+TSKMeans (w/o) 0.657 0.410 0.997 0.796 0.795
MLP-CMLL+TSKMeans (w/) 0.875 0.335 1.278 0.884 0.884

Table 5. Performance metrics of different clustering methods for Campaign C using MLP-CMLL embedded features with (w/)
and without (w/o) sliding window.

Method ARI Silhouette DBI NMI Completeness
GMM (w/o) 0.975 0.420 1.050 0.962 0.962
Kmeans (w/o) 0.919 0.423 1.036 0.904 0.904
MLP-CMLL+TSKMeans (w/o) 0.919 0.424 1.037 0.904 0.905
MLP-CMLL+TSKMeans (w/) 0.949 0.418 1.079 0.929 0.929

sults based on specific campaign characteristics and objec-
tives. Therefore, these observations suggest that while tradi-
tional methods like SVD and PCA have their merits, espe-
cially in contexts where computational simplicity and inter-
pretability are key, advanced neural network-based approaches
like MLP-CMLL offer a promising avenue for tackling more
complex clustering challenges. Future work could explore
further optimizations of the MLP-CMLL architecture, com-
parisons with other advanced machine learning techniques,
and applications to a broader range of data types and cluster-
ing scenarios.

For Campaign B, MLP-CMLL shows the best performance
across almost all metrics, highlighting its ability to extract
meaningful embedded features that contribute to effective clus-
tering. This suggests that the MLP-CMLL approach, with its
presumably more nuanced understanding of the data struc-
ture, is particularly well-suited for the types of datasets rep-
resented in Campaign B. RAW, SVD, and PCA show similar
performance in terms of ARI, Silhouette score, and other met-
rics. This could indicate that for Campaign B’s dataset, the
simpler dimensionality reduction techniques (SVD and PCA)
do not provide significant advantages over using RAW data.
This might be due to the nature of the data where the intrinsic
data structure is either too complex for simple linear transfor-
mations to capture or perhaps is already in a form where raw
data clustering is relatively effective.

For Campaign C, MLP-CMLL again outperforms other meth-
ods significantly in ARI and Completeness, reinforcing the
value of advanced feature extraction methods in improving
clustering outcomes. The improvement in the Silhouette score
and DBI suggests that MLP-CMLL leads to more distinct,
well-separated clusters than other methods. The performance
gap between MLP-CMLL and other methods (SVD, PCA,
and RAW) is notable, especially in terms of ARI and Com-
pleteness. This could imply that the Campaign C dataset con-
tains complex patterns or high-dimensional structures that are
better captured by the MLP-CMLL’s feature extraction capa-

bilities.

For Campaign E, MLP-CMLL’s superiority is evident but less
pronounced compared to Campaign C. It still leads in Ad-
justed Rand Index and Completeness, indicating its consistent
effectiveness across different datasets. The similarity in per-
formance between SVD, PCA, and RAW methods suggests
that for Campaign E’s data, the simple dimensionality reduc-
tion does not significantly impact the clustering performance,
similar to Campaign B. However, the overall lower scores
compared to Campaign B could indicate that Campaign E’s
dataset is inherently more challenging to cluster effectively,
possibly due to noise, less distinct groupings, or more com-
plex data structures.

Tables 4, 5, and 6 show performance metrics using different
clustering methods for Campaigns B, C, and E with (w/) and
without (w/o) sliding window.

Table 4 shows the performance metrics for Campaign B. The
performance metrics for Campaign B provide a nuanced view
of algorithm effectiveness. The Gaussian Mixture Model (GMM)
showcases strong performance with an ARI of 0.676, sug-
gesting a high degree of accuracy in clustering with respect
to the true classifications. This is supported by an NMI of
0.810 and a Completeness score of 0.809, indicating a robust
alignment between cluster assignments and actual data labels.
The introduction of a sliding window with Time Series K-
Means enhances its performance significantly, as evidenced
by a jump in ARI to 0.875 and NMI to 0.884, underscoring
the method’s ability to capture temporal dependencies within
the data. The Silhouette Score and DBI provide additional in-
sights; despite a lower Silhouette Score (0.335) with the slid-
ing window, indicating less clear separation between clusters,
the method’s overall effectiveness is not notably diminished,
suggesting that the sliding window compensates by capturing
temporal patterns not evident in spatial metrics alone.

Table 5 shows the performance metrics for Campaign C. Cam-
paign C’s analysis reveals the exceptional capability of the
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Table 6. Performance metrics of different clustering methods for Campaign E using MLP-CMLL embedded features with (w/)
and without (w/o) sliding window.

Method ARI Silhouette DBI NMI Completeness
GMM (w/o) 0.626 0.311 1.453 0.716 0.718
Kmeans (w/o) 0.546 0.336 1.284 0.642 0.644
MLP-CMLL+TSKMeans (w/o) 0.598 0.341 1.371 0.671 0.673
MLP-CMLL+TSKMeans (w/) 0.854 0.300 1.700 0.866 0.867

GMM algorithm, achieving near-perfect ARI (0.975) and NMI
(0.962) scores, which imply an almost flawless clustering out-
come compared to true labels. This campaign highlights the
impact of using a sliding window with Time Series K-Means,
which achieves an ARI of 0.949 and an NMI of 0.929. These
results suggest that the temporal structure captured by the
sliding window significantly enhances clustering fidelity. The
Silhouette Score (0.418 with the sliding window) and DBI
(1.079 with the sliding window) indicate a balance between
cluster cohesion and separation, affirming the effectiveness of
incorporating temporal context in clustering analysis.

Table 6 shows the performance metrics for Campaign E. In
Campaign E, the stark contrast in performance metrics be-
tween methods with and without sliding windows becomes
even more pronounced. The use of the sliding window with
Time Series K-Means propels its ARI to 0.854 and NMI to
0.866, suggesting a high degree of clustering accuracy that
leverages temporal information effectively. Despite a lower
Silhouette Score (0.300) with the sliding window, indicating
potential overlap among clusters, the high NMI and Com-
pleteness scores (0.866 and 0.867, respectively) with the slid-
ing window imply a successful capture of the intrinsic data
structure. This campaign showcases the critical role of tem-
poral analysis in clustering, especially for data where tempo-
ral patterns significantly influence the underlying structure.

Across campaigns B, C, and E, the analysis underscores the
nuanced performance of GMM and Time Series K-Means,
particularly when enhanced with a sliding window technique,
across various clustering quality metrics. While simpler al-
gorithms like Kmeans show competitive performance in spe-
cific metrics such as the Silhouette Score, the added complex-
ity and temporal awareness of the sliding window modifica-
tion in Time Series K-Means generally translate into superior
clustering outcomes, especially in terms of aligning with true
cluster structures and maintaining class completeness.

Advantages of MLP-CMLL Time Series K-Means (MLP-
CMLL with TSKMeans)

From all tables 4, 5 and 6, the introduction of Contrastive
Metric Learning Loss-Enhanced Multi-Layer Perceptron with
Time Series K-Means (MLP-CMLL with TSKMeans) marks
a significant advancement in clustering complex time-series
data. This novel approach leverages the strength of contrastive
learning to fine-tune the feature representation, significantly
enhancing the clustering capability of TSKMeans by ensur-

ing that similar instances are brought closer while dissimi-
lar ones are distanced in the feature space. Our results un-
derscore the efficacy of this method, particularly in achiev-
ing superior clustering performance metrics across all cam-
paigns when compared to traditional approaches. Notably,
the MLP-CMLL with TSKMeans exhibits remarkable im-
provements in metrics such as ARI and NMI, indicating not
only an enhanced alignment with the true cluster structures
but also a comprehensive capture of the intrinsic data relation-
ships. This methodological enhancement introduces a power-
ful tool for time-series analysis, offering robustness against
the challenges posed by the dynamic nature of temporal data
and paving the way for more accurate, interpretable clustering
solutions.

Our MLP-CMLL with TSKMeans vs. GMMSEQ (Ramasso,
Denoeux, & Chevallier, 2022). In a comparative analysis
between the novel MLP-CMLL+TSKmeans method and the
GMMSEQ (Ramasso, Denoeux, & Chevallier, 2022) method
across three experimental campaigns labeled B, C, and E, the
performance is quantitatively measured using the Adjusted
Rand Index (ARI). The ARI scores indicate the similarity be-
tween the clustering results and the true classifications, with
a range from -1 to 1, where 1 denotes perfect agreement. For
Campaign B, the MLP-CMLL+TSKmeans method signifi-
cantly outperforms GMMSEQ, achieving an ARI of 0.875
compared to GMMSEQ’s 0.772. This suggests a superior
ability of the MLP-CMLL+TSKmeans to accurately match
the true cluster structures. In Campaign C, both methods ex-
hibit exceptional performance with MLP-CMLL+TSKmeans
slightly leading (0.949 vs. 0.947), indicating that both are
very capable but MLP-CMLL+TSKmeans shows a slight edge
in capturing the clustering structure accurately. Campaign
E again sees MLP-CMLL+TSKmeans outperforming GMM-
SEQ (0.854 vs. 0.799), reinforcing the method’s robustness
and accuracy in analyzing the complex dynamics of acous-
tic emission data streams. Overall, MLP-CMLL+TSKmeans
consistently surpasses GMMSEQ in clustering performance
across all campaigns, evidencing its effectiveness and the sig-
nificant benefits it offers for structural health monitoring ap-
plications through better differentiation and handling of tem-
poral dynamics within AE data.

4. CONCLUSION

This work introduced a new method for the analysis of acous-
tic emission (AE) data streams, which are inherently sequen-
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tial and temporal. The study proposes a unique approach
by enhancing a Multi-Layer Perceptron (MLP) with a con-
trastive metric learning loss function (MLP-CMLL) and time
series kmeans, aiming to efficiently identify and analyze se-
quentially appearing clusters within the data. This novel loss
function is meticulously designed to optimize the MLP by im-
proving the differentiation between distinct clusters. The ap-
proach primarily concentrates on embedding sequences in a
manner that clusters with similar acoustic patterns are brought
closer together, while those with divergent patterns are dis-
tanced, thereby augmenting the MLP’s capability to recog-
nize and classify acoustic events based on their emission sig-
natures over time.

The importance of this work lies in its ability to address the
challenges associated with the precise characterization of dy-
namically forming clusters within AE data streams. Tradi-
tional clustering algorithms often falter in handling the tem-
poral dynamics of AE data, where the sequencing and tim-
ing of events are crucial for a comprehensive understanding
of the phenomena being monitored. By integrating a con-
trastive metric learning loss with an MLP architecture tailored
to the specifics of sequentially appearing clusters in AE data
streams, our method aims to unveil deeper insights into the
formation and evolution of clusters. This approach promises
to enhance monitoring and predictive maintenance in engi-
neering applications by capturing the complex dynamics of
AE data more effectively.

Through extensive experimentation and comparative analysis
against conventional techniques, we validate the superiority
of our proposed method in discerning the intricate dynamics
of AE data. This work presents a robust analytical tool for
the investigation of sequential clusters and their implications
in the domain of structural health monitoring, offering signif-
icant advancements over existing methods in terms of cluster
detection, characterization, and temporal analysis.
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ABSTRACT

Prognostics and Health Management (PHM) offers the po-
tential to increase the acceptance of adaptive structures and
to operate them in an optimal way. With suitable design and
proper operation, adaptive high-rise structures enable signif-
icant increases in sustainability and service life extensions
compared to passive high-rise buildings. The control loop
for PHM provides a systematic overview of the contents re-
lated to PHM and their sequence. However, a framework is
required for application to a complex adaptive system. Such
a framework is presented in this paper. The framework is di-
vided into the areas of system analysis and modeling as well
as the PHM solution. A systematic approach is used to ana-
lyze the system and create the basis for full integration of all
functional domains. This is then used in modeling to develop
an adapted model structure. Finally, the PHM solution looks
at the details of the approaches for diagnosis, prognosis, and
health management.

1. MOTIVATION

The construction industry consumes significant resources and
is responsible for a considerable proportion of CO2 emissions
(Thibaut Abergel & Dulac, 2018; OECD, 2015). Traditional
load-bearing structures are typically designed for infrequent
critical load cases. Additionally, there are numerous uncer-
tainties, which are compensated in the design by safety fac-
tors. As a result, the load-bearing structure is often signif-
icantly oversized for most of its service life, which leads to
increased resource demands and CO2 emissions (Efinger et
al., 2022). Actuators can be used to induce displacements,
homogenize stresses in structures, and actively dampen vi-
brations. This enables the structural mass of such adaptive
load-bearing structures to be reduced compared to passive
structures by targeted reduction of cross-sections. In addi-
tion, the actuators need to be integrated into the structure
and complemented by associated systems – including mea-

Dshamil Efinger et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

surement systems, control systems and energy supply. Adap-
tive load-bearing structures offer the potential to save struc-
tural mass and – through suitable operation – to be more
sustainable than conventional passive load-bearing structures
(Efinger et al., 2022). At the same time, ensuring sustainabil-
ity should not come at the expense of safety or serviceabil-
ity. On the other hand, unnecessarily frequent maintenance
measures need to be avoided for both sustainability and eco-
nomic reasons. However, in addition to the parameter space
for maintenance, there is also the parameter space for adaptiv-
ity control. This includes determining when which actuators
exert how much force on the system and in what combination.
As a result, stiffness and damping are controlled locally at the
individual points, but also globally in the load-bearing struc-
ture. Depending on this, static and dynamic effects develop
under the respective load, and more or less damage occurs in
the individual elements of the structure. For both operation
and maintenance, short, medium, and long-term objectives
must also be considered and balanced. This high-dimensional
problem cannot be solved with conventional methods for op-
erating or maintenance strategies.

Prognostics and Health Management (PHM) offers the po-
tential to improve the reliability and availability of technically
complex systems in line with requirements. A comprehensive
understanding of the application of PHM is crucial, especially
when it comes to developing customized PHM solutions for
complex systems.

The challenge in developing a universally applicable PHM
solution lies in the high complexity and variability of the sys-
tems. Henß (Henß, 2021) highlights this problem and pro-
poses a PHM control loop that offers a general approach to
implementing PHM. However, this still needs to be embedded
in the system for the application itself. To that end, this paper
provides a framework that enables the practical implementa-
tion of the PHM solution and provides a structured approach
for applying PHM to the complex system of an adaptive high-
rise building.

To do this, a framework is presented that is specifically de-
signed to apply PHM to complex systems. This framework
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serves as both a method and a framework to enable effec-
tive implementation of PHM strategies. It is divided into two
main parts: System analysis and modeling as well as PHM-
solution.

In order to achieve this objective, section 2 – basics – ini-
tially introduces adaptive systems, the high-rise structure that
serves as an example, and the PHM control loop.

Section 3, system analysis and modeling, focuses on under-
standing and modeling the specific features and behavior of
the system under consideration. This phase is fundamental
for the development of accurate predictive models and for the
identification of relevant system parameters that are impor-
tant for condition assessment and prediction.

This is followed by the PHM-solution in section 4, which
comprises the development and implementation of solutions
based on the findings and models of the system analysis. Spe-
cific techniques and procedures are used to implement system
prognostic and the optimization of the system based on this.

Finally, section 5 gives a summary.

2. BASICS

This section introduces relevant basics for the adaptive sys-
tem and introduces the PHM control loop.

2.1. Adaptive Systems

Systems that actively change with the help of sensors and ac-
tuators are referred to as adaptive systems. The system inter-
acts with the environment and manipulates loads, for exam-
ple, in such a way that load peaks are avoided (Sobek, Haase,
& Teuffel, 2000). Adaptivity is enabled by a control process,
whereby the input signals are fed into the system through sen-
sors.

2.2. The D1244

The world’s first adaptive high-rise building is called D1244.
D1244 is a multi-functional experimental platform and is lo-
cated on the campus of the University of Stuttgart. The load-
bearing structure is activated by hydraulic actuators. Hy-
draulic pressure accumulators close to the cylinders ensure
homogenization of the system pressure and minimize the switch-
ing requirements for the hydraulic pump. A central control
unit and several module control units are available to con-
trol the hydraulic actuators, which are actuated by electro-
hydraulic valves. Various sensors provide the controls with
information on the load-bearing structure, the actuator sys-
tem, and the ambient conditions. There are strain gauges for
strain measurement in a redundant arrangement on the pillars
and diagonals. LEDs mounted on the outer shell in the transi-
tion between the modules of the load-bearing structure serve
as measuring points for an optical measuring system that uses

cameras on two sides to record relative displacements and
deformations of the load-bearing structure. The change in
displacement of the actuators is recorded using displacement
measuring systems on the hydraulic cylinders. There is a
weather station on the roof of the building that records wind
speed and wind direction.

2.3. Control of the Adaptive Structure D1244

The control loop contains the physical system, from which
relevant variables such as stresses, deflection and other mea-
sured variables are recorded, a Kalman filter (KF) for condi-
tion monitoring and a linear-quadratic regulator (LQR) for
controlling the adaptive components. Using the KF as an
observer and estimator, the current system state x̂ is esti-
mated and iteratively transferred to the controller by a feed-
back loop. This allows unknown system variables to be deter-
mined and the system to self-adapt (Ostertag, 2021). Finite
element models are used to investigate the equation of mo-
tion of the mechanical structure. The finite element method
is used for the dynamic analysis of structures and the equa-
tion of motion of the structure. The discretization of the FE
model at the nodal points results in the equation of motion
according to (Ostertag, 2021; Gienger, Schaut, Sawodny, &
Tarin, 2020):

Mq̈ +Dq̇ +Kq = Fuuact + Fν(ν) (1)

with the following boundary conditions:

q̇(0) = q̇0, q(0) = q0. (2)

2.4. PHM Control Loop

The PHM control loop, as introduced by Henß (Henß, 2021),
represents a systematic approach to optimizing the operation
and maintenance of technically complex systems. Central to
the control loop is the continuous interaction between the sys-
tem and its optimization based on data from measurements,
diagnosis, and prognosis. The optimization is fed directly
back into the system, creating a closed loop that leads to con-
tinuous improvement.

The control loop can be abstractly divided into three main
areas:

1. Condition assessment: This includes collecting data and
analyzing it to determine the current system status.

2. Forecast approaches: Based on the condition assess-
ment, a prediction is made about the future condition of
the system.

3. Optimization approach: The results of the condition
assessment and forecast are used to define and implement
measures to improve the system.

Figure 1, based on (Henß, 2021), illustrates the PHM con-
trol loop including the three main areas formed. This illus-
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Figure 1. PHM control loop with its three main areas.

tration demonstrates the dynamic and cyclical nature of the
PHM approach, which is based on continuous improvement
and adaptation.

The condition assessment includes the evaluation of the sys-
tem (system and health modeling), the evaluation of the data
(data collection and cleansing) and the diagnosis (state esti-
mation). This classification enables a precise assessment of
the system and health statuses, based on which estimates can
be made for the current state. Based on the estimates de-
termined from the diagnosis, the predicted range within the
condition forecast is determined. The downtime or, if an end-
of-life definition has been selected, the remaining useful life
(RUL) can be calculated. The basis for this is, among other
things, the history to date. If information on future changes is
available, these can also be considered. During optimization,
the adjustable system settings are adjusted so that the objec-
tive function is as optimal as possible within the scope of the
observation horizon. The information from the condition as-
sessment and condition forecast is used for optimization. This
holistic approach enables proactive maintenance and the opti-
mization of operating processes, which leads to an extension
of the service life and an increase in the efficiency of systems.

3. SYSTEM ANALYSIS AND MODELING

This paper is built around the D1244 system, which offers
ideal conditions for the application of PHM due to its com-
plexity and adaptive capabilities. The special feature of the
D1244 lies in the large number of influencing variables and
the associated uncertainties. This makes the implementation
of PHM a challenging task.

For a comprehensive integration of PHM into a complex sys-
tem – such as an adaptive high-rise structure – a systematic
approach is required. This is dealt with as part of the frame-
work in this section. It is further subdivided into the steps
of system analysis and modeling. During the system analysis
in subsection 3.1, all aspects relevant for modeling the PHM
application are determined. The models and their interrela-

tionships are then built on this basis in subsection 3.2.

3.1. System Analysis

This subsection develops the content to create models for
state estimation, prediction, and health management. A com-
prehensive system analysis is carried out for this purpose.
This begins with the overall objective, which also provides
target parameters, followed by the system description. In ad-
dition, the requirements and boundary conditions for opera-
tion and its optimization are extracted. From this, the dimen-
sions of the system are derived and supplemented by further
conditions. Influencing factors are then identified on this ba-
sis. Lastly, uncertainties for the target parameters and the
boundary conditions can be derived from the target parame-
ters and influencing factors.

Once these steps have been completed, all areas are available
for developing models for the PHM application.

3.1.1. Objective

The objective of the PHM control loop according to Henß
(Henß, 2021) is to operate and maintain the system in such a
way that the target parameter is maximized, and the existing
boundary conditions are met. A target parameter describes a
measurable or countable variable from the objective. For the
use case of the adaptive high-rise system this means:

Firstly, the environmental impact should be as low as possi-
ble, with the CO2 equivalent being assessed. Secondly, in-
creasing the service life of the system beyond a certain level
may also be a further goal. Thirdly, this needs to be done in
compliance with the requirements and boundary conditions.

There is now a conflict of interest between the goals of low-
est possible CO2 equivalence and increased service life. The
lowest possible CO2 equivalent would be achieved with the
shortest possible service life and an increase in service life
would presumably require additional CO2 expenditure. For
this reason, the CO2 equivalent is used as a reference for its
opposing benefit – i.e., the service life. This means that the
CO2 equivalent is normalized to the useful life. Neverthe-
less, it is possible that the target parameters compete. There-
fore, an individual objective function needs to be formed for
each use case from the existing target parameters and bound-
ary conditions for multi-criteria optimization. This is imple-
mented as part of the modeling in subsection 3.2.1.

3.1.2. System Description

Now that the objective is set, it is important to clearly define
what it applies to. The system description serves to make
the system and its components tangible and to separate the
area under investigation from the environment through a de-
fined system boundary. In addition to a physical and a signal-
related system boundary, the system boundary also includes
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a temporal dimension. For the example under investigation,
this means:

The system of interest is the entire system of the adaptive
high-rise structure, described in subsection 2.2. In addition
to the load-bearing structure, this also include the functional
domains of the actuators, various sensors, physical control,
and transmission elements, the software control and the en-
ergy supply. Furthermore, maintenance with all its domains
– including spare parts stocking, capacity planning, etc. – is
also included in the system scope. Figure 2 shows the do-
mains of the adaptive structure schematically and indicates
their allocation. The temporal consideration starts from the
beginning of the building usage until the end of the service
life. The manner in which the adaptation function is carried
out by the components of the adaptive system corresponds to
the description in subsections 2.1 and 2.3. To do this, a func-
tional adaptation function is required. If the adaptation func-
tion is to be performed and it is not functional, the adaptation
function fails.

3.1.3. Requirements and Boundary Conditions

The first question that arises for a defined system or its op-
timization is that of the general requirements and boundary
conditions. They are set externally or internally and need to
be fulfilled. There are elementary requirements for a struc-
ture such as a high-rise building. These include the fact that
they have to enable their intended use and that they have
to have a certain geometrical shape. Standards such as the
Eurocodes formulate further requirements. There are also
project-specific, definable requirements that the building has
to fulfill. The probability of partial or total failure of the
structure or its function is of central importance. Suitable
measures must be taken to ensure that the probability of oc-
currence is lower than the limit values defined as acceptable.
Typical design measures for this are redundancies in the func-
tional structure or the oversizing of relevant structural com-
ponents. The limit values to be fulfilled are, on the one hand,
limit values for the designed service life and, on the other
hand, limit values for failure at any time. The Eurocodes typ-
ically work with two different safety levels for buildings. The
stricter one deals with the risk of structural failure. Whereas
the less stringent one concerns, for example, the occurrence
of non-failure-critical cracks or the occurrence of building
vibrations that could potentially be perceived as unpleasant
by users. While the stiffness – and therefore the vibration
behavior – of passive load-bearing structures cannot be ac-
tively changed, this is possible with adaptive structures. This
means that compliance with building vibrations defined for
user comfort could be linked to the presence of users in the
building. In this way, the limit value would change over time
– if there were people in the building, it would take effect, if
there are no people in the building, it could be raised.

3.1.4. Dimensions

The existing dimensions can be developed based on the re-
quirements and can be further enhanced based on the objec-
tive and the boundary conditions. To fulfill the requirements,
the system has to perform functions, but these are not always
requested in the same way.

For the D1244, this gives rise to the three existing dimen-
sions – the function request dimension, the function availabil-
ity dimension, and the temporal dimension. These are sup-
plemented by additional criteria from the objective and the
boundary conditions. From the objective, this are the target
parameter of CO2 equivalent and the extension of the service
life. The boundary conditions provide the time-variable risk
limit for the failure of the adaptation function.

The dimensions can be examined in more detail. The aspects
to be found there can influence each other within the dimen-
sion as well as between the dimensions or are dependent on
each other. For example, the temporal dimensions consist of
endless gradations between the past, the present and the fu-
ture. The dimension of function request is composed of the
aspects of building usage, external influences such as wind
and weather as well as the limits of safety levels.

However, the most comprehensive dimension is that of func-
tion availability. It can be divided into the physical system,
non-adjustable and adjustable system properties, and system
monitoring. The following lists show some of the contents.

Physical system:

• Load-bearing structure: Load capacity; Statics; Dynam-
ics; Health

• Actuators: Dynamics; Fault; Failure; Health
• Sensors: Fault; Failure; Health
• Physical control elements: Dynamics; Fault; Failure; Health
• Physical transmission elements: Fault; Failure; Health
• Energy supply: Fault; Failure; Health

Non-adjustable system properties:

• Function structure: Redundancy; Compensation possi-
bilities

• Failure behavior individual elements: Reliability; Health;
Damage factor; Failure behavior

Adjustable system properties:

• Control options: Control limits; Control models; Actua-
tors; Ph. control el.; Energy supply

• Maintenance: All physical domains; Spare parts; Tools;
Personnel; Measures

System monitoring:

• State detection: Position; Force; Stress; Pressure; Mo-
tion; Acceleration; Control; Health; Maintenance; Us-
age; External influences; function request
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Figure 2. Schematic illustration of the system.

• Fault detection: All physical domains with exception of
load-bearing structure; Control

• Failure detection: All physical domains; Control

Using the dimensions, the subsequent steps of the system
analysis can be systematically examined for all existing as-
pects of the system. The dimensions can also be used to sys-
tematize the interconnection of aspects and dependencies in
the functions for subsequent modeling. Aspects with identi-
cal themes can therefore be found in different dimensions.

3.1.5. Influencing Factors

This step collects all existing influencing factors. Influenc-
ing factor is anything that influences the fulfillment of the re-
quirements, the boundary conditions, or the objective at any
point in time. For the PHM application, the influencing fac-
tors needs to be divided into those that cannot be adjusted
during operation, those that can only be adjusted indirectly
and those that can be adjusted directly by PHM.

3.1.6. Uncertainties

Uncertainties describe a lack of or imprecise knowledge about
something. To utilize the existing knowledge, it is necessary
to quantify the uncertainty. Otherwise, unknown risks would
be taken. These can be of an economic, social, or ethical na-
ture. Uncertainties can be determined from the combination
of target parameter and influencing factor as well as their re-
lationship and classification in the existing dimensions.

Generalized uncertainties of the respective influencing factors
from the following areas have to be taken into account. This
applies to each measurement and model level and influences
dependent model and system areas.

• Measurement uncertainties: Measurement errors, mea-
surement data noise, etc.

• Model uncertainties: Model errors, model inaccuracies,
etc.

• Stochastic effects

• Time

From the levels of the measured variables to the sub-models
and the models, more influences of uncertainties are added.
Some of these can be reduced using appropriate models to re-
duce uncertainties. An example of this is checking for mea-
surement errors from sensor signals using a model that checks
several sensor signals for plausibility and can perform error
identification.

The temporal dimension plays a crucial role in uncertainties.
In a present state, uncertainties from the areas of measure-
ment uncertainty and model uncertainty can be present. If
the corresponding data is available for the past, the situation
is the same there. When considering future points in time,
however, the uncertainty from the temporal development is
always added. Figure 3 shows an uncertainty space that spans
the areas of measurement and model uncertainties and the
temporal dimension. There is no temporal uncertainty for the
past and the present, provided that the data from the past is
still fully available. For the future, however, the temporal un-
certainty increases more with increasing temporal distance.
The measurement uncertainty and the model uncertainty do
not have a generalizable function from lower to greater un-
certainty. They must be estimated individually for each case
under consideration.
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Figure 3. Illustration of a dimension model with dimensions
of uncertainties.

3.2. Modeling

Subsection 3.2.1 establishes the target space and objective
function based on results, requirements, and boundary con-
ditions. The creation and interconnection of model structures
across various levels are detailed in 3.2.2. System integration
for the structural control of an adaptive high-rise structure is
discussed in 3.2.3.

3.2.1. Target Space and the Objective Function

The target space represents the scope in which all specifica-
tions and requirements are met. It therefore describes permis-
sible solutions. The objective function defines the weighting
of the target parameters in relation to each other. Permissible
solutions fulfill all requirements, the best possible solutions
achieve the highest values for the objective function. In con-
crete terms, this means that the probabilities of partial or total
failure of the structure or its function must be always kept be-
low the limit values and for the entire planned service life of
the structure. Some of the limit values can change over time,
depending on factors such as building occupancy. At the same
time, the overriding objective is to achieve the lowest possi-
ble CO2 equivalent and possibly an increase in the service
life of the building. The weighting of the two target parame-
ters needs to be described by way of a relationship. Further
boundary conditions and target parameters are possible and
could be added in the same way. The optimization of such
an objective function is not trivially solvable for such a com-
plex system. Therefore, the use of fuzzy logic is proposed in
section 4 in order to enable an assessment of all influencing
factors based on the information about the system using the
hybrid approach described there.

3.2.2. Model Structure

The development of the model structure relates to two desig-
nations of models and their structure. On the one hand, it is

about the dimensional models and their interconnections. On
the other hand, it is about functional models and their inter-
action.

Function Models The function models are divided into the
three areas of condition assessment, forecast assessment and
optimization approach introduced in subsection 2.4. Figure
4 also shows an overview of the structure of some function
models for the PHM solution of the adaptive high-rise build-
ing. In accordance with the PHM control loop according to
Henß and figure 1, the diagnosis in the condition assessment
provides input for the prognosis in the forecast assessment
and this for the optimization. Optimization continues until
an accepted condition forecast is reached, for which the in-
struction to adjust the relevant influencing factors is given. In
addition to these optimized adjustment instructions described
above, there are also system variables that are also provided
externally by the condition assessment from the PHM solu-
tion. The adjustment instructions contain parameters with
different change behavior over time. For example, the in-
struction of a maintenance measure after several years of op-
eration and with an execution time of several days or weeks.
But also, the current state of stress on an element of the load-
bearing structure or the pressure in one of the actuators.

• The diagnostics includes function models for the detec-
tion, determination or estimation of

– Failures: for example of individual actuators, sen-
sors, valves or load-bearing elements

– Faults: for example in the measurements of sensors,
the control behavior of valves or the control instruc-
tions of the control system
For example, (Stiefelmaier, Böhm, Sawodny, & Tarı́n,
2023) provides a concept for detecting sensor or ac-
tuator faults that can be integrated.

– System states: for example, for the individual parts
of the load-bearing structure, actuators, sensors, feed
and control systems, or maintenance processes in
relation to their positions, mechanical or electrical
stresses or hydraulic pressure, the dynamic state or
the state of damage

• The prognostics contains function models for forecast-
ing all states of the condition assessment. It is fed with
information from the diagnostics. External predictions
are also included. These include forecasts for wind and
weather, personnel capacity, spare parts capacity and, if
applicable, utilization and the planned remaining service
life.

• Optimization takes place in Health Management. Func-
tion models are available to evaluate the optimized solu-
tion and to optimize the adjustable influencing factors.
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Figure 4. Some feature models of the PHM-solution.

Dimension Models The dimensional models or models of
dimension aspects form different layers on top of the function
models. They interact with each other and with the function
models. Figure 3 shows such a dimension model using the
example of health and taking the temporal dimension into ac-
count. The dimension model uses various input information,
which is prepared and processed in sub-models before being
merged in the dimension model.

The correlations can be illustrated using a simple example
of a fault in the measured value of a sensor. In the case of
fault detection in the measured value of a sensor, the function
model for the fault detection is used to handle an influence
from the dimension aspect of sensors. To assess whether or
with which other sensor information an evaluation is possi-
ble, the model for the dimension aspect of function structure
is used to work on redundancies or compensation options.
These may be reduced in number by the results of the func-
tion model for failure detection. The temporal dimension may
also be used to detect changes in the data history.

3.2.3. System Integration on the Example of Structural
Control

This subsection uses the example of structure control to de-
scribe how system integration can be carried out with the
PHM solution. To do this, we refer back to Figure 4 in the
previous subsection. The PHM solution provides adjustment
instructions. These must then be processed – for structural
control in the control of the actuators. The system integration
for structural control can be divided into two higher-level sub-
areas if this is abstracted:

• Intelligent control model
• Intelligent monitoring and assessment model

The conventional approach from subsection 2.3 for control-
ling the high-rise demonstrator involves using a linear-quadratic
controller in a closed control loop with feedback and a Kalman
filter as an observer. This means that only a limited adaptation
of the control behavior is possible.

In (Dakova, Heidingsfeld, Böhm, & Sawodny, 2022) the au-
thors present an agent-based fatigue level controller through
the use of a model predictive control (MPC) and the use of a
cost function for the damage in the elements. This controller
is adopted for structural control as a so-called score MPC.
The PHM solution provides it with the control difference e(t)
and the optimized scores for each actuator as adjustment in-
structions. In this way, the PHM solution defines the intensity
of the control and the distribution between the actuators in the
system. The block diagram for the control loop is shown in
Figure 5. The score MPC thus forms the intelligent control
model, and the PHM solution forms the intelligent condition
monitoring and evaluation model.

4. PHM-SOLUTION

This section covers the diagnostics and prognostics approach,
detailing the use of a hybrid model and a health management
agent that utilizes optimized system information for improved
control behavior. It also introduces a data-driven strategy em-
ploying fuzzy neural networks (FNN) to manage the com-
plexity of the D1244 system. This method facilitates the ef-
ficient analysis of extensive, multi-layered data, enhancing
decision-making in maintenance and operations. Fuzzy neu-
ral networks enable the PHM solution to adapt and refine pre-
dictions, crucial for addressing challenges in complex sys-
tems like the D12444.

4.1. Diagnostics and Prognostics Approach

The effective assessment and prediction of the health of com-
plex systems have requirements that cannot be met by con-
ventional approaches. As described by Kim et al. (Kim, An,
& Choi, 2017), Goebel et al. (Goebel et al., 2017), and Si
et al. (Si, Zhang, & Hu, 2017), hybrid approaches offer a
promising solution. These approaches combine data-driven
algorithms with physical degradation models to improve the
accuracy of condition assessment and prediction.

Such a hybrid approach is made up of various sub-models,
each of which depicts individual dimensions of the system,
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Figure 5. Control loop for the D1244 optimized for PHM application.

and which are linked together. Training and experience data
are essential for the development and refinement of these ap-
proaches. This data includes not only the current measured
values recorded by sensors, but also historical data that is used
to calibrate and train the algorithms.

4.1.1. Design of the Hybrid Approach

The hybrid approach combines data-driven and physically based
models to enable a comprehensive analysis of the failure be-
havior of system components. Pure data-driven models based
on mathematical functions can only approximate reality with-
out taking underlying physical models into account. The in-
tegration of a physical model, on the other hand, enables a
deeper insight into the behavior of the system. This combi-
nation not only increases the accuracy of the predictions, but
also expands the database for training the algorithms and pro-
motes a holistic understanding of the overall system.

A schematic setup for the application of such an hybrid ap-
proach to a complex adaptive system, such as the D1244, is
shown in Figure 6. Data- and physics-based methods are used
to both estimate the current state and predict the future state.

A degradation model forms the basis for making valid state-
ments about the system based on sensor data and minimizing
inaccuracies. The combination of data-driven findings and
physical models provides a robust basis for the reliable eval-
uation and prediction of system performance.

To optimize the informative value of this approach, continu-
ously recorded training data is integrated into the prediction
models over the system’s service life. This enables a flexible
and effective response to unexpected system changes.

This approach distinguishes between two sub-models, which
are discussed in detail in the following sections. These sub-
models are the state estimation and the state prediction.

4.1.2. State Estimation

The state estimation serves as the basis and data foundation
for the forecasting approaches. For this purpose, system and
condition modeling is carried out and data from the technical

system is recorded by sensors. The degradation model plays
a key role here, as it provides a basis for the estimates. Degra-
dation modeling is conducted using damage mechanisms on
the components or estimates of the system modeling, for ex-
ample using KF. The assessment of the condition takes place
in the diagnosis: Through data, states that affect the use and
health of a technical system are estimated in diagnostics based
on collected information.

4.1.3. State Prediction

In addition to current sensor data, the hybrid approach can
also incorporate training data from past measurements for the
state prediction. This allows the forecast to be improved. This
therefore represents a continuously learning process.

4.2. Health Management Agent

During optimization, the predicted system information is fi-
nally optimized iteratively, and a decision is made for the
system. Optimization goals such as fault tolerance, sustain-
ability and fault prevention are considered, for example to
enable proactive and environmentally friendly maintenance
planning. Based on the optimized system information, the
control behavior of the system can be adapted and improved.

Calculating the score is therefore one of the most important
tasks of optimization and can be achieved by using fuzzy
methods in combination with NN. The use of FNN has the
advantage that a more precise classification and assignment
of the optimized system variables is possible and thus a more
precise score calculation can be realized for the respective ac-
tuators.

4.2.1. Optimization of System Information

The optimization of the predicted system information as part
of health management aims to improve the service life and
added value over the entire life cycle by integrating optimiza-
tion factors. This strategic adjustment affects both mainte-
nance planning and the efficiency of use of the system com-
ponents. Through targeted control, component functions can
be adapted not only to extend the service life but also to

8

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 213



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Training 
Data

State Estimation State Prediction

Sensor 
Data

RUL

Data-Driven 
Model

Prediction

Physics-Based 
Degradation Model

Data-Driven 
Modell

Pre-Processing

Physics-Based 
Degradation Model

Figure 6. Schematic setup of the hybrid approach for a complex system.

prevent premature failures. The process is iterative and is
based on the continuous analysis of the remaining useful life
(RUL), which considers both risk factors and life cycle anal-
ysis (LCA) factors. This comprehensive approach enables
dynamic adaptation of maintenance strategies and a flexible
response to changing operating conditions or new findings
about the condition of the components. By integrating both
data-driven insights and physical model assumptions, a more
precise forecast and thus more effective planning and control
of maintenance measures is achieved.

The continuous improvement of the management system through
this iterative approach not only supports an extended service
life and increased reliability of the system components, but
also helps to reduce maintenance costs and increase overall
efficiency. This methodical approach is therefore an essential
part of strategic maintenance and operational management,
creating a balance between preventive maintenance and oper-
ational flexibility.

4.2.2. AI-Supported Optimization Using Fuzzy Neural Net-
works

At the core of the Prognostics and Health Management solu-
tion is the implementation of fuzzy neural networks, which
use the hybrid approach to make adaptive decisions regard-
ing the system components and adjust the control behavior
accordingly. Embedding fuzzy logic (FL) in neural networks
enhances their ability to precisely interpret and process com-
plex system states and dynamics. FL mimics human think-
ing by making it possible to represent complex relationships
in an understandable form. In addition, the use of FL en-
ables a sophisticated analysis of uncertainties and ambigui-
ties within the system data, allowing FNNs to make efficient
decisions even in the presence of incomplete or fuzzy infor-
mation. Fuzzy sets and rules are directly integrated into the
structure of the neural networks, resulting in a synergetic ar-
chitecture of fuzzy neural networks (de Campos Souza, 2020;
Mishra, Sahoo, & Mishra, 2019).

The special feature of this approach lies in the improved inter-
pretability of complex systems and the effective handling of

data uncertainty. The use of FNNs enables a deep understand-
ing and clear interpretability of system dynamics and state
evaluations, which is crucial for the optimization of PHM so-
lutions (de Campos Souza, Lughofer, & Guimaraes, 2021).

4.3. Fuzzy-Based Score Calculation

The interface between the PHM solution and the controller
from 2.3 requires a control difference to be defined and trans-
ferred to the control system. For this purpose, a PHM solu-
tion is added to the control system, which calculates a score
value for the individual actuators using extended optimiza-
tion. The score calculation can be performed using various
methods, including simple weighting or the application of
complex logical operations using fuzzy rules in fuzzy neu-
ral networks (FNNs). The objective function from subsection
3.2.1 and the influencing factors from subsection 3.1.5 are in-
cluded in the calculation of the score. For example, deferring
maintenance to reduce CO2 emissions can increase the risk
of failure. All of these factors needs to be considered as part
of an iterative optimization, as illustrated in Figure 4. The in-
fluencing factors can be integrated into a calculation function
as weights. One implementation option is the formulation of
fuzzy rules, whereby the weighting of the individual factors
within the FNN is included in the evaluation. This allows
complex logical relationships based on the data to be consid-
ered and the result to be interpreted as a score value.

The main objective of using an FNN is to make the score
calculation for adaptive control efficient and effective. By in-
tegrating fuzzy rules, the various influencing factors are cate-
gorized and evaluated by fuzzification layers in the network.
This allows not only a specific weighting of the factors, but
also a flexible adjustment of these weightings within the lay-
ers. Training data from previous calculations or empirical
values can also be used to train the network. A particular
advantage of fuzzy networks is that they do not require an ex-
plicit model and that they can simplify the score calculation
despite complex mathematical relationships through fuzzifi-
cation.
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4.3.1. Design of a Fuzzy Network

A fuzzy-based neural network consists of several core com-
ponents. These are:

• Fuzzy logic: Enables the processing of uncertainties and
ambiguities through the use of fuzzy sets and fuzzy op-
erators.

• Membership Functions: Each fuzzy set is represented
by a membership function, which specifies the degree to
which an input value belongs to a set.

• Fuzzy Rules: Fuzzy rules, formulated as ”IF-THEN”
statements, define how input values should be processed
based on their membership of different fuzzy sets.

• General neural network structure: Similar to tradi-
tional neural networks, including layers of neurons that
are interconnected by weighted connections.

4.3.2. Definition of Fuzzy Rules

As the decisions of the adaptive system are based on the fuzzy
rules, it is important to define the most precise boundaries
possible when recording the rules. The rules should represent
the characteristics of the training data sets as accurately as
possible. To define precise fuzzy rules, approaches such as
the improved Wand-Mendel method can be used. This tool
makes it possible to determine fuzzy rules directly from the
data sets. However, as this leads to further uncertainties, it is
important to determine the fuzzy rules iteratively to keep the
uncertainties as low as possible. And use methods such as the
WM method as an additional option.

Since the determination of fuzzy rules is a continuous pro-
cess, it is essential that the fuzzy rules within this framework
can be adapted flexibly and adaptively to changes to be able
to react effectively to modifications of the underlying rules.

4.3.3. Example Use Case of Fuzzy Neural Network

To demonstrate the practical application and effectiveness of
FNNs across various adaptive control systems, we explore an
example using the D1244. This use case illustrates how FNNs
can be seamlessly integrated into complex environments to
manage and improve system responses dynamically.

FNN Implementation: The FNN architecture in this sce-
nario consists of several key layers, each tailored to handle the
specifics of sensor data interpretation and decision-making in
a fuzzy context:

• Input Layer: Directs raw sensor data into the network.
• Fuzzification Layer: Converts numeric sensor inputs

into fuzzy values using membership functions. These
functions define linguistic terms such as low, medium,
high, which are easier to handle in rule-based logic pro-
cessing.

• Inference Layer: Implements fuzzy logic rules that de-
termine the control responses based on the fuzzy inputs.
This layer combines the fuzzy terms using logical oper-
ators and forms the backbone of decision-making within
the network.

• Defuzzification Layer: Converts the fuzzy conclusions
back into precise control outputs, such as adjustment lev-
els for actuators.

Input: The FNN receives real-time input from the sensor
array, which is continuously monitoring the process variables:

• Temperature sensors provide data that are vital for pre-
venting overheating and ensuring chemical processes pro-
ceed at optimal rates.

• Pressure sensors monitor the integrity of containment
vessels and pipelines, preventing leaks and ruptures.

These inputs are sampled at a frequency high enough to allow
real-time responses from the control system.

Results Interpretation: The outputs from the FNN directly
influence the operational controls of the D1244. They are
interpreted as follows:

• Control actions: Adjustments made by the control sys-
tem based on FNN outputs are implemented immediately
to optimize processes and reduce energy consumption.

• Operational efficiency: By continuously adapting to chang-
ing conditions, the D1244 maintains optimal performance
with minimal waste of resources.

• Safety: The system enhances safety by maintaining all
process variables within safe operational limits, reducing
the risk of accidents.

All these features are summarized in a score value, which can
be managed in the PHM solution for the prediction of future
states.

4.3.4. Advantages and Future Prospects of Fuzzy Neural
Networks

FNNs represent a significant advancement over traditional
NNs in that they provide interpretable relationships despite
the increased complexity of systems and data. This capabil-
ity makes FNNs particularly valuable for modeling and con-
trolling complex systems. The score generated by FNNs en-
ables a simplified yet comprehensive representation of sys-
tem states and interactions, which are summarized in a value
that can be interpreted by the controller. This not only re-
duces complexity, but also lays the foundations for improved
decision-making and system control.

The combination of the adaptability of fuzzy logic and the
learning capacity of neural networks allows FNNs to process
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imprecise and uncertain information effectively. This is par-
ticularly advantageous in decision-making processes where
traditional methods reach their limits. FNNs show their strengths
especially in scenarios characterized by high uncertainty and
fuzziness and offer a robust solution to the challenges of the
real world.

The future of FNNs in application methodology aims to achieve
real-time data processing and interpretability. The further de-
velopment of these technologies will enable even more pre-
cise decision-making, which will significantly improve the
adaptivity and autonomy of the system components. This di-
rection of development promises to increase efficiency and ef-
fectiveness in the processing of complex data structures and at
the same time create the basis for innovative control and mon-
itoring systems that are able to react dynamically to changes
and make proactive decisions (Talpur et al., 2022).

The integration of FNNs with advanced data processing tech-
niques, such as Long Short-Term Memory (LSTM), could
further enhance the ability to analyze and adapt to newly added
information in real time. This not only increases system per-
formance, but also lays the foundation for extensive use of
FNNs in a variety of applications, from predictive mainte-
nance to optimization of operations (Wang, Shao, & Juma-
hong, 2023).

5. CONCLUSION

This paper provides a framework for the comprehensive real-
ization of Prognostics and Health Management for a complex
system of an adaptive high-rise building. This includes not
only the load-bearing structure, but all domains involved in
the system such as actuators, sensors, the control system as
well as maintenance with all sub-domains such as spare parts
stocking and maintenance resources.

Adaptive load-bearing structures offer the potential to increase
the sustainability and service life of high-rise buildings. How-
ever, this integrates many other functional domains into the
system that can fail and whose optimal use may require reg-
ular adjustments. Prognostics and Health Management offers
the potential to reduce uncertainties about the current state of
the system and to optimize it for use.

The PHM control loop consisting of five modeling elements
– system, data, diagnosis, prognosis, and optimization – is
used as the basis for the structure in the application of PHM.
However, since embedding in a system is required for im-
plementation, a framework is introduced here that does this
under the requirements of the complex system of an adaptive
structure.

The framework is divided into the areas of system analysis
and modeling and the description of the PHM solution. The
comprehensive nature of the framework and the systematic
approach support the consideration and accurate integration

of all functional areas of the adaptive structure into the PHM.

The system analysis consists of six sub-steps. First, the sys-
tem is described, and the relevant system scopes are defined.
On this basis, existing dimensions are identified. With the
help of the dimensions and the system description, specifi-
cations, boundary conditions are determined. The target pa-
rameters for operation and its optimization are defined on the
same basis. This is followed by the derivation of influenc-
ing factors on the target parameters and for compliance with
boundary conditions. At the end of the system analysis, un-
certainties are identified for compliance with the boundary
conditions and optimization of the target parameters.

Modeling begins with the development of the target space and
objective function. The target space describes all permissible
solutions, as the boundary conditions are met. The objective
function weights the individual target parameters in relation
to each other if there are several target parameters. The next
step is to develop the model structure. Here, the results of
the system analysis are used again to map and link all the
necessary functions. Finally, system integration is presented
using the example of structural control for an adaptive high-
rise building.

The PHM solution section covers details of the approaches
for diagnosis, prognosis, and health management. A hybrid
approach of physically based and data-driven models is rec-
ommended for diagnosis and prognosis to meet the require-
ments of the complex system. For the health management
agent, the use of fuzzy neural networks is discussed to en-
able precise interpretation and processing of complex system
states and dynamics.

Through the presented content, the paper provides, besides
the framework for the implementation, the structure in terms
of system sizes and models for the application of PHM to the
complex system of the first adaptive high-rise building.
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ABSTRACT

Bearings and gears are components most susceptible to fail-
ure in electromechanical systems, especially rotating ma-
chines. Therefore, fault detection becomes a crucial step, as
well as fault diagnosis. Over decades, substantial progress in
this field has been observed and numerous methods are now
proposed for feature extraction from monitoring data. Among
these data, vibration signals are most used. However, in the
presence of non-Gaussian noise, most conventional methods
may be inefficient. In this paper, a hybrid methodology is pro-
posed to address this potential issue. The proposed method-
ology uses a combination of the Maximal Overlap Discrete
Wavelet Packet Transform (MODWPT) and Principal Com-
ponent Analysis (PCA) techniques. First, the MODWPT
technique decomposes the vibration signal with uniform fre-
quency bandwidth, facilitating effective signal processing and
introducing diversity for enhanced time-frequency signals.
Then, to identify significant patterns and characteristics re-
lated to faults, PCA is used for 3D dimensional representation
of system health state by capturing the variance in the ex-
tracted features. Subsequently, a self-organizing map (SOM)
is used for system state classification for diagnostics. This
technique is applied to open-access test bench data contain-
ing vibration signals with non-Gaussian noise.

Keywords: Signal processing, Fault diagnosis, Gearbox,
Feature extraction, Rotating machines, MODWPT.

Fawzi Gougam et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Bearings and gears have significant roles in both traditional
and modern manufacturing processes due to their extensive
applicability (A. Soualhi et al., 2014; Benaggoune et al.,
2020). As technology progresses rapidly, bearings and gears
are often used in industrial equipment and systems (Gougam
et al., 2021). Consequently, any bearing or gear failure can
have a profound impact on the entire production process,
resulting in economic losses and potentially fatal accidents.
Consequently, early bearing and gear failure diagnosis be-
comes a critical step in preventing premature and catastrophic
failures throughout the manufacturing process. Detecting and
addressing gear failures is fundamental in preventing serious
economic losses and potential accidents. A robust failure
detection and isolation technique is required to monitor the
rotational components and identify any damage (Abdeltwab
& Ghazaly, 2022). Currently, many researchers are focus-
ing on monitoring conditions using vibration signals. Various
conventional methods, such as the Fast Fourier Transform,
the Wigner Ville distribution (Dhok et al., 2020), short-time
Fourier transform (S. Zhou et al., 2020), and cyclo-stationary
analysis (Gilles, 2013; Adel et al., 2022; Patel & Upadhyay,
2020), have been employed. However, background noise
often obscures defect-characteristic information, resulting in
non-stationary, non-linear behavior of the data signal. Hence,
such methods are regarded as ineffective in extracting fea-
tures indicating early defects. Several adaptive decomposi-
tion methods have been introduced in recent decades for fea-
ture extraction. As a promising example, empirical mode de-
composition (EMD), proposed by Huang, has been widely
explored and applied to mechanical fault diagnosis (Meng et
al., 2022). EMD decomposes a discrete-time signal into in-
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dividual components called intrinsic mode functions (IMFs).
Each IMF includes an oscillating component with several fre-
quency levels, and the determination of the sifting iteration
number is determined by a sifting stop criterion (SSC) (Fan et
al., 2020). In the decomposition process, EMD uses a special-
ized filter with a bandwidth and center frequency that adjust
dynamically according to the signal’s characteristics.

Nevertheless, HHT presents two major drawbacks derived
from EMD: mode mixing, in which waves of the same fre-
quency are assigned to different intrinsic mode functions
(IMFs), and end effects, which lead to incorrect instantaneous
values at both ends of the signal (Afia, Gougam, Rahmoune,
et al., 2023). A more appropriate decomposition method
needs to be considered. Consequently, wavelet analysis has
returned to the center of attention, in particular the discrete
wavelet transform (DWT), widely used in condition moni-
toring and fault diagnosis to extract time-frequency features
(Syed & Muralidharan, 2022). Unfortunately, DWT requires
the sample size to be precisely 2 (down-sampling) during the
analysis (Wang et al., 2021). An enhanced version of the dis-
crete wavelet transform, known as the Maximal Overlap Dis-
crete Wavelet Transform (MODWT), handles the sampling
reduction process, yet still remains plagued by inadequate
frequency resolution, similar to that of the discrete wavelet
transform [14]. To address such limitations, the Maximal
Overlap Discrete Wavelet Packet Transform (MODWPT) has
replaced both MODWT and DWT, providing improved reso-
lution. MODWPT decomposes the complex signal into single
components of instantaneous amplitude and frequency, ensur-
ing circular shift equivariance to monitor the gear’s working
condition (Afia et al., 2024a). For automated health monitor-
ing, various machine learning techniques are used to provide
more accurate predictions (M. Soualhi et al., 2021; Lourari
et al., 2024; Benaggoune et al., 2022; M. Soualhi et al.,
2019; Gougam, Afia, Aitchikh, et al., 2024; M. Soualhi et al.,
2020; Afia, Gougam, Touzout, et al., 2023; Tahi et al., 2020;
Touzout et al., 2020; A. Soualhi et al., 2012; Gougam, Afia,
Soualhi, et al., 2024; Afia et al., 2024b). The self-organizing
map (SOM) belongs to the artificial neural network (ANN)
category, trained by unsupervised learning. SOM objective
is to generate a low-dimensional - typically two-dimensional
- discretized representation called a map, offering a dimen-
sionality reduction method in the input space of training sam-
ples (Z. Zhou et al., 2020; Zhang et al., 2020). In this con-
text, SOM offers a significant advantage, as it improves data
interpretability. By clustering in grids and reducing dimen-
sionality, data become more accessible, facilitating the iden-
tification of underlying patterns (Fan et al., 2021). In this
paper, MODWPT was used as the signal processing method
for decomposition. Afterwards, PCA was applied to reduce
the dimensions while preserving the stable signal features. A
comparison with EMD-PCA is presented to assess the advan-
tages of the proposed approach. The final step in the proposed

methodology incorporates the use of the self-organizing map
(SOM) for defect clustering. SOM, a neural network-based
algorithm, categorizes faults on the basis of extracted fea-
tures, providing a sophisticated clustering process. This en-
hances defect detection and analysis by offering a nuanced
exploration of relationships and patterns in vibration data.

2. PROPOSED METHODOLOGY

This section aims to present the different steps of the pro-
posed methodology. First, raw data are injected to the Maxi-
mal Overlap Discret Wavelet Packet Transform (MODWPT)
to extract features by filtering the signal and enhance their di-
mensionality. Then, the obtained new data passes through
Principal Component Analysis (PCA) for reducing dimen-
sionality by converting intricate vibration signals into a col-
lection of uncorrelated principal components. After that, a
3D representation of the three principal components (PCs) of
different health state under variable working conditions will
be generated. Finally, a self-organizing map (SOM) is used to
classify the different patterns for faults diagnosis. And over-
all view of the proposed technique is presented in Figure 1.

3. MAXIMAL OVERLAP DISCRET WAVELET PACKET
TRANSFORM

The raw data is initially segmented into 25 groups, each con-
sisting a length of 10024 samples. This segmentation is car-
ried out as a preliminary step for data augmentation, a pro-
cess aimed at enhancing the dataset’s diversity and robustness
by generating additional instances. The MODWPT uses seg-
mented raw data as input for multi-stage filtering, resulting in
a greater number of vibration time-frequency bands.Similar
to Mallat’s algorithm (Afia et al., 2024a), MODWPT relies
on quadrature mirror filters. The filters, denoted as and, rep-
resent a low-pass and a high-pass filter, each with a length of
L=10024 samples (assumed to be even). For this purpose, 16
resulting wavelet coefficients (decomposed signals) are ob-
tained from MODWPT filters, as presented in Equation 1.





L−1∑

l=0

h̃2l =
1

2

L−1−2k∑

l=0

h̃lh̃l+2k = 0, k = 1, 2, ....,
1

2
(L− 2)

g̃l = (−1)l+1
h̃L−l−1, l = 0, 1, ...., L− 1





(1)

MODWPT diverges from Mallat’s method by employing in-
terpolation two-based decimation operation. More precisely,
at each MODWPT level, (2j−1 − 1) zeros are introduced
between two consecutive adjacent coefficients of g̃l and h̃l.
This ensures that the wavelet coefficients generated (WT) for
each wavelet sub-band maintain an equivalent length to that
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Data acquisition Splitting data Decomposition with MODWPT

Principal Components AnalysisSelf Organizing Map

Experimental setup

3D PCs representation

Figure 1. Overall view of the proposed technique.

of the input signal (Afia et al., 2024a). Considering a discrete-
time sequence x(t), t = 0, 1, . . . ..., , N − 1, where N repre-
sents the sequence length, the wavelet coefficients Wj,n,t of
the nth sub-band at level j are computed using the following
equations, with n taking values from 0to2j − 1. The initial
condition is given by W0,0,t = x(t) [14]. For a discrete-
time sequencex(t), t = 0, 1, ........, , N − 1, where N is the
sequence length, the wavelet coefficientsWj,n,t of the nth
sub-band at level j are calculated according to the following
equations in which n = 0, 1, ..., 2j − 1,W0,0, t = x(t), t =
0, 1, ..., N − 1 (Afia et al., 2024a):

Wj,n,t =
L−1∑

l=0

f̃

n,l

Wj−1,[n/2](t−2j−1l) mod N (2)

f̃n,l =

{
g̃l, if n mod 4 = 0 or 3
h̃l, if n mod 4 = 1 or 2

(3)

4. PRINCIPAL COMPONENTS ANALYSIS

This step of the methodology aims to exploit the wavelets
coefficients data for anomaly detection. For this purpose, the
obtained data matrix, comprising 16 wavelet coefficients with
10024 samples(16,10024), is fed into PCA for dimensional-
ity reduction and 3D visualization. In fact, conventional liter-
ature works aims to use extracted features and directly train
Machine Learning (ML) models for classification. This pro-
cedure lacks efficiency with regard to train a ML model, al-
ready considered as a black box, with no verified and reliable
feature. In such a scenario, PCA generates stable Principal
Components from various vibration health state signals. PCA
is proving advantageous in vibration signal analysis for fault

diagnosis due to its multiple benefits (Shi et al., 2020). PCA
excels in dimensionality reduction, transforming complex vi-
bration signals into a set of uncorrelated principal compo-
nents. This simplifies subsequent analysis, improves com-
putational efficiency and provides a concise representation of
essential information. PCA contributes to noise reduction in
vibration signals. By emphasizing the principal components
associated with the greatest variances, PCA actually mitigates
the noise impact, making it particularly useful in environ-
ments where the signal-to-noise ratio is a significant concern.
PCA can be conceptualized as an unsupervised learning prob-
lem. The process of deriving principal components from a
raw dataset can be simplified into six steps:

1. Begin with the entire dataset, initially comprising d+1
dimensions, and disregard the labels, resulting in a new
dataset of d dimensions.

2. Calculate the mean for each dimension across the entire
dataset.

3. Compute the covariance matrix for the complete dataset;
where i is the samples number of signal X. are the mean
of X,Y signals.

Cov(X,Y ) =

∑n
i=1

(
Xi −X

) (
Yi − Y

)

n− 1
(4)

4. Determine the eigenvectors and their corresponding
eigenvalues.

Cov(X,Y )×
∑

V alue
=
∑

V alue
×
∑

V ector
(5)

5. Arrange the eigenvectors in descending order based on
eigenvalues, selecting k eigenvectors with the highest
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eigenvalues to create a d×k dimensional matrix, denoted
as W.

6. Utilize this d × k eigenvector matrix (W) to transform the
samples to obtain the new set of uncorrelated variables.

5. SELF ORGANIZING MAP

A Self-Organizing Map (SOM) is an unsupervised machine
learning algorithm used for clustering and visualization of
high-dimensional data. SOM is employed to identify patterns
and anomalies in complex systems. SOMs consist of a grid of
nodes (neurons) organized in two dimensions [29]. Each neu-
ron is associated with a weight vector that is adjusted during
the learning process. The best matching unit (BMU) weights
and its neighboring neurons are adjusted to move closer to the
input pattern. Neighboring neurons in the SOM grid respond
similarly to similar input patterns, forming clusters (Figure
2).

Figure 2. Self-organizing map architecture.

6. APPLICATION AND RESULTS

The described methodology is applied to experimental data,
which includes various fault states as well as a healthy state.
The experimental setup is designed for multi- faults classifi-
cation. With the proposed methodology, our objective is to
evaluate the effectiveness of the extracted features in separat-
ing the different health states.

6.1. Case Study

To verify the applicability of the proposed methodology, an
open access data of test bench provided and presented in
(M. Soualhi et al., 2023). The test bench chosen in this
study is Laboratoire d’Analyse des Signaux et Processus In-
dustriels (LASPI) benchmark that introduce bearing and gear
fault detection and diagnostic problem(Figure 3). It consists
of a three-phase inverter controlling a 1.5 kW induction mo-
tor driving the gearbox. An electromagnetic brake connected
to the gearbox simulates the motor load.

Figure 3. LASPI Benchmark.

The gearbox consists of three shafts: input, intermediate and
output, with the studied bearings located on the intermediate
shaft. The input shaft, connected directly to the motor, fea-
tures a 29-tooth gear and two bearings with 9 balls each. The
bearings have a 0.3125” diameter, a 1.5157” pitch diameter
and a 0” contact angle.

Measurements are conducted in continuous mode for 10 sec-
onds, with a 25.6 kHz sampling frequency. Vibration signals
are acquired with an accelerometer sensor with a 100 mV/g
sensitivity. Using the specified test rig instrumentation, a to-
tal of five distinct health states were examined, encompass-
ing healthy bearings, inner, outer ring defects and combined
bearing defects. In addition, each condition was tested at two
different speeds: 25 Hz. Furthermore, each speed condition
was tested at two load levels: 0%, 50% and 75%.

6.2. Result and discussion

The used raw data represent different states of bearing and
gears. Each signal is first splitted into 25 segments. Figure 4
displays the different acquired vibration signals. Subsequent

Figure 4. Vibration signals of different health states.

steps involve applying MODWPT to the segments in order
to decompose each signal into its different frequency compo-
nents, thus obtaining a detailed signal representation in the
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time and frequency domains(Figure 5).

Figure 5. MODWPT decomposition.

PCA is applied to the decomposed modes, enabling a more
concise data display by focusing on the dominant features.
This step is crucial for simplifying the data set while retain-
ing the essential information, thus facilitating analysis and
interpretation.

Figure 6 illustrates the sample distribution under variable
working conditions (0%, 50%and75%load) using EMD-
PCA. In the visual representation depicted in Figure 6, a
noticeable level of sample confusion is obvious. This intri-
cacy involves complex patterns and overlapping samples in
the dataset, leading to a significant degree of imprecision in
the extraction process. Recognizing the critical nature of this
issue, our proposed solution is a hybrid MODWPT-PCA tech-
nique.

Figure 7 provides a more accurate sample distribution be-
tween the different health states. In comparison with the
EMD-PCA, the advantages of the proposed approach in the
feature extraction step are affirmed, demonstrating the pro-
posed methodology’s effectiveness. For automated fault diag-
nosis, a self-organizing map (SOM) is used to cluster neigh-
boring neurons that respond similarly to analogous input pat-
terns. The extracted data from MODWPT-PCA which con-
taining 100 samples (25 samples for each 4 health states) and
three columns ( 3 Principal Components) is used as input data
for SOM model. Figure8 shows the sample clustering map
using the proposed methodology for the four health states un-
der three distinct working conditions.

After examining the map clustering (Figure 8), a significant
sample separation is seen across distinct health states under
different working conditions. This validates the reliability of
the suggested diagnostic methodology.

Figure 6. Samples distribution using EMD-PCA.

7. CONCLUSION

In this paper, the authors proposed a hybrid technique to ad-
dress the inherent limitations of hidden fault characteristics
in fault diagnosis. The approach integrates Maximal Overlap
Discrete Wavelet Packet Transform (MODWPT) and Princi-
pal Component Analysis (PCA). MODWPT efficiently de-
composes data signals with uniform frequency bandwidth,
while PCA proves advantageous for feature extraction in vi-
bration signal analysis. PCA captures variance, enabling
the identification of significant defect-related patterns. A
comparison with EMD-PCA is then conducted to assess the
performance of the suggested algorithm. Finally, a self-
organizing map (SOM) is used for machine learning to cluster
the acquired data samples. The experimental results highlight
that the proposed methodology is highly efficient in extract-
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Figure 7. Samples distribution using MODWPT-PCA.

ing fault signatures from raw vibration data, even in a com-
plex working environment.
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ABSTRACT

Remaining useful life (RUL) prediction is a critical task in the
field of condition-based maintenance. It is important to per-
form RUL prediction in a statistical sound way. However, it is
not straightforward to properly combine multiple information
sources about an asset, such as available statistics, measure-
ments, derived features, and prior knowledge in the form of
mathematical models and relations, including their uncertain-
ties. Bayesian networks (BNs) are a means of graphically rep-
resenting all statistical information in a comprehensible way
and allow for correctly combining all information. BNs allow
for inference in all directions, thereby not merely providing a
RUL prediction with explicit uncertainty, but select the most
informative features, diagnose which degradation mechanism
is manifest if multiple mechanisms exist, provide decision
support in the form of optimal condition-based maintenance
points when combined with a cost model. BNs also explic-
itly quantify the model uncertainty arising from the scarcity
of the training data. We illustrate these benefits on two real-
world industrial examples: solenoids and bearings. We also
provide a method to correctly include the effect of changing
operating conditions.

1. INTRODUCTION

Condition-based maintenance (CBM) has gained a strong in-
terest from the industry in recent years, both driven by the
market-driven necessity of ever-increasing efficiency and sus-
tainability of industrial systems, and the opportunity opened
up by the fast growing industrial digitization and sensoriza-
tion. For an extensive recent literature survey, we refer to
(Quatrini, Costantino, Di Gravio, & Patriarca, 2020). The
prediction of remaining useful life (RUL), which is the time at
which an industrial asset will have been degraded to such ex-
tent that it can no longer perform its intended function, plays

Erik Hostens et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

an important role in CBM to schedule maintenance, optimize
operating efficiency, and above all avoid unplanned down-
time.

Given the intrinsic randomness of the drivers of degradation
leading up to the ultimate failure of the asset, a proper statisti-
cal treatment of these phenomena is required (Sankararaman,
2015). Indeed, because of the costly consequence of an unan-
ticipated failure, even when its probability is small, the ex-
pected cost may become significant and requires early action.
Many performance metrics for RUL prediction focus on the
deviation of mean prediction from the ground truth, but the
decision support for maintenance actions should rather focus
on the tail of the prediction distribution.

In this paper, we aim to present a generic and systematic
method using Bayesian networks (BNs) to incorporate all a-
vailable knowledge and data in the RUL prediction. When
many factors contribute to this prediction, it is a challenge
to manage these relations and correctly calculate the over-
all statistics. BNs, although in essence nothing more than
a representation of the statistics, offer a comprehensible ap-
proach. The explicit modeling and quantification of RUL
prediction uncertainty has been extensively studied in litera-
ture, typically focused on a particular industrial asset, such as
(Mishra, Martinsson, Rantatalo, & Goebel, 2018) for batter-
ies and (Prakash, Narasimhan, & Pandey, 2019) for bearings.

A Bayesian network is a graphical representation of a joint
distribution of a set of variables (Pearl, 1988). The joint
distribution is factorized into root probabilities and condi-
tional dependencies, which are graphically represented by a
directed acyclic graph. BNs are ideal for taking an event that
occurred and assessing the probability that any one of sev-
eral possible known causes was the contributing factor. For
example, a BN could represent the probabilistic relationships
between failure mechanisms and their manifestations in the
sensor data. Given sensor data, the network can be used to
compute the probabilities of the presence of various failure
mechanisms. This is analogous to how medical doctors need
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to diagnose a patient showing symptoms of disease, see for
example Fig. 1. In summary, BNs are a means for graph-

Figure 1. An example of a BN in medicine, analogous to
condition-based maintenance. The intuitive (causal) under-
standing of how stochastic variables relate is well captured:
diseases (failure mechanisms) are caused by behavior and
context (settings and operating conditions) and become mani-
fest in observed symptoms (measurements or features derived
thereof). In this particular example, smoking increases the
probability of bronchitis or lung cancer, whereas if a patient
recently visited Asia, there is a higher probability of having
contracted tuberculosis. The symptoms alone cannot distin-
guish tuberculosis from cancer, therefore an auxiliary vari-
able “Tuberculosis or Cancer” is used to make this explicit.

ically representing complex statistical relations that become
otherwise intractable.

The purpose of this paper is to show the advantages of using
BNs for RUL prediction: (i) BNs naturally combine all prior
knowledge, in the form of models and statistics, and data,
and as such maximally exploit the available information; (ii)
distributions of unknown variables can be inferred from ob-
served variables, in all possible directions, depending on the
application (parameter estimation, diagnostics, prognostics,
decision support); (iii) explicit model uncertainty, which can
be used to assess the (in)sufficiency of the available training
data; (iv) BNs are easily extended with more variables that
affect RUL and its assessment, such as operating conditions.
We will illustrate how BNs are used on two examples of as-
sets widely used in industry, a solenoid-operated valve (SOV)
and a bearing, on which we conducted accelerated life testing.

This paper is organized as follows. In Section 2, we introduce
the two industrial assets, SOVs and bearings, on which we
validated the BN method for RUL prediction. In Section 3,
we explain the methodology of BNs for RUL prediction and
show how they provide the aforementioned advantages. In
particular, we explain (i) how the model is built, trained and
used, (ii) how a cost model can be integrated in the BN to
provide decision support for maintenance, (iii) how model
uncertainty is taken into account in the RUL prediction, and

(iv) how the BN is adjusted to incorporate operating condi-
tions. In Section 4, we illustrate the methodology by the ap-
plication on the two industrial assets in four case studies, cor-
responding to the topics (i)-(iv). Finally, we formulate some
conclusions and future directions of research in Section 5.

2. THE APPLICATION CASES

2.1. Solenoid-operated valves

We have conducted our research on a historic dataset of ac-
celerated life tests (ALT) on a set of 3/2-way normally closed
alternating current powered solenoid operated valves (SOV).
The SOVs were subjected to on-off switch cycles until failure
or end-of-life (EOL), defined as the moment that the sole-
noid’s magnetic force is insufficient to overcome the friction
and move the plunger. This moment is observed both in the
current signal, as the solenoid then behaves as a fixed nonlin-
ear inductance, and in the thermal mass flow detecting leak-
age measured at the outlet ports and blow-off holes of the
valves. The experimental dataset has been used before in
(Tod et al., 2019; Mazaev, Ompusunggu, Tod, Crevecoeur,
& Van Hoecke, 2020), where full details can be found.

In previous work, we have defined a number of features on
the current signal and quantitatively assessed their feature
performance for health monitoring quantitatively. For a de-
tailed description of these features, we refer to (Ompusunggu
& Hostens, 2021, 2023). For our purposes, it suffices to know
that some features can be extracted from the current signal
that contain information on the state of health of the SOV.
Without loss of generality, we do not distinguish between
direct measurement or derived features, we call them both
measurements. Fig. 2 shows an important measurement time-
to-hit, defined as the time between start of induced current
in the solenoid at the beginning of the cycle and the plunger
hitting the end of the shaft stopping its movement. In the in-
duced increasing current signal, this stopping of the plunger
is seen as a small dip in the first period. The time-to-hit in-
creases when the SOV degrades, as it is related to the friction
between plunger and shaft and therefore indicative of health.
Fig. 3 shows the evolution of time-to-hit for 10 SOVs as a
function of the number of past on-off cycles, together with
the corresponding EOLs, except for two solenoids that did
not fail before the end of the ALT. Note the strong increase of
time-to-hit approaching the EOL.

2.2. Bearings

The SOVs were all tested under the same operating condi-
tions. In order to illustrate the BN methodology for RUL pre-
diction under varying operating conditions, we reused data-
sets of ALTs that we have conducted on bearings (Geurts,
Eryilmaz, & Ooijevaar, 2023). These were generated using
the Flanders Make Smart Maintenance living lab, an open test
and development platform that aims to support the adoption
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Figure 2. Definition of time-to-hit measurement in the SOV’s
alternating current signal.

Figure 3. Evolution of time-to-hit for 10 SOVs. Two
solenoids did not reach their EOL during the ALT.

of condition monitoring technologies in industry (Ooijevaar,
Di, et al., 2019). Details of the setup and the tests can be
found in the given references, we restrict ourselves here to
the information required for a self-contained comprehension
of this paper.

Before the start of each ALT, a small initial indentation was
created in the bearing inner race in a repeatable manner. This
serves as a local stress riser emulating a local plastic defor-
mation caused by, for instance, a contamination particle. The
EOL of a bearing is defined as the moment where the mea-
sured vibrations exceed a peak-to-peak acceleration of about
200 m/s2. One set of bearings was subjected to stationary op-
erating conditions, being a radial load of 9 kN and a rotary
speed of 2000 rpm, another set of bearings to the same radial
load but a varying speed going from 1000 to 2000 rpm in a
cyclic saw-tooth pattern with a period of about 10 minutes, as
shown in Fig. 4. Note how the acceleration depends on the
speed, and how it increases exponentially with time near the
EOL, similarly as the time-to-hit for the SOVs.

3. METHODOLOGY

3.1. Building the BN

The BN defines the joint distribution of all considered random
variables Xi as a product of the individual density functions,
conditional on their parent variables pa(i), i.e. the variables

Figure 4. Speed and peak-to-peak acceleration of a bearing
subjected to varying rotary speed.

that point to variable Xi in the graph representation:

p(X) =
∏

i

p
(
Xi|Xpa(i)

)
. (1)

We show how BNs naturally combine all available informa-
tion for RUL prediction. The information we consider com-
prises:

• lifetime statistics,
• a degradation model,
• measurements revealing the underlying level of degrada-

tion.

A lot of research has been spent to each of these elements
of information, either generic or specific to the considered
asset. It is the sole purpose of this paper to show how these
are combined, so we make a few simple assumptions, that
sufficiently fit our example.

• In the following, we will refer to time not in a literal
sense, but rather expressed in a unit that naturally relates
to the usage of an asset. For solenoids, it is the number
of on-off cycles; for bearings, it is the number of rota-
tions. Similarly, lifetime and RUL are expressed in the
same unit.

• For lifetime statistics, we assume a Weibull distribution,
that corresponds to a failure rate that is proportional to a
power of time (Jiang & Murthy, 2011). On top of that,
in cases where the asset has not yet failed, we know that
lifetime is greater than the current time.

• As a degradation model, we assume a hidden dimension-
less degradation state, where the rate of degradation is
proportional to the level of degradation itself. This sim-
ple first order dynamics boils down to an exponentially
increasing degradation, or equivalently an exponentially
decreasing health, which intuitively corresponds to the
well-known P-F curve (Nowlan & Heap, 1978). The
relation between health and measurements is a function
that we will preferably describe with only a few param-
eters so as to keep complexity low, but the method al-
lows any function fitting algorithm, including neural net-
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works. Here we will adopt simple linear relations with
normally distributed random noise, motivated by the ex-
ponential decay of health and the measurement evolution
plots shown in Figs. 3-4.

These relations are captured in the generic BN structure of
Fig. 5. Some of the variables are shown in rectangles, to in-

Figure 5. The generic BN structure for RUL prediction: time
is given, and is a lower bound for the lifetime. Their dif-
ference is the RUL, and also defines the hidden health state.
Measurements M1, . . . ,Mn are function of health.

dicate that they are deterministic, either always observed or a
deterministic function of their parent variables. This simple
model is captured in the following explicit relations:

L ∼Weibull (k, λ) ,

L > T,

RUL = L− T,

H = 1− exp

(
T − L
D

)
,

Mi ∼ N
(
Mi0(1−H) +Mi1H,σ

2
i

)
,

(2)

where L denotes the lifetime, T time, and H health. The lat-
ter starts very close to 1 (at T = 0) and ends on 0 (at EOL, or
T = L). This BN model leverages on expert knowledge cap-
tured in simple relations between the variables and is there-
fore capable of describing those relations using only a few
parameters, as opposed to using e.g. neural network models
that easily have hundreds of free parameters. The free param-
eters are in this case: the Weibull distribution shape k and
scale λ, the degradation time D, which approximately corre-
sponds to the time between onset of degradation and end-of-
life, and for each measurement Mi the spread σi and the lin-
ear coefficients Mi0,Mi1, which are the mean measurement
values at start and at EOL, respectively. One could wonder
why health H is made a deterministic variable, and not a ran-
dom variable. We motivate this by the fact that by defining
lifetime L and the measurements Mi as random variables, all
real stochasticity is already captured. Indeed, as H is never
observed directly, it can be considered merely as an auxiliary
variable linking the Mi with L and T . Its actual value is of
no importance, unless it would have an impact on the (ob-
served) performance, but here we only consider the EOL and
the prediction thereof.

3.2. Training and prediction

The purpose of training the BN model is to fit the parame-
ter values to the data from the ALTs. We can then use this
model to predict RUL for new data of another asset. To this
end, we have used PyMC, a probabilistic programming li-
brary for Python that allows users to build Bayesian models
and fit them using Markov chain Monte Carlo (MCMC) meth-
ods (Patil, Huard, & Fonnesbeck, 2010). Essential to PyMC
is that there is no distinction between parameters and vari-
ables, there are only (random) variables, including the param-
eters. This enables Bayesian hierarchical modeling, a type of
Bayesian modeling where information is available on differ-
ent levels (Allenby & Rossi, 2006). In our case, we assume a
single set of parameters k, λ, Mi0, Mi1, D, σi for the entire
population, but we have a different L for each asset, and H ,
RUL, Mi are different for each asset and each time T .

MCMC is used for both training and prediction, they only
differ in which variables are observed and which not. This is
graphically explained in Fig. 6, showing all variables includ-
ing the parameters (but only one measurement, to not over-
load the picture), and marking their being observed as gray
shading. In training, the parameters are unknown and are fit-

Figure 6. The BNs for training (left) and prediction (right).
Gray shading represents known/observed variables, whereas
white represents unknown/unobserved variables.

ted to the data on lifetime and measurements. In prediction,
the parameters are known, but the unknown lifetime distri-
bution is to be inferred from the lifetime statistics and the
measurements.

The MCMC algorithm updates the distributions of all unob-
served random variables given their prior distributions and
the data, through the likelihood of the data. The prior distri-
butions, also called prior beliefs, quantify the uncertainty in
the prior knowledge before data is acquired. It is based on
previous data campaigns or physical and statistical knowl-
edge of the asset’s behavior and degradation. For instance,
the shape parameter k is related to the trend of the failure
rate, typically going up (k > 1) as the asset ages. If little is
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known beforehand, prior beliefs should be chosen sufficiently
wide, so-called weakly informed priors. The updating of prior
beliefs into posterior distributions when new data comes in
is the central paradigm of Bayesian statistics. Therefore, it
is important to note that the BN for prediction in Fig. 6 is
an oversimplification: the parameters do not become exactly
known by the training, but if their posterior distributions be-
come sufficiently narrow, their low remaining uncertainties
can be ignored in their contribution to the total uncertainty of
the RUL prediction.

Another important nuance to make about Fig. 6 is the fact
that, as we saw in Section 2, some of the assets’ EOL is never
observed, simply because their ALT is stopped early. So not
all L-nodes in the left graph (training) of Fig. 6 should be
gray shaded (observed). Such censoring is quite common in
statistical analysis of survival data in medicine (Kalbfleisch
& Prentice, 2011). Because some of the lifetimes L are not
observed, their values cannot be directly used to infer the
Weibull parameters. This is exemplary for why the BN frame-
work is powerful: although L is not observed, the uncer-
tainty on its unknown value can nonetheless be significantly
reduced through its relation with the measurements and the
time during which it did not fail. Therefore this information
still contributes to the fitting of the Weibull parameters. The
BN truly leverages on all the available information combined.

3.3. Decision support for maintenance scheduling

We explain how the BN for prediction, shown in Fig. 6, is ad-
justed to provide decision support for maintenance schedul-
ing. We only consider asset replacement as the maintenance
action, but an analogous reasoning can be followed for other
maintenance actions. The BN prediction yields a probability
distribution of RUL. This is more useful than a single RUL
expected value, because it allows to better balance the risk of
unanticipated failure with the economic loss of early replace-
ment. The BN allows the integration of a cost model and eval-
uate the prediction of cost given the replacement scheduling
strategy. We illustrate this with a simple cost model. We as-
sume the asset’s cost CA in the normal situation. This is for
instance the sum of the costs of purchase and installation, the
latter coinciding with the scheduled replacement of its used
predecessor. If the asset fails before its scheduled replace-
ment, there will be an extra cost of failure CF . This cost is
very dependent on the application: it can be very high for high
impact failures, such as significant production loss or damage
to other equipment, but it can also be low or even zero. In that
case, the asset should only be replaced after EOL.

Another parameter we assume in this example is the predic-
tion horizon TPH, defined as the time required to schedule the
replacement up front, for instance because it takes some time
to send a maintenance engineer to the asset’s remote location.
If it is decided at time T to replace the asset, the actual re-

placement can take place at time T +∆T , where ∆T ≥ TPH.
This is schematically depicted in Fig. 7.

Figure 7. Replacement is scheduled at time T , and takes place
at time T + ∆T , which is T + TPH at the earliest. T + ∆T
should precede T +RUL to avoid the cost of failure.

Let T +∆T be the asset’s replacement time in the future, de-
cided at the scheduling time T hence depending on the RUL
prediction at time T . The resulting total cost depends on the
actual RUL:

total cost = CA if RUL ≥ ∆T , or

= CA + CF if RUL < ∆T.
(3)

To balance the extra cost CF with the cost of early replace-
ment, where more assets are used in the long run, we have to
evaluate the cost per used time unit CT :

CT =
CA

T +∆T
if RUL ≥ ∆T , or

=
CA + CF

T +RUL
if RUL < ∆T.

(4)

Note that CT is a deterministic function of other variables.
We include it in the BN for prediction, shown in Fig. 8. Along-
side the RUL prediction at scheduling time T , we can use this
model to calculate the distribution of the cost CT (∆T ) corre-
sponding to the replacement time T+∆T , for multiple values
of ∆T . Replacement should then be scheduled as soon as the

Figure 8. The BN for prediction, including the simple cost
model.

expected value of this cost E[CT (∆T )] reaches a minimum
for ∆T = TPH, or if:

E[CT (∆T )] > E[CT (TPH)], ∀∆T : ∆T > TPH. (5)
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3.4. Model uncertainty

As we mentioned in Section 3.2, the training of the BN will
result in a posterior distribution of all non-observed random
variables, including the model parameters. If these parameter
posteriors are sufficiently narrow, we may consider the re-
maining uncertainty insignificant and select the means of the
posteriors as fixed known parameters for the prediction BN,
as was shown in Fig. 6. However, if training data is scarce, the
remaining posterior uncertainty cannot be ignored and should
be included in the prediction. This is achieved by making the
parameter nodes in the prediction BN stochastic and unob-
served, and using the posterior distribution after training as
its prior. It is important to note that, in many cases, the pa-
rameter distributions will be mutually dependent after train-
ing. Therefore, one should use a single joint prior distribution
for the parameters in the prediction BN.

MCMC does not output explicit posterior distributions, but
a sample thereof, due to the way it works. To include it in
the prediction, there are two options: either combine training
and prediction in one MCMC run, or approximate the pos-
terior parameter distribution. The former option is the most
correct, since in this way we are combining all information at
once, both of the past ALTs and the running one. However,
this requires a lot of calculations and all data need to be kept,
so this approach may become cumbersome. The latter op-
tion is most practical, since there is only one run of MCMC
involving the training data, after which they are not longer
needed. For approximating the posterior joint distribution of
the parameters, in most cases a multivariate normal distribu-
tion is suited, motivated by the fact that, if the model is well
designed, it is expected that the parameter estimates will con-
verge. To this end, PyMC also supports automatic differentia-
tion variational inference (ADVI) as an alternative to MCMC
followed by the approximation of the posterior distribution
from the sample. ADVI turns this around by up front assum-
ing a parameterized approximation of the posterior distribu-
tion and reformulating its calculation as an optimization prob-
lem (Kucukelbir, Tran, Ranganath, Gelman, & Blei, 2017).

3.5. Varying operating conditions

In our original BN model of Section 3.1, we assumed the
asset’s degradation as the sole driver of further degradation.
This works fine if other influences do not have a significant
contribution to degradation. However, in most cases, the op-
erating conditions (OC) do have a strong impact on degrada-
tion, and should be taken into account. Secondly, the OC also
influence the measurements. This is clearly seen in Fig. 4 for
the bearings. This influence further complicates the analysis,
as the measurements serve as indicators for degradation, so
we need to distinguish whether changes in the measurement
are resulting either by changed OC, or by degrading health,
or both.

Inquiring the effect of OC on degradation is particularly dif-
ficult, since the OC consist of multiple variables that often
have a combined effect where one OC variable strengthens or
weakens the effect of another. In such cases, on the one hand
a detailed understanding is needed of how the asset’s health
evolves under given OC, in the form of engineering laws or
physical models. On the other hand, a sufficient amount of
ALT data is required to validate and quantify these models.
However, ALT data are typically scarcely available because
they are costly to generate. Again, maximally leveraging on
all available knowledge and data is key. We show how the
original BN for RUL prediction is adjusted such as to account
for OC.

Let us first address the simpler case of stationary operating
conditions. When the OC are stationary over the entire life-
time, even when they are different for different assets, train-
ing and using a BN for prediction of RUL is not a lot more
complicated than before. Given sufficient ALT data for each
OC, one can simply retrain another BN for each different OC.
Of course it is more useful to leverage on knowledge of how
OC affect lifetime, ideally in the form of a relation with the
OC adding few free parameters, such as the empirical ba-
sic rating life model for bearings of (ISO281, 2007). Such
knowledge is integrated in the BN by adding a relation from
the OC to the lifetime and the measurements. The generic
BN for RUL prediction, previously shown in Fig. 5, is then
updated to the BN structure of Fig. 9.

Figure 9. The generic BN structure for RUL prediction under
stationary operating conditions.

For varying operating conditions, the relation between OC
and lifetime is more complicated. One could interpret the re-
lation between OC and lifetime in Fig. 9 as the aggregated
effect of OC on lifetime, but as such the combined effect of
the OC with health is overlooked. For instance, a higher load
might have a larger damaging effect if the asset was already
in a degraded state. Therefore, the OC effect should be ag-
gregated in such a way that it takes that aspect into account,
which it does not in the BN structure of Fig. 9.
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We resolve this issue by assuming nominal parameters for a
single nominal OC defined up front. We relate all other OC
to this nominal OC, and express lifetime and RUL as their
equivalent lifetime and RUL under the nominal OC. To deal
with varying OC, we locally compress and stretch time into
an equivalent time under the nominal OC. This idea is shown
in the BN structure of Fig. 10. The variables Health, Lifetime
and RUL are all expressed in the Equivalent Time correspond-
ing to nominal OC. For the nominal OC, Equivalent Time and
Time progress at the same rate. Note that Equivalent Time is
defined as a stochastic variable (ellipse), because the relation
between OC, Time and Equivalent Time might be uncertain.
This BN structure also includes the immediate effect of OC
on the measurements. The RUL that this model predicts is
expressed as the equivalent RUL under nominal OC. Deci-
sion support should take the expected future OC into account
for predicting the actual RUL. Note that such BN can also be
used to recommend to change the future OC, if the applica-
tion allows it, in order to delay potential failure.

Figure 10. The generic BN structure for RUL prediction un-
der varying operating conditions.

4. APPLICATION ON CASE STUDIES

In this section, we illustrate the methodology by the applica-
tion on either SOVs or bearings in four case studies, corre-
sponding to the topics explained in the previous section: (i)
training and prediction, (ii) decision support for maintenance,
(iii) model uncertainty, and (iv) varying operating conditions.

4.1. BNs for RUL prediction on SOV

We have trained the BN model of Fig. 6 on the ALT data of
the 10 SOVs, whose time-to-hit measurement evolution was
shown in Fig. 3, with 2 ALTs censored. For simplicity, we
have only incorporated the time-to-hit measurement. Includ-
ing other measurements would only reduce the prediction un-
certainty, although not significantly since time-to-hit is the
most informative on the hidden health. The BN automati-
cally weighs the measurement contributions according to the
amount of information they provide on the health. As such,

it is an implicit form of feature extraction. We then used the
fitted model parameters to predict the RUL of an SOV not
used in the training, over its entire lifetime. The prediction
yields a distribution of RUL, the evolution of which is shown
in Fig. 11, compared to the RUL ground truth. Note the sud-

Figure 11. RUL prediction for one SOV (probability density
in grayscale) compared to the ground truth RUL (white line).

den decrease of uncertainty around 1.5 million cycles. This
decrease is due to the fact that at that point, the time-to-hit
measurement starts increasing, thus providing crucial infor-
mation on the imminent EOL. Before, the measurement re-
veals little on the SOV’s health, so the prediction is mainly
based on the Weibull statistics, truncated at the current cycle.
This transition is naturally taken care of by the BN because it
combines all information sources available and automatically
weighs their uncertainties in the statistical posterior, as op-
posed to an explicit switching such as the one used in (Geurts
et al., 2023).

The RUL prediction shown in Fig. 11 is based on the last
measured time-to-hit at the present cycle. However, the time-
to-hit measurement itself displays stochastic fluctuations, as
can be clearly seen in Fig. 3. Therefore, it makes sense to
include the full history of the measurement in the RUL pre-
diction, so that this inherent stochasticity is filtered. Yet it
is important to note that the fluctuations are not white noise,
rather colored noise, which means the measurements are cor-
related over time. Mi should then no longer be defined as
separate univariate normal random variables like in Eq. 2,
but as a single multivariate normal random vector with the
same mean and the measurement autocovariance as covari-
ance. The resulting prediction (5%− 95% quantiles near the
EOL) is shown in Fig. 12, for both the last measurement only
and the full history prediction, illustrating the advantage of
the latter: it is more consistent and accurate compared to the
true RUL.

4.2. BNs for maintenance decision support on SOV

For the SOV example of Fig. 11, we show a detail of the RUL
prediction approaching EOL and the corresponding expected
relative cost E[CT (TPH)]/CA in Fig. 13, for arbitrary cost
model parameters CF /CA = 10 and TPH = 2e4. Note that
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Figure 12. 5%−95% quantiles for RUL predictions from only
the last measurement or from the full measurement history.

Figure 13. Top: RUL prediction. The dashed horizontal line
marks the prediction horizon TPH. Bottom: expected relative
cost of replacement time T + TPH at scheduling time T . The
dashed vertical line marks the optimal scheduling time T ∗.

at the optimal scheduling time T ∗, the RUL prediction distri-
bution still has the most part above the TPH line. The optimal
maintenance scheduling strategy therefore involves probing
the tail of the RUL prediction distribution, which emphasizes
the importance of correctly calculating this distribution.

4.3. Model uncertainty in BNs on SOV

We have redone the prediction of the SOV of Fig. 11, now
using 40 SOVs in the training set instead of only 10. Both
are compared in Fig. 14 through their 5% − 95% quantiles.
In the RUL predictions, we have now included the posterior
parameter uncertainty after training. Clearly, more training
data results in a more accurate RUL prediction. It can be
seen that this effect is most manifest in the healthy phase of
the SOV, where the RUL prediction is mainly based on the
EOL statistics and not on the measurement. This is to be
expected from a statistical perspective. However, approach-
ing the EOL, where the prediction accuracy is more important
for optimal maintenance scheduling, both predictions become
very close. This illustrates the power of BNs for RUL predic-
tion, as in this case it suffices to have a training set of only 10
ALTs, two of which are censored, and a simple degradation
and measurement model.

Figure 14. 5%−95% quantiles for RUL predictions including
parameter uncertainty, where the BN parameters are trained
either on 10, or on 40 SOVs.

4.4. BNs for varying OC on bearings

The bearing ALT dataset introduced in Section 2.2 is insuf-
ficiently rich to validate the proposed BN for RUL predic-
tion under varying OC of Fig. 10. Indeed, because of the
very uniform saw-tooth pattern of speed (Fig. 4) in the vary-
ing speed ALT, its long-term influence on degradation effec-
tively corresponds to a stationary OC, albeit different from
the stationary speed ALT. As a consequence, we have only
two different long-term aggregated OC. We therefore use a
combination of the BN structures of Figs. 9-10 for stationary
OC and varying OC, respectively: we assume the long-term
effect of OC on lifetime as equivalent to stationary, but the
immediate effect of OC on the P2P measurement as varying.
The resulting BN for training, now including the parameters,
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is shown in Fig. 15. There are two extra variables SET and

Figure 15. The BN for training of bearing RUL prediction,
either under stationary or under varying RPM.

RPM, that relate to the aggregated effect of speed on lifetime
and to the immediate effect of speed on the P2P acceleration
measurement, respectively. The binary variable SET defines
to which dataset the bearing belongs, either subjected to sta-
tionary speed ALT or to varying speed ALT. This variable es-
sentially selects either one of two values for the parametersD
and λ. The shape parameter k was fixed up front to a value of
1.3 building on historical knowledge on bearing fatigue life-
time statistics (NSWC, 2011). Extending Eq. 2 defining the
relations between all variables, we define the distribution of
the P2P measurement as:

P2Pnom ∼ N
(
P2P0(1−H) + P2P1H,σ

2
P2P

)
, (6)

P2P = c P2Pnom RPMα. (7)

The expression in Eq. 7 with parameters c and α was estab-
lished through a qualitative inspection of P2P data, both in
healthy and degrading state as shown in Fig. 4, by comparing
P2P values to the corresponding nominal P2P values around
the nearest time where the speed is 2000 rpm. All 7 parame-
ters of the BN model are simultaneously fitted to the training
data.

We have trained this BN model on a set of 48 ALT, of which 7
were subjected to the varying speed profile. Bearings to vali-
date the resulting RUL prediction were left out of the training
data. As a benchmark, we also trained and validated the orig-
inal model of Fig. 6 on the same data. An example of the re-
sulting RUL prediction for both models on the same varying
speed bearing is shown in Fig. 16. The RUL prediction with
the original model is clearly disturbed by the varying condi-
tions, emphasizing the need for including them. The same
problem was manifest in the work of (Geurts et al., 2023).

A single asset’s prediction may illustrate the added value, yet
a proper comparison should be built on adequate RUL pre-
diction performance metrics. A thorough overview and ana-

Figure 16. The RUL prediction for a varying speed bearing,
both for the benchmark model (top) and the new model that
includes the effect of varying OC (bottom), compared to the
true RUL (white line).

lysis of metrics is given in (Saxena, Celaya, Saha, Saha, &
Goebel, 2010). To keep things simple, we have compared
the benchmark model and the varying OC model by the log-
likelihood evaluated at various relative locations in the life-
time and averaged over the varying speed bearings, as shown
in Fig. 17. The log-likelihood is a straightforward general-

Figure 17. The average log-likelihood for the benchmark
model and the new model, as function of relative time within
the ALT.

ization of mean squared error (MSE) that also covers the un-
certainty of the prediction. The evaluation at multiple relative
locations in the lifetime, similar to the alpha-lambda perfor-
mance metric, addresses the application-specific prediction
horizon as explained in Section 3.3.
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5. CONCLUSION

We have shown a method for building, training and using
Bayesian networks for RUL prediction. Next to the advantage
of its comprehensibility, even when many factors contribute
to the prediction, we have focused on the extension of RUL
prediction with decision support for maintenance and the ex-
plicit inclusion of model uncertainty arising from the scarcity
of training data. We have shown how the BN is adjusted to
allow for RUL prediction under varying operating conditions.

This work is part of a larger study on the application of BNs
for CBM and for maintaining quality in industry. We see the
following open challenges and future research topics:

• Our current ALT datasets on SOVs and bearings do not
allow for a proper validation of the generic method of
Section 3.5. To this end, we are currently conducting a
new ALT data campaign on SOVs under varying opera-
tion conditions.

• The inclusion of model uncertainty and its propagation
to the RUL prediction is still lacking a quantified deci-
sion support for further data campaigns and design-of-
experiments (DoE). We will investigate a practical me-
thod to assess the need for more training data and DoE,
for instance through a criterion on the trend of a suit-
able performance metric such as the average leave-one-
out log-probability.

• Investigate more complex degradation mechanisms, aris-
ing from multiple root causes that have different degra-
dation dynamics.

• Instead of focusing on RUL which assumes the asset’s
quality as a binary variable and the EOL as a specific
moment in time, we will shift towards the prognostics
of a more nuanced application-oriented quality condition
and corresponding decision support, such as condition-
aware control.
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ABSTRACT

Floating Offshore Wind Turbines (FOWT) represent a promis-
ing solution to renewable energy challenges, yet effective main-
tenance remains critical for cost management. Traditional
machine learning (ML) approaches for detecting FOWT dam-
age often rely on extensive real-world data, which can be im-
practical and economically unfeasible. Alternatively, stochas-
tic filtering-based time-domain approaches leverage physical
understanding through dynamic models, typically finite ele-
ment models. However, these methods are hindered by ex-
cessive simulation calls within the recursive filtering frame-
works. This study proposes a novel filtering-based approach
that replaces the computationally intensive process model with
a Deep Neural Network (DNN) surrogate, addressing the afore-
mentioned limitations. The proposed approach utilizes syn-
thetic data generated from the high-fidelity calibrated Open-
FAST model of FOWT dynamics to train a DNN toward learn-
ing the dynamic evolution of the FOWT conditioned on the
current health state. By offering a computationally efficient
representation of system dynamics conditioned on health state,
this approach allows for real-time damage detection and inter-
pretable information on damage severity within a stochastic
inverse estimation framework, specifically employing Parti-
cle Filtering in this study. This approach contrasts with tradi-
tional black-box ML-based methods, which typically struggle
to provide interpretable information on damage characteris-
tics. Extensive numerical investigations on damaged FOWT
mooring lines demonstrate this approach’s practical applica-

Rohit Kumar et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

bility and superiority over traditional ML-based methods. Even-
tually, integrating explainable ML models within the filtering
framework induces promptness in detection without sacrific-
ing transparency.

1. INTRODUCTION

Research on Floating Offshore Wind Turbines (FOWTs) has
advanced significantly, reflecting their growing adoption across
industries. A key challenge is maintaining safety while mini-
mizing maintenance costs, a critical issue that persists. Struc-
tural health monitoring (SHM), particularly data-driven meth-
ods, is valued for its noise robustness and cost-effectiveness,
as demonstrated by (Azimi, Eslamlou, & Pekcan, 2020).

The complex inverse problems in SHM mandate linking mea-
surements to causes or damages. Machine Learning (ML) ap-
proaches have showcased excellent reliability and predictabil-
ity across applications, yet dependence on data alone raises
concerns, especially in mooring line damage detection (Avci,
Abdeljaber, & Kiranyaz, 2022). In ML-based system iden-
tification for FOWTs, strategies involve extracting damage-
sensitive features (DSFs) using supervised or unsupervised
learning. While unsupervised methods, such as novelty de-
tection, are effective in damage detection, they face chal-
lenges in localization and quantification (Wang, Tian, Peng,
& Luo, 2018). Supervised techniques, on the other hand, re-
quire large datasets and can function as classifiers or regres-
sors, employing algorithms such as random forest, support
vector machine (SVM), and multi-layer perceptron (MLP)
(Regan, Beale, & Inalpolat, 2017).

In FOWTs, the selection of appropriate DSFs for mooring
line damage detection holds significant importance. Super-
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vised algorithms depend on the precise representation of dam-
age scenarios through these selected DSFs. However, it’s im-
portant to acknowledge that the resulting model is essentially
a black box, lacking interpretability to extract additional in-
formation not included during training. Consequently, ML-
based approaches relying solely on data may not comprehen-
sively address mooring line damage detection, underscoring
the necessity for a nuanced monitoring strategy (Malekloo,
Ozer, AlHamaydeh, & Girolami, 2022).

1.1. Condition Monitoring of Mooring Lines

Mooring lines are vital components in ensuring the integrity
of FOWTs, influencing the optimization of support structures
(Altuzarra et al., 2022). Given their significance, monitoring
the health of mooring lines is essential due to potential sta-
bility implications (Aqdam, Ettefagh, & Hassannejad, 2018).
While deep learning (DL) algorithms show promise in de-
tecting damages to wind systems (Choe, Kim, & Kim, 2021),
it remains imperative to understand the behavior of coupled
systems under extreme conditions (Li, Le, Ding, Zhang, &
Zhang, 2019), necessitating the incorporation of physics-based
or physics-guided support models. Despite the prevalence of
model-based and fuzzy logic approaches for mooring damage
diagnosis (Jamalkia, Ettefagh, & Mojtahedi, 2016) in current
literature, research on ML and DL in this domain is limited.
Vibration measurements facilitate efficient identification of
structural damage, aiding in damage diagnosis across various
domains, including FOWTs (Farrar, Doebling, & Nix, 2001).
Recent studies (Gorostidi, Pardo, & Nava, 2023) highlight the
advantages of ML over model-based methods in managing
large data and promptness in detection.

Traditional ML models pose significant limitations for real-
life SHM due to their lack of interpretability. These black-
box models, while effective at processing large amounts of
data, often fail to provide meaningful insights into the un-
derlying dynamics of the monitored system. Alternatively,
stochastic filtering-based approaches, although capable of in-
corporating physical understanding through complex mod-
els, suffer from the computational burden of these models,
making them impractical for real-time applications. How-
ever, a compromise between interpretability and efficiency
can be achieved by leveraging ML techniques to create a sur-
rogate of the conceptual model. This approach, as proposed
in this study, involves replacing the computationally intensive
process model with a Deep Neural Networks (DNN) surro-
gate. By training the DNN with real (/synthetic) data sampled
(/generated) from reality (/a high-fidelity dynamic model of
the system), the proposed method offers both computational
efficiency and interpretability. This surrogate model can then
be seamlessly integrated into a stochastic filtering framework,
providing real-time damage detection with required prompt-
ness while maintaining transparency and accuracy. Thus, the
study bridges the gap between conventional ML-based ap-

proaches and complex stochastic filtering methods, offering
a promising solution for effective SHM in practical applica-
tions.

2. METHODOLOGY

A process model plays a major role in filtering-based meth-
ods and is often built with a Finite Element (FE) modeling
approach. These models, derived from physical systems, sim-
ulate and predict the system behavior under diverse opera-
tional conditions. Despite their widespread use in evaluating
civil structure conditions and detecting damage, FE models
face certain challenges, such as numerical convergence is-
sues, memory demands, and complexities in parallelization.
Surrogate models such as DNNs are known for their ability
to identify complex patterns swiftly and accurately, particu-
larly in one-step-ahead time series forecasting within a data-
based time-series modeling framework, and hence are one of
the best choices for replacing FE models.

DNN models are faster, more adaptable, and require com-
paratively less simulation effort than traditional FE models.
DNNs also offer other computational advantages like scala-
bility, capturing nonlinear data relationships efficiently, thereby
enabling quick and accurate predictions without the need for
iterative solutions. This streamlined approach accelerates de-
velopment and reduces costs associated with model building
and simulation.

Typical health assessment problems, addressed with conven-
tional DNN models, require extensive datasets correlating re-
sponse inputs with damage locations and severity labels to
achieve comprehensive accuracy. To mitigate this issue, in-
stead of correlating the response to its corresponding damage
labels, the underlying dynamics are learned within a DNN
framework utilizing a response time series of consecutive time
steps as input-output pairs. The input is additionally aug-
mented with the health states of the system to render the pre-
diction conditional on the health state. Once trained, the un-
observed health state can therefore be observed with the DNN
network in terms of response. Filter-based estimation meth-
ods further leverage this mapping to inversely estimate the
health state inferred from the measured response time his-
tory. However, before that, exploring the sensitivity of the
prepared DNN models compared to traditional FEM-based
models is essential to justifying their adoption over costlier
FEM-based predictors.

The subsequent discussion focuses on a DNN model trained
using simulations from an FEM-based model, synthesized
from software like OpenFAST designed for FOWTs. Actual
sampled responses will replace simulated ones for real-world
implementation.
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Figure 1. OC4 Semisubmersible floater along with catenary
mooring system for NREL’s 5MW wind turbine.

2.1. OpenFAST Model

Ensuring the DNN model undergoes thorough training ne-
cessitates a substantial volume of data. However, due to the
limited prevalence and operational scope of FOWTs, obtain-
ing a satisfactory quantity of authentic data is challenging.
Consequently, we address this requirement by generating the
requisite data through high-fidelity software capable of multi-
physics simulation. In this investigation, we employ an NREL
5 MW Wind turbine model affixed to an OC4 semi-submersible
model, as depicted in Figure 1. This configuration incorpo-
rates a catenary mooring system with three mooring lines fas-
tened at 120◦ angles (Robertson et al., 2014); detailed moor-
ing line specifications are provided in Table 1. The specifica-
tions for the 5 MW reference turbine are outlined in (Jonkman,
Butterfield, Musial, & Scott, 2009). Additionally, data across
varying sea states are simulated, characterized by wide-band
operational scenarios involving a significant wave height (Hs)
of 6 m and a Peak period (Tp) of 10 sec, assuming the turbine
operates under a constant, steady wind speed of 8 m/s while
in full operational mode.

Table 1. Mooring lines details

Diameter (m) Mass density (kgm−1) Axial stiffness (N) Unstretched length (m)

0.0766 113.35 7.5903× 108 835.35

In OpenFAST, various modules perform distinct functions.
For instance, the HydroDyn module adopts a hybrid approach
to handle hydrodynamic loads on the platform, merging diffrac-
tion theory with the Morison equation. The AeroDyn mod-
ule uses blade element momentum (BEM) theory to manage
aerodynamic loads. MoorDyn oversees loads related to moor-
ing lines through the lumped mass method. ElastoDyn ad-
dresses structural and gravitational loads, while the InflowWind
module supplies essential wind output. These modules are in-
terconnected, collaborating to simulate the desired responses.

Table 2. Mooring Line’s Damage (D) and Healthy (H) sce-
narios

Cases Mooring Line’s Damage Scenarios
Line 1 (k1) Line 2 (k2) Line 3 (k3)

Case 1 H H H
Case 2 D H H
Case 3 H D H
Case 4 H H D
Case 5 D D H
Case 6 H D D
Case 7 D H D
Case 8 D D D

The DNN network underwent training to support the particle
filter, capturing six distinct responses: the displacement and
velocities of the floating platform in three directional axes.
Response data was simulated over a duration of 3600 sec-
onds, sampled at a frequency of 40 Hz. Variations in re-
sponse resulting from alterations in the material properties of
the mooring line were documented, leading to the simulation
of different scenarios corresponding to various combinations
of mooring line damage. Specifically, damages to the moor-
ing lines were introduced as reductions in axial stiffness. For
each scenario, 240 samples were simulated, resulting in a to-
tal of 1920 samples across 8 distinct cases as outlined in Table
2. Each case encompasses three discrete levels of damage for
each mooring line, representing reductions of 10%, 15%, and
20% in axial stiffness (k1, k2, and k3) of the mooring mate-
rial.

2.2. Deep Neural Network (DNN)

The DNN model was subsequently developed to learn from
data generated by OpenFAST. To predict the displacements
and the velocities of a floating platform at the next (k + 1th)
sampling time step using the current time step (kth) responses
along with the health states as the input, the DNN utilizes a
technique called back-propagation, wherein the prediction er-
rors are propagated backward through the network, allowing
the model to adjust its internal parameters, to improve future
predictions. The architecture for the designed DNN model is
provided in Table 3.

Table 3. Characteristics of the DNN model

DNN Architecture
Layers Activation Function Nodes

Input Layer 9
Hidden Layer - 1 ReLU 128
Hidden Layer - 2 ReLU 64

Output Layer Linear 6
Hyperparameters

Optimizer Adam
Epochs 1000

Learning Rate 10−6
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Figure 2. Actual and one-time step ahead predicted response
comparison

The DNN architecture comprises an input, an output, and two
hidden layers. The model is trained using 70% of the dataset
allocated as training data. The remaining, 20% of data is
used as a validation set to optimize hyper-parameters (acti-
vation function, learning rate, batch size) using RMSE and
MAE metrics. Subsequently, testing is conducted using the
remaining 10% of data. To ensure the required architecture
for datasets, ReLU (Rectified Linear Unit) activation and lin-
ear activation functions are used in the hidden layers and out-
put layer, respectively. The Adam optimizer, with a learning
rate of 10−6 for 1000 epochs, was used for model optimiza-
tion.

The model is tested on 10% of datasets. The model performed
well in the provided regression task with good Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) val-
ues, as shown in Table 4. Further, a comparison of one-
time step-ahead predictions and actual simulated responses
is shown in Figure 2.

Table 4. Trained DNN model’s accuracy indices for testing
data

RMSE MAE MBE
Surge (m) 0.0014151 7.7249×10−5 −9.0× 10−5

Sway (m) 0.0001885 9.1052×10−6 9.0× 10−5

Heave (m) 0.0007831 2.5640×10−5 −1.77× 10−4

Vx (m/s) 0.0022982 0.0015 −3.245× 10−3

Vy (m/s) 3.4311×10−5 2.8587×10−5 −1.8× 10−5

Vz (m/s 0.0006027 0.0003 9.8× 10−5

The performance of the DNN model, in predicting various re-
sponses, has been evaluated based on the provided accuracy
indices. The RMSE values ranging from 3.4311 × 10−5 to
0.0022982 indicate relatively low prediction errors across dif-
ferent parameters, suggesting the model’s capability to make
accurate one-time step-ahead predictions. Likewise, the MAE
values, ranging from 9.1052 × 10−6 to 0.0015, demonstrate
the model’s ability to predict parameter values with small
deviations from the true values. Despite some biases ob-
served in the Mean Bias Error (MBE) values, their magni-
tudes are relatively small, indicating an unbiased prediction

by the ANN model. Overall, these accuracy indices suggest
that the ANN model performs well in predicting the parame-
ters of interest, making it useful for particle filters.

2.3. DNN-Particle filter

Particle filter, which typically approaches the Sequential Monte
Carlo (SMC) method, is a powerful technique used for state
estimation in nonlinear and non-Gaussian systems. The com-
putational difficulties associated with scenarios where the state-
space model is complex and the direct analytical solutions are
intractable are handled effectively by PF-based algorithms.

The central idea behind a particle filter is that the posterior
distribution (p(xk−1|Rk−1)) of the system state could be rep-
resented using a set of weighted samples, called particles {x(i)k :
i = 1, 2, 3, . . . , N}. These particles evolve according to the
system dynamics and are updated based on their likelihood
against measurements arriving sequentially in time. The filter
approximates the posterior distribution by propagating parti-
cles through the system dynamics and adjusting their weights
based on the likelihood of observed measurements.

The key steps in a particle filter algorithm include predic-
tion, measurement update, and resampling. In the prediction
step, particles are propagated forward in time according to the
system dynamics, incorporating process noise, if present. In
the measurement update step, particles are weighted based on
their consistency with the observed measurements, calculated
using the likelihood function. Upon receiving measurements,
the probability of each sample from the previous time step is
evaluated, and the normalized weight of each sample is deter-
mined using Eq. (1).

ai =
p(Φk|x̃(i)k )

∑N
j=1 p(Φk|x̃(j)k )

(1)

Each sample x̃(i)k : i = 1, 2, 3, . . . , N forms a discrete dis-
tribution with probability mass ai associated with element
i. Resampling is then performed to prevent particle degen-
eracy by replicating particles with higher weights and elim-
inating those with lower weights, redistributing the particle
set to high-likelihood areas. The above process helps en-
sure a diverse representation of the posterior distribution. Re-
sampling the discrete distribution N times creates new sam-
ples, weighted based on their likelihood against the observed
data. Particle filters can handle nonlinear, non-Gaussian sys-
tems without linearization but may suffer in high-dimensional
spaces due to the curse of dimensionality, requiring careful
parameter tuning like the number of particles to balance effi-
ciency and accuracy.

In essence, particle filters offer a flexible and effective frame-
work for state estimation in nonlinear, non-Gaussian systems,
serving as valuable tools in robotics, target tracking, and fi-
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nancial modeling.

2.3.1. Parameter Estimation via PF

Within the PF framework, the adopted damage attributes, posed
as parameters θk, are defined with a set ofNp independent pa-
rameter particles ξ = [ξ1k−1, ξ

2
k−1, · · · , ξ

Np

k−1] (?, ?). These
particles, each representing a possible state of the system,
are used to propagate system uncertainty over time through
a process model. Subsequently, the propagated particles are
evaluated against available measurements using the measure-
ment model to compute their likelihood. This likelihood,
when combined with the prior likelihood of particles, forms
the posterior distribution. Finally, new particle samples are
drawn from this posterior distribution to be utilized in the next
iteration of the process.

The process model for this particle filter demonstrates the
evolution of the parameter vector θk : Rp to be estimated
using a random walk model as follows:

θk+1 = θk + uk (2)

θk signifies the health states, typically material properties,
stiffness, or health indices, through which damage can be
characterized. This model allows the parameter states to evolve
in time to converge to their respective true values. Within
the particle filtering framework, this uncertainty propagation
is achieved by the time updating of several particles through
the process model, along with the associated uncertainty uk
that has been modeled as a stationary white Gaussian noise
(SWGN) of covariance Qk.

Further, with each time step k, the evolution of the parti-
cle, ξjk−1, is essentially represented by a random perturbation
around its current position. A Gaussian blur (N(δξk, σξ

k)) is
additionally applied to ξjk−1 with a shift δξk = (1 − α)ξ̄k−1

and a spread of σξ
k

1. The turbulence in the particle estimation
is effectively managed through the implementation of hyper-
parameter α, which attempts to re-center the particles towards
their mean (ξ̄k−1) as,

ξjk = αξjk−1 +N (δξk, σ
ξ
k) (3)

After propagation, each parameter particle undergoes obser-
vation against available measurements utilizing the DNN model.
This model can map current responses and parameters to re-
sponses at the subsequent time step. The further mapping of
the response at the next step to its corresponding available re-
sponse is not explicitly elaborated here and is collectively in-
corporated within the measurement function h(•). The mea-
surement model is defined as follows:

1A+BN(µ, σ) means A+Bz, where z follows N(µ, σ)

yk+1 = hk(xk, θk+1, vk) (4)

In this context, hk therefore utilizes the DNN surrogate of the
FEM model trained with simulated synthetic response data.
The DNN surrogate predicts the responses at the next time
steps, some of which are observed as measurements yk+1. vk
denotes measurement noise, modeled as another SWGN with
covariance Rk. In the current FOWT monitoring scenario,
the parameter vector encompasses the stiffness parameters of
three mooring catenaries (k1, k2, and k3).

Using this process and measurement model, the particle filter
estimates the posterior of parameter particles, and the particle
mean leads to the estimate of the particle filters. Due to space
constraints, a detailed description of the particle filter is not
provided here. Interested readers are encouraged to refer to
the extensive literature available in this field.

2.3.2. Particle update and particle approximation

Next, the likelihood, L(ξjk) for each jth particle is computed
using the corresponding innovation mean and covariance. These
likelihoods are further convoluted with the prior weightsw(ξjk−1)
to estimate the corresponding posterior w(ξjk).

w(ξjk) =
w(ξjk−1)L(ξ

j
k)∑Np

j=1 w(ξ
j
k−1)L(ξ

j
k)

with

L(ξjk) =
(
(2π)

n
√
|Rk|

)−1

e−0.5ijk
T
S−1

k ijk

(5)

With these updated weights, the particle approximations for
the parameters are then estimated as:

ξk|k =

Np∑

j=1

w(ξjk)ξ
j
k (6)

3. RESULTS AND DISCUSSION

The integration of a DNN-based process model within a parti-
cle filtering environment underwent testing for two numerical
case studies under two different operational conditions (refer
Case 2 and Case 8). Under operating condition case 2, the
numerical experiment additionally considers 10% damage in
the first mooring line alone (k1 = 0.9k), and no damage in
other mooring lines, while under operating condition case 8,
the numerical experiment assumes 20% damage in each of
all the three mooring lines. To simulate real-world condi-
tions, the observation vector was contaminated with 1% and
5% Gaussian noise. The objective was to assess the efficiency
and robustness of the proposed detection approach in estimat-
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Algorithm 1 DNN-Particle Filter

1: Inputs:
2: N : Number of particles
3: x(0): Initial state estimate
4: p(x(0)): Initial state probability distribution
5: f(xk, uk): System dynamics function
6: hk(xk, θk): Measurement model function
7: DNN(xk, θk): DNN surrogate model for measurement

update STATE σξ: Standard deviation for particle pertur-
bation

8: α: Hyper-parameter for particle re-centering
9: Qk: Process noise covariance

10: Rk: Measurement noise covariance
11: Outputs:
12: Estimated state posterior: p(xk|z1 : k) (represented by

particles)
13: Estimated parameter vector: θk
14: Initialization:
15: for i = 1 to N do
16: Sample initial state: x(i)0 = Sample From(p(x(0)))
17: Initialize parameter particles:

θ
(i)
0 = Random Vector()

18: Initialize weights: w(i)
0 = 1/N

19: end for
20: Main Loop:
21: for k = 1 to T (number of time steps) do
22: Prediction Step:
23: for i = 1 to N do
24: Propagate particle state: x(i)k = f(x

(i)
(k−1), uk)

25: Perturb parameter particle:
θ
(i)
k = αθ

(i)
(k−1) + N(0, σξ)

26: end for
27: Measurement Update Step:
28: for i = 1 to N do
29: Calculate innovation:

innovation = yk − hk(x(i)k , θ
(i)
k )

30: Calculate likelihood:
L(ξjk) =

(
(2π)n

√
|Rk|

)−1

exp
(
−0.5(ijk)TS−1

k ijk
)

31: Update weight based on likelihood:
w

(i)
k = w

(i)
(k−1) · L(ξkj )

32: end for
33: Normalize weights: wi =

wi∑N
j=1 wj

34: Resampling Step:
35: Perform resampling to generate new particles and pa-

rameters based on weights
36: Update particles and parameters based on resampling

results
37: end for

ing the stiffness parameters (k1, k2, and k3) of the mooring
lines across varying noise levels.

Results indicate that, regardless of the noise level, the in-
tegrated model effectively estimated the states and stiffness
parameters with sufficient accuracy. Figures 3, 4, 5, and 6
demonstrate the proposed framework’s parameter estimation
capabilities even in the presence of noise. However, an in-
crease in noise led to decreased accuracy in parameter es-
timation. Higher noise levels introduced greater ambiguity
into the observation vector, resulting in increased inaccuracy
in the estimation process. The accuracy of the estimated pa-
rameters is quantified in terms of RMSE, with lower RMSE
values indicating better accuracy.

Although all 8 scenarios in Table 2 were studied with the pro-
posed estimation framework, only the results corresponding
to Case 2 and Case 8 are presented in the paper for the nu-
merical demonstration due to technical limitations.
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Figure 3. Actual and estimated states (left) and stiffness
(right) parameters for Case 2 with 1% noise.
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Figure 4. Actual and estimated states (left) and stiffness
(right) parameters for Case 2 with 5% noise.

4. CONCLUSION

The initial findings suggest that the DNN-particle filter holds
promise as a means to enhance the reliability and efficiency
of mooring line monitoring by integrating an ML-based pre-
dictor model instead of a high-fidelity FEM model. By lever-
aging synthetic data generated from a calibrated OpenFAST
model of FOWT dynamics, the DNN-particle filter offers a
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Figure 5. Actual and estimated states (left) and stiffness
(right) parameters for Case 8 with 1% noise.
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Figure 6. Actual and estimated states (left) and stiffness
(right) parameters for Case 8 with 5% noise.

computationally efficient representation of system dynamics,
enabling real-time damage detection and interpretable infor-
mation on damage severity within a stochastic inverse esti-
mation framework. This contrasts with traditional black-box
ML-based methods, which often struggle to provide inter-
pretable information on damage characteristics.

The DNN-particle filter’s data processing capabilities maxi-
mize resource allocation by focusing efforts on critical areas
identified by the model. By doing so, it enhances the prompt-
ness of the detection algorithm without sacrificing accuracy
and transparency. This development has the potential to usher
offshore operations into a new era of durability and resilience
by ensuring the integrity of mooring lines and streamlining
operating procedures. Ultimately, it has the potential to en-
hance the safety and longevity of offshore operations by ef-
fectively managing damage and noise.
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ABSTRACT 

The world is experimenting a decarbonization process, 
mainly through lithium-ion-based solutions. Nonetheless, 
catastrophic events have negatively affected the social 
acceptance of lithium-ion-based solutions. One of the most 
interesting projects regarding catastrophic event prevention 
is the internal short-circuit detection. This paper proposes to 
detect it using different machine-learning algorithms such as 
random forest and combination of random forest with neural 
network-based algorithms through time-instant classification 
and historical feature classification. The hyper-parameters 
have been optimized through grid-search. The selected 
algorithms have been trained thanks to synthetically 
generated data using a first-order electrical equivalent circuit 
model. The performance of the generated models has been 
verified and compared thanks to testing and validation data 
sets taken from the synthetically generated data. Afterward, 
the most accurate internal short circuit detection algorithm 
was selected and validated through laboratory-level data. The 
selected cell in this study is SLPB526495HE, a pouch cell of 
3.7Ah. The generated data are time series of voltage and 
current, which are the variables that will be available in a real 
application. The results demonstrate an accuracy above 90% 
in detecting an internal short circuit in the most interesting 
cases. The validation with laboratory data has shown that an 
accuracy of 90% can be achieved. This paper provides 
learned lessons on the process of developing the internal short 
circuit detection machine-learning model, highlighting the 
potential they possess to detect accurately internal short 
circuits. 

1. INTRODUCTION 

Lithium-ion batteries have been acclaimed for their high 
energy density, low self-discharge rates, and environmental 
compatibility since a decade ago (Diouf & Pode, 2015). This 

battery technology has emerged as a key component in global 
decarbonization strategies, finding extensive application in 
diverse energy storage systems such as electric vehicles and 
smart grids (Zubi et al., 2018). Despite their notable 
advantages, safety concerns, particularly those stemming 
from internal short circuits (ISC) leading to thermal runaway, 
remain a primary impediment to their broader adoption(Zhan 
et al., 2023). Such incidents can result in battery fires or even 
explosions, leading to grave consequences. Thermal runaway 
is often initiated by ISC events (Ren et al., 2021), and the 
detection of such events poses significant challenges, 
especially during their incipient stages. 

ISC faults often begin with mild severity, starting with high 
resistance values, which decrease as the fault progresses. In 
this process, the voltage, current, and State of Charge (SoC) 
of normal batteries and those with varying ISC resistance 
values exhibit similar characteristics during charging and 
discharging processes. This similarity significantly 
complicates the diagnosis of early-stage ISC faults, leading 
to researchers to apply data-driven algorithms (Zhang et al., 
2021). The application of data-driven or machine learning 
(ML) algorithms in ISC fault detection can be categorized 
further into two main types: unsupervised and supervised 
learning.  

Unsupervised learning methods train fault detection models 
using data generated during the charging and discharging 
processes of normal batteries. These methods identify 
potential anomalies by defining deviation measures between 
normal and abnormal data, deciphering the standard patterns 
within the data, and employing specific decision rules. 
Typical algorithms include Support Vector Machine (SVM) 
(Chatterjee et al., 2023), Relevance Vector Machine (RVM) 
(Xie et al., 2020), Kernel Principal Component Analysis 
(KPCA) (Schmid & Endisch, 2022), and Isolated Forest 
(Cheng et al., 2023), which have demonstrated effective 
anomaly detection capabilities in various scenarios. 
Nonetheless, unsupervised learning algorithms have their 
limitations. Particularly when the abnormal data closely 
resemble the normal data with no significant distributional 

ZiHong Zhang et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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differences, as it is our case. These methods may struggle to 
distinguish between them accurately. This is why, it is 
challenging for unsupervised learning algorithms to detect 
these subtle anomalies.  

Supervised learning methods utilize pre-labeled datasets for 
training, differentiating like this battery performance data 
under normal operations and abnormal conditions in the 
training process. Through training, these models are adept at 
distinguishing between normal battery behavior and potential 
fault signals. Typical algorithms include Random Forest (RF) 
(naha et al., 2020), Convolutional Neural Network (CNN) 
(Yang et al., 2022) and Long Short-Term Memory (LSTM) 
(Wang et al., 2023). Nonetheless, it is not clear which should 
be the one to be applied. In light of this, our research aims to 
explore and apply various supervised learning algorithms to 
help researchers find the most suitable algorithms for ISC 
detection. 

This paper proposes the development and comparison of ISC 
detection supervised learning algorithms, enhancing the 
detection capabilities at early stages of ISC. This study seeks 
to provide an ISC detection algorithm selection background 
to fellow researchers and boost the reliability and safety of 
lithium-ion batteries in operational contexts. 

This paper is structured as follows. The data generation is 
detailed in section 2. The ISC detection methods are 
described in section 3. The hyperparameter tuning process 
undergone in this paper is placed in section 4. The results are 
shown in section 5. The discussion is done in section 6 and 
the conclusions are drawn in section 7. 

2. DATA GENERATION 

The selected battery is SLPB526495HE. The synthetically 
generated data has been generated with a first-order 
equivalent electric model. The experimental data has been 
generated in laboratory testing facilities. During the training 
and testing phases, only virtual datasets were utilized to 
develop the models. In the validation phase, experimental 
datasets were additionally incorporated. This approach was 
adopted to evaluate the performance of the models trained on 
virtual datasets in real-world scenarios. 

This study focuses on charging data. In practical scenarios, 
battery discharging conditions are highly complex, whereas 
the charging scenarios are relatively monotonous. Therefore, 
we chose charging data to train the model for detecting ISC 
anomalies during the charging phase. 

The operational conditions of the generated data are the same 
for the synthetically generated one and the one generated 
through laboratory tests: an ambient temperature of 25°C and 
a charge process at constant charge mode from 1% SoC to the 
maximum voltage value. 

The extracted feature data during this process included the 
battery voltage and the battery's current voltage increment 

relative to its voltage before charging an amount equivalent 
to 1% of its nominal capacity, denominated as voltage 
difference, see Eq. (1). 

 𝑉 _ = 𝑉 − 𝑉 %  (1) 

2.1. Virtual dataset 

The virtual data set used for model training and testing was 
generated by a first-order electric equivalent circuit model 
(Arrinda, Oyarbide, Macicior, Muxika, et al., 2021) for the 
SLPB526495HE battery, as shown in Figure 1. 

 

Figure 1: Equivalent electric circuit models. 

The parameters of the model were obtained by conducting 
specific modeling tests on the SLPB526495HE battery, see 
Figure 2. 

 

Figure 2: Modeling tests. A capacity and pulse based 
impedance characterization and OCV characterization test is 

performed at controlled ambient temperature. 

The built model was run to obtain data from a normal battery 
and a battery with different level of ISC faults (a total of 21 
stages): 5Ω, 50Ω, 100Ω, 150Ω, 200Ω, 250Ω, 300Ω, 350Ω, 
400Ω, 450Ω, 500Ω, 550Ω, 600Ω, 650Ω, 700Ω, 750Ω, 800Ω, 
850Ω, 900Ω, 950Ω and 1kΩ. 

2.2. Experimental dataset 

The experimental Data Set used for the model validation was 
generated in the laboratory by cycling the cell with constant 
current charging tests from 1% SOC to maximum voltage 
value, see Figure 3. The reference test has been tested only 
with the cell. The ISC has been emulated by connecting an 
external bleed resistor of 10 Ω and performing the charge. 
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Figure 3: Experimental setup. Within a controlled 

temperature chamber, a battery cell is interfaced with a 
Printed Circuit Board (PCB), which incorporates various 

resistors to simulate an Internal Short Circuit (ISC) 
phenomenon. This setup is further connected to a Data 

Acquisition System (DAQ) for comprehensive data 
collection and monitoring. 

3. DETECTION METHODS 

This paper presents and compares various ISC detection 
solutions based on different ML models. These solutions can 
be divided into two main categories according to the data 
types they utilize: the Instantaneous Feature-based Method 
and the Historical Feature-based Method. 

3.1. Instantaneous Feature-based Method 

As illustrated in Figure 4, the ISC detection solutions under 
the Instantaneous Feature-based Method determine whether 
the battery is in a normal state or experiencing an ISC 
anomaly by analyzing the feature data at every single moment 
and treating it as a binary classification task at every moment. 
The ISC detection solutions proposed in this paper that are 
under the Instantaneous Feature-based Method category are 
the RF solution and the RF combined with Multilayer 
Perceptron (RF+MLP) solution. 

 

Figure 4: Instant-based methods’ main concept diagram. 
Instant-based methods treat each moment k as an 

independent data point, characterized by two features: the 
cell voltage at time k (Vk) and the voltage difference 
(Vdiff_k) at time k. A machine learning model is then 

employed to classify each time point as either a normal or 
an ISC label. 

3.1.1. Data treatment 

A dataset for the charging process on a battery without an ISC 
was gathered with no ISC labels. A dataset of battery 
charging data that reflects the 21 stages of ISC fault 
conditions has been generated with ISC anomaly labels. The 
dataset with ISC anomaly labels has a significantly higher 
volume of data compared to the one with no ISC labels. To 
address this issue, a down-sampling method was adopted to 
balance the label distribution in the training dataset. 

The specific down-sampling process involves randomly 
selecting data from the dataset with ISC anomaly labels. The 
total number of data points is the same in both data sets, 4000. 
The data with ISC anomaly labels is evenly taken from all the 
simulated cases. This method ensures the consistency of the 
total volume of ISC anomaly data with normal data and 
guarantees a balanced sampling quantity of different stages 
of ISC anomaly data generated from different short-circuit 
resistance values. 

The final step in data handling involves splitting the dataset 
obtained through down-sampling into a training set and a test 
set based on an 80% to 20% ratio. This approach allows the 
model to train on a substantial portion of the data while 
retaining a separate subset for evaluation, ensuring that the 
model's performance can be accurately assessed. 

3.1.2. Random Forest (RF) 

The RF classifier, as a widely used ML model for 
classification tasks, leverages ensemble learning techniques 
to enhance the accuracy and stability of predictions. This 
model employs bootstrapping to draw multiple subsets of 
samples with replacements from the original training dataset 
and randomly selects subsets of features during the 
construction of each decision tree. In classification tasks, RF 
makes the final decision by aggregating the predictions from 
all its decision trees, adopting the class supported by the 
majority of the trees as the prediction outcome. 

3.1.3. Randon Forest with Multilayer Perceptron 
(RF+MLP) 

The RF+MLP combines the RF and MLP to detect the 
presence of ISC phenomena in batteries. The main workflow 
consists of training first a RF classifier to be used to predict 
the data. Then, the prediction results from each decision tree 
within the RF classifier are used as new input features of the 
MLP. This approach aims to leverage the MLP to learn the 
relationships between decision trees, thereby enhancing the 
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model's ability to distinguish between data with ISC and data 
without ISC. 

3.2. Historical Feature-based Method 

The historical feature-based method for detecting ISC events 
utilizes a sliding window technique. Starting from the (n+1)th 
time point, it combines the feature data of that moment with 
the feature data from the preceding n moments to construct a 
time series window. The window then slides forward, step by 
step, continuing this process to generate a series of time series 
window data, see Figure 5. Subsequently, deep learning 
models specifically designed for time series classification are 
applied to distinguish between ISC event data and no ISC 
data. 

 

Figure 5: Historical feature-based methods’ main concept 
diagram. 

3.2.1. Data treatment 

A series of data preprocessing steps are necessary. Initially, 
the sliding window technique is applied to transform the 
charging data of batteries without ISC and the charging data 
of batteries with ISC anomaly using different short-circuit 
resistance values. Starting from the (n+1)th moment, the 
feature data of each moment and its preceding n moments are 
combined to form individual 3x(n+1) dimensional time series 
windows. Here, 3 represents the number of features: 

 The battery voltage at each moment. 

 The voltage difference or the voltage increment of the 
battery at each moment relative to its voltage before 
charging an amount equivalent to 1% of its nominal 
capacity. 

 The probability that the current moment might 
correspond to ISC data as determined by the Random 
Forest classifier analyzing the current battery voltage at 
each moment and the voltage difference. 

Subsequently, down-sampling of ISC time series window 
data is performed as in the data treatment performed for the 
instant-based methods to balance the data label distribution 
and prevent data bias issues during the training process. 

Unlike the RF algorithm, neural network models typically 
require data normalization prior to training. This 
normalization accelerates model convergence, prevents 
issues with vanishing or exploding gradients, and enhances 
the model's generalization capability to new data. Common 
data normalization methods include the min-max 
normalization and the Z-score normalization (Patro & sahu, 
2015). 

The min-max normalization method adjusts the scale of the 
data so that all features have values ranging between 0 and 1. 
Specifically, for each feature, this is achieved by subtracting 
the minimum value of that feature from each value, then 
dividing by the difference between the maximum and 
minimum values of that feature, Eq. (2).  

 𝑥 =
𝑥 − 𝑥

𝑥 − 𝑥
 (2) 

The Z-score normalization, also known as standard score 
normalization, normalizes the data by subtracting the mean 
of each feature from its values and then dividing by its 
standard deviation, resulting in a dataset with a mean of 0 and 
a standard deviation of 1, Eq. (3).  

 𝑥 =
𝑥 − 𝜇

𝜎
 (3) 

Beyond the normalization methods, the choice of 
normalization strategy is crucial and can be based on one of 
the considered normalization processes: normalization-by-
moment, normalization-by-feature, and normalization-by-
window. 

The normalization-by-moment strategy involves normalizing 
the values of all features at each specific moment. It treats 
each point in time independently, adjusting the features 
across all samples at that particular moment to conform to the 
chosen normalization scale. This approach is useful when the 
relative magnitudes of features at each moment are important 
for the model to recognize patterns over time. 

The normalization-by-feature strategy operates on each 
feature across all moments. It normalizes the values of a 
single feature over the entire dataset, ensuring that the 
feature's values are on the same scale across all time points. 
This is particularly beneficial when you want the model to 
understand the behavior of each feature independently across 
time, emphasizing the feature's overall distribution without 
the influence of varying scales. 
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The normalization-by-window approach treats all the data 
within a sliding window as a whole for normalization 
purposes. Each window is normalized independently, 
meaning that the scale of the features is adjusted within the 
context of that window. This strategy is useful when the 
relationship between features within each window is critical 
to identifying patterns, and it aims to preserve the internal 
dynamics of each time window. 

 

Figure 6: Data treatment processing selection diagram. 

As a result, six distinct data preprocessing schemes have been 
developed based on the aforementioned. To identify the most 
suitable data processing approach for various models and to 
find the optimal sliding window size, an experimental 
workflow was designed as follows (Figure 6): 

 Experiment with window sizes equals to 10, 30, 50, 100, 
150 are evaluated. 

 The six different data preprocessing schemes are applied 
to each window size experiment, resulting in 30 different 
data processing configurations. 

 Train 1D CNN and LSTM networks using the processed 
data. 

 Evaluate the performance of these models through cross-
validation to determine the most suitable data processing 
method and window size for each model type. 

3.2.2. Random Forest with Convolutional Neural 
Network (RF+CNN) 

1D CNN algorithms are frequently employed for processing 
sequential data, such as time series data. A 1D CNN 
processes input data through a series of specific layers to 
extract useful features for classification or other tasks. The 
fundamental architecture of a simple 1D CNN consists of an 
input layer, convolutional layer, activation function, pooling 
layer, fully connected layer, and output layer. In the context 
of time series classification tasks, the input layer initially 
receives the raw data. This is followed by the convolutional 
layer, where multiple kernels slide across all features of the 
data to perform convolution operations and extract features, 
which are subsequently subjected to an activation function. 
The pooling layer then reduces the dimensionality of the 
feature maps, decreasing the volume of data that needs to be 
processed. Finally, the fully connected layer and the output 
layer classify the previously extracted features, producing the 
final outcome. 

3.2.3. Random Forest with Long short-term memory 
(RF+LSTM) 

LSTM networks are a specialized type of Recurrent Neural 
Networks (RNNs) particularly suited for classifying, 
processing, and predicting based on time series data. LSTMs 
are adept at addressing issues of vanishing or exploding 
gradients, which are common with traditional RNNs. The 
basic structure of an LSTM includes an input layer, LSTM 
layer, hidden layers, and an output layer. Within the LSTM 
layer, each LSTM unit contains several key components: Cell 
State, Input Gate, Forget Gate, Output Gate, and Hidden 
State. When LSTMs are employed for time series data 
classification tasks, data is initially decomposed into 
individual time steps through the Input Layer and then fed 
into the LSTM layer. This layer captures long-term and short-
term relationships within the time series data by maintaining, 
ignoring, or updating information through an internal state 
and three gate structures. The output from the LSTM layer is 
then passed to one or more Hidden Layers for further feature 
extraction, with the final classification result being produced 
by the output layer. 

4. HYPERPARAMETER TUNING 

Hyperparameter tuning plays a crucial role in the training of 
ML and deep learning models, as the choice of 
hyperparameters directly affects the performance, learning 
capability, and generalization ability of the model. During the 
training of various models mentioned before, such as RF, 
MLP, 1D CNNs, and LSTMs, experimenting with multiple 
combinations of hyperparameters is an effective method to 
find the relatively optimal hyperparameter settings. 
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4.1. RF Classifier Hyperparameter Tuning 

The use of the grid search through “GridSearchCV” tool from 
the Scikit-learn python’s library is proposed to systematically 
explore and optimize the hyperparameter settings of the RF 
classifier (Arrinda, Oyarbide, Macicior, & Muxika, 2021). 
Initially, we defined a search space containing various 
combinations of hyperparameters, including the number of 
decision trees, the maximum depth of the trees, the minimum 
number of samples required to split an internal node, the 
minimum number of samples required at a leaf node, and 
whether bootstrap sampling is used. 

“GridSearchCV” tested each of the 2,400 different 
hyperparameter combinations defined in our search space 
and employed cross-validation to comprehensively assess the 
performance of each combination. The training dataset was 
divided into five subsets, with one subset being used as the 
validation set to evaluate the model and the remaining four 
subsets for training. The performance of each combination 
was assessed based on the average results of these five 
validations. 

The optimal combination of hyperparameters for the model 
was finally identified by analyzing and comparing. After 
determining the best hyperparameters, these parameters were 
used with the full training dataset to conduct the final training 
of the random forest classifier, ensuring the model achieved 
optimal predictive performance. 

4.2. Neural Networks Hyperparameter Tuning 

The grid search method used for identifying the optimal 
hyperparameters of the RF Classifier was considered 
unsuitable for neural networks due to time cost concerns. 
Hence, the “Keras Tuner” Python’s library is proposed to 
perform hyperparameter optimization through random search 
of neural network based models. Similar to “GridSearchCV”, 
before starting the random search, a search space for each 
model is defined. However, the distinct feature of the random 
search method provided by “Keras Tuner” is that it does not 
attempt every possible combination of hyperparameters. 
Instead, it randomly selects n combinations of 
hyperparameters from the defined search space to experiment 
with. A key advantage of this approach is its ability to 
significantly reduce the search time while still maintaining 
the possibility of discovering well-performing 
hyperparameter sets. 

5. RESULTS 

The most suitable data processing approach and the most 
optimal hyperparameters for each model are shown in Figure 
7. Each trained model has been validated both by virtual 
datasets and experimental datasets. 

 

Figure 7 The most suitable data processing approach and the 
most optimal hyperparameters for each model. 

5.1. Validation with virtual dataset 

The virtual dataset comprises one charging data set generated 
by a normal battery electric equivalent circuit model and 
other two charging data sets generated respectively by ISC 
battery electric equivalent circuit models, characterized by 
short-circuit resistances of 10Ω and 510Ω, respectively. 

The validation results of models of the instantaneous feature-
based method are shown in Figure 8, whereas the results for 
models utilizing historical feature-based methods are 
illustrated in Figure 9. These figures illustrate the temporal 
variation of cell voltage (Vcell) during the constant current 
charging process of normal batteries and batteries 
experiencing ISC faults with short circuit resistances of 10 
ohms and 510 ohms. Furthermore, the figures depict the fault 
detection outcomes at each time point during the charging 
process, as predicted by the RF model and the RF model 
integrated with MLP. The prediction outcomes are marked in 
blue and red, indicating correct predictions and incorrect 
predictions, respectively. 
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Figure 8: Validation Results of models of Instantaneous 
Feature-based method with virtual dataset. The blue line is 
the Vcell vs time, and the red points represent the moments 

where the prediction is wrong. 

 

Figure 9: Validation Results of models of Historical 
Feature-based Methods with virtual dataset. The green part 
represents the moments when the charging amount is still 

less than 1% nominal capacity. 

5.2. Validation with experimental dataset 

The experimental dataset consists of two datasets. One of 
them is the charging dataset of a real battery without any fault. 
The other one is the charging dataset from the same battery 
connected with a 10Ω short-circuit resistance emulating an 
ISC condition. 

The battery model used to generate the virtual data assumed 
a state of health (SoH) of 100%, whereas the battery utilized 
for the experimental dataset did not have the exact same SoH. 
Hence, Eq. (4) should be employed for calculating the voltage 
difference of the experimental dataset. 

 𝑉 _  _ = (𝑉 − 𝑉 % ) ∙ 𝑆𝑜𝐻  (4) 

Figure 10 and Figure 11 illustrate the validation results of 
Instantaneous Feature-based method models and Historical 
Feature-based method models respectively. These figures 
also use red and blue markers to denote the accuracy of 

predictions in relation to the actual conditions, where red 
indicates a mismatch between predicted and actual label, and 
blue signifies correct predictions. 

 

Figure 10: Validation Results of models of Instantaneous 
Feature-based method with experimental dataset. 

 

Figure 11: Validation Results of models of Historical 
Feature-based Methods with virtual dataset. 

6. DISCUSSION 

This study introduced four innovative methods for detecting 
ISC faults, all of which demonstrated a prediction accuracy 
above 90% (and 8 of 12 close to 99%) during the validation 
process with virtual data, including the identification of 
normal data and ISC data with 10Ω and 510Ω short-circuit 
resistances. The validation results are presented in Table1.  
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The RF method, being the earliest and simplest instantaneous 
feature-based method, shows excellent performance in 
distinguishing between ISC and normal data within the 
virtual dataset. It achieved an accuracy of 98.3% for normal 
data and 99.3% for severe ISC detection (lower short-circuit 
resistance values), though its accuracy slightly decreased to 
90.8% for early-stage ISC detection (higher short-circuit 
resistance values). To enhance the model's accuracy in 
predicting high resistance value ISC conditions, three other 
detection methods based on model stacking were proposed, 
using RF as the base model whose output serves as additional 
input features for other models. 

The combination of RF with MLP slightly improved the 
accuracy for high resistance value ISC conditions to 93.8%, 
at the cost of reduced accuracy for normal battery data 
predictions, which fell to 95.9%. This is a consequence of the 
weight distribution of RF’s estimators provided by the MLP. 

The combination of RF with CNN performed best in virtual 
data validation. It achieved a 1.6% increase in accuracy for 
normal data predictions, reaching 99.9%. Moreover, this 
method improved the detection accuracy for 510Ω short-
circuit resistance ISC from 90.8% to 99.7%. Nonetheless, its 
accuracy for detecting lower resistance ISC slightly fell by 
0.3% to 99.0% compared to using RF alone. 

The combination of RF with LSTM networks increased the 
prediction accuracy for high resistance ISC detection to 98.6% 
while maintaining the accuracy for normal data predictions at 
98.1%. Nevertheless, lower resistance ISC detection slightly 
decreased to 94.2%. 

The validation process with experimental data has shown a 
decrease in accuracy. All models experienced a significant 
performance decline in the validation with the experimental 
dataset, especially in predicting normal data. The 
instantaneous feature-based methods outperformed the 
historical feature-based methods overall in the experimental 
dataset. RF and RF+MLP maintained over 90% accuracy in 

predicting low resistance ISC conditions, but their accuracy 
in predicting normal data dropped to 55% and 45.8%, 
respectively. The HFM-based methods had less than 30% 
accuracy in predicting normal data, and their detection 
accuracy for ISC faults did not reach 80%. 

This performance drop could be attributed to overfitting on 
virtual normal data, as the virtual normal battery could 
generate only a single set of normal battery charging data, 
and to discrepancies between data generated by equivalent 
circuit models and real data, preventing the RF model from 
accurately learning subtle changes in real conditions. The 
performance of model stacking methods was impacted by the 
base model RF's performance; if RF could not provide 
accurate predictions, the overall performance of the stacked 
models was negatively affected. 

In real applications, as the performance gap between electric 
equivalent circuit model and actual battery increases, and 
therefore, the negative effect of stacked models will be 
amplified, making the RF model a preferred choice for ISC 
detection algorithms in the absence of real data. Nonetheless, 
if the performance gap could be resolved, or if real-life data 
could be used to further train the stacked models, models like 
RF+CNN could achieve significantly higher accuracy levels 
in early-stage ISC detection compared to the RF model alone.  

7. CONCLUSION 

This paper developed four methods for detecting ISC faults. 
Data is obtained from simulations and experiments at lab 
level. The ISC fault detection methods are trained using the 
virtual data. The normalization method, normalization 
strategy, are performed by using an exhaustive method and 
hyperparameter tuning is done by grid-search and random-
search. After the training and hyperparameter tuning, these 
methods have been evaluated respectively by conducting 
validations and performance comparisons with both the 
virtual and experimental datasets. 

The validation with virtual data shows that the historical 
feature-based method combining RF and CNN demonstrated 
superior performance. However, the limitations of virtual 
data became apparent during the validation with 
experimental data. The base model, the RF model, fails to 
achieve satisfactory prediction results on the experimental 
dataset. It suffers a drop of accuracy from 98.3% to 55% in 
describing data without ISC. This limitation further impacted 
the overall performance of the RF+CNN methods in the 
experimental data validation, having higher accuracy drops 
than the ones observed in RF. 

To address this issue in future research, one of the potential 
approaches could be integrating digital twin and cloud 
computing technologies. Digital twins can facilitate the 
collection of extensive real-world data to refine the model, 
while cloud computing, combined with the gathered real-
world data, can enable continuous learning for the model. 

Table 1. Validation Accuracy of models on Different 
Validation Dataset. 

 
Dataset RF RF+MLP RF+CNN RF+LSTM 
Normal 
(Virtual) 

98.3% 95.9% 99.9% 98.1% 

Normal 
(Experi
mental) 

55.0% 45.8% 21.5% 29.9% 

10Ω
(Virtual) 

99.3% 99.7% 99.0% 94.2% 

10Ω
(Experi
mental) 

90.8% 93.9% 82.2% 75.0% 

510Ω 
(Virtual) 

90.8% 93.8% 99.7% 98.6% 
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This method ensures the model's adaptability to real-world 
data. Moreover, as a battery's SoH gradually declines, 
affecting its charging data throughout its use, continuous 
learning can also allow the model to adjust to these changes. 
This synergy of multiple technologies considerably augments 
the flexibility and universality of ISC detection systems, 
equipping them to accommodate a wider array of scenarios 
and conditions. 
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NOMENCLATURE 

SoHexp battery's SoH in the experimental dataset 
Vk  voltage at the kth moment 
Vk-1%c voltage at the moment before charging 1% 

of the nominal capacity prior to the kth 
moment. 

Vdiff_k voltage difference of virtual dataset 
between kth and k-1%cth moment 

Vdiff_exp_k voltage difference of experimental dataset 
between kth and k-1%cth moment 

x  unnormalized original value 
xmin  minimum value among dataset 

xmax  maximum value among dataset 

xnorm  normalized value 
μ  mean value of dataset 
σ  standard deviation of dataset 
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ABSTRACT

Fault detection is crucial in industrial systems to prevent fail-
ures and optimize performance by distinguishing abnormal
from normal operating conditions. Data-driven methods have
been gaining popularity for fault detection tasks as the amount
of condition monitoring data from complex industrial systems
increases. Despite these advances, early fault detection re-
mains a challenge under real-world scenarios. The high vari-
ability of operating conditions and environments makes it dif-
ficult to collect comprehensive training datasets that can rep-
resent all possible operating conditions, especially in the early
stages of system operation. Furthermore, these variations of-
ten evolve over time, potentially leading to entirely new data
distributions in the future that were previously unseen. These
challenges prevent direct knowledge transfer across different
units and over time, leading to the distribution gap between
training and testing data and inducing performance degra-
dation of those methods in real-world scenarios. To over-
come this, our work introduces a novel approach for contin-
uous test-time domain adaptation. This enables early-stage
robust anomaly detection by addressing domain shifts and
limited data representativeness issues. We propose a Test-
time domain Adaptation Anomaly Detection (TAAD) frame-
work that separates input variables into system parameters
and measurements, employing two domain adaptation mod-
ules to independently adapt to each input category. This method
allows for effective adaptation to evolving operating condi-

Han Sun et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

tions and is particularly beneficial in systems with scarce data.
Our approach, tested on a real-world pump monitoring dataset,
shows significant improvements over existing domain adap-
tation methods in fault detection, demonstrating enhanced ac-
curacy and reliability.

1. INTRODUCTION

Fault detection aims to identify evolving faults or degrada-
tion in complex industrial systems, aiming to prevent sys-
tem failures or malfunctions. Early and robust fault detection
is essential for optimizing equipment performance and mini-
mizing maintenance and unavailability costs. Recently, data-
driven methods have been widely applied to fault detection
facilitated by the growing availability of system condition
monitoring data (Fink et al., 2020). However, these meth-
ods often assume the availability of abundant, representative
training datasets to learn a data distribution that is applicable
across all relevant operating and environmental conditions.
Such representative training datasets are frequently not avail-
able due to the high diversity of systems and the wide range
of operating conditions. This issue is particularly acute for
newly installed or refurbished units with limited observation
periods. A potential solution to this problem is to transfer
knowledge and operational experience from fleet units with
extensive and relevant data to those lacking representative
training data. This approach leverages the rich experience
and datasets of ’experienced’ units to enhance the learning
and performance of less experienced ones, aiming to bridge
the gap in data availability and representativeness across the
fleet. However, such knowledge transfer might lead to insuf-
ficient performance, as data-driven methods typically assume
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identical and independent distributions (i.i.d) between train-
ing and testing data, which does not hold true in real-world
industrial complex systems with varying operating conditions
and dynamic environments. This leads to significant discrep-
ancies in data distribution between fleet units. Consequently,
a model trained on one unit may perform poorly when applied
to another, evidenced by a high rate of false alarms, prevent-
ing them from benefiting from the existing fleet knowledge.

A substantial amount of research has been performed to ad-
dress such a challenge by applying domain adaptation (DA)
approaches (Yan et al., 2024), which aim to bridge the do-
main shift between a labeled source and a related unlabeled
target domain. However, The scarcity of faulty data in indus-
trial systems introduces specific challenges for DA in fault de-
tection because industrial applications typically lack labeled
source data for supervised learning. Furthermore, these meth-
ods usually assume discrete source and target domains. How-
ever, the operating conditions of complex systems evolve over
time, leading to continuous domain shifts within the same
unit. Therefore, domain adaptation should not only occur be-
tween units but also be continuously applied within a unit,
rather than assuming a single, discrete target domain, to en-
sure robust fault detection.

In this work, we propose a novel approach for fleet-wide con-
tinual test-time domain adaptation, aiming to achieve robust
anomaly detection across different units of a fleet over time.
Our proposed fault detection framework, based on signal re-
construction, integrates a domain adaptive module specifi-
cally designed to address the dynamic and evolving environ-
ments of complex industrial systems. This approach aims to
enhance robustness and adaptability in fault detection within
these challenging contexts. To prevent overfitting to the faulty
data distribution during adaptation, we categorize the input
variables into two groups: control parameters and sensor mea-
surements. We then integrate two domain adaptive modules
to adapt to the data distribution of each category separately.
This strategy enables us to distinguish between normal vari-
ations inherent within the systems and abnormal changes in
operating status, thereby improving the accuracy of our anomaly
detection framework. By integrating adaptation into the basic
fault detection pipeline, TAAD facilitates the transfer of oper-
ational experience between different units of a fleet, thereby
benefiting from the collective knowledge of the fleet. TAAD
has been evaluated on a real-world pump monitoring dataset,
and the results demonstrate notable improvements compared
to other domain adaptation methods. Our proposed frame-
work is transferable to other industrial applications and en-
ables more timely and robust fault detection in complex in-
dustrial systems.

2. RELATED WORK

2.1. Fault Detection in Prognostics and Health Manage-
ment

Prognostics and Health Management (PHM) seeks to enhance
equipment performance and minimize costs by enabling pre-
cise detection, diagnosis, and prediction of the remaining use-
ful lifetime as accurately as possible. It integrates the detec-
tion of an incipient fault (fault detection), its isolation, the
identification of its origin, and the specific fault type (fault
diagnostics), along with the prediction of the remaining use-
ful life (Fink et al., 2020). Fault detection aims to identify
faulty system conditions based on current operating condi-
tions and gathered condition monitoring data. The complex-
ity of real-world industrial systems poses specific challenges
for achieving accurate and robust fault detection. First, faulty
data is scarce in real industrial systems. Failures in critical
systems, such as power or railway systems, are infrequent.
Furthermore, it often takes a considerable amount of time for
a system to degrade to the point of failure or the end of life.
As a result, faults are often never or seldom encountered dur-
ing limited time periods and are therefore absent in training
datasets.

Consequently, one of the main research directions in fault
detection has focused on unsupervised learning, which can
be categorized into three main directions(Ruff et al., 2021).
Probabilistic models aim to approximate the normal data prob-
ability distribution. The estimated distribution mapping func-
tion can then be used as an anomaly score. Different deep sta-
tistical models have been applied for probability-based anomaly
detection, such as energy-based models (EBMs) (Zhai, Cheng,
Lu, & Zhang, 2016). One-class classification models directly
learn a discriminative decision boundary that corresponds to
a desired density level of normal samples, instead of estimat-
ing the full density (Ruff et al., 2021). This approach aims to
learn a compact boundary that encloses the normal data dis-
tribution (J. Wang, Qiu, Liu, Yu, & Zhao, 2018; Z. Zhang &
Deng, 2021). Reconstruction-based methods learn a model,
such as autoencoders (AEs), are optimized to reconstruct the
normal data samples well and detect via reconstruction error
(Lai et al., 2023; Hu, Zhao, & Peng, 2022). These models are
expected to fit the data distribution under healthy conditions
and then raise an alarm for predictions with large deviations
when the test data distribution is significantly different from
the learned distribution. Thus, the reconstruction error serves
as an anomaly score for detecting faults.

Other studies have focused on semi-supervised learning, where
it is presumed that a limited number of faulty data samples are
accessible for training (Ramı́rez-Sanz, Maestro-Prieto, Arnaiz-
González, & Bustillo, 2023).
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2.2. Fleet Approaches for Fault Detection

Unsupervised fault detection, as discussed in section 2.1, re-
lies on the assumption that all possible normal conditions of
the system can be learned from a sufficiently large and repre-
sentative training dataset. However, collecting a dataset rep-
resentative enough for new systems or refurbished units to
cover all possible normal operating conditions within a short
time period is unlikely. While extending the observation pe-
riod can facilitate the collection of more comprehensive data,
it also hinders early monitoring of the system. In such cases,
transferring operational experience from other similar units
with longer and more representative data can significantly
enhance robust detection at an early stage. These units can
be grouped into a fleet, where each unit shares similar char-
acteristics (Leone, Cristaldi, & Turrin, 2017). A good ex-
ample would be a fleet of gas turbines or cars produced by
the same manufacturer, albeit with different system configu-
rations, operating under varying conditions in different parts
of the world (Fink et al., 2020).

The direct transfer of fleet knowledge assumes identical and
independent distributions (i.i.d) between training and testing
units. However, this assumption often does not hold for com-
plex industrial systems, which are characterized by varying
operating conditions and changing environments. This dis-
crepancy poses a significant challenge in transferring a devel-
oped model across different units within the fleet. Traditional
methods focus on identifying units that are similar enough
to form sub-fleets (Leone, Cristaldi, & Turrin, 2016; Liu,
Tan, Zhen, Yin, & Cai, 2018; Michau, Palmé, & Fink, 2018;
Michau & Fink, 2019). Such methods depend on the entire
fleet sharing sufficient similarity and fail when units under
homogeneous conditions do not exist or cannot be identified.
Recently, domain adaptation has been used to transfer knowl-
edge between units or between different operating conditions
within the same unit (Yan et al., 2024), a topic discussed in
section 2.3.

2.3. Domain Adaptation Applied to Fault Detection

A substantial amount of research in the field of PHM has
focused on domain adaptation, a subtopic of transfer learn-
ing, including discrepancy-based methods (J. Zhang et al.,
2022; Qian, Wang, Zhang, & Qin, 2023) and adversarial-
based methods (Michau & Fink, 2021; Qian, Qin, Luo, Wang,
& Wu, 2023; Nejjar, Geissmann, Zhao, Taal, & Fink, 2024).
These DA methods aim to align the data distribution between
the source and target domains, assuming that the target sam-
ples available are abundant enough to represent target data
distribution. However, this assumption does not hold true for
newly installed systems with limited data samples collected,
which prevents prompt system monitoring as discussed above
(Michau & Fink, 2021). Furthermore, these methods typi-
cally assume one or more discrete, static target domains and

attempt to adapt to them. However, operating conditions of-
ten evolve continuously over time, potentially leading to un-
seen distribution shifts in the future. Therefore, it is neces-
sary to continuously adapt to domain shifts on the fly, rather
than assuming a single discrete target domain (Q. Wang, Fink,
Van Gool, & Dai, 2022).

Test-time adaptation (TTA) aims to adapt a source-pretrained
model to a target domain without using any source data. The
model is dynamically updated on the fly, based on the current
data batch, without exposure to the entire target data set. Rep-
resentative methods utilize batch normalization, estimating
and normalizing mean and variance on each batch to update
the model (D. Wang, Shelhamer, Liu, Olshausen, & Darrell,
2021; Liang, Hu, & Feng, 2020). Thus, TTA can be applied to
adapt batch data online, accommodating continuous domain
shifts for fault diagnosis (Q. Wang, Michau, & Fink, 2019).
Although this branch of methods can be directly adapted for
the fault diagnostic task, it is not suitable for unsupervised
fault detection. In scenarios of unsupervised fault detection,
where detection is based on deviation from the norm, apply-
ing TTA to the current batch of data with unknown labels may
cause the model to unintentionally fit potentially faulty data
within this batch. Consequently, the anomalies might not be
recognized as out-of-distribution, leading to a reduced ability
of the model to identify faults based on prediction errors.

To conclude, robust fault detection in PHM at the early stage
encounters the challenge of data scarcity. Fleet approaches
help units that are newly taken into operation benefit from
fleet knowledge, while their transferability is constrained by
the high variability of system operating conditions within the
fleet. Current DA methods applied for fault detection can-
not simultaneously address all of the challenges we discussed
above. They either fail to adapt to continuous domain shifts
or are incompatible with the limited data and label availability
elaborated above.

3. METHODOLOGY

3.1. Problem Definition

The primary motivation of this research is to transfer knowl-
edge from one system, which has abundant monitoring data,
to other systems or fleets operating under varying conditions.
Often, these systems and fleets are newly taken into opera-
tion, for which only a limited amount of observations can be
collected for training. Their data distribution can evolve con-
tinuously due to changes in operating conditions and environ-
mental factors. The objective is to adapt the prediction model
trained on the original system, enabling it to make accurate
predictions for new systems and fleets, even when only a few
training samples are available. Given:

• abundant healthy training data from the source system:
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Xs = [xs1, · · · , xsn], where s denotes the source domain
and n denotes the number of data samples from the source
domain, and

• limited observed normal data from the target domain:
Xt = [xt1, · · · , xtm], where t denotes the target domain
andm denotes the number of available data samples from
the target domain,

the goal here is to achieve robust fault detection in the target
domain t.

The proposed method takes into account limited data avail-
ability and varying operating conditions, specifically address-
ing scenarios where: 1) no anomalies are available for train-
ing; 2) only limited target data is available for adaptation; and
3) continuous changes in operating conditions occur during
test time.

3.2. Reconstruction-based Anomaly Detection Framework

We develop a reconstruction-based anomaly detection pipeline,
which achieves robust fault detection by continuously adapt-
ing to novel operating conditions, as depicted in Figure 1.
This approach utilizes an autoencoder (AE), denoted as fθ,
trained exclusively on normal source data samples, Xs, for
the purpose of signal reconstruction. The goal of fθ is to
accurately model the normal data distribution of Xs with ac-
curate predicted signal value X̂s. The training objective is to
minimize the mean-squared error (MSE) between the original
data samples Xs, and their reconstructed counterparts X̂s:

lossMSE =
1

n

n∑

1

(
Xs − X̂s

)2
(1)

where n denotes the number of training samples. Thus, on
the healthy source dataset, we expect a small residual value
r̂s = X̂s−Xs. During testing, data samples generating large
residuals are considered out-of-distribution and subsequently
labeled as anomalies.

The autoencoder architecture consists of two parts: an en-
coder fe and a decoder fd. fe comprises three fully-connected
layers each followed by a batch normalization layer and a
ReLU activation function, which consecutively map the orig-
inal signal input to feature dimensions of 50, 50, and 10. fd
follows a similar architecture but without batch normalization
layers, decoding the latent representation from 10 to 50, 50,
and then back to the original signal dimension.

3.3. Anomaly Score and Anomaly Detection

During test time, we compute the fault label y ∈ [0, 1] based
on the reconstruction result. 0 denotes a healthy sample while
1 indicates a faulty sample. Given the ith data sample Xi =
[x1i , ....x

k
i ], we compute its relative residual:

ri =
|X̂i −Xi|
X̄t training

(2)

given its predicted reconstruction result X̂i. k indicates the
input dimension. X̄t training represents the mean value of
target data samples for training (including validation data),
which helps scale the residual values. The anomaly score si
is calculated by integrating the scaled residual values across
all sensors:

si =
1

k

k∑

j=1

rji +max
k∑

j=1

rji (3)

To avoid false detection by outliers with extremely large resid-
uals, the computed anomaly score is smoothed within a cer-
tain window length l:

si smooth = min
l−1∑

q=0

si+q (4)

Anomalies are then detected based on si smooth, using a thresh-
old determined via statistical analysis of the healthy valida-
tion set. We identify the data sample Xi as an anomaly if:

si smooth > α ∗ r̄t training (5)

where α is set empirically with a trade-off between the reduc-
tion of false alarms and sensitivity to faults.

In this case study, potential faults are reported and examined
daily. Thus, the evaluation of abnormal conditions is con-
ducted on a daily basis, where we compute the number of
cumulative abnormal data samples of the day.

3.4. System Variables

Directly applying domain adaptation to the current anomaly
detection framework can potentially cause the model to fit un-
known abnormal samples in the target domain’s current batch
during test time, thus impairing the model’s ability to detect
those faults. To distinguish between data distribution shifts
due to changing operating conditions and occurrences of ab-
normal operating status, we split the input parameters into
two groups: X = [x,w]. w denotes control variables, indicat-
ing variables that control system conditions. These variables
are set by the operators or by the control system to optimize
the performance under specified conditions. x represents sen-
sor measurements, which are sensor signals monitoring sys-
tem components and reflecting real-time system states. Here,
we assume that changes in the distribution of control variables
do not necessarily indicate an abnormal status but rather dis-
tinct operating conditions to which we should adapt.
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3.5. Test-time Domain Adaptation Anomaly Detection

Figure 2 illustrates our proposed cross-domain, reconstruction-
based anomaly detection framework TAAD, inspired by re-
cent advancements in test-time domain adaptation. This frame-
work enables us to achieve robust anomaly detection across
different domains through online adaptation. Based on the
pretrained reconstruction framework introduced in 3.2, we
integrate an adaptive module, hϕ, for test-time domain adap-
tation to bridge the domain gap between the source and tar-
get domains. The decision to incorporate a separate adap-
tive module, hϕ, rather than embedding adaptive layers di-
rectly into the reconstruction model, stems from limitations
observed in unsupervised anomaly detection. TTA methods,
such as AdaBN, adapt to each batch during test time, in-
evitably fitting the distribution of abnormal data points. This
impairs the model’s ability to distinguish between normal and
abnormal samples. Instead, our adaptive module takes the
predicted value and original controlled system variables as in-
puts. By excluding monitoring data signals from adaptation,
this approach prevents overfitting to the potentially faulty data
distribution, thereby preserving the model’s capability to ac-
curately distinguish anomalies.

The adaptive module is a simple network composed of two
fully connected layers that map the group of control variables
from its original feature dimension to 10, and then back to its
original dimension; the first is followed by a batch normaliza-
tion layer and ReLU activation, while the second is followed
by ReLU activation only. This adaptive module exclusively
processes the control variables w as its input. During the
adaptation phase, the pre-trained autoencoder fθ is frozen,
and the adaptive module hϕ is trained on a few target data
samples to predict ∆x, aimed at compensating for the large
prediction errors due to the domain gap between source and
target data. To address continuous domain shifts during test
time, an AdaBN layer is incorporated into the adaptive mod-
ule. This layer updates its mean and variance based on batch
statistics during test time. The predicted δx is then added to
the original prediction made by fθ to compensate for inaccu-
rate predictions caused by operating condition domain shift.

Figure 1. General pipeline of reconstruction-based unsuper-
vised anomaly detection

Station Pump Seal Type Operator Maintenance Reports

A
A-A Type 1 primary& secondary seal replacement,

primary& secondary seal leakage

A-C Type 2 secondary seal replacement,
primary & secondary seal leakage

B
B-B Type 1 seal replacement

B-C Type 2 secondary seal replacement,
primary seal leakage

B-D Type 1 N/A

Table 1. Details on industrial pump dataset.

4. CASE STUDY ON REAL-WORLD PUMP DATASET

4.1. Industrial Pump Dataset

In this case study, we aim to achieve early and robust fault
detection while reducing false alarms under normal operat-
ing conditions. We evaluate our proposed method on a case
study of a real industrial dataset, highlighting its effective-
ness in achieving early fault detection and minimizing false
positive alarm rates. The experiments are conducted on a
real-world pump dataset, which comprises condition moni-
toring data collected from users with installations of various
types of pumps in different locations. As a result, these data
represent real-world, noisy data distributions and encompass
a wide range of diverse domains, including operating con-
ditions, environments, and pump types. In this dataset, we
apply the proposed methodology to obtain robust adaptation
across pumps, stations, and different pump types.

The selected dataset has two installation stations, with four
Heat Transfer Fluid pumps installed at each, and the pumps
are equipped with dual seals of two different types. Several
seal failures were recorded for seven out of eight pumps dur-
ing the data collection period. This dataset is marked by con-
tinuous changes in operating conditions as the controlled pa-
rameters are adapted by the operators regularly. We chose five
pumps from this dataset with enough recorded data samples
for validation for the case study, as summarized in Table 1. To
comply with data policy requirements, we use virtual dates
(year.month.day) to represent timelines. Fault durations re-
ported by on-site operators may lack precision due to delayed
inspections. Additionally, faults often occur significantly ear-
lier than actual failures, and systems do not immediately re-
turn to normal conditions after maintenance of those failures.
Given these factors, we consider data samples within a two-
month window of any reported faults as uncertain regarding
their health status. Therefore, we exclude them from both
training data and the subsequent evaluation of false alarms.

We categorize the input variables according to the sub-components
associated with the pumps of this dataset. The studied pumps
are composed of four main parts: pump bearings, pump driver
axial bearings, motor bearings, and seals. Since only seal
faults are reported in this dataset, we specifically focus on
performance and seal-related variables, while disregarding other
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Figure 2. Test-time domain Adaptation Anomaly Detection (TAAD). a) We first pretrain the reconstruction-based anomaly
detection model on the source dataset; b) For domain adaptative prediction, we add domain adaptive module and train it on the
target training data.

parameter groups. The used parameters are displayed in ta-
ble 2. Sensor monitoring data are available for both the drive
end (DE) side and non-drive end (NDE) side of the pumps, re-
flecting the state of the dual seal on either side and its primary
and secondary components. We exclude pump seal level vari-
ables due to their frequent manual adjustments, which do not
accurately reflect the operating status of the pump seal. In-
stead, we focus on variables within the pump performance
group, which represent the general operating condition of the
current pump. In all our experiments, we designate the seal
DE and NDE variables as x and the pump performance group
variables as w inputs, as introduced in Section 3.4.

Group Description Variable

Pump DE Seal Dual Seal
Parameters

pump DE seal pressure
pump DE seal pressure secondary

pump DE seal temperature
pump DE seal temperature secondary

pump DE seal level
pump DE seal level secondary

Pump NDE Seal Dual Seal
Parameters

pump NDE seal pressure
pump NDE seal pressure secondary

pump NDE seal temperature
pump NDE seal temperature secondary

pump NDE seal level
pump NDE seal level secondary

Pump
Performance

Pump
Operating
Conditions

pump uncorrected flow
pump speed

pump pressure suction
pump pressure case

pump uncorrected head
pump uncorrected shaft power

Table 2. Groups of input variables of the industrial pump
dataset

4.2. Details on Data Selection and Implementation

Robust fault detection is critical for newly established indus-
trial systems, posing a challenge due to the brief operational
history of such pumps. Our goal is to enable early fault de-
tection capabilities with minimal data. To address this, we
adopt a strategy where a source model is pretrained on a well-
established pump with abundant data samples, then adapted
to target pumps with limited operational data. This approach
aims to achieve robust fault detection on target pumps despite
the limited available data for these new installations.

We select pump B-C as our source domain, ensuring that
abundant normal data samples are available for training. We
train the source model on this pump using data samples from
a 12-months period and validate it with an additional 12 months
of healthy data. The remaining pumps are treated as target
domains, each with limited training samples. For each pump,
we use three months of normal data samples for training and
one month for validation. The training and testing data for
the target domains are summarized in Table 3. Due to sensor
failures, some data samples lack measurements related to seal
components. Considering that only four parameters are avail-
able for each seal, with each being crucial and independent
of the other parameters, we exclude any data samples with
missing measurements. We use the Min-Max Scaler to scale
the signals to a range between 0 and 1.

During test time, we combine the 3-month training and 1-
month validation data in the target domain to compute the
threshold r̄t training for anomaly detection. We set α = 1.5
for domain adaptation within the same installation station and
α = 2.0 for adaptation across stations, as the domain gap is
comparatively larger.

4.3. Evaluation Metrics for Robust and Early Detection

Given the real-world nature of our dataset, which features im-
balanced data, limited collected samples, and uncertain labels
for validation, traditional evaluation metrics such as F1 score
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and accuracy may not be applicable. To align with needs and
interests in real industrial application scenarios, we evaluate
TAAD from two perspectives: 1) minimizing false alarms on
normal data samples caused by domain shift and 2) achieving
early detection of significant system faults.

Unsupervised fault detection relies on the assumption that the
model learns the healthy data distribution and identifies de-
viating distributions as faults. As the operating conditions
of complex industrial systems vary, novel operating condi-
tions that have not been seen by the model are often iden-
tified as faults. Such false positive (FP) predictions need to
be avoided. To assess the effectiveness of TAAD in reduc-
ing false alarms due to domain shift, we test TAAD on data
collected under unseen healthy conditions with only positive
samples. Thus, any reported faults are FP. We identify peri-
ods of known normal operations and evaluate the prediction
results for these periods, excluding data samples from two
months before and after any reported fault to avoid periods
of potential pre-fault conditions. The evaluation periods vary
for each pump due to data sample availability limitations, as
detailed in Table 3. We determine the count of FP, which indi-
cates inaccurately predicted faults, and compute the false pos-
itive rate: FP

FP+TP (TP indicates true positives). The lower
the rate, the better our adaption to novel operating conditions
and our ability to avoid false alarms.

Faulty conditions vary in severity levels. The system or a
specific component can continue to operate despite the oc-
currence of faults, gradually degrading until a complete fail-
ure. This gradual degradation can lead to more severe faults,
ultimately stopping operation and potentially leading to sec-
ondary damages. Therefore, our goal is to achieve early de-
tection before the faults are observed and recorded. For early
detection of system faults, we summarize all reported faults
for each pump in Table 3. We conduct an evaluation starting
14 days before the recorded fault date to determine the earliest
point of detection achievable by TAAD. This evaluation, per-
formed daily as stated in section 3.3, focuses on the first pre-
dicted abnormal day. This value indicates how early we can
detect potential faults in the system and preemptively address
them. Additionally, we report the number of days detected
as anomalies within this 14-day window to assess detection
robustness. A higher count of abnormal days following the
initial fault observation indicates better robust detection ca-
pability in consistently issuing alarms, enhancing certainty to
involve on-site inspection and minimizing missed faults.

5. EXPERIMENTAL RESULTS PUMP CASE STUDY

Experiments on fault detection in this pump system, which
includes two installation stations, involve two distinct case
studies: intra-station transfer, where the domain gap is rel-
atively smaller, and inter-station transfer, which has a larger
domain gap. The proposed method is compared with AdaBN

and MMD, as well as with the baseline model without adap-
tation on the target data. Performances are reported based
on the evaluation metrics introduced in section ref. General
experiment results are summarized in Table 4.

5.1. Case 1: Transfer within Station

In the first case study, we evaluate the adaptation performance
of our TAAD applied to two pumps characterized by a rela-
tively small domain gap. These two pumps are installed at
the same station as pump B-C, on which we train the source
model.

Pump B-D: Two seal leakages were observed after the train-
ing time period of this target pump. We visualize this case
in Figure 3 for a better understanding. The yellow vertical
lines mark the recorded first occurrence data of the faults. We
scatter the predicted faults of each method on a daily basis.
In the case of the earlier secondary seal leakage, occurring 4
months after the adaptation, all methods managed to detect
it, however, TAAD not only detected it but also did so ear-
lier and the detection is more robust with more true positives.
Regarding the later primary seal leakage, which occurred 1
year 7 months after adaptation, all other methods failed to
trigger any alarms as the operating condition evolved. In con-
trast, TAAD successfully detected the reported fault 9 days in
advance, registering 8 abnormal days, thus demonstrating its
superior adaptability to long-term changes in operating con-
ditions. As AdaBN does not consider source data and thus
tends to overfit current batch statistics, it fails to detect any
fault. Furthermore, compared to MMD, TAAD effectively
reduced false alarms, highlighting the robustness of our pro-
posed approach, which benefits from avoiding overfitting to
unstable and unrepresentative measurement variables during
adaptation.

Pump B-B: A leakage in the secondary seal is reported 5
months after the training period for adaptation. Given the
proximity of the event and the small domain gap, all meth-
ods were capable of predicting the fault 14 days in advance.
In this scenario, TAAD significantly reduced the false alarm
rate from 0.15 to 0.02 by adapting to changing operating con-
ditions. Even when compared to MMD – which benefits from
access to the source domain’s training data for direct data dis-
tribution alignment – TAAD demonstrated superior adapta-
tion capabilities by avoiding overfitting to the system’s atyp-
ical operating status.

5.2. Case 2: Transfer across Stations

This case study involves transferring a model pre-trained on
pump B-C from station B to station A, anticipating a signif-
icantly larger domain gap due to variations in environments
and operational regimes across the stations.

Pump A-A: Two seal leakage faults were reported succes-
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target domain training time period
on target domain normal test time period fault type faulty time period

B-B 00.01.01-05.01 00.05.01-06.01 secondary seal replacement 00.10.07-10.14

B-D 00.01.01-04.01 00.11.01-01.01.01
secondary seal leakage 00.08.07-08.22
primary seal leakage 01.11.12-11.13

A-A 00.01.01-00.05.01 00.06.01-00.07.01
secondary seal leakage 00.08.13-08.15
primary seal leakage 00.10.14-11.17

A-C 00.01.01-00.05.01 01.07.01-01.08.01
primary seal leakage 00.07.10-08.10

secondary seal leakage 01.12.26

Table 3. Experimental settings on pump dataset. We report the training time period for domain adaptation for each pump and
the normal test time period with no observed faults in between for evaluating the false alarm rate. We report the fault type and
the observed faulty time period of each occurrence of fault to evaluate the detection days in advance and the number of detected
abnormal days within 14 days prior to the first reported date of the fault. The dates are represented by virtual dates with the
same duration and intervals as in the real dataset due to the data privacy policy.

target domain num of
normal samples

false alarm rate ↓
fault type

detection days in advance ↑ num of detected abnormal days
within 14 days ↑

baseline AdaBN MMD TAAD baseline AdaBN MMD TAAD baseline AdaBN MMD TAAD

B-B 1903 0.15 0.03 0.05 0.02 secondary seal replacement 14 14 14 14 12 12 12 12

B-D 2275 0 0 0.01 0 secondary seal leakage 2 0 2 4 1 0 1 3
primary seal leakage 0 0 0 9 0 0 0 8

A-A 1969 0 0 0.01 0.01
secondary seal leakage 1 0 10 11 1 0 2 4
primary seal leakage 0 0 0 1 0 0 0 1

A-C 2135 0 0 0 0.07
primary seal leakage 0 0 0 1 0 0 0 2

secondary seal leakage 0 0 0 14 0 0 0 6

Table 4. Experimental results on pump dataset. We compare our method with the baseline model w/o domain adaptation,
AdaBN, and MMD, and report the false alarm rate and detection days in advance on 4 pumps across two stations. The best
results are in bold.

sively 3 months after the training time period for adaptation
on this target pump. For the first secondary seal leakage fault,
TAAD achieved the earliest detection with the highest num-
ber of days detected as anomalies within this 14-day window
before the recorded fault and only 1% false alarms during
the normal operating period. Detecting the subsequent pri-
mary seal leakage proved much more difficult, as it occurred
shortly after the maintenance of the previous fault and oper-
ated under unstable and significantly different operating con-
ditions. Here, while all the compared methods failed to detect
the fault, our proposed method managed to raise an alarm on
the last day before the fault was reported.

Pump A-C: Two seal leakage faults were recorded. The other
methods failed to detect either fault, whereas TAAD success-
fully reported both. However, in this challenging scenario,
TAAD increased the false alarm rate by 7% due to the less
accurate adaptation.

Generally, experimental results confirm that detecting faults
is more challenging than in intra-station cases. Nonetheless,
TAAD successfully detects faults under these challenging sce-
narios, outperforming other methods.

5.3. Discussion

We demonstrate the effectiveness of TAAD to achieve early
and robust fault detections in the above two case studies. First,
TAAD significantly reduces the false alarm rate under easy-

to-detect scenarios compared to other methods, as proved in
case 1 on pump B-B, when the target pump is installed within
the same station with a smaller domain gap and the fault hap-
pens shortly after the adaptation training. Second, TAAD
remains effective and robust long after the initial adaptation
phase, as shown in the inboard seal leakage of pump B-D and
the outboard seal leakage of pump A-C. Those cases demon-
strate the ability of the proposed method to adapt to dynamic
evolving operating conditions Third, TAAD achieves robust
detection under significant domain shifts across different in-
stallation stations compared to other methods which fail to
detect before the occurrence of faults, as shown in the exper-
iments on pumps A-A and A-C.

In general, our TAAD achieves overall better performance
than the other methods achieving earlier detections, and pro-
viding more continuous and robust detection within the time
window before fault occurrences, all while maintaining a low
false alarm rate.

6. CONCLUSIONS

In this paper, we propose an effective continuous test-time
domain adaptation approach TAAD for efficient and robust
anomaly detection under evolving operating conditions. This
approach does not require labeled faulty data and needs only a
minimal amount of normal data samples for adaptation. Such
requirements align well with the practical needs of real-world
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(a)

(b)

(c)

(d)

Figure 3. Comparison of performance of (a) baseline (b) AdaBN (c) MMD (d) TAAD for fault detection on Pump B-D. The
number of predicted faults per day is plotted. The yellow lines mark the starting date of the reported faults. Red regions mark
the 14-day time window before the occurrence of reported faults, and the red dots within this region mark the first detected
abnormal day within this period.
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industrial systems. We compared our method with two other
representative domain adaptation methods. The experimental
results demonstrate TAAD’s effectiveness in achieving early
fault detection under significant domain shifts, both across
different stations and over time, while maintaining a low false
alarm rate.

Despite its satisfying performance, we see potential improve-
ments in the current method. First, our adaptive module con-
tinuously adapts to the current batch without considering the
size of the domain gap. We hypothesize that the performance
could be enhanced by re-training this module once a signif-
icant domain shift is detected. Second, the thresholding pa-
rameter α is currently determined empirically. An automatic
adjustment of this parameter, taking into account both dis-
tribution shifts and operational requirements, could optimize
the trade-off between minimizing false alarms and attaining
prompt fault detection.
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Michau, G., Palmé, T., & Fink, O. (2018). Fleet phm for crit-
ical systems: bi-level deep learning approach for fault
detection. In Proceedings of the european conference
of the phm society 2018 (Vol. 4, p. 403).

Nejjar, I., Geissmann, F., Zhao, M., Taal, C., & Fink, O.
(2024). Domain adaptation via alignment of operation
profile for remaining useful lifetime prediction. Relia-
bility Engineering & System Safety, 242, 109718.

Qian, Q., Qin, Y., Luo, J., Wang, Y., & Wu, F. (2023). Deep
discriminative transfer learning network for cross-
machine fault diagnosis. Mechanical Systems and Sig-
nal Processing, 186, 109884.

Qian, Q., Wang, Y., Zhang, T., & Qin, Y. (2023). Maximum
mean square discrepancy: A new discrepancy repre-
sentation metric for mechanical fault transfer diagno-
sis. Knowledge-Based Systems, 276, 110748.

Ramı́rez-Sanz, J. M., Maestro-Prieto, J.-A., Arnaiz-
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ABSTRACT

The complexity of modern electro-mechanical systems re-
quire the development of sophisticated diagnostic methods
like anomaly detection capable of detecting deviations. Con-
ventional anomaly detection approaches like signal process-
ing and statistical modelling often struggle to effectively han-
dle the intricacies of complex systems, particularly when deal-
ing with multi-variate signals. In contrast, neural network-
based anomaly detection methods, especially Auto-Encoders,
have emerged as a compelling alternative, demonstrating re-
markable performance. However, Auto-Encoders exhibit in-
herent opaqueness in their decision-making processes, hin-
dering their practical implementation at scale. Addressing
this opacity is essential for enhancing the interpretability and
trustworthiness of anomaly detection models. In this work,
we address this challenge by employing a feature selector
to select features and counterfactual explanations to give a
context to the model output. We tested this approach on the
SKAB benchmark dataset and an industrial time-series dataset.
The gradient based counterfactual explanation approach was
evaluated via validity, sparsity and distance measures. Our
experimental findings illustrate that our proposed counterfac-
tual approach can offer meaningful and valuable insights into
the model decision-making process, by explaining fewer sig-
nals compared to conventional approaches. These insights
enhance the trustworthiness and interpretability of anomaly
detection models.

Abhishek Srinivasan et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Modern electrical and mechanical systems are increasingly
equipped with more sensors, enabling the development of
new anomaly detection methods to identify and alert on de-
viations indicating failures or malfunctioning. Traditionally,
these anomaly detection systems were meticulously designed
for specific machines and specific components. However, this
requires deep domain knowledge and understanding of the
systems.

Recent data-driven approaches offer a compelling alternative.
They leverage generalizable algorithms that can learn from
data, eliminating the need for expert-crafted rules for each
specific scenario. This reduces the efforts required for build-
ing an anomaly detector. Neural networks, in particular, have
shown remarkable effectiveness in anomaly detection for var-
ious applications (Schmidl, Wenig, & Papenbrock, 2022).

Detecting anomalies in a system using sensor data is a task
within the field of multivariate time-series analysis. Current
trends of neural-network based time-series anomaly detection
methods fall under two main categories, i.e., forecast and re-
construction (Schmidl et al., 2022). The forecasting meth-
ods are state-based models, they learn the inherent mecha-
nism for forecasting the future states. When the observations
and model forecast deviate by a certain threshold an alarm is
raised. On the other hand, the reconstruction-based methods
learn to compress the normal data (fault free) to a lower di-
mensional latent space. This lower dimensional latent space
is transformed back to the original space. Any data with the
reconstruction error higher than a given threshold is consid-
ered anomalous.

In real settings just raising anomaly alert is not enough to act
upon it. A context is required, such as to know why the model
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is flagging an anomaly and which sensor data is behaving
anomalous. Neural networks are inherently black-box mod-
els and neural-network-based anomaly detection does not nat-
urally provide its internal decision-making process. Signifi-
cant progress has been done within the field of explainability
in this direction (Molnar, 2020). The explainability methods
can provide global or local explanations. The global expla-
nations aim to distill the model in an easily understandable
logic form (i.e., to explain the model mechanism). Whereas
the local explanations aim to explain the prediction of each
input sample, e.g., Saliency map and counterfactuals.

Counterfactual explanation is a promising tool that provides
context to the anomalies found by neural-network-based mod-
els. This explanation method is especially interesting for di-
agnostic applications, as their explanation focuses on answer-
ing the question: ‘why is sample A classified as an anomaly
and not normal?’. The usual approach for building counter-
factual explanations is to start from an anomalous sample and
optimise it via a cost function, towards a counterfactual sam-
ple which would be classified as normal by the same model
that classified it as anomalous. To our knowledge, there is
very limited amount of work focused on explaining time se-
ries anomaly detection (Haldar, John, & Saha, 2021; Sulem
et al., 2022). From the perspective of component diagnostics
and maintenance, the existing approaches have a crucial lim-
itation: they often modify all features within a time series to
explain the anomaly. The freedom of adjusting just any sig-
nal of the anomalous sample in the optimisation process to
change the classification averages out valuable information
and spreads it over many signals. This loss of information
makes it more difficult to interpret the generated counterfac-
tual and makes it less useful for root-cause analysis and diag-
nostics.

For gaining valuable insights into the anomalies, it is crucial
to know the specific features responsible for the anomaly and
the reason behind the model’s classification. As discussed
in the previous paragraph, conventional counterfactual expla-
nations solely address the reason behind the anomalies. In
this work, we propose an explanation method that identifies
the relevant features and simultaneously explains the reason
behind the anomaly detection for time series reconstruction-
based models.

Our approach was tested on the SKAB benchmark data (Katser
& Kozitsin, 2020) and on a real-world industrial time-series
data using Auto-Encoder based anomaly detection. The re-
sults show that counterfactual explanations, using the pro-
posed approach, provide insightful explanations about the na-
ture of the anomalies such as correlation loss and data drift.

2. RELATED WORK

Counterfactual explanation approaches in general have dif-
ferent focuses, including generating valid, sparse, actionable,

and causal explanations (Verma, Dickerson, & Hines, 2020).
Few address the problem of explaining time-series or anomaly
detection. Haldar et al. (2021) investigate the challenge of
generating robust counterfactuals for anomaly detection. They
define robust counterfactuals as counterfactual samples that
don’t flip back to the original class in the vicinity of a cer-
tain distance. They solve this by adding a constraint in the
cost function used for counterfactual optimisation. Sulem
et al. (2022) build upon the previous work DiCE (Mothilal,
Sharma, & Tan, 2020) for generating diverse counterfactual
bounds for time-series anomaly detection. They promote di-
versity on the generated counterfactual to address the prob-
lems of classical counterfactual explanation methods, i.e., gen-
erating only one of many possible solutions. Here, their focus
was to provide explanation bounds through diverse explana-
tions.

Other research, such as that by Li, Zhu, and Van Leeuwen
(2023) and Antwarg, Miller, Shapira, and Rokach (2021),
utilise feature importance, a different class of explanations,
for Auto-Encoder based anomaly detection. In contrast to
ours, their studies do not target time-series data. Antwarg et
al. (2021) use a Shapley-values-based approach (feature im-
portance) for Auto-Encoders to explain the impact of a cer-
tain feature on other features reconstruction. (Chakraborttii &
Litz, 2020) use feature level thresholds for explanations and
use feature selection to raise alarms individually. However,
they do not explain the reason behind the model prediction.

To our knowledge, previous work has focused on providing
either the relevant features or the reason behind anomaly de-
tection. Whereas our approach provides both; the relevant
features responsible for the anomaly and the reason why the
model classified it as an anomaly. These two factors play a
vital role in planing a meaningful action for diagnostics, such
as troubleshooting and maintenance scheduling.

3. PRELIMINARIES

3.1. Auto-Encoder (AE)

Auto-Encoders (AE) are unsupervised modeling approaches.
An AE model reduces the input, i.e., high dimensional data
x ∈ Rn into a low dimensional latent representation (encod-
ing) z ∈ Rk, where k < n, using an encoder E(x,we).
This encoder is followed by a decoder D(z, wd) which re-
constructs the input (decoding) x̂ ∈ Rn from the latent rep-
resentation. The encoder and decoder are neural networks
with parameters we and wd, respectively. The training pro-
cess optimises the parameters of the encoding and decoding
functions to provide a reconstruction x̂ as close as possible to
the input x. Some common loss functions utilised are mean
square error (MSE), mean absolute error (MAE), and Huber
loss.

To extend the AE approach to time-series data we use convo-
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lution-based architectures for the encoder and the decoder.
We pre-process the data into time-windows. A time-window
of length l is represented as X = (xt, ..., xt+l) ∈ Rn×l,
where xt ∈ Rn are the signal values at time t.

3.2. Gradient based Counterfactual Explainer

In this section, we outline the fundamental principles of gra-
dient based counterfactual explanation techniques. Counter-
factual explanations are generated by gradient optimisation
on the objective function posed by Wachter, Mittelstadt, and
Russell (2017). The objective function l(x′) written in gen-
eral form is given by

l(x′) = cost(x′,model(x′)) + (λ ∗ d(x, x′)) , (1)

where x is the sample, x′ is the generated counterfactual, λ is
the weighted factor and the function d(., .) is a distance mea-
sure. This objective function contains two parts, the first part
optimises to flip the class (from anomalous to non-anomalous)
of the provided anomalous sample and the second minimizes
the change between the explanation and the provided sample.
Other custom parts can be added depending on the use-case.

In addition to requiring an objective function, this approach
also requires the model to be differentiable to be able to use a
gradient-based optimisation for counterfactual generation. A
simple gradient descent optimisation is given by

x′i = x′i−1 − η.∇l(x′i−1) , (2)

where i is the optimisation iteration number, η is the step
length and x′i−1 is the sample form the previous iteration.

4. METHOD

Our approach has three different modules; illustrated in figure
1: 1) Anomaly detector, 2) Feature selector, and 3) Counter-
factual explainer. The anomaly detector detects the anoma-
lies. If the provided sample is anomalous, the feature selec-
tor provides a list of relevant features to be explained. The
counterfactual explainer builds an explanation on the relevant
signals that the feature selector selects.

The anomaly detector (module 1) uses an AE, with an en-
coder E and a decoder D. The encoder E consists of 1D-
convolution layers followed by fully connected layers, where-
as the decoder D uses a mirrored architecture starting with
fully connected layers and then 1-D transpose convolution
layers. The resulting outputs from the decoder have the same
dimension as the inputs. The AE is trained to minimize the
reconstruction loss using Huber loss given by

L(Y ) =
1

M

∑

ij

{
0.5 · yij/β, for√yij < β
√
yij − 0.5 · β, otherwise

, (3)

Figure 1. Our proposed methods has 3 modules, 1) Anomaly
detector, 2) Feature selector, and 3) Counterfactual explainer.
The samples that are classified anomalous by the anomaly
detector (module 1) are explained though the feature selec-
tor (module 2) and the counterfactual explainer (module 3).
The explainer (module 3) uses the selected features from the
feature selector and the input sample.

where Y = (X − X̂)2◦ ∈ Rn×l, the ◦ denotes element wise
operation, M is the number of elements of the matrix Y , X
is the input to AE and X̂ is the reconstruction from AE. Once
the AE is trained, the anomaly score (AS) for the validation
set is calculated using

AS(X, X̂) =MSE(X, X̂) +MAE(X, X̂) , (4)

where
{
X, X̂

}
∈ Rn×l and MSE(·, ·) is the mean square

error and MAE(·, ·) is the mean absolute error of all ele-
ments of the matrices. The mean squared error (MSE) ele-
ment emphasizes larger errors (greater than one) more heavily
than the mean absolute error (MAE). Conversely, MAE pe-
nalizes smaller errors (below one) more severely. This combi-
nation of properties contributes to the effectiveness of the AS.
Scores above a threshold are considered anomalous, where
the threshold is defined as θth = µscr+(k ∗σscr) and µscr is
the mean anomaly score on the validation set, σscr is the stan-
dard deviation of anomaly scores on the validation set and k
a parameter.

Explanations are provided by the next two modules only when
a given sample is classified as anomalous, i.e., when the AS
is above the defined θth. The feature selector (module 2) se-
lects features relevant to the anomaly. It processes the anoma-
lous time window and identifies the features as having either a
high or low impact on the anomaly. High-impact features are
defined as the ones that are over m × percentile(ASW, 90)
for more than 90% for the window duration, where we choose
m = 0.75 and ASW is the anomaly score for each feature
and time point in the window and is given by

ASW (X, X̂) = (X − X̂)2◦ + |X − X̂|◦ , (5)

3
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where
{
X, X̂

}
∈ Rn×l and the ◦ denotes element wise op-

eration. The key difference between equation (4) and equa-
tion (5) lies in the averaging of the error term. ASW in Equa-
tion (5) does not average the error, retaining the time and
feature dimension assists feature selector to select the right
features where anomalies are observed.

The counterfactual explainer (module 3) takes in an anoma-
lous time-window and the features selected by the feature se-
lector. The counterfactual generator uses a modified gradient
based explanation (see section 3.2). The difference is that the
counterfactual explanation is generated only for the selected
features by module 2. This is done by setting the gradients of
non-selected features to zero and using the same equation (2)
for optimisation, where the cost term is given by the AS in
equation (4) and the model given by the anomaly detection
AE model.

4.1. Evaluation Metrics

4.1.1. Anomaly Detection Evaluation

As a sanity check, the developed anomaly detection is eval-
uated with three different metrics; F1-score, False Positive
Rate (FPR) and Recall. Equations for these evaluation mea-
sures are provided by

F1-score =
TP

TP + (0.5 ∗ (FP + FN))
, (6)

FPR =
FP

FP + TN
, (7)

Recall =
TP

TP + FN
, (8)

where, TP, FP, TN, and FN refer to true positive, false posi-
tive, true negative, and false negative, respectively.

4.1.2. Explainability Evaluation

The developed explainability approach is evaluated with mea-
sures: validity, sparsity, and distance. Validity checks if the
generated counterfactual is valid, i.e., if the produced coun-
terfactual is classified as normal. Sparsity measures the pro-
portion of features changed in order to generate the counter-
factual. Finally, the distance provides the mean absolute error
distance between the sample and counterfactual.

validity(x′) =
1

N

N∑

i=1

χ (AS(x′i, AE(x′i)) < θth) , (9)

ind(x, x′) = χ(
1

l
(

l∑

j=1

|xijk − x′ijk|) > ϵ) ,

sparsity(x, x′) =
1

N

N∑

i=1

(
1

n

n∑

k=1

ind(xijk, x
′
ijk)

)
, (10)

d(x, x′) =
1

N

N∑

i=1


 1

l · n
∑

j,k

|(xijk − x′ijk)|


 , (11)

where {x, x′} ∈ RN×n×l

• N : the number of samples,
• l: the sequence length, i.e., the number of time steps per

sequence,
• n: the number of features,
• x: sample to be explained,
• x′: the counterfactual explanation,
• θth the threshold used for anomaly detector,
• ϵ: limit defining significant change.
• χ(c): the indicator function, returning 1 when its argu-

ment condition c is true, and 0 otherwise.
• AE(c): is the Auto-Encoder model.

The significant change ϵ in sparsity allows some wiggle room.
Typically, this parameter is defined based on the context and
the application. In this study ϵ is set to 0.005, i.e., any change
above is counted to be a significant.

5. EXPERIMENTAL SETTING

5.1. SKAB dataset

(Katser & Kozitsin, 2020) designed a benchmark dataset for
time-series anomaly detection. This data is collected from a
test-rig consisting of a water tank, valves, and a pump. In this
setup, the pump is specifically crafted to extract water from
the tank and subsequently circulate it back into the same tank.
This setup is equipped with numerous sensors like accelerom-
eter on the pump, pressure sensor after the pump, thermocou-
ple in water, current, and voltage, in total of 8 signals. The
collected data is organised in four parts ’no faults’, ’valve 1’,
’valve 2’, and ’others’. ’No fault’ has data from normal op-
eration. Data in ’valve 1’ and ’valve 2’ has data where the
corresponding valves were closed for partial duration. The
’others’ comprises data from multiple anomaly categories in-
cluding rotor imbalance, cavitation, and fluid leaks. Each file
in ’valve 1’, ’valve 2’ and ’others’ is part normal and part
anomalous. It is crucial to note that no two anomaly types
co-occur at the same time. The data utilization from different
parts of the dataset is summarised in the table 1. The files
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1 − 4 are omitted as the data is marked to be simulated and
has different characteristics than the other files. After pre-
processing into windows, the size of train, validation and test
set is 18584, 4658 and 10426 samples. Out of 10426 test
samples 3876 are anomalies.

Dataset Used as Files
Anomaly-free 80% Train, 20% Valid All

Valve 1 80% Train, 20% Valid Only normal behaviour
Valve 2 80% Train, 20% Valid Only normal behaviour
Others Test 5-14

Table 1. Table summarizing utilization of SKAB dataset used
in our experiments.

5.2. Real-world industrial Data

A commercial, real-world industrial data was collected from a
field truck. This data consists of recordings from sensors dur-
ing normal and anomalous behaviour. Similar to SKAB data,
this industrial data encompasses two anomaly types, with no
instances of simultaneous occurrences. Two different anoma-
lies were considered: “correlation loss” and “change in re-
lation”. A set of 11 relevant sensor signals were utilised for
the experiment. The training and validation processes were
conducted using two separate dataset containing only normal
data (i.e., no-fault data). The test set involved one no-fault
scenario and two anomalous runs, where the anomalies were
of a different nature. After pre-processing into windows the
number of samples in train, validation and test set is 3231,
1074 and 4355 samples. Out of 4355 test samples 1396 were
anomalies.

5.3. Model and Explainer Setup

To pre-process the data, we have used min-max normalisa-
tion. This involves using the minimum and maximum values
from the train-set to normalise the train, validation, and test
sets. The time-series sensor signals were pre-processed into
smaller chunks using a sliding window technique, with a win-
dow length l of 64 over n signals, n being 8 and 11 for SKAB
and real-world data respectively.

Experiments on the SKAB dataset employed a random seed
of 125. The AE model consists of: i) Encoder with 2 layers
of 1D convolution with 64 and 32 filters, kernel size of 5 and
stride of 2, followed by a fully connected layer of 8 units;
ii) Decoder consists of a mirrored architecture to the above,
starting with a dense layer of size 128 followed by 2 layers of
1D transpose convolution with 32 and 8 filters, kernel size of
5 and stride of 2. The model was trained for 150 epochs with
a batch size of 64, using Adam optimiser with a learning rate
of λ = 0.001, parameters β1 = 0.9, and β2 = 0.999, we set
k = 8 for calculating θth.

Experiments on the industrial employed uses a random seed
of 42. The AE model consists of: i) Encoder with 2 layers

of 1D convolution with 32 and 64 filters, padding 1, kernel
size of 5 and stride of 1, followed by 4 fully connected layers
with 64, 32, 16, and 8 units; ii) Decoder consists of the mir-
rored architecture, starting with 2 dense layers of size 16 and
32, followed by 2 layers of 1D transpose convolution with 64
and 32 filters, kernel size of 5 and stride of 1. The model
was trained for 100 epochs with a batch size of 32, using
Adam optimiser (AMSGrad variant) with a learning rate of
λ = 0.001, parameters β1 = 0.9, and β2 = 0.999, we set
k = 10 for calculating θth.

Experiments on both dataset used gradient descent optimisa-
tion for 75k iterations, with a learning rate of 0.01 for gener-
ating explanations in the the counterfactual explainer (module
3).

6. RESULTS AND DISCUSSION

This section is organized into two parts, first evaluation of the
anomaly detection and second the results from the counter-
factual explanations.

6.1. Results from Anomaly detection

Two AE models were trained, one for each dataset (SKAB
and industrial). The anomaly detection threshold was calcu-
lated on the validation set, as described in Section 4. The
trained models were then evaluated on their respective test
sets. The performance of the anomaly detector is summarized
in Table 2.

The SKAB dataset results show satisfactory performance with
F1-score and Recall around 0.7, along with a False Positive
Rate (FPR) of 0.24. The industrial dataset exhibits excep-
tional performance, achieving F1-score and Recall close to
0.9, with a perfect zero FPR. Anomaly detection confusion
matrix for both datasets can be found in Appendix A1.

Table 2. Evaluating anomaly detection models on SKAB and
industrial dataset.

Dataset F1-score Recall FPR
SKAB 0.68 0.72 0.24

Industrial data 0.94 0.88 0

6.2. Results from counterfactual Explanation

To demonstrate the effectiveness of our method in explain-
ing time-series anomalies, we compare it with two other ap-
proaches:

• Reconstruction: This method directly uses the AE re-
construction as the explanation for an anomaly. This is
based on the assumption that the reconstructions are pro-
jected onto the normal space, hence, a plausible counter-
factual explanation.
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• Counterfactual Explainer (Without Feature Selection):
This approach utilizes a counterfactual explainer (mod-
ule 3) to generate explanations directly for all features,
similar to gradient-based counterfactual explanations with
λ = 1 in equation (1). This essentially explains every
feature without any selection.

• Our Proposed Approach (With Feature Selection): This
combines a feature selector (module 2) and a counter-
factual explainer (module 3). The feature selector iden-
tifies the most relevant features, and the counterfactual
explainer then focuses its explanation on these selected
features only, with λ = 0 in equation (1).

We evaluate the explanations generated by these three ap-
proaches using three metrics: validity, sparsity, and distance.
These metrics are explained in detail in section 4.1.2. The
results of this comparison are presented in Table 3.

Table 3. Compilation of evaluation measures from SKAB and
industrial dataset. The arrow direction indicates if higher or
lower values that makes the approach better.

Dataset Method Validity ↑ Sparsity ↓ distance ↓
SKAB Reconstruction 1.0 1.0 0.246
SKAB Counterfactual 0.72 1.0 0.214
SKAB Ours 0.67 0.16 0.150

Industrial data Reconstruction 1.0 1.0 0.140
Industrial data Counterfactual 0.93 0.99 0.200
Industrial data Ours 0.99 0.17 0.156

Table 3 shows that our approach has reasonably good validity
and distance values compared to the other two simpler meth-
ods, but with a much better sparsity values than the other
methods. Note that the reconstruction method will always
have the highest possible validity value due to its nature that
the reconstructions are in the same manifold as training data.
So this method scores best in this validity measure on both
datasets. The counterfactual explainer (without feature selec-
tion) has higher validity measure than our proposed method
on the SKAB data. The counterfactual explainer (without fea-
ture selection) has an advantage of being able to vary all fea-
tures to provide explanations. This does not necessary mean
that the explanation will be more meaningful as by adjust-
ing all features simultaneously the information (the reasons)
about the raised anomaly gets diluted. Additionally, altering
all signals by the counterfactual explainer (without feature se-
lection) results in a the sparsity scores much worse than our
method (with feature selection). Scores form our approach
are consistently good in all three measures. To look further
into the meaningfulness of the given explanations we illus-
trate some scenarios in section 6.2.1.

We leverage UMAP embedding (a dimension reduction tech-
nique) to achieve two objectives: visualize the relationship
between the generated counterfactuals and the test data, and
evaluate the validity of the explanations independent of the
model used for counterfactual generation. In Figure 2 we

visualize the UMAP embedding trained on the test-set data
from the industrial dataset. Green points represent the non-
faulty data (based on ground truth), red points represent the
anomalies (based on ground truth), and yellow points rep-
resent the projected counterfactuals (generated form our ap-
proach). As evident from the Figure 2 the majority of coun-
terfactuals projected on top of the green normal data embed-
dings, indicating that they represent valid non-faulty behav-
iors. Only a few, 12 out of 1350 explanation are non-valid
(which is reflected in the validity measure). These non-valid
samples are projected onto the same space as the red faulty
data embedding. The lack of valid explanations can be due to
parameter selection, optimisation budgets and quality of the
feature selection. The validity in confusion-matrix form for
the SKAB test data is given in Table 6 in Appendix A2, the
validity confusion-matrix form for real-world industrial test
data is given in Table 7 in Appendix A2.

Figure 2. Industrial data: UMAP embedding learnt on no-
fault and anomalous data from the test set. Later the gener-
ated counterfactual is projected into the same embedding.

6.2.1. Plots showing insights on the explanations

In this section, we show two different explanation scenarios,
one from the industrial and the other from the SKAB dataset.
Scenario 1 is from the industrial dataset and is illustrated in
the Figure 3. The time-window plotted in Figure 3 was clas-
sified as anomalous and signal 7 was selected as high impact
feature. In Figure 3 we show the input signal 7 and signal 8
in blue and the counterfactual explanation in orange (see Fig-
ure 6 in the Appendix A3 for comparison with reconstruction
and counterfactual signals). The root cause of this anomaly
is a loss of correlation in signal 7. In normal (no-fault) data
signal 7 and signal 8 are correlated with a median correlation
coefficient of 0.99 and our explanation restored the correla-
tion between the signals on the anomalous data (of this type)
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Figure 3. Plot of counterfactual explanation generated by our
approach for industrial dataset. This plotted sample was of
correlation loss anomaly. Signal 7 and signal 8 in blue show
the input and signal 7 in orange shows the explanation.

to a median correlation coefficient of 0.93.

Figure 4 shows the second scenario from SKAB data. Here
the selected anomalous window belongs to the rotor imbal-
ance anomaly. This window was classified as anomaly and
our feature selector selected Acc1RMS and Acc2RMS sig-
nals which belong to the accelerometer sensors as high impact
features. The explanation from our approach indicates that
the vibrations observed by the accelerometer should be lower
to be classified as normal (see the Figure 5 in Appendix A3
to see the comparison with CF and reconstruction signals).

Figure 4. Plot showing the counterfactual explanations pro-
vided by our approach and the anomalous samples. Only the
high impact features that were explained are plotted.

In Scenario 1, the explanation hints that the the correlation
between signal 7 and signal 8 is broken by the flat line and
is confirmed by the correlation analysis. Combining this ex-

planation with the domain expertise, it is easy to conclude
that the sensor for signal 7 is broken. In Scenario 2 from the
explanation we know that we have too high vibrations that
often are originated by rotor imbalance. The explanations
provided by our approach are meaningful in the context of
system functionality and provides insights about the nature
of the anomaly when compared to other approaches. This is
due to it’s capacity to select features for explanation. The
comparison between different approaches can be seen in the
detail in the Figure 5 and Figure 6 provided in Appendix A3.

7. CONCLUSION

In summary, our work proposes a method for explaining AE-
based anomaly detection for time-series data, based on rele-
vant feature selection and counterfactual explanations. This
approach can answer on which features the anomaly is lo-
cated together with why the sample was classified as an ano-
maly. We find that these explanations have consistently good
scores in all three measures, validity, sparsity and distance,
which translates into useful and actionable insights from a
diagnostic perspective. We give two examples, one from a
benchmark dataset and one from an industrial dataset, on how
the proposed method can help to diagnose the classified anoma-
lies from the AE anomaly detection model. This contribution
serves as a diagnostic tool, enhancing our understanding and
analysis of anomalous events. Note that the quality of expla-
nation depends on the performance of the selected anomaly
detection model, parameter selection and the quality of fea-
ture selection.

Future work can focus on different optimisations for the ex-
planation, improve the quality of the feature selector and un-
derstand the model relation with the explainer.
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APPENDIX

A1. Confusion Matrix for the Anomaly detector

In this section, the confusion matrices for the anomaly detec-
tor on SKAB and real-world industrial dataset are presented
in Table 4 and Table 5, respectively.

Table 4. Confusion Matrix for SKAB test data.

A
ct

ua
l

v a
lu

e

Prediction outcome
P N Total

P′ 2788 1088 3876

N′ 1573 4977 6550
Total 4361 6065 10426

Table 5. Confusion Matrix for real-world industrial test data.

A
ct

ua
l

v a
lu

e

Prediction outcome
P N Total

P′ 1350 171 1521

N′ 0 2834 2834
Total 1350 3005 4355

A2. Confusion Matrix like expression for validity using
our approach

In this section, we show valid samples in a confusion-matrix
like setting for SKAB and real-world industrial dataset are
presented in Table 6 and Table 7 respectively.

Table 6. Validity confusion Matrix for SKAB test data.

M
od

el
Pr

ed
ic

tio
n

Prediction outcome
Valid Not Valid Total

True Positives 1885 903 2788
False Positives 1068 505 1573

Total 2953 1048 4361

Table 7. Validity confusion Matrix for real-world industrial
test data.

M
od

el
Pr

ed
ic

tio
n

Prediction outcome
Valid Not Valid Total

True Positives 1338 12 1350
False Positives 0 0 0

Total 1338 12 1350

A3. Plot comparing different approaches

A sample from rotor-imbalance anomaly is plotted along with
different explanations in the Figure 6. The plotted sample is
the same as in the Figure 4. In figure 6, explanations from
different methods are compared. It can be seen that other
approaches explains by changing all the features where as the
explanation from our approach changes only ACC1RMS and
ACC2RMS signals. In similar way , for the sample plotted
in the Figure 3, in Figure 5, we compare our approach with
other type of explanations.

8

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 272



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 5. Plot showing the explanations provided by recon-
struction, counterfactual(CF) based (i.e., without feature se-
lector) and our approach (i.e., with feature selector). Addi-
tionally the input sample is plotted.

Figure 6. Plot showing the explanations provided by recon-
struction, counterfactual(CF) based (i.e., without feature se-
lector) and our approach (i.e., with feature selector). Addi-
tionally the input sample is plotted.
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ABSTRACT 

Early damage detection in gearbox applications enables the 
implementation of Prognostics and Health Management 
(PHM). On the one hand, the earliest possible damage detec-
tion provides a precise in-sight into the state of health of a 
gearbox. In addition, early damage detection offers the pos-
sibility to slow down the damage progress and extend the re-
maining useful life (RUL) by intervening in the operating 
state at an early damage stage. The main contribution of this 
work is that existing Machine Learning tools are applied to 
the challenge of very early damage detection in gearboxes. 
Thus, the need for complex physically based data evaluation 
is avoided. The aim of this investigation is a comparison of 
two different machine learning approaches. To investigate 
the detection possibilities test bench experiments were con-
ducted with a single stage spur gearbox. For a comprehensive 
investigation, i.e. to detect damage under different operating 
conditions, the test runs are carried out at different damage 
sizes, speeds and torques. Based on the recorded vibration 
data, the damage detection is examined. Two machine learn-
ing approaches of anomaly detection are considered: An en-
coding approach and a loss approach. The same sparse auto-
encoder is developed for both approaches Both machine 
learning approaches are able to detect even the smallest dam-
age of about 0.5 % in most operating states. The loss ap-
proach allows the different damage stages to be recognized 
much more clearly than the encoding approach. The compar-
ison of the different approaches provides valuable insights for 
the further development of robust damage detection algo-
rithms. 

1. INTRODUCTION 

In many mobile and stationary applications, gearboxes are es-
sential for adjusting speed and torque. The greater the power 

that needs to be transmitted, the larger and more expensive 
the corresponding gear units are. In gearboxes one of the most 
common types of damage on a tooth flank is pitting. As soon 
as a pitting exceeds a size of 4 % in relation to the size of the 
tooth flank, the gear is considered as failed according to the 
2016 International Organization for Standardization [ISO] re-
port. Damaged tooth flanks are one of the leading reasons of 
downtime and each failure can be associated with high repair 
costs and time-consuming repair work. This particularly ap-
plies to large gearboxes and applications in remote locations, 
such as offshore wind power drives. For this reason, gear-
boxes in critical industrial applications are often equipped 
with condition monitoring systems (CMS) based on vibration 
sensors. They continuously monitor the current state of health 
of the gearbox. If the CMS detects damage, depending on the 
damage extent, a complete shutdown or a load reduction can 
be initiated. Expensive subsequent damage can be prevented 
and, in case of a reduced load, the remaining useful life 
(RUL) of the gearbox can be extended until it is repaired or 
replaced. However, the CMS’s are only developing their full 
potential if damage can be detected at a very early stage. 

The earliest possible damage detection in gearboxes enables 
comprehensive Prognostics and Health Management (PHM) 
to be implemented in gearbox applications. According to 
Goebel, Celaya, Sankararaman, Roychoudhury, Daigle and 
Abhinav (2017), a PHM approach consists of the 5 sub-areas 
of the system: data, diagnosis, prognosis, optimization and 
the system itself. The earliest possible damage detection af-
fects all of these areas. 

First of all, the health of a system, which according to the 
2017 Institute of Electrical and Electronics Engineers [IEEE] 
committee standards include all information regarding the 
functionality of a system, can be diagnosed much more pre-
cisely using the data of the system. The time gained by early 
damage detection can be used to acquire more data for a pos-
sible RUL prediction. Finally, health management of the sys-
tem can be realized. Health management describes the con-
trol of damage according to the aim of the PHM solution 
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(Bertsche & Dazer, 2023). A potential goal is the optimal uti-
lization of the RUL without unexpected failure until sched-
uled maintenance. For instance, this can be achieved by 
avoiding particularly damaging operating points. Another op-
tion is to implement an adaptive operating strategy that ena-
bles the extension of the RUL without any loss of perfor-
mance (Gretzinger, Lucan, Stoll & Bertsche, 2020). Due to 
the application of the operating strategy, the load on the pre-
damaged tooth is significantly reduced. This results in a slow-
down of the damage progress. The other teeth on the circum-
ference of the gear, which can still withstand the designated 
load, are being slightly overloaded. Thus, the load reduction 
is compensated without any overall power reduction. Control 
of the plant is carried out by a corresponding optimization 
algorithm. 

Overall, comprehensive PHM in gearbox applications offers 
numerous benefits. However, damage detection at a very 
early stage is a prerequisite. The aim of this study is to inves-
tigate the earliest possible damage detection in gearboxes 
with the help of machine learning. Experiments were con-
ducted on a test gearbox, vibration data was recorded and 
evaluated using an Autoencoder (AE). 

2. EXPERIMENTS AND MACHINE LEARNING APPROACHES 

Following, the test bench experiments for the earliest possi-
ble damage detection are described first. Subsequently, the 
developed autoencoder is presented. Finally, the two machine 
learning approaches (encoding and loss), which are based on 
the developed autoencoder, are discussed in more detail. 

2.1. Test Bench Experiments 

The test gearbox is designed as a single stage spur gear unit. 
Figure 1 illustrates the design of the test gearbox. The gear 
ratio is 𝑖 = 25/36 = 0.69 . More information on the test 
gears in (Binanzer, Merkle, Dazer & Nicola, 2023). 

The test bench is set up as an inline concept (2 motor con-
cept). The electric drive motor loads the transmission input 
side and the second electric motor loads the transmission out-
put side. Torque measuring shafts and incremental encoders 
for speed and angular position measurement are mounted be-
tween the electric motors and the test gearbox. Further infor-
mation on the test bench setup can be found in (Binanzer et 
al., 2023). The mounted test gearbox on the test bench is 
shown in figure 2. 

 
Figure 1. Design of the test gearbox. 

 
For lubricating the tooth contact, FVA reference oil no. 3 (see 
the 1985 Research Association for Drive Technology [FVA] 
report) is used. This is a mineral oil without additives with a 
viscosity corresponding to ISO 3448 (see the report (ISO, 
2010)). To ensure constant test conditions, the oil is precon-
ditioned in an external fluid tempering device to 29.54 °C. A 
gear pump supplies the oil to the tooth contact. A Pt100 tem-
perature sensor in the oil supply measures the oil temperature 
during the test runs. 

 
Figure 2. Test gearbox mounted. 

 
The test gearbox is equipped with a Sonotec T20 sensor. This 
ultrasonic accelerometer is located between the bearings and 
measures in the y-direction. The maximum measuring fre-
quency of the Sonotec T20 sensor is 100 kHz. However, the 
sampling rate of the Sonotec T20 sensor is limited to 96 kHz 
due to the maximum sampling rate of the data acquisition sys-
tem that is used (PAK MK2). Thus, according to the Nyquist-
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Shannon sampling theorem, maximum frequencies of 48 kHz 
can be measured with the system. 

Since the earliest possible damage detection using machine 
learning algorithms is to be investigated as part of this work, 
damage well below the 4 % criterion is examined. Artificially 
generated pitting serves as representative gear damage. Fol-
lowing a test series without damage, a total of three damage 
sizes are tested - small (S), medium (M) and large (L). The 
tests without damage serve as a reference and thus as a train-
ing data set for the machine learning algorithms. The pitting 
damage is applied using a numerically controlled milling ma-
chine. This ensures that the pitting can be easily and repro-
ducibly manufactured on the tooth flanks. A suitable radius 
milling cutter with a head diameter of 2 mm is used. Due to 
the higher number of load cycles, pitting damage usually oc-
curs on the pinion. Consequently, the artificial damage is ap-
plied on the pinion. The gear wheel remains undamaged. The 
pitting is located in the center of a tooth flank below the pitch 
circle. Figure 3 shows the pinion with the manufactured pit-
ting damage. 

 
Figure 3. Pinion of second gear pair with manufactured pit-

ting damage size L (1.72 %). 
 

For a comprehensive investigation, i.e. to detect damage un-
der different operating conditions, the test runs are carried out 
not only at different damage sizes, but also at different speeds 
and torques. In each of the four test series (no damage, S, M, 
L), six operating conditions are tested. These six operating 
states result from a combination of two speed levels (72 rpm, 
636 rpm) and three torque levels (18 Nm, 24 Nm, 30 Nm). 
Within a test series, the six operating states are varied ran-
domly in their sequence. The measurement duration for each 
test run is 100 s. Between the test series, the damage on the 
pinion is then artificially applied and milled larger. In this 
way, increasing damage on the pinion can be tested and the 
different damage sizes can be directly compared with each 
other. In order to achieve a more meaningful result, the tests 
are carried out with a total of three pairs of gears. The pinion 
and gear are always tested in the same pairs. This ensures that 
the algorithms do not detect any anomalies caused by manu-
facturing tolerances or material deviations of different pinion 
- gear combinations. The only difference between the test 

series of a gear pair is the increasing damage on the pinion. 
The surface area of each pitting is measured after the milling 
process using a digital microscope (see table 1). 

 

2.2. Autoencoder 

A test run duration of 100 s and a sample rate of 96 kHz result 
in 9,600,000 data points per test (acceleration over time). 
These data points are then converted into the frequency spec-
trum. For this purpose, Fast Fourier Transforms (FFT) of 
10,000 data points each are performed, thus 960 FFT's per 
test. Each FFT results in 5,001 frequency points. The two ro-
tational speeds of the tests result in the following: At a speed 
of 72 rpm, approximately 11.6 FFTs are conducted for each 
revolution of the pinion. At a speed of 636 rpm, approxi-
mately 1.3 FFTs are generated for each revolution of the pin-
ion. 

The AE developed in this study emerged from literature re-
search and empirical hyperparameter tuning. It is a multilayer 
AE, which consists of three joined AEs, each with a hidden 
layer, see figure 4. The number of units in layer 𝑙 is defined 
as 𝑠𝑙. The input of the first AE used in this study contains 
𝑠1 = 5,001 units corresponding to the number of frequency 
points per FFT. Accordingly, layer 3 and 5 have 𝑠3 = 𝑠5 =
5,001 units. The first hidden layer (layer 2) has 𝑠2 = 560 
units, the second hidden layer (layer 4) has 𝑠4 = 200 units. 
Finally, the third hidden layer (layer 6) learns a compressed 
representation of the frequency spectrum with 𝑠6 = 50 fea-
tures. The output after the last decoding process again has 
𝑠7 = 5,001 frequency points. The aim of the AE is to ensure 
that the output �̂� is the most accurate possible reproduction 
of the input 𝑥. For this purpose, the AE has to learn a function 
ℎ𝑊,𝑏(𝑥) with the parameters 𝑊 and 𝑏, for which the follow-
ing is valid: 

 ℎ𝑊,𝑏(𝑥)  ≈ 𝑥 (1) 

Table 1. Pitting surface areas. 
 

Gear 
pair 

Pitting 
level 

Pitting 
surface in 
mm2 

Relative 
surface 
area in % 

1 S 0.48 0.61 
1 M 0.97 1.23 
1 L 1.40 1.77 
2 S 0.40 0.51 
2 M 0.92 1.16 
2 L 1.36 1.72 
3 S 0.62 0.78 
3 M 1.01 1.28 
3 L 1.40 1.77 
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Since the AE in this paper has a total of 7 layers, layer 1 cor-
responds to the input and layer 7 to the output: 

 𝑥 = 𝑥(1) (2) 

 �̂� = ℎ𝑊,𝑏(𝑥) = 𝑥(7) (3) 

 
Figure 4. Structure of the Autoencoder. 

 
For parameter 𝑊, the notation 𝑊𝑖,𝑗

(𝑙) is used and this is asso-
ciated with the weighting of the connection between unit 𝑗 in 
layer 𝑙 and unit 𝑖 in layer 𝑙 + 1 (Ng, 2011). Parameter 𝑏𝑖

(𝑙) is 
the bias associated with unit 𝑖  in layer 𝑙 + 1  (Ng, 2011). 
Eq. (4) and (5) are valid to the layers of the AE. For this, 𝑎𝑠𝑙

(𝑙) 
corresponds to the output of the hidden unit 𝑠𝑙 in layer 𝑙 =

2, 4, 6 and 𝑥𝑠𝑙

(𝑙) corresponds to the output of unit 𝑠𝑙  in layer 
𝑙 = 3, 5, 7. 

 𝑎𝑠𝑙

(𝑙)
= 𝑓 (∑ 𝑊𝑠𝑙,𝑖

(𝑙−1)
𝑥𝑖

(𝑙−1)

𝑠𝑙−1

𝑖=1

+ 𝑏𝑠𝑙

(𝑙−1)
) (4) 

 𝑥𝑠𝑙

(𝑙)
= 𝑓 (∑ 𝑊𝑠𝑙,𝑖

(𝑙−1)
𝑎𝑖

(𝑙−1)

𝑠𝑙−1

𝑖=1

+ 𝑏𝑠𝑙

(𝑙−1)
) (5) 

The function 𝑓(𝑧) with 𝑓: ℝ → ℝ is called activation func-
tion. The sigmoid function (Eq. (6)) is chosen as the activa-
tion function in this study. This function can assume values 
between 0 and 1, see figure 5. 

 𝑓(𝑧) =
1

1 + 𝑒𝑥𝑝 (−𝑧)
 (6) 

 
Figure 5. Sigmoid function. 

 
The AE requires training with a training data set with 𝑚 
training examples. The data from the tests without damage 
serves as the training data set. Thus, the training data set con-
sists of 960 FFTs each (𝑚 = 960). If training data set number 
𝑚 is used as input, then 𝑥(𝑙),(𝑚) results in layer 𝑙. The three 
AEs are trained one after the other. The corresponding loss 
function 𝐽𝐴𝐸(𝑊, 𝑏) with 𝐴𝐸 = 1, 2, 3 is defined for training 
the AE for both approaches (encoding and loss) and consists 
of three terms: 

 

𝐽𝐴𝐸(𝑊, 𝑏)

= [
1

𝑚
∑ (‖𝑥(𝑙+2),(𝑖) − 𝑥(𝑙),(𝑖)‖

2
)

𝑚

𝑖=1

]

+  𝜆 ∑ ∑ ∑(𝑊𝑗𝑖
(𝑙)

)
2

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑙+1

𝑙

+ 𝛽 ∑ 𝐾𝐿(𝜌‖�̂�𝑗)

𝑠𝑙

𝑗=1

 

(7) 

 

𝑤𝑖𝑡ℎ  

𝑙 = 1 𝑓𝑜𝑟 𝐴𝐸 = 1;  

𝑙 = 3 𝑓𝑜𝑟 𝐴𝐸 = 2;  

𝑙 = 5 𝑓𝑜𝑟 𝐴𝐸 = 3 

 

The first term of the loss function is the average sum-of-
squares error term (Ng, 2011). It describes the deviation of �̂� 
from 𝑥 and can therefore also be described as a reconstruc-
tion error. The second term is the regularization term, also 
known as the weight decay term, which tends to reduce the 
size of the weights 𝑊 and helps to prevent overfitting (Ng, 
2011). It therefore ensures that the network does not simply 
memorize the data, but learns the underlying structure. The 
weight decay parameter 𝜆 determines the relative importance 
of the second term. 𝜆 = 0.001 is selected. 

Additionally, a sparsity constraint is imposed on the hidden 
units of layer 2, 4 and 6. Therefore a sparse AE is obtained 
and the third term of the loss function is the sparsity penalty 
term. With 𝛽 = 1, the weighting of the term corresponds to a 
single weighting compared to the first term. A sparsity con-
straint permits the AE to learn the underlying structure in the 
data even with a large number of hidden units. For this 
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purpose, the average activation of unit j in the hidden layer 𝑙 
is calculated: 

 �̂�𝑗 =  
1

𝑚
 ∑[𝑎𝑗

(𝑙)
(𝑥(𝑖))]

𝑚

𝑖=1

 (8) 

This average activation of the neuron should match the se-
lected sparsity constraint 𝜌: 

 �̂�𝑗 =  𝜌 = 0.3 (9) 

The sparsity penalty term penalized if �̂�𝑗  deviates signifi-
cantly from 𝜌. The penalty term is based on the Kullback-
Leibler (KL) divergence: 

 

∑ 𝐾𝐿(𝜌‖�̂�𝑗)

𝑠𝑙

𝑗=1

=  ∑ 𝜌 𝑙𝑜𝑔
𝜌

�̂�𝑗

+ (1 − 𝜌) 𝑙𝑜𝑔
1 − 𝜌

1 − �̂�𝑗

𝑠𝑙

𝑗=1

 

(10) 

The aim of training the AE is to minimize the function 
𝐽(𝑊, 𝑏) as much as possible. 𝐽(𝑊, 𝑏) becomes as small as 
possible when an optimal combination of the parameters 𝑊 
and 𝑏 is found. First, these parameters are randomly initial-
ized, then backpropagation is applied. During backpropaga-
tion, the connections of the AE's units are either strengthened 
or weakened via the weightings to further minimize the loss 
between input and output. Each AE is trained for 100 itera-
tions. 

2.3. First evaluation approach: Encoding 

After training the AE on the basis of the vibration data of a 
test without damage, the trained AE is used to evaluate all 
data of an individual operating condition of this gear pair. For 
this purpose, the recorded vibration data of the test without 
damage and the three tests with damage sizes S, M and L are 
appended to each other and an FFT is generated from 10,000 
data points each. This results in a total of 3,840 FFTs. These 
are each encoded to 50 features using the trained AE. A Prin-
cipal Component Analysis (PCA) is then used to determine a 
one-dimensional real number from these 50 features. Accord-
ing to the number of FFTs, 3,840 real numbers are obtained. 
The first 960 one-dimensional representations of the fre-
quency spectrum are those of the test without damage. The 
data points are normalized between 1 and 2. 

The data points of the test without damage are transformed 
using a Box Cox transformation. The aim is to modify the 
data in such a way that it is closer to a normal distribution. 
This provides a standardized baseline for the comparison 
with the untransformed data from the tests with damage. For 
the comparison, the arithmetic mean 𝜇 and the standard devi-
ation 𝜎  are determined from the transformed data without 
damage. Three intervals are defined based on the standard de-
viation: 

 1st interval: 𝜇 ± 𝜎 (11) 

 2nd interval: 𝜇 ± 2𝜎 (12) 

 3rd interval: 𝜇 ± 3𝜎 (13) 

In case of an optimal normal distribution, 68.27 % of the data 
are in the first interval, 95.45 % in the second interval and 
99.73 % in the third interval, see figure 6. 

 
Figure 6. Normal distribution. 

 
Based on the determined intervals, it is calculated how many 
of the 960 data points each of the tests with damage size S, 
M and L are outside the intervals. Since the limits of the in-
tervals are further apart as the interval increases, the propor-
tion of data points of the tests with damage that are outside 
the limits decreases. The first interval will therefore always 
show a greater deviation between tests without and with dam-
age than intervals 2 and 3. 

However, the different machine learning approaches (encod-
ing and loss) can be compared with each other on the basis of 
the interval method, as it is used in both approaches. If a de-
viation between the test without and with damage can still be 
detected with the second or third interval in one approach, the 
damage is more clearly detectable and the approach is there-
fore more suitable. The approaches can therefore also be 
compared in terms of how much the detectability decreases 
with increasing interval. The less influence the used interval 
of an approach has on the detectability, the more suitable the 
approach is. 

In the context of this paper, no fixed threshold for the data 
proportion outside the limits is to be defined with which dam-
age can be detected. Instead, the two approaches (encoding 
and loss) are to be evaluated and compared with each other 
based on the predefined intervals. 

2.4. Second evaluation approach: Loss 

In the second evaluation approach, the AE is also trained on 
the basis of the vibration data from a test without damage. All 
vibration data from the test without damage and the three 
damage variables S, M and L of the individual operating state 
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are then appended to each other. After 3840 FFTs have been 
generated from 10,000 data points each, these are encoded 
and decoded using the trained AE. The FFTs produced by the 
AE are then compared to the original FFTs by calculating the 
mean squared error (first term of the loss function, see Eq. 7). 
The loss approach, such as the encoding approach, provides 
960 real numbers per test without damage, damage size S, M 
and L. Based on this, a Box Cox transformation can be per-
formed again on the data without damage and the three inter-
vals can be determined (see Eq. (11), (12) and (13)). Subse-
quently, the proportion of data points outside the intervals is 
calculated for each of the tests with damage. 

3. RESULTS 

The results of the encoding and the loss approach are pre-
sented below. 

3.1. Encoding approach 

Figures 7 to 12 show the results of the encoding approach of 
the first gear pair for each operating condition. The lower and 
upper limits of the first interval are determined on the data 
without damage (see Eq. (11)). The upper and lower limits 
are marked with a red line. All blue data points are within this 
interval, all orange ones outside. For the damage sizes S, M 
and L, the proportion of data points inside and outside the 
interval is calculated. 

For all operating conditions, it can be seen that the plotted 
data points per damage size scatter significantly. Overall, this 
applies even more to the higher speed level of 636 rpm than 
to the lower speed level of 72 rpm. The most difficult pitting 
to detect using the encoding approach for the first gear pair is 
pitting M at 72 rpm and 24 Nm (see figure 8). Here, only 
20.2 % of the data points lie outside the first interval. The 
difference is therefore not as significant as with the other pit-
ting sizes or operating conditions, for which at least 33.5 % 
of the data points always lie outside the interval. 

 
Figure 7. Encoding approach, 1st gear pair, 72 rpm, 18 Nm, 

1st interval. 

 
Figure 8. Encoding approach, 1st gear pair, 72 rpm, 24 Nm, 

1st interval. 
 

 
Figure 9. Encoding approach, 1st gear pair, 72 rpm, 30 Nm, 

1st interval. 
 

 
Figure 10. Encoding approach, 1st gear pair, 636 rpm, 

18 Nm, 1st interval. 
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Figure 11. Encoding approach, 1st gear pair, 636 rpm, 

24 Nm, 1st interval. 
 

 
Figure 12. Encoding approach, 1st gear pair, 636 rpm, 

30 Nm, 1st interval. 
 

In addition to the encoding evaluation of the first gear pair 
using the first interval, the second and third intervals are also 
determined (see Eq. (12) and (13)). As mentioned, this is only 
used for comparison with the loss approach, as the detecta-
bility decreases as the interval increases. However, the aim is 
to evaluate how much the detectability decreases. For the op-
erating condition 72 rpm and 18 Nm, this results in figure 13 
(second interval) and figure 14 (third interval). 

While for the first interval only 61.2 % of the data points 
without damage are within the limits (see figure 7), in the sec-
ond interval 99.1 % (see figure 13) and in the third interval 
all data points (see figure 14) are within the limits. As the 
limits therefore have a greater distance, it is more difficult to 
detect a difference to the data points of the experiments with 
damage. Even in the evaluation with the second interval, only 
1.7 % of the data points for pitting size S are outside the in-
terval (see figure 13). If the third interval is used for the 

evaluation, no difference is recognizable, as all data points of 
pitting S are within the interval (see figure 14). Pitting sizes 
M and L are also more difficult to detect as the interval in-
creases. 

 
Figure 13. Encoding approach, 1st gear pair, 72 rpm, 18 Nm, 

2nd interval. 
 

 
Figure 14. Encoding approach, 1st gear pair, 72 rpm, 18 Nm, 

3rd interval. 
 

Figure 15 presents the evaluation of the encoding approach 
for all operating conditions of the first gear pair. The propor-
tion of data points for damage sizes S, M and L that are out-
side the respective interval is shown. 

When using the second interval, some pitting can no longer 
be detected (pitting S at 72 rpm and 18 Nm, pitting M at 
72 rpm and 24 Nm, pitting S and L at 636 rpm and 30 Nm) 
or less clearly (13.4 % for pitting M at 72 rpm and 30 Nm). 
For all other pitting and operating conditions, at least 40.8 % 
of the data points are always outside the limits of the second 
interval. If the third interval is used for detection, the detect-
ability of the pitting decreases significantly. 
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Figure 15. Encoding approach, 1st gear pair. 

 
Figures 16 and 17 present the results of the encoding ap-
proach for the second and third gear pair in all operating con-
ditions. 

Considering the second and third gear pair, it is noticeable 
that the global tendency of the encoding approach corre-
sponds to that of the first gear pair. When using the first in-
terval, at least 39.8 % of the data for the second gear pair is 
always outside the limits, with one exception (28.6 % at 
72 rpm and 30 Nm). For the third gear pair, a minimum of 
44.9 % of the data is always outside the limits when using the 
first interval. If the second and third intervals are considered, 
the proportion of data points outside the limits decreases sig-
nificantly for certain operating conditions. Especially with 
the third interval, some damage can no longer be detected. 

 
Figure 16. Encoding approach, 2nd gear pair. 

 

 
Figure 17. Encoding approach, 3rd gear pair. 

 

3.2. Loss approach 

The results of the loss approach of the first gear pair for each 
operating condition are given in figures 18 to 23. Again, the 
lower and upper limits of the first interval are determined us-
ing the data without damage (see Eq. (11)) and marked with 
a red line. The proportion of data points within and outside 
this interval is identified. 

Overall, the results of the loss approach at the low speed level 
of 72 rpm have a low scatter of the data points. At the higher 
speed level of 636 rpm, larger scatter is recognizable. In all 
operating conditions, the data points of all pitting sizes are at 
least 96.8 % outside the limits – except for pitting L at oper-
ating condition 636 rpm and 18 Nm (77.0 %, see figure 21) 
and operating condition 636 rpm and 30 Nm (52.7 %, see fig-
ure 23). Overall, all pitting of the first gear pair can therefore 
be detected using the first interval of the loss approach. 

 
Figure 18. Loss approach, 1st gear pair, 72 rpm, 18 Nm, 1st 

interval. 
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Figure 19. Loss approach, 1st gear pair, 72 rpm, 24 Nm, 1st 

interval. 
 

 
Figure 20. Loss approach, 1st gear pair, 72 rpm, 30 Nm, 1st 

interval. 
 

 
Figure 21. Loss approach, 1st gear pair, 636 rpm, 18 Nm, 1st 

interval. 

 
Figure 22. Loss approach, 1st gear pair, 636 rpm, 24 Nm, 1st 

interval. 
 

 
Figure 23. Loss approach, 1st gear pair, 636 rpm, 30 Nm, 1st 

interval. 
 

In addition to the first interval, the second and third intervals 
are also determined for the loss approach (see Eq. (12) and 
(13)). The evaluation of all operating conditions of the first 
gear pair is illustrated in figure 24. The proportion of data 
points for damage sizes S, M and L that are outside the re-
spective interval is shown. 

When using the second interval, pitting L at operating condi-
tion 636 rpm and 30 Nm is the worst detectable pitting with 
only 16.4 % of the data outside the interval. Otherwise, at 
least 51,3 % of the data is always outside the limits. Using 
the third interval, pitting L is not detectable at operating con-
dition 636 rpm and 30 Nm. Here, only 0.3 % of the data is 
outside the limits. Overall, pitting is more difficult to detect 
when using the third interval, especially at the higher speed 
level of 636 rpm. 
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Figure 24. Loss approach, 1st gear pair. 

 
Figures 25 and 26 present the results of the loss approach of 
the second and third gear pairs for all operating conditions. 

When using the first interval, at least 89.7 % of the data for 
the second gear pair is always outside the limits. For the third 
gear pair, a minimum of 57.7 % of the data is always outside 
the limits when using the first interval. If the second interval 
is calculated, 52.2 % of the data for the second gear pair is 
always outside the limits and 13.7 % for the third gear pair. 
When using the third interval, a decrease in the proportion of 
data points outside the limits for individual operating states 
and pitting sizes can be seen, similar to the first gear pair. 

 
Figure 25. Loss approach, 2nd gear pair. 

 

 
Figure 26. Loss approach, 3rd gear pair. 

 

4. DISCUSSION 

Overall, the comparison of the encoding and loss approach 
shows that the data points scatter considerably more in the 
encoding approach. As a result, the upper and lower limits of 
the first interval are significantly further apart in the encoding 
approach than in the loss approach. When using the second 
and third intervals, this results in greater differences with the 
encoding approach because the limits are then frequently so 
far apart that pitting detection is no longer possible. 

However, if the first interval is used for pitting detection with 
the encoding approach, a minimum of 20.2 % of the data 
points are always outside the limits for the first gear pair, 
39.8 % for the second gear pair and 44.9 % for the third gear 
pair. 

In total, the loss approach shows significantly better pitting 
detection than the encoding approach. When using the first 
interval, a minimum of 52.7 % of the data points are always 
outside the limits for the first gear pair, 89.7 % for the second 
gear pair and 57.7 % for the third gear pair. 

A total of 18 cases are examined with the two approaches (3 
pitting sizes in 6 operating states). In order to be able to com-
pare the approaches even better, it is considered in how many 
of the 18 cases there is a significant deviation - i.e. at least 
50 % of the data points outside the limits. The result can be 
found in figure 27. 

For the first interval of the encoding approach, between 14 
and 16 cases have a deviation greater than 50 %, depending 
on the gear pair. With the first interval of the loss approach, 
all damage sizes in all operating states of all gear pairs have 
a minimum deviation of 50 %. With the second interval of 
the encoding approach, the 50 % criterion only applies to 10 
to 13 cases, depending on the gear pair. With the loss ap-
proach, it still applies to a minimum of 17 cases. When using 
the third interval, the number of cases in which at least 50 % 
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of the data points lie outside the interval is reduced for the 
encoding approach to between 5 and 12 cases. Large differ-
ences within the gear pairs can therefore also be seen here. In 
contrast, the loss approach shows 13 to 15 cases. 

 
Figure 27. Number of cases with at least 50 % of the data 

outside the interval, per approach and gear pair (g.p.). 
 

Overall, the loss approach is much better suitable for recog-
nizing a clear difference between the tests without and with 
damage. In the second interval of the loss approach, a mini-
mum of 50 % of the data points are still outside the limits in 
at least 17 cases. The encoding approach does not even 
achieve this for the first interval. In addition, the loss ap-
proach is not only less sensitive to different damage sizes and 
operating conditions, but also to different gear pairs. How-
ever, this paper does not consider how well false positives 
can be excluded with the two approaches. 

Regardless of the comparison of the two approaches, even the 
smallest investigated pitting with a size of 0.61 % (1st gear 
pair), 0.51 % (2nd gear pair) and 0.78 % (3rd gear pair) could 
be detected in the context of this study. In contrast to the ap-
proach presented in (Binanzer et al., 2023), in which an AE 
was combined with a Long Short Term Memory (LSTM) net-
work, detection is also possible with a purely unsupervised 
algorithm. This offers the advantage for the application that 
no labeled training data is required. Only data from a test 
without damage is required for training. 

The detectable pitting sizes in the scope of this work are a 
significant improvement on other investigations. There are 
various approaches for pitting detection in gearboxes using 
vibration sensors. The approaches differ on the one hand in 
the investigated pitting size and in the methods of sensor data 
evaluation. 

Qu, M. He, Deutsch and D. He (2017) investigated one row 
of pitting damage along the tooth width of one tooth. A 
stacked autoencoder network was used to perform the dic-
tionary learning in sparse coding and automatically extract 
features from the raw vibration data. With these features a 

backpropagation neural network was trained to identify the 
damage. 

Fan, Zhou, Wu and Guo (2017) developed a gear damage de-
tection and localization approach by analyzing the vibration 
signal of an individual tooth and Support Vector Machines 
(SVM). The dispersion degree and vibration accelerations of 
the waveform of an individual gear tooth were studied to in-
vestigate the characteristics of gear tooth under normal, small 
failure (< 5 % damaged tooth area) and serious failure (> 5 % 
damaged tooth area) conditions. 

An unsupervised feature extraction method called disentan-
gled tone mining was presented by Qu, Zhang, M. He, D. He, 
Jiao and Zhou (2019). This method was able to identify the 
fault level directly from the frequency spectrum of the meas-
ured vibration data. Pitting sizes between 4.33 % and 
24.91 % were investigated in a single stage spur gearbox. 

Medina, Cerrada, Cabrera, Sanchez, Li and Oliveira (2019) 
used a LSTM network for classifying nine levels of pitting. 
The smallest investigated pitting had a size of 4.16 %. 

Pitting sizes of less than 1 % were detected by Grzeszkowski, 
Nowoisky, S., Scholzen, Kappmeyer, Gühmann, Brimmers 
and Brecher (2020) using a SVM classifier. A disadvantage 
of the SVM classifier is that it is a supervised algorithm and 
therefore requires labeled training data. 

Damage detection with purely physically based data evalua-
tion, with pitting sizes between 6.3 % and 41.7 %, was pre-
sented by Sowana und Chandrasekaran (2020). In each case, 
the root mean square (RMS) value of the structure-borne 
noise data in the time domain of the undamaged and damaged 
gear was compared. 

Sarvestani, Rezaeizadeh, Jomehzadeh and Bigani (2020) also 
examined the detection of naturally occurring pitting dam-
ages with a size of 30 %, 60 % and 90 % using purely physi-
cally based methods. The frequency spectrum of the struc-
ture-borne noise data was divided into six ranges. The dam-
age was best detected in the second gear mesh harmonic 
range. 

Häderle, Merkle and Dazer (2024) presented another physi-
cally based data analysis approach. It is shown that the great-
est percentage difference between undamaged and damaged 
gears can be determined for the harmonics of the gear mesh 
frequency (GMF) and the sidebands between 24,000 Hz and 
40,300 Hz. Thus, it was possible to detect very small pitting 
sizes between 0.42 % and 1.83 %. 

5. CONCLUSION 

In order to increase the service life of gearboxes, avoid unex-
pected failures and thus reduce overall operating, mainte-
nance and labor costs, comprehensive PHM has to be imple-
mented in gearbox applications. Adaptive operating strate-
gies can even extend the RUL without any loss of perfor-
mance. In order for the PHM of gearboxes to achieve its full 
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potential, damage detection at the earliest possible stage is 
essential. 

In this study, two unsupervised machine learning approaches 
(encoding and loss approach) were developed and the detec-
tion of artificially manufactured damage on the tooth flank of 
a test gearbox was investigated. 

In particular, the loss approach is more capable of identifying 
a difference between no damage and damage than the coding 
approach, regardless of the size of the pits and operating con-
ditions. The loss approach is also less sensitive to different 
gear pairs, which have slightly different properties due to ma-
terial and manufacturing tolerances. 

Overall, it can be stated that the main contribution of this 
work is that existing Machine Learning tools have been ap-
plied to the challenge of a very early damage detection in 
gearboxes. Without the need of complex physically based 
evaluation methods of the vibration data, the smallest pitting 
of about 0.5 % could be detected regardless of the operating 
condition. The use of the sparse AE was described in detail 
and two evaluation methods were compared. 
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ABSTRACT

Combining physical and domain knowledge in artificial in-
telligence (AI) models has been gaining attention in various
fields and applications. Applications in machine prognos-
tics and health management (PHM) are natural candidates
for such hybrid approaches. In particular, they can be effi-
ciently exploited for high fidelity anomaly detection in tech-
nical and industrial systems. A natural way for hybridization
is using physical models to generate representative data for
the training of AI models. Depending on the level of do-
main knowledge availability, data augmentation can compen-
sate for scarcity of real data from the field. This is particularly
attractive for anomaly detection tasks, in which data from the
abnormal regimes is limited by definition. On top of this in-
herent data limitation, many real-world systems suffer from
data limitations even within the normal regimes.

In this paper we propose a physics-informed deep learning
algorithm for fault detection in grid scale photovoltaic power
plants. We focus on a common data scarce scenario that
emerges from a low asset monitoring granularity: instead of
monitoring the power production of each solar string, the
power output is monitored only at combiner-box or even in-
verter level (monitoring a large number of strings with a sin-
gle sensor). As a result, the signatures of single local faults
can become very subtle and challenging to detect. We show
that in this case a physics-informed AI approach significantly
outperforms the alternative of a purely data-driven anomaly
detection model. This enables high fidelity fault detection in
larger solar power plants, that are often limited in the granu-

Mila Lüscher et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

larity of their condition monitoring data.

1. INTRODUCTION

Utilizing physical information and domain knowledge in con-
junction with AI models has become a popular approach to
deal with some of the known limitations of AI (Karniadakis
et al., 2021), such as the lack of interpretability of AI models
and their data-hungry nature. The field of equipment prog-
nostics and health management (PHM) is an ideal application
field for such hybrid approaches (Rausch, Goebel, Eklund, &
Brunell, 2005; Wu, Sicard, & Gadsden, 2024). For many of
the systems, a detailed physical model is already in use for de-
sign purposes (Chao, Kulkarni, Goebel, & Fink, 2019; Huber,
Palmé, & Chao, 2023), and can be exploited also for PHM.
In other systems the fault or degradation mechanisms are well
understood and allow for a microscopic or a phenomenologi-
cal model (Rai & Mitra, 2021; Zgraggen, Guo, Notaristefano,
& Goren Huber, 2023).

A typical challenge in PHM tasks is the severe lack of histori-
cal failure data. In these cases, the use of physical information
to compensate for data scarcity becomes even more attractive
than in other application domains. One particularly common
approach is to augment the training data using physical mod-
els (Frank et al., 2016; Wu et al., 2024). Such models can
be used either for operational regimes that are scarce on data
(Chao, Kulkarni, Goebel, & Fink, 2022; W. Li et al., 2021),
or to directly model fault mechanisms that are rarely seen in
operation (Kohtz, Xu, Zheng, & Wang, 2022; Bansal et al.,
2022).

In our previous work we took the latter approach (Zgraggen,
Guo, Notaristefano, & Goren Huber, 2022). We developed
a physical model that corrupts data from a normally operat-
ing photovoltaic (PV) plant, thereby generating data with syn-
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Figure 1. The challenge of low data granularity for tracker fault detection. The eight strings that are mounted on the faulty
tracker 2 contribute their power to two different combiner boxes (CBs): CB1 is affected by only one of these strings. Its power
profile (bottom left, solid blue) suffers a mild loss compared to the daily reference (dashed black). CB2 is affected by seven of
the faulty strings, and suffers a more significant power loss (bottom right).

thetic faults. In this paper we extend this method to allow its
applicability under data scarcity in real-world scenarios. The
proposed hybrid approach profits from both worlds: on one
hand it demonstrates a high ability to mimic the effects of rare
faults, without the need for real faults in the data. On the other
hand, it does not require a complex physical model of the nor-
mal system, as all complex (environmental and operational)
effects are already captured by the field data. As opposed to
previous approaches to solar plant fault detection, our method
is independent of lab data (Chen, Chen, Wu, Cheng, & Lin,
2019; B. Li, Delpha, Diallo, & Migan-Dubois, 2021; Gao &
Wai, 2020), simulation data (Chine et al., 2016), or desig-
nated data-collecting hardware (Daliento et al., 2017; Ama-
ral, Pires, & Pires, 2021), and was carried out using existing
operational data only. Our Physics-Informed Deep Learning
(PIDL) approach was shown to perform very accurately with
no need for fault data (Zgraggen et al., 2022), and even in a
fully unsupervised setting, where the data may be contami-
nated by unlabeled anomalies (Zgraggen et al., 2023). More-
over, the approach does not require any irradiance measure-
ments, but merely the standard 15-minute measurements of
the power output from individual PV strings. Also in this re-
spect our work is rather unique: most of the published work
related to PV plant fault detection (Mellit, Tina, & Kalogirou,
2018; Triki-Lahiani, Abdelghani, & Slama-Belkhodja, 2018;
Pillai & Rajasekar, 2018; Mansouri, Trabelsi, Nounou, &
Nounou, 2021) relies on data at single module or cell resolu-
tion, rather than the operationally relevant string-data, often
containing dozens or hundreds of modules.

In grid-scale solar power plants, it is often impractical to mon-

itor data at string level due to the large number of PV strings
involved. As a result, individually monitoring each string
often becomes unfeasible. In this case, the output power is
monitored and recorded only at a higher spatial granularity
level, for example at the level of combiner boxes or even in-
verters, gathering a large number of strings in a single sensor
reading. As shown below, this lower monitoring granularity
inevitably leads to a reduced effectiveness in detecting local
faults. To the best of our knowledge, there are no previously
published studies that address fault detection at combiner-box
or inverter level in PV power plants.

In this paper we address the above common scenario of low
data granularity by extending our previous PIDL approach.
We use a physical model to transfer the method from assets
with a high data granularity to assets with a low data gran-
ularity. We show that in the case of data scarce assets, the
physics-informed (PI) approach is of an even higher benefit
compared to purely data-driven anomaly detection.

The contribution of this paper is two-fold. For solar power
plant condition monitoring, it offers a high fidelity method to
detect anomalous power losses by combining physical knowl-
edge and AI in real-world operational conditions. In a more
general context, the paper demonstrates the effectiveness of
physics-informed AI for fault detection in data-scarce sce-
narios, which are common in various application fields. In
particular, we show that physical knowledge can be utilized
for transfer learning between domains with abundant data and
domains with scarce data.

In Section 2 we describe the solar tracker use-case on which

2
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Figure 2. The effect of low data granularity on the measured
output power. The signature of a real tracker fault on the
daily output power of a single string (upper panels) and of the
entire combiner box (CB, lower panels). A clear-sky day (left
panels) is contrasted with a cloudy day (right panels). The
fault signatures are considerably smaller and harder to detect,
if only CB-level power data is available.

we demonstrate our approach. In Section 3 we provide the
details of the PIDL approach. Finally, the results are shown
and discussed in Section 4.

2. DESCRIPTION OF THE USE CASE

The proposed PIDL approach is demonstrated here for the
early detection of faults in the tracking system of solar power
plants. Solar trackers are rotating units on which PV panels
are mounted in order to adjust their orientation during the day
according to the position of the sun, thus ensuring maximal
power production at any given moment (Racharla & Rajan,
2017). In a common fault mechanism of solar trackers, the
trackers get stuck at a certain orientation instead of follow-
ing the sun. This fault has an immediate implication on the
power production, which is significantly reduced compared
to the optimum, given certain irradiance and weather con-
ditions. Thus, an automatic early detection of the fault by
closely monitoring the power production patterns can signifi-
cantly reduce the resulting energy losses.

In our previous work (Zgraggen et al., 2022) we developed
an algorithm for early detection of tracker faults based on
power profiles of PV strings. The algorithm is thus applicable
to power plants in which the power production is monitored

for each PV string individually. However, a large fraction of
the operational PV power plants nowadays are monitored at a
lower granularity, that is, at the level of combiner boxes (CB)
or even inverters. In such cases, historical power data is only
available for single CBs or inverters, summing up the power
of up to tens of individual strings. The single string power is
no longer available, thus the previously proposed fault detec-
tion algorithm is not directly applicable.

To understand the fault detection challenge posed by the lower
data granularity, an example is illustrated in Figure 1, show-
ing two CBs with their related trackers. Since a CB extends
over a large area, its strings are typically mounted on sev-
eral different solar trackers, in this case trackers 1,2 and 3.
Thus, if one tracker is faulty, only a fraction of the CB power
originates from a string that is affected by the fault while the
rest of the strings of this CB do not display any signatures
of the tracker fault. In the illustration of Figure 1, Tracker
2 is faulty, while Trackers 1 and 3 are normally functioning.
Combiner box CB1 receives its input from 7 strings which
are unaffected by the tracker fault (as they are mounted on
Tracker 1) and one string which is affected by the fault (as it
is mounted on Tracker 2). As a results, the CB power profile
(shown at the bottom left in blue) is only mildly impacted by
the fault, compared to the reference profile (dashed black).
On the other hand, CB2 receives its input from 7 affected
strings (mounted on Tracker 2) and only one unaffected string
(on Tracker 3). The resulting CB2 power profile (bottom right
in blue) shows a much stronger fault signature than the one of
CB1. Note that the black dashed profiles are the daily refer-
ence power production, calculated from the entire plant data
(see explanation in Sec. 3). Moreover, it should be noted
that the example is illustrated for a sunny day with clear sky,
whereas the effectiveness of the proposed method is shown
below under any weather and operational conditions.

As argued above, typical fault signatures on CB power pro-
files are much more subtle than on string power profiles, and
require a higher anomaly detection sensitivity to identify and
locate them. Figure 2 demonstrate this effect using data from
a real operational PV plant, under different weather condi-
tions. The signatures of a tracker fault on the measured out-
put power are shown at the two monitoring levels: string level
vs. CB level. In the upper panels we display (normalized)
daily power profiles of a single string which was mounted
on a faulty tracker, compared to the daily reference (dashed
black). In the lower panels we assume that string level data
is unavailable and display the power profiles of the entire CB
containing the same string of the upper panels. Since this CB
sums up the power of both faulty and intact strings, the signa-
ture of the tracker fault is smaller and harder to detect. This is
particularly true under cloudy weather conditions, as shown
at the right column.

The focus of this paper is the transfer of the tracker fault

3
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Figure 3. The proposed Physics-Informed AI fault detection
algorithm.

detection algorithm from string level monitoring data to CB
level monitoring data, thereby addressing the high fault de-
tection sensitivity challenge.

3. METHOD

In order to achieve high fidelity fault detection of tracker faults
for CB-level monitoring data we introduce an extension of
our previous string-level PIDL model. The proposed PIDL al-
gorithm for tracker fault detection includes two steps: (i) Data
augmentation using a physical model that synthetically gener-
ates abnormal power profiles. (ii) Training a binary classifier
to distinguish normal from abnormal daily power profiles.

3.1. Physics Informed Data Augmentation

Due to the rare occurrence of tracker faults, real operational
power data which is affected by these faults is very scarce.
However, data from normal functioning solar power systems
is abundant. We exploit this fact, and use operational power
data from normally functioning solar plants in order to gen-
erate synthetic power profiles under tracker faults. Since the
tracker fault mechanism is well understood, we develop phys-
ical equations that enable a simple transformation of a healthy
power profile into a faulty one. In this way we can simulate
diverse fault scenarios and augment the training data with a
large number of realistic tracker fault examples. In a sec-
ond step, the augmented data containing both healthy and
faulty power profiles is used to train a binary classifier that
distinguishes between normal and abnormal power profiles,
thereby enabling identification and localization of tracker faults
in large power plants. In the following we describe the physics
informed data augmentation method.

A tracker fault affects the power production of the solar strings
that are mounted on the faulty tracker. Neighboring strings, if
mounted on healthy functioning trackers, remain unaffected.
In particular, a common situation (as illustrated in Figure 1) is
that out of the N strings that are combined into one CB, only
d < N are mounted on a faulty tracker and the rest N − d
strings are mounted on healthy trackers.

In order to synthetically generate CB power profiles that cor-
respond to various types of tracker faults, we model d faulty
string power profiles that result from a tracker getting stuck
at an angle θ0. This is done using a physical model fphys of
the fault mechanism that ”corrupts” normal power profiles of
single strings, turning them into faulty profiles. The d syn-
thetically generated faulty profiles are added to N − d real
healthy string profiles from the operational system, to obtain
a synthetic CB profile which is partially affected by a tracker
fault, as depicted in Figure 3.

The generation of a faulty string power profile x(c)(t) out of
a healthy string profile x(0)(t) is done using the equations

x(c)(t) = cp [(1− γ)g(θ0, θ∗i (t)) + γ]x(0)(t)

g(θ0, θ
∗
i (t)) =

cos θ0 · fIAM(θ0)

cos θ∗i (t) · fIAM(θ∗i (t))
.

(1)

with fIAM(θi) = 1 − b0(1/ cos θi − 1) and where θ∗i (t) is
the optimal tilt angle of the tracker at time t, θ0 is the stuck
angle of the faulty tracker, b0 and γ are model parameters
estimated empirically using the data, by fitting 10 samples of
faulty profiles from the operational data of the string-level PV
plant (we note that such profiles are only needed for a single
plant, and are not required for the target plant at CB level).
The parameter cp is a degradation loss coefficient, assumed
to range between 0.8 and 1 in order to simulate slight losses
which are unrelated to tracker faults, and may exist also in
healthy strings. For details of the physical model we refer the
reader to (Zgraggen et al., 2022).

By adding up d faulty and N − d normal string profiles, a
synthetically generated faulty CB power profile u(c)(t) ob-
tains the form

u(c)(t) =
1

d

d∑

i=1

x
(c)
i (θ0, γ, b0, cp; t) +

1

N − d
N∑

i=d+1

x
(0)
i (t)

(2)
where x(c)i (θ0, γ, b0, cp; t) is the ith corrupted string profile
and x(0)i (t) is the ith healthy string profile. The model pa-
rameters θ0, γ, b0 and cp are sampled from uniform distribu-
tions within realistic ranges to represent all physically viable
configurations (see (Zgraggen et al., 2022) for details), but
are kept identical for all of the strings that belong to the same
CB. The number of corrupted strings d is drawn randomly
from the range 1...N in order to cover all possible configura-
tions under the constraint of N strings in one CB (which is
given by the plant configuration).

In addition to the generation of faulty CB profiles, we gener-
ate an equal amount of healthy CB profiles by simply adding
N healthy adjacent string profiles. Note that we follow the
modelling approach described in (Zgraggen et al., 2022), in
which we randomly introduce mild physics-informed mod-
ifications to the healthy profiles in order to mimic the ef-
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fects of small power losses that are unrelated to tracker faults.
As shown in (Zgraggen et al., 2022), allowing this physics-
inspired stochastic variability in the training data, increases
both the accuracy and the robustness of the model predictions.

The proposed data augmentation process ensures a large di-
versity of tracker faults with different intensities, stuck angles
and under various soiling or degradation conditions. More-
over, an important advantage of our approach is its mathe-
matical structure, that enables using real operational power
profiles and transforming them into faulty profiles by mathe-
matically ”injecting” a known fault mechanism into them. As
a result, complex features of the model inputs, such as diverse
weather effects, are already accounted for, and do not need to
be modeled.

We note that the CB-level model described above uses string
power profiles to generate CB power profiles. As such, it as-
sumes the availability of normal data from one power plant
which is monitored at string level. The results we show be-
low were obtained after training on data from a string-level
plant (the source plant), but tested on an operational power
plant with CB monitoring only, in a different geographic lo-
cation (the target plant). With this we demonstrate that effec-
tive fault detection is transferable to the target plant without
string-level data availability, owing to the physics informed
modeling approach.

3.2. CNN fault classifier

The empirical-physical model of the fault mechanism is used
to augment the normal data set, such that it now contains
healthy as well as faulty power profiles at CB level, u(0)j (t)

and u(c)j (t) respectively. Each daily profile is a time-series
of size 96 (due to a 15 minute resolution of the original sen-
sor data). At a next step, the augmented data set, contain-
ing balanced healthy and faulty samples is pre-processed by
subtracting from each power profile the daily reference pro-
file, calculated as the 0.9 quantile over the entire plant at any
given moment in time (see (Zgraggen et al., 2022) for details).
The resulting power deviation profiles are used to train a 1d-
CNN classifier fcl that assigns an anomaly score s(AD)

j to
each daily profile, as depicted in Figure 3. This allows to de-
tect faulty combiner boxes (thereby locating the related faulty
trackers) at the end of each day, which is the relevant time res-
olution for decision making in practice. The CNN contains
three one-dimensional convolutional layers followed by two
fully-connected layers, with a total of around 30’000 trainable
parameters. The network architecture was optimized using a
grid search to tune the number of layers and filters and the
learning rate.

We trained the classifier with 700’000 CB power profiles, half
of which include synthetic tracker fault effects. All profiles
originate from one single PV power plant during a time pe-
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Figure 4. Fault detection evaluation using precision-recall
curves. The performance of the proposed CB-level PIDL
model (solid blue) is compared with a simpler string-level
PIDL (dashed red) and a purely data-driven convolutional AE
model (dotted black).

riod of one year. The test data originates from another PV
power plant, monitored at CB level, and includes 5349 CB
power profiles collected during a time period of two months
and containing 857 known faulty profiles, labeled manually
by domain experts.

Baselines. We compare the performance of the proposed al-
gorithm with two baseline methods. The first one is a similar
PIDL algorithm which is trained using the original string level
profiles, rather than CB-level profiles, with and without syn-
thetic faults. This enables us to examine the transferability of
the learned features from string to CB level.

The second baseline we compare to is a purely data-driven
approach, not making use of any physics-based modeling. In
this case we train a convolutional Autoencoder (AE) neural
network to reconstruct power profiles. The AE is trained with
the normal part of the data only, not including any tracker
faults. The normalized reconstruction errors are then used as
fault indicators, with a threshold typically set at the tail of
the training distribution of reconstruction errors. The feature
extraction layers of the AE are four 1d-convolutional layers,
similarly to the PIDL network described above, with a similar
number of 46’000 trainable parameters.

4. RESULTS

The performance of the proposed PIDL classifier is evaluated
in Figure 4 using a precision-recall curve (PRC). The PRC
of the CB-level PIDL method is shown in solid blue, and is
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Figure 5. Fault detection evaluation using confusion matri-
ces. The performance of the proposed CB-level PIDL model
(right) is compared to the ones of a string-level PIDL (mid-
dle) and a purely data-driven AE (left). For all 3 models, the
detection thresholds were set to yield a false positive rate of
1%.

contrasted with the PRC of the string-level PIDL approach
(dashed red), and the PRC of the pure data-driven AE model
(dotted black). It is evident that a pure data-driven approach
does not exploit the physical knowledge of the fault mecha-
nism and thus reaches a much poorer performance than both
of the PI approaches. In the case of string-level PIDL, the in-
puts are not aggregated to mimic CB power profiles whereas
in the case of CB-level PIDL the string power profiles are ag-
gregated in various ways such that different tracker fault con-
figurations are simulated in the synthetic data. In this way,
also configurations that lead to subtle fault signatures are in-
troduced at training, and can be detected at inference time.
As seen from the PRC results, this leads to a significant im-
provement in the fault detection performance, with an aver-
age precision (AP) of 0.95 for the proposed CB-level PIDL,
compared to 0.79 for the string-level PIDL. As expected, the
purely data-driven AE model is significantly inferior in its
fault detection performance, with an AP of 0.38. It should
also be noted that the performance of the CB-level PIDL is
only slightly worse than the one we reported for the string-
level PIDL when tested on string-level data (with an AP of
0.97, see (Zgraggen et al., 2022)).

In addition to the PRC, we compare the fault detection per-
formance using confusion matrices shown in Figure 5. The
confusion matrix of the CB-level PIDL model (right) is com-
pared with the ones of the string-level PIDL (middle) and the
data-driven AE (left). For the sake of model comparison, all
three confusion matrices were generated by selecting a detec-
tion threshold that guarantees a low false positive rate of 1%.
This is a practically sensible threshold, that reduces the false
alarms to a minimum. Fixing the threshold to produce this
false positive rate on the test data in all three methods, we ob-
tain a false negative (missed detections) rate of 0.8 with the
pure data-driven approach, a rate of 0.45 with the string-level
PIDL and a significantly lower rate of 0.19 with the proposed
CB-level PIDL algorithm.

The complexity of the fault detection task is demonstrated in
Figure 6 using CB power test data from the target power plant.
Each panel displays a CB daily power profile (solid blue)
compared with the daily reference (dashed black). The upper
six panels are examples of CB power profiles with no tracker
faults, whereas the six lower panels were labeled as suffering
from power losses due to tracker faults. The power profiles
in the 6 panels at the left half of the figure were all correctly
classified by the proposed PIDL algorithm, as well as by the
purely data-driven convolutional AE. Indeed, the fault signa-
tures of the three profiles at the bottom left are rather strong
and could be clearly assigned to tracker faults by both models.
This stands in contrast to the 6 panels on the right hand side
of the figure, which were all correctly classified by the PIDL
model, but misclassified by the AE. Here, physical informa-
tion about the tracker fault mechanism clearly helped to dis-
tinguish between true tracker faults (lower panels) and power
losses due to other reasons, unrelated to the solar trackers (up-
per panels). This is despite the fact that such unrelated power
losses may be rather high, as seen in the three upper right
panels. In all three cases, due to their high power losses com-
pared to the reference, the AE produced high reconstruction
errors, leading to false positives. On the other hand, the low
power losses of the truly faulty profiles at the bottom right led
to missed detections (false negatives) by the AE, because of
reconstruction errors that are similar in magnitude to the ones
of the training data. Despite their low power losses, and their
mild fault signatures, these power profiles were correctly de-
tected as suffering from tracker faults by the CB-level PIDL
algorithm.

To conclude, the CB-level PIDL includes a physics-informed
data augmentation step that captures important nuances in the
fault features, even in case of low data availability that leads
to very mild fault signatures. The same data augmentation
framework can be easily generalized to any monitoring level,
provided the structure of the monitoring data at the opera-
tional plant (i.e number of strings per combiner-box or in-
verter). The only prerequisite is the availability of string level
power profiles from a normal functioning power plant that
can serve as the baseline for data augmentation. Moreover,
one of the advantages of our approach is that it does not re-
quire complex measurement and/or modeling of the solar ir-
radiance under various ambient conditions, but relies entirely
on a single measured variable: the output power.

The proposed approach of physics-informed data augmen-
tation is generally applicable in systems with some under-
standing of the fault mechanism. However, we believe that
this physical understanding does not need to be complete or
to amount to a full microscopic model of the fault mecha-
nism. In many cases, a phenomenological model of the fault
signatures on the observed data may be sufficient in order
to achieve superior fault detection performance compared to
purely data-driven approaches.
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Figure 6. Classification outcomes of the PIDL compared with a purely data-driven AE model. Each panel displays a CB power
profile (solid blue) together with the daily reference profile (dashed black). True labeled profiles with tracker faults (bottom
row) are contrasted with profiles with no tracker faults (top row). The 6 panels on the left half were correctly classified by
both the PIDL and the AE models, whereas the 6 panels on the right were classified correctly only by the proposed PIDL and
misclassified by the AE model.

5. CONCLUSIONS

Scarcity of condition monitoring data is a common challenge
for practical deployment of fault detection algorithms. Data
scarcity may be due to missing data, due to a low time resolu-
tion of the data or due to a low spatial resolution. The latter is
a common situation in large scale PV power plants, in which
condition monitoring data is often available at a low spatial
granularity level, e.g. aggregating the monitored power pro-
duction over a large number of individual assets. However, a
similar situation applies to other large infrastructures, where
the data volume is often reduced using a more coarse-grained
aggregation when monitoring the assets.

In order to enable high fidelity fault detection despite the data
scarcity challenge, we introduced a physics-informed artifi-
cial intelligence algorithm. With this approach, physical in-
formation is exploited in order to transfer the data augmen-
tation from a domain with abundant data to a domain with
scarce data. We demonstrated the high performance of the
algorithm on operational data from a PV power plant with a
low data granularity, and showed its clear superiority over a
purely data-driven approach. Moreover, we showed that its
performance is similar to our previous results achieved on a
high data granularity power plant. Future research directions
include an extension of the approach to additional fault and
power loss mechanisms, aiming at effective diagnostics of the
power loss root cause.
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ABSTRACT

The integration of particle or Kalman filters with machine
learning tools like support vector machines, Gaussian pro-
cesses, or neural networks has seen extensive exploration in
the context of prognostic and health management, particu-
larly in model-based applications. This paper focuses on the
Multi-Layer Perceptron Particle Filter (MLP-PF), a data-driven
approach that harnesses the non-linearity of MLP to describe
degradation trajectories without relying on a physical model.
The Bayesian nature of the particle filter is utilized to update
MLP parameters, providing flexibility to the method and ac-
commodating unexpected changes in the degradation behav-
ior.

To showcase the versatility of MLP-PF, this work demon-
strates its seamless integration into diverse use cases, such
as lithium-ion battery analysis, virtual health monitoring for
turbofans, and the assessment of fatigue crack growth. We
illustrate how it effortlessly accommodates various contexts
through slight parameter modifications. Adjustment includes
variation in the number of neurons or layers in the MLP,
threshold adjustments, initial training refinements and the adap-
tation of the process noise. Addressing different degrada-
tion processes across these applications, MLP-PF proves its
adaptability and utility in various contexts.

These findings highlight the method’s versatility in adapting
to diverse use cases and its potential as a robust prognostic
tool across various industries. MLP-PF offers a practical and
efficient means of estimating remaining useful life and pre-
dicting degradation in complex systems, with implications for
advancing prognostic tools in diverse applications.

Francesco Cancelliere et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Prognostic and Health Management (PHM) plays a crucial
role in engineering by aiming to estimate the health state, de-
tect early failures, and predict the remaining useful life of sys-
tems or components (Zio, 2022). Implementing PHM algo-
rithms allows for condition-based or predictive maintenance
strategies, ultimately optimizing maintenance frequency and
reducing operational costs (Bailey, Sutharssan, Yin, & Stoy-
anov, 2015). Traditional physics-based methods in PHM rely
on known equations, and demand extensive domain knowl-
edge while generally being computationally expensive, lim-
iting their real-time applicability (Chang, Fang, & Zhang,
2017).

In contrast, the rise of data availability in recent years co-
incides with the exploration of data-driven methods such as
neural networks, random forests, and support vector machines
(Wang, Jin, Deng, & Fernandez, 2021; Hu, Xu, Lin, & Pecht,
2020; Vanem et al., 2023). However, these methods often
face challenges related to data quantity, quality, and general-
ization across unseen conditions. To overcome these hurdles,
hybrid approaches have been proposed (Cancelliere, Girard,
Bourinet, & Broggi, 2023; Li et al., 2024), aiming to combine
the strengths of data-driven and physics-based methods.

Among the hybrid approaches, a common one consists of
integrating particle or Kalman filters with machine learning
tools like neural networks or support vector machines (Dong,
Jin, Lou, & Wang, 2014; Jha, Bressel, Ould-Bouamama, &
Dauphin-Tanguy, 2016). In these frameworks, machine learn-
ing tools act as surrogates for physics-based models, reducing
the need for extensive domain expertise. Meanwhile, Bayesian
filters allow to quantify the uncertainties associated with the
prediction, enhancing the robustness of the approach. Other
works, such as (Ma, Karkus, Hsu, & Lee, 2020) or (Ge, Sun,
& Ma, 2019) proposed combination of PF with, respectively,
recurrent neural network (RNN) and long-short term memory
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network (LSTM). A more comprehensive review of combina-
tion of PF and data driven techniques can be found in (Reza
et al., 2024).

A combination of radial basis functions with particle filters,
initially proposed by (Sbarufatti, Corbetta, Giglio, & Cadini,
2018), presented a novel approach to estimate the state of
charge of lithium-ion batteries, which was later extended to
predict the end of life for batteries by replacing the surrogate
model with a Multi-Layer Perceptron (MLP) neural network
(Cadini, Sbarufatti, Cancelliere, & Giglio, 2019). This adap-
tation, called Multi-Layer Perceptron Particle Filter (MLP-
PF), capitalizes on the non-linear nature of MLPs to describe
system degradation trajectories and leverages the Bayesian
framework of particle filters to adjust to incoming measure-
ments.

The primary contribution of this work lies in the application
of the MLP-PF to three different case studies. By demon-
strating the versatility of MLP-PF, this study showcases its
seamless integration into diverse applications, starting from
the case of lithium-ion batteries, then changing to the esti-
mation of a virtual health indicator for turbofans, and the as-
sessment of fatigue crack growth. Through minor parameter
modifications such as variations in MLP architecture, thresh-
old adjustments, initial training refinements, and adaptation
of process noise levels, MLP-PF effortlessly accommodates
various contexts.

Differing from conventional data-driven approaches, this study
adopts a single historical degradation trajectory as training
for the MLP neural network. The training serves merely as
a starting point for the (PF) to explore the state-space, rely-
ing on its Bayesian nature to discern the hidden degradation
dynamics. This approach furnish the algorithm with excep-
tional adaptability while significantly mitigating the need for
extensive historical data, a primary drawback of traditional
data-driven methods.

To evaluate the algorithm’s performance, various metrics in-
cluding Relative Accuracy, Confidence Interval Coverage (Jules,
Cancelliere, Mattrand, & Bourinet, 2023), and the β Metric
(Lall, Lowe, & Goebel, 2013) are employed. These metrics
assess not only accuracy and precision but also consider the
uncertainty associated with the predictions, providing a com-
prehensive evaluation framework.

Addressing various degradation processes across different ap-
plications highlights the adaptability and utility of the MLP-
PF. These findings emphasize the method’s versatility in ac-
commodating diverse use cases and underscore its potential
as a robust prognostic tool across multiple industries. MLP-
PF provides a practical and efficient means of estimating re-
maining useful life and predicting degradation in complex
systems, thereby advancing prognostic tools across a broad
spectrum of applications.

The structure of this paper is the following: Section 2 briefly
describes the proposed method and the metrics used to eval-
uate performance. Following this, Section 3 introduces the
three use cases addressed in this study, while Section 3.1,
Section 3.2 and Section 3.3 present the results correspond-
ing to each case. Finally, Section 4 draws conclusions and
provides perspectives on this work.

2. MULTI LAYER PERCEPTRON PARTICLE FILTER

The method employed in this work was first proposed by
(Sbarufatti et al., 2018), where a combination of radial basis
function neural networks and particle filters was used to esti-
mate the state of charge of lithium-ion batteries. The method
was later improved by (Cadini et al., 2019), where it was ex-
tended to estimate the state of health of the battery. In this
work, the method is applied to three different use cases to
showcase its ability to adapt to different contexts with slight
changes in the hyperparameters.

The multi-layer perceptron neural network is used as a sur-
rogate for the given degradation model, such as the turbofan
VHI or the batteries’ capacity. In all cases, it consists of a
single input, which is the discrete time step k, and a single
output g̃, representing the predicted value at the given time
step. The decision to use a simple neural network, such as an
MLP, is driven by the necessity for flexibility and the desire
to minimize the number of parameters estimated by the PF.
Despite its simplicity, an MLP remains capable of capturing
the nonlinearities inherent in the data. This choice strikes a
balance between model complexity and computational effi-
ciency, enabling effective integration with the PF framework.

The internal architecture of the network (number of layers,
number of neurons per layer, and the activation functions) is
case-dependent, particularly on the shape of the degradation
trajectories and to ensure computational times are compati-
ble with the given context (higher the network complexity,
higher the computational time). The parameters of the net-
work, meaning its weights and biases, are then packed into a
vector xk. The starting parameters x0 are obtained by training
the network based on a known run-to-failure degradation pro-
cess, as can be observed in the (a) figures of the three cases.

The particle filter (Arulampalam, Maskell, Gordon, & Clapp,
2002) is a sequential Monte-Carlo algorithm that generates a
set of particles which are used to estimate the posterior prob-
ability density function (PDF) of a hidden state, which in our
case are the parameters xk. Hence, a set of Ns copies (i.e
particles) of x0 is generated based on:

xik = xik−1 + ωk−1 (1)

where i is the index of the particles and ω is the process
noise, which is an hyperparameter that has to be carefully
tuned. Each xik contains the parameters of a MLP, which,
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when propagated through the network, generates a predic-
tion of a possible degradation trajectory. The PF operates by
applying a prediction-update recurrence. The predictions at
time step k − 1 serve as the prior PDF, which is updated at
each subsequent time step k upon the arrival of new observa-
tions. The update of the particles is performed by computing
their likelihood, which indicates how close the ith degrada-
tion trajectory is to the actual observations. The likelihood
Li
k of each particle i is computed as:

Li
k = p(z0:k|xik) = ((2π)k+1|Ση|)−0.5

exp

{
−1

2

(
z0:k − g̃(xik, 0 : k)

)T
Σ−1

η

(
z0:k − g̃(xik, 0 : k)

)}

(2)
where z0:k are the observations from 0 to k, g̃(xik, 0 : k) is
the prediction of the network for the ith particle and Ση is the
diagonal covariance matrix, with diagonal element equal to η,
representing the measurement noise and assumed Gaussian.
Li
k is the probability of obtaining the measurement zk given

the ith prediction g̃k, and it is used as importance weight wi
k

for the particles.

To finally construct the posterior pdf the sampling importance
resampling (SIR) algorithm is employed (Doucet, Godsill, &
Andrieu, 2000): the weights are normalized, and the parti-
cles are resampled based on the normalized weights w̃k. The
closer the prediction is to the measurements, the higher the
normalized importance weight of that particle, meaning that
the particle is more likely to be resampled, which signifies
that it is closer to the actual degradation trajectory of the ob-
served process.

The importance weights of the particles are also utilized to
enforce specific conditions, ensuring that particles adhere to
desired behaviors. One example is imposing the monotonic-
ity of the trajectory or setting bounds on the output value (e.g.,
ensuring it is always greater than 0). If a particle violates the
specified condition, its weight is set to zero, indicating that it
will not be resampled. Instead, it is replaced by a particle with
a higher importance weight, thereby maintaining compliance
to the desired conditions.

The collection of normalized particles at time step k, each
representing a potential degradation trajectory, enables the
computation of the posterior probability density function of
the degradation state in future time steps. Consequently, it
becomes possible to calculate statistics related to predictions,
such as the mean and relative uncertainties. Additionally, by
establishing a threshold for the end of life of the system, it
becomes feasible to determine the distribution of the End of
Life p(EOLk|z0:k), and consequently the RULk as:

RULk = EOLk − k (3)

To evaluate the performance of the algorithm we use three

different metrics. The first one is the cumulative relative ac-
curacy, defined as:

CRA =
1

Tfail

Tfail∑

k=0

(
1−

∣∣∣∣∣
RULactual

k − RULpred
k

RULactual
k

∣∣∣∣∣

)
(4)

where Tfail is the time step at which the system fails. This
represents the distance of the prediction to the actual EOL,
evaluated at each time step. A perfect prediction has a value
of 1.

The second metric is the confidence interval coverage (Jules,
Cancelliere, et al., 2023), which is used to assess the predic-
tion considering the confidence interval, and is defined as:

CIC =
1

Tfail

Tfail∑

k=0

1
RULactual

k ∈ĈIk
(5)

where 1
RULactual

k ∈ĈIk
is the indicator function that takes one

if the actual RUL lies in the predicted confidence interval,
0 otherwise. If the prediction at each time step include the
RULactual, the CIC is going to be 1, while 0 if the true RUL
is always outside the confidence interval.

The last indicator is called the β metric (Lall et al., 2013),
which represent the area of the predictions that falls inside
the α bound.

βk =
1

Tfail

Tfail∑

k=0

∫ RULk+α

RULk−α

PDF(RUL) dRUL (6)

The α bounds are defined as RULactual ± α. The β metric
evaluates the accuracy of predicted RUL bounds compared
to true RUL bounds, considering a specified uncertainty level
(α). It quantifies the overlap between predicted and true RUL
bounds normalized by the true RUL length. Higher values
indicate better agreement between predicted and true bounds,
reflecting improved prediction accuracy.

3. USE CASES

The proposed approach will now be applied to three use cases:
estimating the end of life of lithium-ion batteries based on
their decreasing capacity, propagating a virtual health indi-
cator developed to estimate the state of health of turbofans,
and modeling the growth of a fatigue crack in a panel. Al-
though these cases share a time-dependency, their degrada-
tion processes differ significantly in terms of shape and ra-
pidity. Therefore, we employ three different MLP network
architectures, each tailored to the specific characteristics of
its respective case.

For consistency and comparison, in each cases we use the
same number of particles, Ns = 1000, and the same number
of epochs for the initial training (epochs = 500). Additionally,
we employ a decreasing variance, defined as:
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(a) Training and testing dataset for Li-Ion batteries. The red line
is the output of the trained MLP.

(b) Architecture of the MLP neural network used for the Li-Ion batter-
ies case.
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(c) Two instant of time of the simulation. The grey dotted line
is the end of life threshold.
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(d) Remaining Useful Life prediction in terms of mean and uncertainty
bounds.

Figure 1. Lithium-Ion Battery case.

ωk = σ0e
− k

σ1 + σ2 (7)

Here, ω perturbs the MLP parameters, as described in Eq. (1).

The use of a decreasing process variance is crucial for the
convergence of the algorithm. Initially, a higher variance
(which practically signifies a higher perturbation of xk in
Eq. (1)) is necessary to explore the state space and adapt to
the first incoming observations, especially if these are signifi-
cantly different from the training data. As more observations
become available, the variance is reduced to reflect the in-
creased information about the actual system. This reduction
in variance helps prevent a single observation, especially a
noisy one, from excessively perturbing the prediction. This
strategy ensures a balanced adaptation process, enabling the
algorithm to remain robust against noisy observations while
gradually refining its predictions.

Given that the complexity of the network correlates with the
number of parameters, using the same ω value for different
architectures will lead to different perturbation. Specifically,
higher complexity requires lower perturbation (i.e. lower ω)
to prevent degeneration. If the MLP parameters change too
rapidly, they may lose meaning and connection with prior in-
formation. Hence, the σ parameters and the measurement
noise η, responsible for computing the particule likelihood in
Eq. (2), vary across different cases.

Furthermore, in all three cases, we opt to use a single trajec-

tory for the initial training. This choice aims to demonstrate
the algorithm’s ability to adapt to varying conditions and its
capacity to achieve satisfactory performance in predicting the
RUL without requiring a large amount of data. The proposed
metrics are evaluated throughout all the degradation process
and in the last 25% of life. This evaluation demonstrates that
the algorithm’s performance improves over time as more in-
formation becomes available, and it converges to the target
data even when the initial training data differ significantly.

3.1. Lithium-ion Batteries

The dataset used for the first use case is the one developed
by NASA for the prognostic and diagnostic analysis of bat-
teries (Saha & Goebel, 2007). The capacity of batteries de-
creases over time due to usage and electrochemical reactions
occurring inside the battery. The end of life of batteries is
typically defined when the capacity drops below 80% of the
initial capacity. However, to make the most of the dataset, in
this work, we set a threshold of 1% higher than the last point,
which is 1.42 Ah. In Fig. 1(a) the two batteries used for the
initial training of the network (battery 18 of the dataset) and
for testing (battery 7) are shown.

The architecture of the network consists of a single hidden
layer with 3 neurons, where the activation functions are a sig-
moid for the hidden layer and linear for the output layer. The
network structure is depicted in Fig. 1(b). This results in a to-
tal of 6 weights and 4 biases, which, after training, are stacked
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(a) Training and testing dataset for VHI. The red line is the output
of the trained MLP.

(b) Architecture of the MLP neural network used for the VHI case.
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(c) Two instant of time of the simulation. The grey dotted line
is the end of life threshold.
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(d) Remaining Useful Life prediction in terms of mean and uncertainty
bounds.

Figure 2. Virtual Health Indicator case.

in the vector x0, resulting in 10 parameters. The output of the
trained network with these parameters is represented by the
red line in Fig. 1(a).

The initial process noise is taken as σ0 = 5×10−2, while the
floor value is set to σ2 = 10−5, with a decreasing rate σ1 of
50. The measurement noise is set to 10−2. Due to the sim-
plicity of the network, the initial value σ0 is relatively high,
providing more flexibility to the algorithm. Furthermore, the
adaptability of the algorithm is necessary due to the intrinsic
nature of lithium-ion batteries, which can perform differently
from one another, as observed in Fig. 1(a). The initial pertur-
bation, obtained by applying Eq. (1) to each of theNs particle
can be observed in Fig. 1(c) as the grey lines.

The results of the simulation are presented in Fig. 1(c) and
Fig. 1(d). In the first, two instances of time, at the beginning
and about the end of the simulation, are shown, highlight-
ing the adaptability of the algorithm. Starting from the initial
training, the algorithm adapts to incoming measurements and
estimates the new degradation behavior. The last figure shows
the results in terms of remaining useful life estimation. Ini-
tially, the predictions were more related to the training data,
which has a faster end of life, while converging to the actual
RUL at about the halfway point of the battery’s lifetime. The
evaluation of the algorithm’s performance is reported in Ta-
ble 1, where it can be observed that all the metrics improved
when evaluated in the last 25% of the lifetime. Particularly,
the Confidence Interval Coverage 25 has a value of 1, indicat-

ing that the actual RUL has always been inside the predicted
bounds.

3.2. Virtual Health Indicator

The second use case proposed here involves the estimation of
the future behavior of a virtual health indicator developed for
estimating the state of health of turbofans (Jules, Mattrand, &
Bourinet, 2023). This VHI measures the degradation of tur-
bofans, thus, opposite to the batteries case, it exhibits an up-
ward trajectory, where a higher value indicates higher degra-
dation. Similarly to the previous case, the end-of-life thresh-
old has been set to utilize the maximum available number of
cycles from the test dataset.

Upon observing the historical data of the VHI, it can be noted
that initially, it exhibits a flat trajectory, remaining nearly
at zero until the degradation process begins, after which it
adopts an exponential-like trajectory. To accommodate this,
the proposed network for this case consists of two hidden lay-
ers with 3 neurons each. The first layer employs a scaled
exponential linear unit (SELU) activation function, while the
second layer employs an exponential activation function. The
output layer uses a linear activation function. The structure of
this network (see Fig. 2(b)) is thus more complex, consisting
of a total of 22 parameters (15 weights and 7 biases).

As mentioned in Section 2, certain conditions can be enforced
on the particles to help them meet specific constraints. In this
case, since the VHI has been designed to be greater than 0

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 298



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

0 50 100 150 200 250 300 350 400 450
Cycles [x 10^2]

5

10

15

20

25

30

35

40

FC
G 

[m
m

]

Training
Training Data
Test Data

(a) Training and testing dataset for FCG. The red line is the output
of the trained MLP.

(b) Architecture of the MLP neural network used for the FCG case
with 20 neurons in the hidden layer.
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(c) Two instant of time of the simulation. The grey dotted line
is the end of life threshold.
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(d) Remaining Useful Life prediction in terms of mean and uncertainty
bounds.

Figure 3. Fatigue Crack Growth case.

and monotonous, these two conditions have been enforced by
eliminating particles at each iteration that did not adhere to
them. With more parameters, the initial process noise had to
be slightly reduced, and particularly, we set the value of σ0 =
10−2. The other values (floor noise σ2 and the measurement
noise η) remained unchanged.

Fig. 2(a) displays the training and test data, as well as the
output of the trained network. It can be observed that the
shape of the two trajectories is similar; however, the rate of
degradation varies notably, with the training dataset exhibit-
ing a slower trend. Additionally, the initial flat plateau adds
complexity to the prediction task since the algorithm receives
measurements close to the expected values, resulting in high
likelihood. This behavior is illustrated in Fig. 2(d), where
initially, the predicted RUL decreases almost constantly, in-
dicating little variation in prediction. Once the measurements
from the VHI start to increase, signaling the onset of degra-
dation, the algorithm quickly adapts to the new degradation
behavior and converges to the actual RUL.

Even in this case, all metrics improved when evaluated in the
last quarter of the lifetime. We note a relatively low CIC in
this case, which can be attributed to the narrow prediction
bounds. On the other hand, this led to a relatively high value
of the β Metric of the last quarter.

3.3. Fatigue Crack Growth

The last use case concerns the propagation of a crack in a rect-
angular plate of commercial 316L steel (Langlois Raphael,
2018) subjected to a fatigue load. The dataset comprises two
tests of identical plates, with a cycling tensile loading applied
with a frequency of 10 Hz and a R ratio of 0.1. The first
one is subjected to a maximum force of 15 kN (test data,
see Fig. 3(a)) and the second to a maximum force of 22.5
kN (training data, also in Fig. 3(a)), with a As expected, the
higher the applied force, the faster the crack propagates.

The trajectories follow an exponential-like function. There-
fore, the proposed architecture for this problem consists of
a single hidden layer with an exponential activation function
(see Fig. 3(b)). To enforce the exponential behavior of the
MLP (and also to challenge the algorithm), the hidden layer
consists of 20 neurons, nearly tripling the number of parame-
ters to 61.

Due to the higher number of parameters, the values of σ0 and
σ2 have to be significantly decreased. For this simulation,
they have been set to σ0 = 5 × 10−4 and σ2 = 10−6. As
in the VHI case, the monotonicity of the curve is enforced,
particularly since this is a physical constraint.

In contrast to the VHI case, we use the faster degradation
as training data while attempting to estimate the slower tra-
jectory. This poses a challenge for the algorithm since ex-
trapolating future data without prior examples is inherently
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Table 1. RUL Evaluation Metrics.

Li-Ion VHI FCG
CRA 0.703 0.474 0.489
CRA 25 0.772 0.762 0.240
CIC 0.475 0.140 0.425
CIC 25 1.000 0.294 1.000
β 0.326 0.277 0.273
β 25 0.465 0.737 0.404

complex for data-driven algorithms. Nonetheless, even in
this case, we observe that the algorithm adapts quite rapidly,
with the remaining useful life initially remaining constant
(see Fig. 3(d)), indicating that the algorithm recognized early
on that the training degradation was faster. As the correct
RUL is approached around the halfway point of the lifetime,
the algorithm is able to capture the new trajectory and remains
consistent with the prediction.

In terms of metric, we note that the CRA is low, especially
in the last 25%. This is mainly due to the relative error in
the very last points, where even a small error in the average
predicted RUL leads to a significant penalization of the CRA,
as the actual RUL is a small number. In contrast, we observe
a perfect coverage in the last quarter, as the actual RUL has
always fallen within the predicted bounds during that period.

4. CONCLUSIONS

The proposed methodology, combining multi-layer percep-
tron neural networks and particle filters, demonstrated its adapt-
ability and effectiveness in estimating the remaining useful
life across diverse engineering systems. By applying the method
to three distinct use cases – estimating the end of life of lithium-
ion batteries, predicting the behavior of a Virtual Health In-
dicator in turbofans, and analyzing the propagation of fatigue
cracks in steel plates – we showcased its versatility and ac-
curacy in capturing degradation processes. The utilization
of a single training history for each case underscores the ro-
bustness of the algorithm and its adaptability even when lim-
ited data about the target system are available. Evaluation
metrics such as Cumulative Relative Accuracy (CRA), Con-
fidence Interval Coverage (CIC), and the β metric provided
valuable insights into the accuracy, coverage, and uncertainty
of predicted RUL bounds. These findings emphasize the prac-
tical implications of accurate RUL estimation in predictive
maintenance, enabling proactive decision-making to optimize
maintenance schedules and reduce operational costs. Further
research can explore enhancements to the methodology and
its application to additional use cases beyond time-dependent
applications, thus enhancing its utility and effectiveness in
real-world scenarios
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ABSTRACT

This paper introduces a data-driven approach for estimating
the remaining useful life of the neutron generator component
in logging-while-drilling tools. The approach builds on iden-
tification of the incipient failure modes of the neutron genera-
tor and constructing a health indicator that serves as a statisti-
cal representation of the component’s deterioration over time.
Afterwards, a K-nearest neighbors algorithm is trained to es-
tablish the relationship between the extracted health indicator
values and the corresponding remaining useful life. The ef-
fectiveness of the presented approach is verified through the
utilization of real-world data gathered from oil well drilling
operations. The study is part of a long term project aimed
at developing a digital fleet management system for drilling
tools.

1. INTRODUCTION

The multifunction logging-while-drilling (LWD) tool shown
in Fig. 1 is an industry-leading formation evaluation technol-
ogy developed for oil well drilling applications (SLB, 2023).
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Figure 1. Multifunction LWD service

During the drilling operations, this LWD tool collects infor-
Karolina Sobczak-Oramus et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

mation related to formation evaluation as well as equipment
diagnostics, and some of this information is transmitted in
real time via mud pulses, depending on the operational re-
quirements. The full quantity of raw information is stored in
a memory board for additional analysis upon the tool return-
ing to surface after completing drilling operations.

This multifunction LWD tool integrates functionalities that
were previously achieved by two or three LWD tools, result-
ing in significantly reduced drilling rig operating time, fewer
electrical and communication failures due to physical tool-to-
tool connections, and improved geological data quality from
simultaneous and co-located measurements.

One of the other critical factors that places the technology
ahead of all other competitors is the inclusion of a pulsed
neutron generator (PNG), as shown in Fig. 2. The PNG is
an electron neutron generator that produces high-energy neu-
trons five times higher in energy than conventional americium-
beryllium chemical sources. The PNG produces neutrons
by particle fusion reaction. Multiple security locking logic
has been added to the PNG firmware and hardware and is
contained in operation manuals, making the use and trans-
portation of the PNG safe. The high-energy neutron emission
also allows for a variety of additional and advanced formation
measurements for the customer.

Figure 2. Pulsed neutron generator
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The electrical and physical complexity of the PNG system
makes it very demanding for a technician to become profi-
cient in maintaining and troubleshooting the system and a
failure of analysis would potentially result in critical field
operation failures and jeopardize the company’s reputation.
Therefore, developing an automated fault diagnosis and degra-
dation assessment tool to determine the health status of PNGs
accurately and consistently is essential. This assessment tool
can significantly reduce the potential for human error and en-
able users to make efficient and effective decisions (Zhan,
Ahmad, Heuermann-Kuehn, & Baumann, 2010) (Isermann,
2006). This paper will focus on building data-driven remain-
ing useful life estimation (RUL) for PNG systems, so appro-
priate actions can be taken for preventative replacement of the
asset. The novelty and academic contributions of this study
are highlighted by the fact that there has been no prior work
related to RUL prediction for PNG systems, making this re-
search a pioneering effort in the field.

The next section of this paper provides a detailed overview
of the PNG system and discusses previous work and research
relevant to this study. Research problem is formulated in the
following section. The next two sections present the model-
ing approach and experimental results, respectively. A con-
clusions section completes the paper.

2. PULSED NEUTRON GENERATOR SYSTEM

2.1. Description

For many years, the oil and gas industry has employed high-
energy neutron generators in neutron-gamma-ray or neutron-
neutron logging (Tittle, 1961). These generators offer sev-
eral advantages over conventional chemical sources, includ-
ing the ability to deactivate the PNG and eliminate radiation
risks when not in use downhole. Additionally, the generators
enable precise control over neutron output, facilitating more
accurate measurements of formation properties.

In the field of nuclear well logging, achieving accurate forma-
tion measurements hinges on emitting neutron pulses to irra-
diate the Earth’s formations and detecting the resulting radia-
tion from the interaction between the Earth’s formation atoms
and the emitted neutrons. Understanding the characteristics
of the neutron pulse, including its output and timing, is cru-
cial for achieving precision. Ideally, the neutron pulse should
exhibit a substantially square wave shape. The PNG, depicted
in Fig. 3, proves instrumental in overcoming these technical
challenges and facilitating the generation of desirable neutron
pulses. Serving as a stand-alone particle accelerator, the PNG
utilizes fusion reactions to produce neutrons.

Conducting a failure investigation and root cause analysis re-
vealed two major failure modes of the PNG:

1. Internal cathode wire discontinuity due to overheating

2. Reduced neutron generation flux due to doped target wear

These failure modes can potentially compromise the func-
tionality of the PNG and even lead to the failure of the LWD
tool.

Figure 3. PNG architecture

2.2. Previous Work and Research

In prior research, a data-driven fault detection model for the
PNG subsystem was introduced (Mosallam, Laval, Youssef,
Fulton, & Viassolo, 2018). This approach involved creating
a univariate representation known as a health indicator (HI).
Subsequently, a classifier utilizing the decision tree method
was trained to distinguish healthy and failed runs of PNGs.
The method demonstrated high accuracy, providing quick and
precise assessment for maintenance and field engineers.

Following that, a data-driven fault diagnostics method for the
PNG system was introduced, specifically focusing on the de-
tection of failures associated with the power supply boards
(Mosallam, Kang, Youssef, Laval, & Fulton, 2023). This
work complements the previously published fault detection
model for the PNG subsystem (Mosallam et al., 2018) by pro-
viding detailed information indicating which electronic board
or boards failed. The method extracts features from data
channels capturing fault symptoms and builds support vec-
tor classifier models for each board. Experimental results
showed an average accuracy of about 99% for all boards, re-
ducing troubleshooting time and enabling automatic trigger-
ing of maintenance procedures for faulty boards.

The latest publication concentrated on the data-driven degra-
dation modeling of the PNG system, emphasizing one of its
incipient failure modes (Mosallam, Youssef, et al., 2023).
The method extracts HI values from data channels quanti-
fying component health degradation utilizing a random for-
est classification model. Experimental results demonstrate an
average accuracy of 90.4%. The algorithm enables the identi-
fication of degradation stage of the PNG, empowering better
planning for the equipment usage and avoidance of the failure
during downhole operations.

However, in order to foster decision-making even more pre-
cisely, the necessity for a RUL estimation persists. This pa-
per focuses on predicting the reduction of neutron generation
flux due to doped target wear over time and determining the
remaining useful time of the system. Integrating RUL es-
timation will enable proactive maintenance planning, better
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decision-making on well sites, and future manufacturing fore-
casts and equipment delivery optimization based on world-
wide RUL of active PNGs.

3. PROBLEM FORMULATION

The main objective of prognostics is to minimize the equip-
ment or system downtime by forecasting the RUL of the sys-
tem (or critical components of the system), as shown in Fig. 4.
The RUL prediction methods can be broadly classified into
three categories: physics model based, data-driven, and hy-
brid (Medjaher, Tobon-Mejia, & Zerhouni, 2012)(Lei et al.,
2018). Physics model based methods use mathematical mod-
els to describe the system’s or component’s physical behavior
and predict its RUL. Although these methods require a deep
understanding of the failure mechanisms and effective esti-
mation of model parameters, they can provide accurate RUL
estimation. On the other hand, data-driven methods use pat-
tern recognition algorithms to learn patterns from historical
data and make RUL predictions. The data-driven methods do
not require a comprehensive understanding of the system fail-
ures but require high-quality data. Hybrid methods combine
the strengths of both methods to improve RUL predictions.

Figure 4. RUL forecast schematic

The PNG system being studied is highly complex, which lim-
its the use of physics model-based and hybrid methods for
predicting the PNG’s (or PNG component’s) RUL. Thus, the
goal is to create a data-driven prognostic model that incorpo-
rates data related to the incipient failure modes of the PNG
target. This model will estimate the target’s RUL along with
its confidence level as shown in Fig. 5.

There are two primary methods for building data-driven prog-
nostic models: direct RUL mapping and cumulative degrada-
tion prognostics (Mosallam, Medjaher, & Zerhouni, 2016).
The direct RUL mapping approach uses empirical models
to directly correlate sensor data with the end of life (EOL)
value, eliminating the need to determine the health status of
the monitored component (see Fig. 6).

In contrast, the cumulative degradation prognostics approach
uses empirical models to describe the system’s degradation
progression. This degradation information can then be used
to estimate the health status of the system and predict the RUL
based on the system’s expected future behavior (see Fig. 7).

This study introduces a novel approach for predicting RUL
using the direct RUL mapping approach. The primary objec-
tive is to establish a model that effectively captures the cor-

Figure 5. HIs for a system with two different failure modes

System

Online sensor 
data

Offline sensor 
data

Select similar 
model

Historical EOL 
models

RUL 
prediction

Figure 6. Direct RUL mapping approach

relation between sensor measurements and end-of-life states,
thereby enabling RUL prediction without relying on prede-
fined alarm thresholds. Predefined alarm thresholds do not
effectively capture the correlation between sensor measure-
ments and EOL states, which can lead to less accurate pre-
dictions of RUL. The proposed method builds on the extrac-
tion of health indicators from historical training data, which
serve as foundational reference models. Upon encounter-
ing new data, the approach employs a K-nearest neighbors
(KNN) classifier to identify the most closely resembling HI
within the database, subsequently leveraging it as a reliable
RUL predictor.

4. PROPOSED METHOD

The objective of the proposed method is to construct an HI
based on sensor data that efficiently captures the PNG deteri-
oration information. The HI values with RUL assignment are
then modeled using a machine learning algorithm, which can
estimate the RUL of the PNG. The proposed method is di-
vided into four main steps: channel selection, preprocessing,
HI construction, and modeling.
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Figure 7. Cumulative degradation approach

4.1. Channel Selection

As highlighted in Section 1, the LWD tool generates a sub-
stantial number of high-resolution data channels during each
drilling operation, leading to millions of data points. How-
ever, not all of these channels contribute information pertain-
ing to the degradation of PNG over time. Enhancing the effi-
ciency and precision of the HI involves the removal of irrel-
evant data channels. The selection of pertinent data channels
relies on the expertise of subject matter experts with domain
knowledge in nuclear physics and instrumentation. This pro-
cess is crucial for optimizing the relevance of the data consid-
ered for the HI.

For the target failure mode, the following two data channels
were selected:

• BLD: The internal high voltage in the PNG’s minitron
that enables the particles’ acceleration to the target. The
higher the BLD, the better the fusion reaction.

• BEAM: The particle beam current. The higher the BEAM,
the higher the neutron emission.

Raw data for BLD and BEAM channels are presented in Fig. 8.
The HI will be constructed using the data from the channels
after the preprocessing step that will be described in the up-
coming subsection. Note that the duration of each run is dif-
ferent according to the drilling job requirements, and the data
of the sixth and eighth run before EOL are missing.

4.2. Preprocessing

The LWD data acquisition system commences recording data
as soon as a field engineer initializes it for the forthcoming
drilling operation (or run). The LWD tool follows the subse-
quent steps:

1. Tool initialization: the field engineer configures the ac-
quisition parameters for the upcoming job, formats the
tool memory, and begins the tool recording.

2. Shallow hole test: the field engineer confirms that the
tool is functioning as expected inside the well before de-
ploying the tool to the full well depth.

Figure 8. Raw data of the selected channels of eleven con-
secutive runs before EOL, where N denotes the last run, N-1
denotes the first run before EOL, N-2 denotes the second run
before EOL, and so on.

3. Casing logging for caliper calibration: The field engineer
calibrates the tool’s ultrasonic measurement by using the
known internal diameter of the metal casing connecting
the rig to the wellbore and the known drilling fluid prop-
erties.

4. Drilling operation: The field engineer places the tool be-
hind the drill bit for measurement acquisition during the
physical drilling of the well.

For each run, the data collected during the initial three steps
lack information pertaining to PNG degradation and are con-
sequently excluded. Additionally, during periods when the
PNG does not fire, the firmware generates dummy records to
fill data channel gaps, known as missing values. All miss-
ing values must be disregarded as they do not provide any
insights into faults. The duration of each drilling job varies.
Let T represent the duration of a given drilling job. Conse-
quently, the next step is undertaken to facilitate the extraction
of a consistent statistical representation of the signal. Each
time series of BLD and BEAM, denoted as

X = [x1, . . . , xT ]

and
Y = [y1, . . . , yT ]

respectively, generated throughout the run is segmented into
N = 200 windows, determining the window size based on
the duration of the run

w =

⌊
T

N − 1

⌋
,

where each of 1, . . . , N − 1 windows are of window size w
and the last window is of a size T mod N − 1. Within each
of 200 windows the minimal mode of each channel is ex-
tracted. To define the process of extracting the minimal mode,
the function g(Z) is denoted as the minimum of the mode of
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Z, and is expressed as:

g(Z) = min(mode(Z)).

For BLD channel, the minimal mode is extracted as follows:

x′i+1 =

{
g([xiw+1, . . . , x(i+1)w]), if i ∈ {0, . . . , N − 2}
g([xiw+1, . . . , xT ]), if i = N − 1

resulting in
X ′ = [x′1, . . . , x

′
N ].

The same process is applied to BEAM channel, with the for-
mula given by:

y′i+1 =

{
g([yiw+1, . . . , y(i+1)w]), if i ∈ {0, . . . , N − 2}
g([yiw+1, . . . , yT ]), if i = N − 1

resulting in
Y ′ = [y′1, . . . , y

′
N ].

Finally, a median filter is applied to the sequence X ′ and Y ′

to smooth the signals, with X̃ and Ỹ denoting the smoothed
X ′ and Y ′, respectively. Fig. 9 presents the raw signals of
BLD and BEAM shown in Fig. 8 after preprocessing.

Figure 9. Preprocessed BLD and BEAM signals

4.3. Health Indicator Construction

In this algorithm step, an HI is constructed using the prepro-
cessed data. The main objective of deriving this HI is to rep-
resent the system’s degradation in a 1D array format. The HI
is extracted as a result of element-wise addition of the prepro-
cessed BLD and BEAM signals, which can be represented by
the formula

HI = X̃ + Ỹ .

The decision to extract the HI by summing two channels comes
from the fact that this approach ensures the HI has several key
characteristics necessary for effectively monitoring health sta-
tus of the PNG. These include sensitivity to degradation, mono-
tonicity, predictive power, noise robustness, and consistency

across conditions. Additionally, this method is computation-
ally efficient and easily interpretable. Fig. 10 presents the HI
values constructed using the Fig. 9 example data.

Figure 10. Constructed HI

It is important to highlight that the input data utilized re-
flects the incipient failure mode. Consequently, the result-
ing HI acts as a numerical gauge of the system’s condition in
a monotonic manner. Put simply, the HI offers a numerical
representation of the system’s health, enabling further analy-
sis or decision-making processes.

4.4. Modeling

The HI constructed from the data collected during each drilling
job results in 1D array representation, independent of the ac-
tual run duration. Thus, the RUL estimation problem can
be converted into a regression problem if the array of each
run has RUL assigned. To accomplish that, the usage of the
PNG in hours estimated for each run is used, and respectively
summed up over a lifespan. The formula for the RUL assign-
ment is the following:

RULt = EOL− t,∀EOL > t, (1)

where t is the current time. The RUL labels serve as a target
variable for each run. Specifically, this paper uses a KNN
classifier to establish the relationship between the input HI
values and their corresponding RUL i.e., RULt = f(Xt),
where

Xt = [x1,t, x2,t, ...x200,t] (2)

5. EXPERIMENTAL RESULTS

A dataset containing operational data from 89 different LWD
tool runs in different locations was collected to validate the
proposed method. The dataset consists of historical runs from
16 different PNGs that reached the EOL. However, each PNG
can operate different number of runs and the data availability
highly varies between the PNGs. As mentioned in Section
2.2, in the previous work, the health state estimation model
was developed (Mosallam, Youssef, et al., 2023). This algo-
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rithm is applied for the PNG and enables distinguishing five
degradation states: healthy, lightly degraded, moderately de-
graded, severely degraded and EOL. The dataset utilized for
estimating the RUL differs from that used in previous studies,
primarily due to an increased number of EOL cases captured
in the current research. Previously, without a health state esti-
mation model, the usage of the PNG until late stages of degra-
dation was scarcely feasible, rendering RUL estimation im-
possible at that time. It is important to note that the main fo-
cus of this work is to predict the RUL when the PNG’s degra-
dation has already started, ad therefore, we train the model
only from a certain degradation state. The RUL estimation is
thus performed for the four stages of the PNG degradation be-
ing lightly degraded, moderately degraded, severely degraded
or reaching EOL.

To assess the performance of the proposed method, the mean
absolute percentage error (MAPE) evaluation metric is cal-
culated. Let RULi be the actual remaining useful life and
RUL∗

i be the predicted remaining useful life for i = 1, . . . , n
where n is the total number of runs performed by all PNGs.
The MAPE is defined as follows:

MAPE(%) =
100%

n
·

n∑

i=1

∣∣∣∣
RULi −RUL∗

i

RULi

∣∣∣∣ (3)

To assess and compare the performance of the models, as well
as to validate their ability to generalize the learned patterns,
the dataset was split into a training set of 14 PNGs corre-
sponding to 75 runs, and a test set of 2 PNGs resulting in
14 runs. Additionally, a specialized form of k-fold cross-
validation is employed in the training phase. This method in-
volves iterating through the PNGs, with each iteration leaving
out one PNG for validation along with all its corresponding
runs while training the model on the runs from the remaining
k − 1 PNGs. This approach allows for efficient validation of
how the model performs across various stages of PNG degra-
dation, reducing the bias in performance estimation.

To select the best-performing model, two groups of algorithms
were tested to estimate the RUL of the PNG: regressors and
classifiers (Mosallam, 2014). The following algorithms were
evaluated within each group: KNN, decision tree, random
forest, and gradient boosting. Additionally, hyperparameter
tuning was conducted to determine the best-performing algo-
rithm.

The two best-performing algorithms: KNN and gradient boost-
ing regressor (GBR) were selected for the further evaluation
based on the overall MAPE presented in the Table 1. The se-
lection of the single, most-suitable and best-performing algo-
rithm is done based on both the MAPE overall and the MAPE
calculated across various RUL intervals presented in Table
2. This approach ensures that the chosen model accurately
predicts system behavior not only throughout its operational

lifespan but also specifically as it approaches EOL conditions.

Table 1. MAPE of the LOOCV set for the trained algorithms

Algorithm name MAPE (%)
K-Neighbors Classifier (K=2) 16.64 %
Gradient Boosting Regressor 17.26 %
K-Neighbors Classifier (K=3) 17.57 %

Random Forest Regressor 17.67 %
K-Neighbors Regressor (K=3) 17.78 %
K-Neighbors Regressor (K=2) 17.91 %
K-Neighbors Regressor (K=4) 18.40 %
K-Neighbors Classifier (K=4) 18.69 %

Random Forest Classifier 21.54 %
Decision Tree Classifier 21.92 %
Decision Tree Regressor 25.82 %

Gradient Boosting Classifier 30.18 %

Table 2. MAPE of the RUL intervals for the best performing
algorithms

RUL interval GBR MAPE (%) KNN MAPE (%)
(0, 100] 26 % 13 %

(100, 200] 20 % 19 %
(200, 300] 16 % 20 %
(300, 400] 21 % 22 %
(400, 500] 8 % 11 %
(500, 600] 13 % 10 %
(600, 700] 6 % 5 %
(700, 800] 6 % 13 %

Taking into consideration the results of overall MAPE and
MAPE calculated for the specified intervals, the KNN model
outperforms other algorithms. The accuracy of prediction for
the RUL in the interval (0, 100] is significantly higher for
KNN with k = 2, which is crucial as the PNG approaches
the EOL. As previously stated, the objective is not solely to
reduce the overall MAPE, but also to ensure the accuracy
of predictions as the PNG approaches the end of its lifes-
pan. The final phase of model validation involves training
the model on the entire training set and evaluating its perfor-
mance on the left-out test set. The MAPE for the test set is
showcased in Table 3, confirming the consistent performance
of both models.

Table 3. MAPE of the test set for the best-performing algo-
rithms

Algorithm name MAPE (%)
K-Neighbors Classifier (K=2) 16.24 %
Gradient Boosting Regressor 11.85 %

In conclusion, the KNN algorithm outperformed the GBR and
other algorithms, as evidenced by the LOOCV outcomes and
its superior accuracy in predicting the RUL of PNGs as they
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approach the end of their lifespans. Furthermore, the KNN al-
gorithm demonstrated strong performance on the test set, and
offers greater explainability than GBR due to its straightfor-
ward methodology and direct reliance on training data points.
Therefore, this model got selected for the implementation.
Fig. 11 presents the RUL estimated by KNN model for all
the available runs for one of the PNGs, resulting in MAPE of
11.1%.

Figure 11. KNN prediction for selected PNG

6. CONCLUSIONS

This paper has presented a data-driven approach for RUL es-
timation of the PNG system in LWD tools. The method pro-
vides a quantitative measure of the component’s deterioration
by extracting the HI from BLD and BEAM data channels re-
lated to identified incipient failure mode of PNG. These HI
values are used to build a KNN classification model to es-
timate the PNG RUL, which has been deployed as part of
the health analyzer software for the LWD tool. Experimen-
tal results on actual operational data collected from the field
resulted in the MAPE for LOOCV of 16.6%, and MAPE for
the test set of 16.2%, demonstrating the effectiveness of the
method. This method can assist maintenance engineers in
promptly determining the PNG’s remaining operational lifes-
pan, reducing troubleshooting time; enable automatic triggers
for maintenance activities for replacing faulty nuclear com-
ponents; and improve decision making. Regarding future en-
deavors, there are intentions to address the second incipient
failure mode of the PNG, with the aim of improving the prog-
nostics model for the PNG.
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ABSTRACT 

In this paper, we develop a model for detecting defects in 
fabric products based on an object segmentation algorithm, 
including a novel image data augmentation method to 
enhance the robustness. First, a vision-based inspection 
system is established to collect image data of the fabric 
products. The three types of fabric defects, such as a hole, a 
stain, and a dyeing defect, are considered. To enhance defect 
detection accuracy and robustness, a novel image data 
augmentation method, referred to as the defect-area cut-mix, 
is proposed. In this method, the shapes that are the same as 
each defect are extracted using the masks, and then they are 
added to non-defective fabric images. Second, an ensemble 
process is implemented by combining the results of two 
models, one with high sensitivity in defect diagnosis and the 
other with lower sensitivity. The results demonstrated that the 
model trained on the augmented dataset exhibits improved 
metrics such as intersection over union and classification 
accuracy in defect detection on the test dataset.  

1. INTRODUCTION 

Recently, there has been a surge in demand for automation in 
the product manufacturing and inspection processes across 
various sectors within the manufacturing industry. However, 
due to the considerable time and cost, product inspection by 
small and medium manufacturers is usually done manually 
with the human eye. Meanwhile, human inspections can lead 
to inconsistent test results based on the examiner's skill level 
and fatigue. Recently, thanks to artificial intelligence (AI) 
technology, manufacturing companies have actively applied 
automated inspection processes that can be adapted to 
different types of products (Jung et al., 2021). In order to 
conduct automated inspections of products with diverse 
geometries, it is necessary to develop a robust image-based 
inspection algorithm and an imaging system that is robust to 
external factors, including lighting conditions.  

Research on image-based product inspection algorithms can 
be divided into many approaches: statistical approach, AI 
model-based approach and hybrid approach (Hanbay et al., 
2016). Among various approaches, the statistical approach 
involves using image processing techniques (such as 
frequency decomposition or filtering) to extract features from 
images, while the hybrid approach combines statistical 
methods and modeling techniques to leverage the strengths 
of both. Therefore, these can be recategorized as follows: 
those based on combined image processing and those based 
on deep learning models such as convolutional neural 
networks (CNN) (Bhatt et al., 2021). For combined image 
processing algorithms that involve a mix of image processing 
steps, it is possible to achieve high inspection accuracy only 
for specific products with the same geometries. However, this 
approach has a drawback: if the product type or capturing 
environment changes, we must adjust the algorithm's 
parameters or create a new algorithm from scratch. On the 
other hand, algorithms based on deep learning models can 
respond to various products and environments depending on 
the training dataset and can achieve high inspection accuracy. 
However, since the performance of the inspection model 
greatly depends on the quality of the dataset (number of data 
points, diversity, etc.), developing a robust model requires 
investing time and effort to collect a large number of images 
of defective products (Russakovsky et al., 2015).  

Combined image processing algorithms are primarily used 
when the shooting environment is consistent and the variety 
of inspected products is limited. Tong et al. (2016) presented 
an optimal Gabor filter for inspecting woven fabrics. Zhou 
(2019) focused on inspecting defects in semiconductor 
wafers. They applied a median denoising process to images 
to extract favorable features for defect detection and 
proposed algorithms using machine learning techniques such 
as KNN and SVM to classify images. Deep learning model-
based algorithms require significant computing resources and 
longer processing times compared to combined image 
processing algorithms. However, they offer the advantage of 
creating robust models that are resilient to variations in 
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shooting environments and product types, depending on the 
quality of the training dataset. Tabernik et al. (2020) 
presented a novel segmentation network and decision 
network trained on the Kolektor Surface-Defect-Dataset 
(KolektorSDD), containing product surface defects, to infer 
surface defects with higher accuracy. Ho et al. (2021) 
proposed a step-by-step algorithm where an object detection 
model locates defects, and an instance segmentation model 
infers the shape of defects in woven fabrics. Deep learning 
model-based algorithms are generally evaluated to have 
higher robustness compared to combined image processing 
algorithms. 

However, if the feature distribution of the images in the 
training dataset (such as brightness, types of products, defects, 
etc.) is not sufficiently diverse, the model may only 
accurately infer data within the feature distribution of the 
training data. For instance, assuming a specific defect in the 
training dataset has a radius of 0.1~0.2mm and appears darker 
than its surroundings, the detection may become challenging 
if the defect is larger than 0.2mm in radius or if the product's 
color is darker than the training images. This is due to the new 
data displaying features not seen in the training. To address 
this issue, collecting more data would be one solution. 
However, as mentioned earlier, for small and medium-sized 
enterprises, investing significant time and resources without 
immediate productivity gains can be challenging. Therefore, 
there is a need to generate unseen data using observed feature 
distributions within the dataset. 

Therefore, in this work, we present a novel defect data 
augmentation method, referred to as the defect-area cut-mix, 
to improve the accuracy and robustness of deep learning-
based fabric defect detection models from the perspective of 
dataset quality. In addition, an ensemble process is applied by 
combining high and low sensitivity models in the fabric 
defect diagnosis. Figure 1 shows the schematic diagram 
depicting the research methodology in this paper.  

2. MODEL CONSTRUCTION AND DATA AUGMENTATION 

2.1 Image Data Collection and Model Construction 

In this section, the research methodology for image collection 
and defect detection model construction is explained. There 
are three steps, as follows: 

Step 1. Collection of fabric defect image data using vision 
cameras in the fabric inspection machine.  

To collect the fabric defect image data, two single-channel 
machine vision cameras were installed on the fabric 
inspection machine, as shown in Figure 2. The fabric 
inspection machine was designed to inspect the fabric rolls 
while they were continuously rotating. The three fabric types 
were black denim, blue denim, and light blue fleece. All 
images were collected while moving the fabric at a speed of 
approximately 30 cm per second, like in the actual fabric 
inspection environment. 

 
Figure 1. Schematic overview of the research methodology 

 

 
Figure 2. Image data collection using fabric inspection 

machine 
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Step 2. Construction of the original datasets and defect-
augmented datasets through image patching and masking of 
defect areas. (Masking and labeling are conducted using 
CVAT, which is a well-known open-source annotation tool.) 
(OpenCV et al. n.d.)  

The collected original images have dimensions of 3000 pixels 
in height and 4080 pixels in width. Due to their large size, it 
is inefficient for deep learning models to process them 
directly, necessitating resizing or patching. When resizing the 
original images directly, as shown in Figure 3, small defect 
areas may become significantly reduced and thus may not be 
detected. To avoid this issue, we performed patching in a grid 
of 3 (vertical) by 4 (horizontal) patches and resized each 
patch to 320x320 pixels. Subsequently, masking was applied 
to all patches containing defects to construct the dataset.  

 

Figure 3. Image patching and resizing 

Step 3. Design and construction of the defect detection model 
architecture for training. 

This dataset was then divided into training, validation, and 
testing sets, as shown in Table 1. Both the training and 
validation datasets were composed entirely of patches 
containing defects. For the testing dataset, we included both 

patches with defects and patches without defects to assess the 
tendency for false positives in detecting defects on normal 
(non-defective) patches. 

Table 1. The number of images of original patched dataset 

Defect type Without 
defect Hole Stain Dyeing Total 

Training 0 468 109 71 648 
Validation 0 465 95 95 655 

Testing 6312 80 45 3 6440 
 

Deep learning-based defect inspection commonly uses object 
detection and instance or semantic segmentation models. In 
this study, we selected a semantic segmentation model to 
reflect the characteristic of quantitatively calculating the area 
of defects during the quality assessment of fabric products. 

We designed our own Unet++ architecture, which has 
recently demonstrated strong segmentation performance in 
the biomedical field, to build the model as depicted in Figure 
4. The model specifically takes an image input size (320,320) 
and outputs masks (320,320,4) corresponding to non-
defective regions and each defect. Additionally, the input 
image undergoes four rounds of down-sampling and up-
sampling, with skip connections applied between all feature 
maps (Zhou et al. 2019). To ensure performance in both 
pixelwise classification and defect classification during 
model training, we employed the BCE Dice loss function, 
calculated as Eq. (1).  

By using both BCE (Binary Cross-Entropy) and DICE loss 
functions, it is possible to accommodate diversity in loss 
calculations while leveraging the stability provided by BCE. 
In semantic segmentation tasks, 𝑥𝑛  and 𝑦𝑛  are both binary 
images (masks), representing the ground truth and the 
predicted mask, respectively. 

Figure 4. Architecture of fabric defect detection model. 
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BCE Dice Loss = BCE loss + 0.5 × Dice loss  

BCE Loss = 

− ∑(yn log σ(xn) + (1 − yn) log(1 − σ(xn)))  

Dice loss = ∑ (1 −
2×yn×xn

xn
2 +yn

2 +10−5)  

(1) 

 

2.2 Defect Data Augmentation 

The number of images within a dataset to ensure the basic 
performance of CNN-based deep learning models can vary 
depending on several factors (Luo et al., 2018; Israel et al., 
2021). However, models used in industrial applications often 
face limitations on the available data within their own 
manufacturing environments. Thus, transfer learning using 
pre-trained weights on custom datasets is a commonly used 
strategy to ensure robustness (Redmon et al. 2016). However, 
even in such cases, it is generally recommended to have at 
least 1000 images per class (Cho et al., 2015). Therefore, it is 
necessary to apply a proper data augmentation approach to 
ensure enhanced performance of the defect detection model. 

In the dataset created by patching the collected original 
images in this study, the numbers of defect instances are 
highly imbalanced, as shown in Table 1. Additionally, the 

absolute number of images is insufficient. The most 
frequently observed defect in both the training and validation 
datasets is "hole," occurring more than four times as 
frequently as "stain" and "dyeing" defects combined. Even 
when combining the training and validation datasets, the total 
number of images does not exceed 1500. Therefore, image 
data augmentation is essential, and it is necessary to reflect 
the characteristics of each defect in the augmentation process. 
Stain defects exhibit various shapes and intensities within the 
defect areas, while dyeing defects primarily appear as broad 
horizontal stripes. Hole defects typically manifest as long, 
uniformly shaped vertical openings. Figure 5 shows 
examples of images depicting each type of defect. 

Commonly used methods for image augmentation include 
geometric transformations (such as flipping, rotating, and 
affine/perspective transformations) and brightness 
adjustment (such as histogram equalization). These methods 
are advantageous because the operations applied to the 

Figure 5. Example images of each type of defects. 
Figure 6. Comparison of conventional cut-mix and 

defect-area cut-mix. 
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images are simple, allowing for the rapid generation of new 
images. However, these methods alter the shape and 
brightness information of defects along with the surrounding 
background area, making it challenging to reflect cases where 
the model inputs unseen shapes of defects. 

Therefore, in this study, to overcome the limitations of such 
data transformations, the cut-mix augmentation technique 
was applied specifically to defect areas. The cut-mix 
augmentation is a technique proposed to improve the 
generalization performance of image classification models by 
encouraging the model to better learn the local features of 
each class (Yun et al., 2019). Figure 6 illustrates the 
difference between the conventional cut-mix augmentation 
method and the approach used in this study, referred to as 
"defect-area cut-mix." While the original cut-mix 
augmentation mixes rectangular regions of different class 
images directly, in this study, only the defect areas were cut 
out and overlaid onto images without defects to create new 
images with defects. This approach allows for the assumption 
of situations where the shape and location of defects may 
change from the dataset's perspective. 

– Extract defect areas using defect masks and images. 

– Select images without defects and overlay defect areas 
directly or randomly, depending on the characteristics of 
the defects. Here, the characteristics of the defects refer to 
the area or shape of the defect areas. 

Specifically, for hole defects (see Figure 7), where the defect 
size is relatively small, the defect areas can be randomly 
overlaid in portions of the fabric that are not occupied by the 

fabric. However, manual overlay position selection is 
required for stain and dyeing defects, where the defect 
regions' forms and areas vary considerably and may occupy 
a significant portion of the image.  

After applying the defect-area cut-mix as described above, 
geometric and brightness adjustments were applied to the 
dataset. The following three image processing techniques 
were independently applied with a certain probability: 
brightness adjustment to reflect changes in external lighting 
conditions during image capture (random alpha values within 
the range of 0.5 to 1.5 multiplied by the entire image), 
horizontal flip, and vertical flip. Figure 8 illustrates examples 
of data augmentation.  

To assess the performance difference caused by 
augmentation, the composition of the final datasets 
constructed by applying augmentations to the original 
patched dataset in Table 1 is presented in Table 2 and Table 
3 (datasets B and C). To validate the effectiveness of defect-
area cut-mix augmentation, augmentations depicted in Figure 
7 without defect-area cut-mix were applied to dataset B. On 
the other hand, every augmentation containing geometric 
transformation, brightness adjustment, and defect-area cut-
mix was applied to dataset C. All augmentations were applied 
only to the training dataset. However, for stain defects, it was 
empirically confirmed that applying the defect-area cut-mix 
technique was not effective due to the diverse shapes of the 
defects. Therefore, this augmentation was applied to the hole 
and dyeing defect only. Additionally, to avoid misdiagnosing 
defects on images without defects, images without defects 
and with temporary wrinkles (which are not considered 
defects) were added to the training and validation datasets. 
Compared to the original patched dataset, the augmented 
datasets partially alleviated the class imbalance between 
defect types.  

 

Table 2. Composition of the augmented dataset B 

Defect type Without 
defect Hole Stain Dyeing Total 

Training 930 549 491 186 2156 
Validation 7200 465 95 95 7855 

Testing 6312 80 45 3 6440 
 

Table 3. Composition of the augmented dataset C 

Defect type Without 
defect Hole Stain Dyeing Total 

Training 930 702 907 314 2853 
Validation 7200 465 95 95 7855 

Testing 6312 80 45 3 6440 
 

 

Figure 7. Example of data augmentation by 
 defect-area cut-mix. 

Figure 8. Example of data augmentation by geometric 
transformation and brightness adjustment. 
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3. PERFORMANCE EVALUATION 

Through a series of steps, three datasets were constructed 
before and after augmentation (naturally, the original patched 
dataset is a subset of the augmented dataset). Each of the 
three different datasets was trained on our self-designed 
architecture of the Unet++ model, as depicted in Figure 3. For 
convenience in description, the model trained on the pre-
augmented data will be referred to as Model A, the model 
trained on the augmented dataset without defect-area cut-mix 
will be referred to as Model B, and the one trained on the 
augmented dataset containing defect-area cut-mix will be 
referred to as Model C. By training a strict model and a less 
strict model independently, and then using an ensemble 
method, we were able to avoid incorrectly classifying defect-
free fabric data as defective in Model B and Model C. To 
produce the segmentation results, the ensemble applied to 
Model B and Model C used soft voting on the pixel-wise 
classification probabilities of two distinct models. 

The identical testing dataset was used to test Models A, B, 
and C. Masks for the defect and non-defective areas were 
inferred by the models. The mean Intersection over Union 
(IOU) score for each patch of each image was used to assess 
the performance metrics for defect identification, with a 0.7 
threshold. This measure evaluates each model's ability to 
identify defects and distinguish defective regions from non-
defective ones. 

Furthermore, the confusion matrix depicted in Figure 8 was 
used to calculate the models' precision, recall, accuracy, and 
F1 score in order to assess their performance in defect 
identification. Note that false positives represent instances 
where non-defective regions were incorrectly predicted as 
defective, while false negatives represent instances where 
defects were present but not detected. These metrics provide 
insights into the classification performance of the models in 
both non-defective and defective regions. Classification 
among different types of defects showed a 100% accuracy for 
all models. This high accuracy can be attributed to the clear 
characteristics of each type of defect, as described earlier. 

Overall performance metrics for Model A, B and C are 
presented in Table 4. Model C, trained on the augmented 
dataset with defect-area cut-mix, demonstrated superior 
performance across all metrics compared to Model A and 
Model B. Among the performance metrics for defect 
detection, Recall exhibited the smallest change, indicating 
that both models excelled at detecting actual defects with 
minimal variation.  

The effects of geometric transformation and brightness 
adjustment augmentation, as well as additional training on 
defect-free images, were evident in the difference between 
models A and B. Comparing the confusion matrix of Model 
B with that of Model A shows that all metrics improved. 
Notably, the total number of false positives decreased 
significantly from 1252 to 181. This indicates a substantial Figure 8. Confusion matrices of Model A, B and C 
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reduction in the model's tendency to incorrectly classify 
normal regions as defects. Moreover, the Mean IOU 
improved significantly from 0.375 to 0.704. 

In the case of Model C, trained on a dataset where defect-area 
cut-mix was applied, the number of false positives decreased 
significantly compared to the other two models, with only 7 
false positives in the Stain defect category. (It is interesting 
to note that the cut-mix was not applied to the Stain defect.) 
Furthermore, Model C achieved a more robust test result, 
with a mean IoU of 0.902, compared to the other two models. 

In summary, the augmentation proposed in this study and 
ensemble techniques led to a significant improvement in 
defect detection performance compared to model without 
these enhancements. This demonstrates that the proposed 
defect-area cut-mix technique can enhance the robustness of 
deep learning models in image-based defect detection tasks. 

Table 4. Metrics comparison of model A, B and C 

Model A B C 
Mean IOU 0.375 0.704 0.902 
Precision 0.086 0.401 0.946 

Recall 0.938 0.945 0.953 
F1 score 0.160 0.281 0.950 
Accuracy 0.804 0.971 0.998 

 

4. CONCLUSION 

This study proposed the novel image data augmentation 
method, referred to as the defect-area cut-mix, for enhancing 
defect detection accuracy and robustness of the deep 
learning-based fabric inspection system. In the defect-area 
cut-mix method, the defect shapes that are the same as actual 
fabric defects (hole, stain and dyeing defect) were extracted 
using the masks, and they were added to the non-defective 
fabric images for an augmentation. To demonstrate the 
effectiveness of the proposed defect-area cut-mix 
augmentation method, three data sets were prepared, such as 
the original dataset with augmentation (dataset A), that with 
conventional geometrical augmentation and brightness 
adjustments (dataset B), and that with defect-area cut-mix, 
geometrical augmentation, and brightness adjustments 
(dataset C). Then, the ensemble approach combining the 
deep-learning models with high and low sensitivity was 
applied to datasets B and C. Finally, it was found that the 
fabric defect diagnosis model with the dataset C and 
ensemble approach showed the best performance in terms of 
mean IOU, precision, recall, F1 score, and accuracy. 
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ABSTRACT 

Electro-Mechanical Actuators (EMAs) are projected to 
revolutionize the flight control actuator paradigm, potentially 
replacing hydraulic-powered systems in the future. 
Consequently, the functioning of EMAs is destined to 
become critical for the safe and reliable operation of aircraft. 
Abnormal conditions of the mechanical components of 
EMAs can lead to their failure. The objective of this work is 
to develop a method for the early detection of abnormal 
conditions of the components of EMAs. The proposed 
method is based on a signal reconstruction model that 
estimates the motor position of EMA as expected in normal 
conditions of its components. Then, the presence of an 
abnormal condition is identified when the difference between 
the motor position and its reconstructed position in normal 
conditions exceeds a preset threshold. The signal 
reconstruction model employs a Physics-Informed Long 
Short-Term Memory network (PILSTM), whose architecture 
combines a physics-informed cell for the solution of the 
differential equations governing the EMA operation, and a 
data-driven Long Short-Term Memory (LSTM) cell which 
receives in input the output of the physics-informed cell and 
reconstructs the position expected in normal conditions. The 
proposed method is applied to data simulated by a high-
fidelity model of EMAs. The results show that PILSTM is 
able to provide accurate, physics-consistent estimates of the 

motor position of EMA in normal conditions and the missed 
and false detection alarms are lower than those of other state-
of-the-art methods. 

1. INTRODUCTION 

In Prognostics and Health Management (PHM), fault 
detection amounts to the identification of abnormal 
conditions in the monitored structure, system and 
components (SSCs). A common approach relies on signal 
reconstruction models that give in output the signal values in 
normal conditions of the SSC (Hines, Uhrig, & Wrest, 1998). 
The difference between the actual signal measurements and 
the reconstructed signal values (so-called residual) is 
analyzed for detecting the presence of abnormal conditions: 
the larger the residuals, the more the SSC behaviour deviates 
from that in normal conditions. 

Signal reconstruction methods can be classified in model-
based and data-driven (Yang, Ling, & Bingham, 2013). 
Model-based approaches typically use numerical simulators 
which code the specific laws of physics. They require a 
limited amount of data for model parameter calibration and 
retain the physical interpretability of the model output. In 
(Zhang, Foo, Don Vilathgamuwa, Tseng, Bhangu, & 
Gajanayake, 2013), a method combining physics-based 
model and extended Kalman filter has been developed to 
perform fault detection of induction motors. In (Sarikhani, & 
Mohammed, 2012), a back electromotive force estimator has 
been built using only laws of physics and the fault detection 
is performed by comparing the signal estimates and the 
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terms of the Creative Commons Attribution 3.0 United States License, 
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Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 318



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

2 

nominal values. The main limitations of model-based 
approaches are the difficulty of representing with a model the 
complexity of modern SSCs, the inevitable approximations 
made to build and solve the model and the computational 
efforts needed for numerical simulation. On the contrary, 
data-driven methods are typically simpler to implement since 
they do not require knowledge on the physics of the system 
and are able to discover complex nonlinear patterns in data. 
Recently, deep learning-based methods have gained 
popularity. In (Qi, Jang, Cui, & Moon, 2023), a data-driven 
model based on the use of gated recurrent units has been built 
to reconstruct the dynamic behaviour of stirred tank reactors 
in normal conditions. In (Xu, Baraldi, Lu, & Zio, 2022), a 
Generative Adversarial Network and an auxiliary encoder 
have been developed to detect anomalies in the operation of 
automatic doors of high-speed trains. Some limitations of 
data-driven methods are their difficulty of extrapolation 
outside the region covered by the training data and the lack 
of interpretability of their outputs, due to their black-box 
nature. 

Hybrid methods combining model-based and data-driven 
methods have also been proposed. In (Chao, Kulkarni, 
Goebel, & Fink, 2022), sensor readings and estimates of 
unobservable parameters inferred by physics-based models 
have been used as input of a deep learning method for 
predicting the remaining useful life of turbofan engines. In 
(Shen, Lu, Sadoughi, Hu, Nemani, Thelen, ... & Kenny, 
2021), a physics-informed deep learning approach has been 
developed for fault detection of bearings, in which the loss 
function contains a term that incorporates physical 
knowledge on the envelop spectrum. In (Yucesan, & Viana, 
2021), recurrent neural networks embedded with physics-
based models of fatigue and grease degradation have been 
developed to predict grease damage. In (Li, & Deka, 2021), a 
physics-informed autoencoder integrating the laws of physics 
relating current and voltage in the loss function is developed 
to detect high impedance faults in distribution grids. In (Chen, 
Rao, Feng, & Zuo, 2022), a physics-informed strategy for 
setting the hyperparameters of a Long Short-Term Memory 
(LSTM) network is developed for fault detection of 
gearboxes. It is based on the maximization of the discrepancy 
between healthy and simulated faulty patterns. Physics-
informed methods have shown their capability of improving 
performance in fault detection, diagnostics and prognostics, 
while enhancing consistency with the law of physics, which 
can enhance trustability. Yet, their use for developing signal 
reconstruction models is still challenged by the difficulty of 
considering variable operating conditions and highly 
nonlinear relationships. 

In this context, this work presents the development of a novel 
signal reconstruction method based on the use of Physics-
informed LSTMs (PILSTMs) to perform fault detection. The 
basic idea behind the developed PILSTM is the combination 
of a physics-informed and a data-driven layers. The former 
solves the differential equations of the model of the system in 

normal conditions, whereas the latter layer receives in input 
the output of the physics-informed layer and reconstructs the 
signals in normal conditions. The developed approach is 
applied to data simulated using a high-fidelity model of 
EMAs, and its performance is compared to those of other 
state-of-the-art methods. The problem of fault detection in 
EMAs has been previously addressed in (Yang, Guo, & Zhao, 
2019), where a LSTM-based model is developed for signal 
prediction and the residuals between predictions and 
measurements are used to detect abnormal conditions. In 
(Zhang, Tang, & Chen, 2021), a model based on an improved 
Gate Recurrent Unit (GRU) is developed to predict signal 
evolutions, which are then used to classify faults with a 
similarity measure. The two methods have been developed 
and verified considering a small set working conditions and 
command signals, which limits their applications to the real 
scenarios. 

The rest of this paper is organized as follows. Section 2 
formulates the problem. Section 3 presents the proposed fault 
detection method. Section 4 discusses the application of the 
proposed method to EMAs. Finally, the conclusions of the 
work are presented in Section 5. 

2. PROBLEM STATEMENT 

We consider the motor of an EMA, which is its most critical 
component, considering the frequency of its failures and their 
potential severity. The function of the motor is to provide the 
torque needed to actuate the aircraft aerodynamic surface 
(Berri, Dalla Vedova, & Maggiore, 2019). It is here modelled 
as a component that receives in input the three-phase current 
signals, [𝑥𝜏,1, 𝑥𝜏,2, 𝑥𝜏,3] , and provides as output the motor 
position, 𝑦𝜏  (Baldo, Bertone, Dalla Vedova, & Maggiore, 
2022) (Figure 1). 

 
Figure 1. Input and output signals of the motor of an EMA. 

We assume to have the available dataset 𝒟𝑡𝑟𝑎𝑖𝑛 =
{𝑋𝑟 , 𝑦𝑟}𝑟=1,...,𝑅  containing 𝑅  input-output time-series of 𝑇 
time instants, 𝑋𝑟 ∈ ℝ𝑇×3 and 𝑦𝑟 ∈ ℝ𝑇 , collected during the 
operation of an EMA in normal conditions. The generic 
vector �⃗�𝑡𝑟 = [𝑥𝑡,1, 𝑥𝑡,2, 𝑥𝑡,3] of 𝑋𝑟  contains the value of the 
𝑛th phase current signal at the 𝑡th time instant, whereas 𝑦𝑡𝑟  
indicates the value of the motor position signal. Each input-
output time series {𝑋𝑟 , 𝑦𝑟}  corresponds to different 
operational conditions of the EMA. 

The objective is the development of a fault detection method 
for the early identification of abnormal conditions in the 
EMA motor. The method is based on the development of a 
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signal reconstruction model 𝑓 : �̂�𝜏 = 𝑓(𝑋𝜏)  that gives in 
output the value �̂�𝜏  that the motor position would have in 
normal conditions at the time 𝜏, given the values of the input 
signals 𝑋𝜏 = [�⃗�𝑡]𝑡=1:𝜏 measured from time 0 until the time 𝜏. 
An anomaly indicator is, then, built considering the residual, 
𝑑𝜏 = �̂�𝜏 − 𝑦𝜏, between the motor position reconstructed by 
the model and the actual measurement. The norm of 𝑑𝜏  is 
small if EMA is in normal conditions and large in case of 
abnormal conditions: therefore, the detection of an anomaly 
condition can be obtained by statistical analysis of the 
residuals. 

3. METHOD 

The signal reconstruction model, �̂�𝜏 = 𝑓(𝑋𝜏) is a PILSTM, 
which is capable of dealing with large non-linearities in the 
dynamics of the time-series. The first layer is a physics-
informed (PI) layer that implements numerical methods to 
estimate the motor position. The second layer is a traditional 
LSTM cell. Fully-connected (FC) layers are used to map the 
extracted hidden features to the output signal (motor position). 
The complete architecture of the signal reconstruction model 
is shown in Figure 2. 

Section 3.1 describes the PI layer and Section 3.2 describes 
the LSTM layer of the PILSTM. Section 3.3 defines the 
anomaly indicator used for the detection of abnormal 
conditions. 

 
Figure 2. Architecture of the proposed PILSTM. 

3.1. Physics-informed layer 

The differential equation used to describe the operation of the 
EMA motor and transmission in normal conditions is (Baldo, 
Bertone, Dalla Vedova, & Maggiore, 2022): 

𝐹 = (𝐽𝑚 + 𝐽𝑢
∗)�̈�𝑡 + 𝐶𝑢�̇�𝑡 + 𝐶𝑚(±√|�̇�𝑡|) (1) 

where 𝑦𝑡 is the motor position, 𝐹 is the motor torque, 𝐽𝑚 is 
the motor inertia, 𝐽𝑢∗  is the inertia of the gearbox following 
the motor and 𝐶𝑢 is the viscous friction of the gearbox. 𝐹 is 
computed from the current signals 𝑥𝑡,1, 𝑥𝑡,2 and 𝑥𝑡,3 as: 

𝐹 = ∑ 𝑥𝑡,𝑛 ∙ 𝑘𝑛
𝑛=1,2,3

 (2) 

with  

𝑘1 = −𝑘𝐸 ∙ sin(𝜃𝑒) (3) 

𝑘2 = −𝑘𝐸 ∙ 𝑠𝑖𝑛(𝜃𝑒 −
2

3
𝜋) (4) 

𝑘3 = −𝑘𝐸 ∙ 𝑠𝑖𝑛(𝜃𝑒 −
4

3
𝜋) (5) 

𝜃𝑒 = 2𝜋(
𝑃 ∙ 𝑦𝑡
2𝜋

− 𝑓𝑙𝑜𝑜𝑟(
𝑃 ∙ 𝑦𝑡
2𝜋

)) (6) 

where 𝑘𝑛  is the 𝑛th-phase back-electromotive force (EMF) 
coefficient, 𝑃 is the number of pole pairs and 𝑘𝐸 is the back-
EMF motor constant. 

The EMA motion in normal conditions is, then, formulated 
as a 2-order differential equation: 

�̈�𝑡 = 𝑔(�⃗�𝑡 , �̇�𝑡 , 𝑦𝑡) (7) 

which is numerically solved by resorting to the 4-stage 
Runge–Kutta method (RK4) (Butcher, 1987). More details 
about the RK4 method are reported in Appendix 1. The 
customized RK4 cell solves Eq (1) by computing 
(Nascimento, Fricke, & Viana, 2020):  

[𝑦𝑡 , �̇�𝑡] = 𝑝𝑖(�⃗�𝑡 , 𝑦𝑡−1, �̇�𝑡−1) (8) 

The obtained 𝑦and �̇�  are hidden features ℎ⃗⃗(1)  fed to the 
LSTM layer. To distinguish the estimates provided by the 
physics-informed layer and the actual measurements, the 
motor position and its first derivative computed by the 
physics-informed layer are indicated as 𝑦𝑝ℎ𝑦 and �̇�𝑝ℎ𝑦 
(Figure 3). 

 
Figure 3. Architecture of the physics-informed layer. 

3.2. LSTM layer 

In the second layer of the PILSTM, data-driven LSTM cells 
are used to reconstruct the signal values. The cells receive in 
input the signal estimates ℎ⃗⃗(1)  (Figure 4) and control the 
information flow using input, forget and output gates to 
remember, when needed, information for long periods of time.  
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Figure 4. Architecture of LSTM layer. 

Specifically, at time 𝑡, the LSTM cells receive in input 𝐡𝑡
(1), 

which is the concatenation of 𝑦𝑡 and �̇�𝑡, process the temporal 
behaviour of the time-series and provide in output the vector 
of hidden features ℎ⃗⃗𝑡

(2) and cell states 𝑐𝑡
(2). The following FC 

layers map the extracted features ℎ⃗⃗𝑡 into the estimates of the 
motor position �̂�𝑡. The structure and detailed operation of the 
LSTM cells are reported in Appendix 2. 

The objective of the training of PILSTM is to identify the 
optimal combination of parameters values (weights and 
biases) that minimizes the error between the actual values of 
𝑦𝑡  and the estimates �̂�𝑡 . To this aim, the following loss 
function is minimized on the training data in 𝒟𝑡𝑟𝑎𝑖𝑛: 

ℒ =
1

𝑅 ∙ 𝑇
∑∑‖𝑦𝑡

𝑟 − �̂�𝑡
𝑟‖2

𝑇

𝑡=1

𝑅

𝑟=1

 (9) 

3.3. Definition of the anomaly indicator 

The test time-series 𝑋𝑡𝑒𝑠𝑡 = {𝑥𝑡,𝑛
𝑡𝑒𝑠𝑡}

𝑡=1,…,𝜏,𝑛=1,2,3
, contains 

the measurements of the phase current signals until the 
present time 𝜏, and it is rearranged in a set of 𝜏−𝑙

𝑠𝑠
+ 1matrices 

𝑋𝑡𝑘
𝑡𝑤 ∈ ℝ𝑙×3 , 𝑡𝑘 = (𝑘 − 1) ∗ 𝑠𝑠 + 𝑙with 𝑘 = 1, . . . ,

𝜏−𝑙

𝑠𝑠
+ 1 , 

each one containing the current signals [𝑥𝑡,1, 𝑥𝑡,2, 𝑥𝑡,3] in a 
time window of 𝑙  time steps. Between one matrix and the 
following, a sliding step of 𝑠𝑠  time steps is applied. At 
present time 𝜏 , the residuals 𝐷 = [�̂�𝜏−𝑙+1, �̂�𝜏−𝑙+2, … , �̂�𝜏] −
[𝑦𝜏−𝑙+1, 𝑦𝜏−𝑙+2, … , 𝑦𝜏] are computed and used to define the 
anomaly indicator (AIND): 

𝐴𝐼𝑁𝐷 = ‖𝐷‖𝐿2
2  (10) 

Finally, a threshold 𝑇ℎ𝑟 for 𝐴𝐼𝑁𝐷 is defined: considering a 
validation set, and the occurrence of an abnormal condition 
is detected if 𝐴𝐼𝑁𝐷 exceeds 𝑇ℎ𝑟. 

4. CASE STUDY 

The functioning of an EMA working in normal conditions has 
been simulated using the high-fidelity (HF) simulator 

described in (Berri, Dalla Vedova, & Maggiore, 2019). 
Specifically, 𝑅 = 60 time-series with time length 𝑇 = 50s of 
EMA operation in normal conditions have been generated for 
training the PILSTM model and verifying the signal 
reconstruction performance. Wavelet denoising has been 
applied to measured signals. The time series has been 
obtained at a frequency of 100Hz. 

4.1. Signal reconstruction in normal conditions 

The dimensionality of ℎ⃗⃗𝑡
(2) is 10. The FC layers consist of 2 

hidden layers with 10 and 5 neurons and 1 output layer with 
1 neuron. The learning rate is set equal to 0.01 and the epoch 
is 250. The Adam optimizer is used to optimize the 
parameters of the LSTM layer and FC layers. 

The 𝑅 = 60 time-series in normal condition are divided into 
a training set containing 30 time-series and a validation set 
containing the other 30 time-series. 

The performance of the proposed PILSTM is compared to 
two state-of-the-art methods: (1) a pure physics-based 
approach based on the solution of Eq. (13) with RK4 to 
compute the motor position; (2) a pure data-driven method, 
which uses a traditional LSTM to estimate the motor position. 
The most critical hyperparameters of the LSTM (number of 
layers, number of hidden states, learning rate) are optimized 
performing a grid-search with the objective of maximizing 
the reconstruction accuracy evaluated on a subset of the 
training set not used for the loss computation (Eq. (9)) during 
training. The optimal configuration is found to be 2 layers, 16 
hidden states and a learning of 0.001. The Root Mean 
Squared Error (RMSE) is used as metric to evaluate the 
reconstruction performance. 

Table 1. Comparison of the accuracy in the reconstruction 
of the motor position for EMA working in normal 

conditions. The RMSE is computed with respect to the time 
series of the validation set. 

 

 PILSTM Physics-based 
method LSTM 

RMSE 0.7087 0.9621 14.6087 
 

Table 1 reports the obtained reconstruction accuracy on the 
validation data. An example of motor position estimates is 
shown in Figure 5. Note that: (1) the pure data-driven method 
provides the worst performance, which indicates that the 
training data are not providing enough information for the 
reconstruction of the input-output relationship; (2) the 
proposed PILSTM method provides the best performance, 
which is obtained by reducing the systematic error of the pure 
physics-based model in the position reconstruction when the 
motor is operating reversely (Figure 5). Due to the 
remarkably worst performance of the LSTM model, which 
makes reconstruction errors more than one order of 
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magnitude larger than the other approaches, the generated 
residuals by LSTM are not shown in Figure 5 (b). 

4.2. Fault detection 

A test set containing normal and abnormal conditions data 
has been generated by simulator. The set contains 9 time-
series in normal conditions and 20 time-series in abnormal 
conditions obtained by assuming a dry friction of 20%, 35% 
and 50%, respectively, for a time interval of 50s. With respect 
to the anomaly indicator setting, the length of the time 
window is set equal to 100, which is the number of 
measurements collected in 1s, and the sliding step 𝑠𝑠 is set 
equal to 10 steps. An example of reconstruction of the motor 
position for an EMA operating in abnormal conditions is 
shown in Figure 6. As expected, the values of the residuals 
tend to be larger than the residuals in normal conditions 
(Figure 5 (b)) for both the physics-based model and the 
proposed method. Also, the residuals of the proposed method 
are remarkably larger than zero, which confirms its capability 
of distinguishing between normal and abnormal conditions. 

 

(a) 

 
(b) 

Figure 5. (a) reconstructions of the motor position and (b) 
corresponding residuals for an EMA in normal conditions. 

 
(a) 

 
(b) 

Figure 6. (a) reconstructions of the motor position and (b) 
corresponding residuals for an EMA in abnormal 

conditions. 

Figures 7, 8, 9 show the Receiver Operating Characteristic 
(ROC) curves obtained by varying the threshold of the 
anomaly indicator for the detection, considering the three 
levels of fault severity, separately. The x-axis reports the 
False Positive Rate (FPR), i.e., the rate of time windows in 
normal conditions identified as abnormal conditions and the 
y-axis reports the True Positive Rate (TPR), i.e., the rate of 
time windows in abnormal conditions identified indeed as 
abnormal conditions. The ideal performance is represented 
by the upper left corner point [0,1]. An overall measure of 
anomaly detection performance is the AUC (Area under the 
ROC Curve) whose most satisfactory value is 1, which 
indicates that all normal and abnormal time series are 
correctly identified. 

Table 2. AUC considering the three levels of fault severity. 
 

Fault severity 
Proposed 
method: 
PILSTM 

Physics
-based 
method 

Pure data-
driven method 
LSTM 

20% dry friction 0.7211 0.4590 0.4056 
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35% dry friction 0.7661 0.4637 0.5468 
50% dry friction 0.9971 0.4892 0.4628 

 

 
Figure 7. ROC curve made by normal condition data and 
20% dry friction abnormal condition data in the test set. 

 
Figure 8. ROC curve made by normal condition data and 
35% dry friction abnormal condition data in the test set. 

 
Figure 9. ROC curve made by normal condition data and 
50% dry friction abnormal condition data in the test set. 

From Table 2, it is seen that the developed PILSTM provides 
the best performance in all fault severities and the pure LSTM 
model shows the worst performance due to its poor capability 
of reconstructing the signals. As expected, the performance 
of PILSTM becomes better as the fault severity increases. 

5. CONCLUSION 

The present work has addressed the problem of fault 
detection in industrial components. A novel method for 
signal reconstructions has been developed based on a 
PILSTM model. Specifically, the PILSTM integrates an RK4 
solver of the differential equation governing the EMA 
operation in normal condition into a LSTM hidden layer. A 
case study considering a simulated dataset of EMA operation 
has been considered. The proposed method has shown a more 
satisfactory accuracy in the signal reconstruction than pure 
data-driven and physics-based methods. The residuals 
between reconstructed and measured signals have, then, been 
used for the detection of abnormal conditions. The results 
show that the method is capable of detecting abnormal 
conditions of smaller severity than other comparison methods. 

Future work will be devoted to optimally setting the threshold 
used for detecting the occurrence of abnormal conditions, 
with the objective of balancing false and missed alarms for 
fault detection according to the user demand. Also, the 
obtained results will be compared with those of other state-
of-the-art methods for unsupervised abnormal condition 
detection, such as Deep Semi-supervised Anomaly Detection. 
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APPENDIX 1: 4-STAGE RUNGE–KUTTA METHOD 

With the available physical knowledge of industrial 
components, a generalized form of 2-order differential 
equation that governs the industrial component can be 
defined: 

�̈� = 𝑔(�⃗�, �̇�, 𝑦) (11) 

where �⃗� is the vector of input signals, 𝑦 is the vector output 
signals, �̇�  and �̈�  are first and second derivatives of 𝑦 , 
respectively. 

Considering the step-size ℎ between time 𝑡 and time 𝑡 + 1, 
RK4 is used to numerically integrate Eq. (11) over time with 
step ℎ: 

[
�̇�𝑡+1
𝑦𝑡+1

] = [
�̇�𝑡
𝑦𝑡
] +

ℎ

6
∙ [
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4
𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4

] (12) 

𝑘1 = 𝑔(�⃗�𝑡 , �̇�𝑡 , 𝑦𝑡) (13) 

𝑘2 = 𝑔 (�⃗�𝑡+ℎ/2, �̇�𝑡 +
ℎ

2
∙ 𝑘1, 𝑦𝑡 + ℎ ∙

𝑙1
2
) (14) 

𝑘3 = 𝑔 (�⃗�𝑡+ℎ/2, �̇�𝑡 +
ℎ

2
∙ 𝑘2, 𝑦𝑡 + ℎ ∙

𝑙2
2
) (15) 

𝑘4 = 𝑔(�⃗�𝑡+ℎ, �̇�𝑡 + ℎ ∙ 𝑘3, 𝑦𝑡 + ℎ ∙ 𝑙3) (16) 

𝑙1 = 𝑦𝑡  (17) 

𝑙2 = 𝑦𝑡 +
ℎ

2
∙ 𝑙1 (18) 

𝑙3 = 𝑦𝑡 +
ℎ

2
∙ 𝑙2 (19) 

𝑙4 = 𝑦𝑡 + ℎ ∙ 𝑙3 (20) 

APPENDIX 2: LSTM CELL 

LSTM cell structure at time t is shown in Figure 9. We 
differentiate output and states of LSTM cell denoted as ℎ⃗⃗𝑡 
and 𝑐𝑡, respectively. Vector size of the output and states is the 
same and it is defined by number of hidden states in the cell. 
Let denote 𝑝 as number of hidden states, so ℎ⃗⃗𝑡 ∈ ℝ𝑝×1 and 
𝑐𝑡 ∈ ℝ𝑝×1 . The ℎ⃗⃗𝑡−1  and 𝑐𝑡−1  of LSTM cell at time 𝑡 − 1 
will serve as an input to LSTM cell at time 𝑡, whereas the 
other input is �⃗�𝑡 . There are three gates that control the 
information flow within cell: (1) input gate ti  ∈ ℝ𝑝×1 
controls what information based on output ℎ⃗⃗𝑡−1 and �⃗�𝑡 will 
be passed to memory cell, (2) output gate �⃗�𝑡 ∈ ℝ𝑝×1 controls 
what information will be carried to the next time step and (3) 
forget gate 𝑓𝑡 ∈ ℝ𝑝×1  controls how memory cell will be 
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updated. All LSTM cells that are used in the models are 
implemented as follows:  

ti = 𝜎(𝑊𝑖�⃗�𝑡 + 𝑈𝑖 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑖)
 (21) 

�⃗�𝑡 = 𝜎(𝑊𝑜�⃗�𝑡 + 𝑈𝑜 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑜) (22) 

𝑓𝑡 = 𝜎(𝑊𝑓�⃗�𝑡 + 𝑈𝑓 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑓) (23) 

�⃗�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐�⃗�𝑡 + 𝑈𝑐 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑐) (24) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ �⃗�𝑡 (25) 

ℎ⃗⃗𝑡 = �⃗�𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑐𝑡) (26) 

where variable weights and bias to be computed during 
training process are 𝑊𝑖 , 𝑊𝑜 , 𝑊𝑓 , 𝑊𝑐 ∈ ℝ𝑝×𝐿 , 𝑈𝑖 , 𝑈𝑜 , 𝑈𝑓 , 
𝑈𝑐 ∈ ℝ𝑝×𝑝 , �⃗⃗�𝑖 , �⃗⃗�𝑜 , �⃗⃗�𝑓 , �⃗⃗�𝑐 ∈ ℝ𝑝×1 . ∘  is element-wise 
multiplication of two vectors (Hadamard product). 𝜎  is 
element-wise logistic sigmoid activation function. 
Connection between different layers of LSTMs is achieved 

such that the output of former layer is as an input to the next 
layer. 

 

Figure 9. Single LSTM cell structure. 
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ABSTRACT

The performance of prognostic models used for prognostic
health management (PHM) applications heavily depend on
the quality of features extracted from raw sensor data. Tra-
ditionally, feature extraction criteria such as monotonicity,
prognosability, and trendability are selected intuitively. How-
ever, this intuitive selection may not be optimal.
This research introduces an innovative approach to transform
raw data into ’high-scoring’ data without the need for prede-
fined feature extraction criteria. Our methodology involves
generating a set of synthetic high-scoring time series. These
synthetic time series, resembling the length and amplitude
of target features, are created through Monte Carlo sampling
(MCS) of a user-defined hidden semi-markov model (HSMM).
We pair these synthetic time series with raw data/features from
the signals and use them as targets to train a convolutional
neural network (CNN). As a result, the trained CNN can con-
vert input features into high-scoring ones, irrespective of their
initial characteristics. So, this study provides the following
contribution to PHM frameworks: it transforms raw data/fea-
tures into high-scoring ones without relying on predefined
criteria, rather on stochastically generated labels that resemble
the nature of the degradation processes. It is worth noting, that
the proposed FE technique is independent of the prognostic
model that will be utilised, thus making it applicable to the
established prognostic models.
We demonstrate and validate the effectiveness of this approach
using acoustic emission (AE) sensor data for remaining useful
life (RUL) estimation of open-hole CFRP specimens. We com-

Antonio Orrù et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

pare prognostic performance using cumulative AE features
with their transformations via our proposed framework. The
transformed features exhibit superior prognostic performance,
underscoring the value of our innovative feature extraction
framework.

1. INTRODUCTION

The current state-of-the-art feature extraction (FE) for prog-
nostics relies heavily on deterministic targets chosen based
on intuitively defined metrics such as monotonicity, prognos-
ability, and trendability (Coble & Hines, 2009). These targets
have shown efficacy in transforming raw data from sensors,
providing a foundational approach for modelling degradation
histories (Eleftheroglou, 2020; Moradi, Broer, Chiachı́o, Bene-
dictus, & Zarouchas, 2023).
The literature-standard procedure for FE for prognostics in-
cludes the transformation of the noisy sensor data to high-
scoring ones by utilising predefined deterministic labels. These
labels are usually derived from simple functions such as second-
degree polynomials, exponential and logarithmic. However,
the inherent limitation of these deterministic labels lies in their
assumption of certainty during the transformation process.
This simplification potentially restricts their predictive accu-
racy and applicability, especially in scenarios characterised
by complex and stochastic behaviours of system deterioration
and noisy sensor measurements. Additionally, setting deter-
ministic targets for transforming inherently stochastic signals,
may significantly increase the complexity and computational
time of the applied models (Xu et al., 2023; Chen, Qin, Wang,
& Zhou, 2021; Ye, Zhang, Shao, Niu, & Zhao, 2022). These
critical deficits motivate our research, highlighting a signifi-
cant gap in existing methodologies. There is an evident need
for enhanced feature extraction techniques that account for the
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inherent noise associated with the sensor measurements.
Our research aims to fill this gap by introducing a novel ap-
proach integrating a stochastic labelling approach for noisy
sensor signals with convolutional neural networks (CNNs).
This method leverages Monte Carlo sampling (MCS) of pre-
defined hidden semi-Markov models (HSMMs) to generate
high-scoring degradation trajectories that serve as labels for
transforming the sensor data utilizing the CNN. By doing so,
the model is trained to transform the raw condition monitoring
(CM) data into features suitable for prognostic health manage-
ment (PHM) frameworks while accounting for the inherent
noise of sensor measurements. The CNN is also trained on
time windows of the data rather than the entire sequences.
This attribute enables the model’s applicability in real-world
scenarios, allowing it to operate online.
The main contribution of the present study is the integration of
MCS of HSMMs with CNNs to transform raw sensor data into
stochastic degradation trajectories, thus incorporating random-
ness while being able to operate online in real-world use cases.
By alleviating the ill-posed dependency of the FE methods
on deterministic labels that stem from intuitive pre-defined
metrics, we aim to create a simple and efficient online FE
methodology able to transform raw sensor data into features
with enhanced prognostic performance. This will ensure the
accuracy and higher certainty of the applied PHM frameworks.
The remaining of this study is organised as follows:

• Section 2 delves into the core methodology of this re-
search, providing insight into all of the different com-
ponents of the proposed transformation methodology as
seen in Figure 1.

• Section 3 presents a case study involving acoustic emis-
sion (AE) data and demonstrates the proposed method-
ology’s practical application and efficacy. This section
is crucial for illustrating the model’s ability to handle
real-world data.

• Section 4 discusses the research results, by first looking
at the transformation of the data and then focusing on
the prognostic outcomes. This section highlights the im-
proved prognostic performance achieved using the trans-
formed data by comparing these results against the base-
line cumulative transformation of the raw data. This com-
parative analysis underscores the proposed transforma-
tion’s enhanced performance in PHM tasks.

• Section 5 concludes the paper with a discussion of the
implications of the research findings and proposes ideas
for future works.

2. ASPECTS OF THE FEATURE EXTRACTION FRAME-
WORK

In this section, we will introduce the method for enhancing
the performance of prognostic algorithms by transforming
raw data signals into forms similar to those generated through
Monte Carlo simulated data. The methodology unfolds over

Figure 1. Flowchart of the proposed methodology.

four subchapters, detailing each critical phase of the transfor-
mation process:

1. Label Creation via MCS an HSMM: This section de-
scribes how MCS of HSMM generates labels with the
same time length as the target signal. These labels serve
as a reference for the desired signal characteristics.

2. Data Windowing for Online Operation: The necessity
of data windowing is explored here, underlining its impor-
tance in developing a system capable of online operation.
Data windowing segments the continuous data stream,
facilitating real-time processing and analysis.

3. Support Model for EOL Estimation and time feature
normalization: This part of the method involves creating
a model to predict an asset’s end of life (EOL). Knowing
the EOL is crucial for normalizing the time feature across

2
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all signals, ensuring consistency in the data transforma-
tion process.

4. Convolutional Neural Network (CNN) Model for Fea-
ture Transformation: The technique’s culmination is de-
veloping a model capable of converting raw data signals
into idealized forms. This model leverages the insights
gained from the previous steps to enhance the raw signals,
making them more suitable for prognostics.

Together, these steps outline a comprehensive approach to data
signal transformation that will boost the predictive accuracy
and reliability of prognostic tools.

2.1. Label Creation via MCS of HSMM

Our framework’s data transformation is based on a supervised
learning algorithm. To that end, we need to provide labels for
our samples. These labels need to encapsulate the stochastic
nature of the assets’ degradation. The way to achieve that is
by modelling the degradation process with an appropriately
initialized HSMM and then utilising it to generate degradation
histories of equal length to our training samples. In order to
generate degradation histories from a pre-initialized HSMM,
we utilize MCS. It is worth noting that the initialization of the
HSMM is a short procedure that is explained thoroughly in
Sections 2.1.1 and 3.3, and the MCS is a simple algorithm
presented in Algorithm 1. Adding to that, the label creation
procedure, as explained below, is only required during the
training step of the FE procedure. During the online deploy-
ment, the transformation of the sensor signals is done in a
sub-second time manner since it includes only the windowing
of the incoming data and the inference part of the trained CNN.
Therefore, the proposed frameworks applicability and scalabil-
ity is not an issue. In the following, the HSMM’s initialisation
is discussed, a short introduction to MCS is provided, and
finally, its utilization for the required label generation is pre-
sented.

2.1.1. HSMM Initialisation

As discussed previously, the first step is to properly initialise
the HSMM model to resemble the degradation process. To
that end, it’s needed first to declare the Initialisation topology
ζ (Eleftheroglou, Zarouchas, & Benedictus, 2020):

• The number of the hidden states (N ): representing the
different levels of degradation.

• Connectivity between hidden states (Ω): This parame-
ter defines the connectivity between the states by defining
the allowed transitions between them.

• Condition Monitoring feature (I): The observation of
the values of a single CM feature is considered to be the
sole indicator of damage in the system.

• Number of discrete monitoring values (V ): In the
case where the connection between the observation of

the CM feature and the damage states is modelled in a
non-parametric way, then it has to be converted to several
discrete levels V .

• Transition rate function (λ): This is the main character-
istic of the degradation process since each transition will
follow this function. This parameter can depend on the
sojourn time of the current state, the transition between
states, the total operating time or any combination of the
above

So, in order to fully characterise the HSMM model, a set of pa-
rameters θ = {Γ, B} are needed where Γ are the degradation
process parameters and B are observation process parameters.
Γ parameters consist of the parameters needed to define the
chosen λ function, and B parameters consist of the emission
matrix B. B is a matrix of dimension of N ∗ V containing
the likelihood that every possible observation in the Z space
will be emitted by a certain hidden state. After defining the
HSMM, in order to generate the required sequences, MCS is
utilized, which will be explained in Section 2.1.2.

2.1.2. Monte Carlo Simulated Data

Monte Carlo Sampling is a powerful statistical technique used
across various fields. At its core, it leverages the power of
randomness to solve complex problems, often too difficult or
impossible to tackle with traditional deterministic methods.
Monte Carlo Sampling operates on a simple yet profound prin-
ciple: it uses randomness to approximate problems’ solutions.
Thanks to the law of large numbers, the more samples are
used, the better the actual solution is estimated. Monte Carlo
methods are useful when analytical solutions are complex
or unavailable, providing a versatile tool for approximation
and simulation across diverse applications (Lemieux, 2009).
However, Monte Carlo sampling has two main disadvantages.
Firstly, it can be computationally inefficient, especially when
dealing with high-dimensional or complex problems. Since
Monte Carlo methods rely on random sampling to estimate
quantities, they may require a large number of samples to
achieve accurate results, which can be computationally inten-
sive and time-consuming. Secondly, Monte Carlo methods
may struggle to estimate rare events or probabilities accurately
with very low or very high values, leading to potential inaccu-
racies in the results.
In this framework, MCS is utilized to perform a “random walk”
over the HSMM. Based on the random sampling and the pre-
defined probability functions of the HSMM, a hidden state is
picked for each time step, which in turn emits an observation.
The observation is captured, and the ”random walk” continues
following the design of the model, until the transition to the
final observed and terminating state occurs. So, in the context
of the proposed methodology, Monte Carlo simulations take
place in the training process, so the testing process does not re-
quire simulated data. Hence, computational inefficiency is not
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a concern for applicability. Additionally, rare samples (events)
are not a concern of the feature extraction process since the
domain of condition monitoring techniques is predefined in
most cases.
Finally, it is worth highlighting that this approach reverses
the traditional training process for HSMMs. Instead of rely-
ing on multiple observation sequences to estimate parameters,
the predefined parameters are used to produce the observa-
tion sequences. This method is detrimental to the stochastic
generation of trajectories, which are later used as labels for
our transformations. By transforming the raw data with these
sequences, the predictive accuracy of prognostic algorithms
can be significantly enhanced. This is attributed to the fact
that this method provides a transformation based on statistical
characteristics rather than the traditionally used deterministic
labels as explained in the previous. The pseudocode for the
implementation of the MCS of the HSMM is adapted from
(Eleftheroglou, 2020) and presented in Algorithm 1.

2.2. Data Windowing for Online Operation:

After acquiring the observation sequences that will be used as
labels for the transformation of the raw data, our methodology
strategically segments both the signals and their correspond-
ing labels into fixed-length time windows. This division is
essential for facilitating the model’s operation in an online en-
vironment, where it is impractical to process the entire signal
simultaneously due to the streaming nature of data.

2.3. Support Model for EOL Estimation and time feature
normalization

However, the previously mentioned segmentation introduces
a challenge: the absence of a definitive feature indicating the
end of the signal complicates the transformation process, po-
tentially affecting the accuracy of the model’s predictions. To
address this issue, we propose developing a secondary model
capable of supporting the transformation by predicting the
end-of-life (EOL) of the asset, based solely on information
from the initial time window. In doing so, we aim to normalise
the time feature on a scale from 0 to 1. However, in practice,
this normalisation will yield values ranging from 0 to a num-
ber close to 1, as it perfomrs only a rough estimation of the
EOL, rather than an accurate prediction. This approach aids
our model in effectively adapting to and processing signals
in real time, paving the way for more accurate and reliable
predictions.
To this end, we opted for a fully connected neural network
(FCNN) tailored with a specific architecture to meet our pre-
dictive objectives. The model is stacked in this order:

• A fully connected layer of 200 neurons is designed to
process 200-time-steps inputs of the condition monitoring
feature.

• A rectified linear unit (ReLU) function to introduce non-

linearity, enhancing its learning capability.

• A dropout layer is then applied to mitigate the risk of over-
fitting by randomly omitting a subset of neurons during
the training phase.

• For the output layer, a single neuron layer is employed to
output the predicted time, encapsulating the RUL estima-
tion.

The FCNN is trained only on the first window of the training
signals. This model’s outputs are then used to normalise the
time feature by dividing all time steps of every window by
the predicted EOL value. We employ the Mean Squared Error
(MSE) as the loss function and Adamax as the optimiser. The
training regimen extends over 1000 epochs, with an Early Stop-
ping mechanism in place to monitor progress. This mechanism
halts training if no improvement is observed after 50 epochs,
simultaneously recovering the best weight combination ob-
served. This approach ensures that the model remains efficient
and effective, capturing the essential predictive dynamics with-
out succumbing to overfitting or underfitting tendencies.

2.4. Convolutional Neural Network (CNN) Model for Fea-
ture Transformation

After the labels are generated, the signal is split into windows
and normalized over its length, the final step is its transforma-
tion. This is handled by the primary model, whose architecture
is outlined as follows:

• Convolutional Layer: This layer has filters, each with
a kernel size of 1, facilitating distinct feature detection
across time series data without the need for padding. The
Glorot uniform method initializes kernel weights, with
biases set to zero.

• Activation Layer: This layer utilizes the Rectified Lin-
ear Unit (ReLU) for non-linear activation, enhancing the
model’s learning capabilities.

• Dropout Layer: A dropout rate is applied in the training
phase to reduce overfitting by randomly omitting connec-
tions from the previous layer to the next.

• Fully Connected Layer: Encapsulated in a time-distributed
wrapper, this layer selects the most relevant outputs from
the filters, culminating in the final output.

Figure 2 illustrates the architecture of the CNN model, pro-
viding an intuitive understanding of its design and flow. This
model provides the transformed CM data, concluding the pro-
posed framework.

3. CASE STUDY

In this part, the methodology proposed in Chapter 2 will be
applied, showcasing in detail the steps to transform raw acous-
tic emission data of CFRP specimens under fatigue loading
for predicting their RUL. The chapter starts explaining how

4
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Algorithm 1 Pseudocode of Simulated Monte Carlo data generator (Eleftheroglou, 2020)

Inputs:
M = {
ζ (int): model’s initialization parameters
θ (array): degradation and the observation parameters
}

Procedure:
X0 = 1
T0 = 0
Tage = 0
for (c = 0; c < N ; c++) do

i = Xc
s = Tc
j = i+ 1
a = U(0, 1)

Tj = Λ−1
i,j (s,−log(1− a)) where Λi,j(s, t) =

∫ t

0
λi,j(s, u) du

Tage = Tage + Tj
for (t = Tc + 1; t < Tage; t++) do

a = U(0, 1)
for (f = 2; f <= V ; f ++) do

if
∑f−1

z=1 bXj
(z) < a <

∑f
z=1 bXj

(z) then
yt = f

else
yt = 1

end if
end for

end for
end for

Output:
Xi, Ti (array): respectively the hidden state and the time at the nth transition.
yt (array): condition monitoring indicator at time t ∈ [1, D].
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Figure 2. Architecture of the primary CNN model (2.4)
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the data are created, preprocessed, labelled, sliced into time
windows, and finally transformed.

3.1. Dataset

The acoustic emission (AE) dataset utilised in this research pa-
per comes from the experiments performed in (Eleftheroglou
et al., 2020). The dataset is derived from tests on open-hole
carbon/epoxy samples, which were subjected to constant am-
plitude fatigue loading until failure. The specimens of dimen-
sions 400x45mm2 are cut from plates manufactured from
carbon/epoxy prepregs via the autoclave process. The stack-
ing sequence is a quasi-static lay-up of [0/45/90/ − 45]2S .
A hole with a diameter of 10mm was drilled in the center of
each specimen. One broadband piezoelectric transducer is
attached to each specimen, and with the help of an AMSY-6
Vallen Systeme GmbH, 8-channel AE system, the acoustic
emissions of the specimens are recorded and utilized as our
CM feature. Hence, the training dataset consists of CM data
obtained by utilizing AE sensors from seven samples under
fatigue loading, and the testing dataset consists of an eighth
specimen that is unseen during training.

3.2. Dataset Preprocessing

The preprocessing phase is designed to enhance the efficiency
and effectiveness of model training. The primary objective
was to purify the data from noise and scale it appropriately,
ensuring that the subsequent steps in our machine-learning
pipeline could properly process it. The first required step is to
discretize the data. This is achieved by employing the K-means
clustering technique (Lloyd, 1982). The entire discretization
of the dataset was done by training the K-means with the
training dataset, setting the number of clusters to 49, and
clustering both the training and test signals with the trained
model. This method played a pivotal role in cleaning the data
by effectively grouping values into clusters, thereby reducing
noise. Each cluster represented a range of values, allowing
for a more structured and less noisy dataset. However, the
process required careful consideration regarding the number
of clusters; an insufficient number could lead to the loss of
significant information from the signal. Additionally, this
clustering approach ensures that the dataset and the labels are
aligned on the same scale. As a final step of the preprocessing
phase, we establish a uniform fail value across all signals
by setting the final value of each signal feature to 50. The
discretized raw data can be seen in Figure 3. By observing
the figure, the necessity of transforming the data becomes
apparent. The raw feature is highly fluctuating and presents
no monotonicity whatsoever. Thus, it cannot be directly used
to convey the degradation characteristics of the specimens.

3.3. HSMM initialisation for the case study

This paragraph will discuss the HSMM initialisation required
for the Monte Carlo sampling to be performed. To initialise the
HSMM, we must define a topology ζ as discussed in chapter
2.1.1.

• The number of the hidden states (N ) is set at 20 (19
hidden + 1 observed).

• Connectivity between hidden states (Ω): Soft and only
left-to-right transitions (meaning that no self-healing or
repair actions are modelled) and the final state is observed
rather than hidden.

• Condition Monitoring feature (I): The connection be-
tween the CM feature’s values and the hidden states is
modelled with a non-parametric discrete probability func-
tion, whose values are defined with the emission matrix
in the following.

• Number of discrete monitoring values (V ) are set at
50.

• Transition rate function (λ): For the model of the degra-
dation of the CFRP specimens under fatigue loading, the
Weibull failure rate distribution is chosen as displayed in
Equation 1.

λ(t) =
β

α

(
t

α

)β−1

(1)

So, in order to fully describe the HSMM model, we need to
define the θ = {Γ, B} parameters. Γ parameters consist of:

• Matrix α: a (N − 1) ∗ N matrix of scale parameters
for transitions between hidden states. Represented as
a diagonal matrix with the first column as zeros. The
diagonal is made with logarithmic spacing values from
12 to 6 into 19 values.

α =



0 12 . . . 0
...

...
. . .

...
0 0 . . . 6




• Matrix β: a (N − 1) ∗ N matrix of shape parameters
for transitions between hidden states. Represented as
a diagonal matrix with the first column as zeros as the
previous one. The diagonal is made by linear spacing
values from 64 to 25 into 19 values.

β =



0 64 . . . 0
...

...
. . .

...
0 0 . . . 25




To complete the initialisation process, we must also create the
Emission Matrix B. This matrix has dimensions of N ∗ V and
displays the probability of the i-th hidden state (rows) emitting

7
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Figure 3. Raw discretized data of the real-world dataset

a specific observable state j-th (columns). The sum of the val-
ues in each row always adds up to 1. To fill the values, we have
opted for the truncated Gaussian distribution NT [0,49](µ, σ

2),
which is truncated at 0 and 49 since the failure state is ob-
served, rather than hidden. The standard deviation is equal to
3 for all states, and the mean ofNT is set in every row in such
a way that it increases with the row index. Thus, the mean
values of the rows are 19 linearly spaced values in the inclu-
sive [3, 49] range. We have made this decision to ensure that
the first hidden states emit the first observable states and the
last hidden states emit the last observable states, thus creating
a monotonic observation sequence. The emission matrix is
presented below:

B =




N 1
T [0,49](3, 3

2) N 2
T [0,49](3, 3

2) . . . 0

N 1
T [0,49](5.42, 3

2) N 2
T [0,49](5.42, 3

2) . . . 0
...

...
. . .

...
0 0 . . . 1




The aforementioned set of parameters is chosen empirically
in order for the model to resemble the degradation process of
composite specimens under fatigue loading. The user is free
to use their own set of parameters that suit their application.
So once the parameters are defined, the MCS Algorithm 1 can
be run in order to generate the labels.

3.4. Data Windowing of the available data

The data are segmented into fixed-length time windows, as
the user specifies. In this research paper, the selected time
window is fixed at 200-time steps, corresponding roughly to
10% of the average total length. The size of the windows is

chosen intuitively, but it can’t be too small since the prediction
of the EOL for the normalisation in the following steps will
be inaccurate and not too big since doing so will remove the
online applicability of the framework. The window advances
by one step at each iteration, effectively creating an overlap of
199 timesteps. This allows us to increase the data available for
training and testing our transformation model.

3.5. EOL estimations and time feature normalisation of
the available data

As previously highlighted, the model’s need to predict the EOL
derives from our aim to normalize the time feature for the train-
ing of the transformation model. The results are presented in
Table 1. It can be seen that the error of the estimations varies
across the train specimens, with errors up to 20%. However,
since this model is used to provide an initial rough estima-
tion of the EOL for the normalization of the time feature, as
presented in Section 4, its estimations are more than adequate.

Table 1. EOL Results with Corrected Error Percentages

Signal Predicted Actual Error (%)
Train 1 84128 82176 2.38
Train 2 54304 57568 -5.67
Train 3 48320 61024 -20.82
Train 4 50624 49280 2.73
Train 5 34272 30336 12.97
Train 6 84416 76992 9.64
Train 7 96448 96896 -0.46

Test 77152 68768 12.19
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3.6. CNN model architecture for the available data trans-
formation

In developing our 1D CNN model, the choice of hyperparam-
eters, loss function, and optimizer was deliberate and aimed at
optimizing performance for our specific dataset characteristics.

• The decision to employ a kernel of dimension 1 ensures
that the filter remains unaffected by padding, maintaining
the feature map’s dimensionality identical to the input.
This approach guarantees continuity between successive
windows, avoiding noisy spikes at the prediction’s begin-
ning and end. Given our transformation goal, this is a
critical factor: the prognostic model can lead to wrong
predictions.

• For our loss function, Mean Squared Error (MSE) was
selected to precisely track the fluctuating nature of our
labels, aiming for a regression model that closely mirrors
the original data.

• After experimenting with various optimizers, Adamax
emerged as the most effective, offering superior conver-
gence properties for our scenario.

• The model architecture was kept minimal with a single
CNN layer, a choice driven by the limited size of our
signal dataset. This simplicity facilitated a more effective
training process compared to deeper models.

• To counteract overfitting due to the high redundancy
among the time windows (as detailed in Section 3.4), we
implemented L1 regularization and dropout at standard
values.

• Due to the non linearity of the labels, CNN is equipped
with Rectified Linear Unit.

These choices collectively formed a robust framework for our
model, tailored to the unique demands of our data.

3.7. Prognostics

To showcase the effectiveness of the proposed feature extrac-
tion for PHM tasks, the Remaining Useful Life (RUL) of
the specimens will be predicted by utilising an HSMM. Any
prognostic model can be utilized in this step since the data
transformation framework is independent of the prognostic
model. However, since the degradation process is modelled
with an HSMM for the label generation, it is a straightforward
choice to utilize a model from the same family. For the prog-
nostics, the explicit duration modification to the HSMM is
chosen. Thus, following the initialization procedure explained
in Section 2.1.1, the following parameters are defined:

• The number of the hidden states (N ): It’s considered a
hyperparameter of the model, and in order to pick a value,
the elbow method utilizing the Bayesian information cri-
terion (BIC) was utilized. The optimal number of states
was found to be 7.

• Transition between hidden states (Ω): soft and left-to-
right transitions, no self transitions are allowed.

• Start probability matrix (π): the process always starts
from the first state.

• Transition rate function (λ): is assumed to be non-
parametric and depends only on the current state.

• Condition Monitoring feature (I): The connection be-
tween the hidden states and the values of the CM features
are assumed to be described by Gaussian distributions
N (µ, σ2) and represented by a mean and a standard devi-
ation observation vector.

• CM indicator space (Z): since the observation process
is modelled with a continuous probability distribution
(Gaussian), the indicator space consists of all the real
numbers (Z = {z ∈ ℜ}).

After the parameters are initialised, the parameter estimation
can be performed as described in (Yu, 2010). When the opti-
mal parameters have been estimated, they are utilised in order
to predict the RUL of the asset, following the procedure in
(Dong, He, Banerjee, & Keller, 2006)

4. RESULTS

In the first part of the current section, the transformed data
utilizing the proposed framework are presented and contrasted
against the raw data and their cumulative transformation, high-
lighting the performance of the framework. Finally, the prog-
nostic findings from the HSMM of the cumulative feature and
the one obtained from our framework are contrasted.

4.1. FE results

As a baseline for the proposed transformation, the cumulative
transformation of the discretized raw data is calculated and
presented in Figure 4a. This choice is justified as the authors
consider it to be the most straightforward choice for trans-
forming noisy and highly fluctuating data into monotonic ones.
The necessity of transforming the data in the first place lies
in the inability of prognostic algorithms to provide any mean-
ingful results when applied to fluctuating data that present no
monotonic behaviour. In Figure 4b, the transformed data uti-
lizing the proposed framework are showcased. By comparing
the two, it can be observed that even though the cumulative
features present highly monotonic behaviour (as expected due
to the cumulative summation function), there is a great un-
certainty associated with the last value directly before failure
(also known as prognostability). This is where an added con-
tribution of the proposed transformation also lies. It can be
seen (Figure 4b) that the transformed signals (both training
and test) fail at values that are very close to each other. This
is expected to, in turn, come with reduced uncertainty when
it comes to the RUL prediction values, which remains to be
seen in the following section.

9
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(b) Constructed feature with the proposed methodology
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Figure 4. Plots for the results of the proposed methodology
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4.2. Prognostic results

In Figure 4c, the prognostic results of the test sample util-
ising both the cumulative feature and the proposed one are
presented on the same plot for comparison reasons. We can
see that not only the mean value predictions of the RUL us-
ing the constructed feature are closer to the true RUL, but
also that the 90% confidence intervals are reduced. This is
the manifestation of the main contribution of the constructed
feature, which is the reduced uncertainty of the final values
of the constructed feature compared to the cumulative one.
Hence, the goal of a non-complex FE method that aids in the
realization of accurate and highly confident PHM frameworks
is achieved.

5. CONCLUSIONS

This research introduced a methodology integrating Monte
Carlo simulated data with CNN to enhance prognostic per-
formance in predicting system degradation by incorporating
the stochastic nature of system deterioration and the noisy
measurements in the labels for transforming raw data. Its theo-
retical viability has been demonstrated, as well as its practical
applicability, particularly in its ability to operate online, mak-
ing RUL predictions for CFRP specimens under fatigue loads,
based on noisy AE measurements. It is worth noting that due to
the simplicity of the proposed framework, given enough data
and a proper HSMM initialization for the MCS (following the
procedure showcased in Section 3.3), the applicability to more
complex systems is a straightforward procedure. The main
contribution of the proposed framework lies in its simplicity
of deliberately combining well-established and non-complex
components in a novel way that alleviates the deterministic
labelling based on intuitively picked metrics in extracting suit-
able features for PHM applications. This led to the creation
of a simple and efficient model that effectively transforms raw
and noisy data for accurate and high-confidence prognostics.
Our motivation was simple: We consider the labelling of sig-
nals that are by nature stochastic with deterministic labels to
be ill-posed. Rather, we proposed the generation of labels by
sampling a stochastic model (HSMM) in a framework that is
independent of the prognostic algorithms and can be applied
online. We aim to expand this framework to be able to fuse
different CM features and compare its performance against
numerous traditional FE methods for prognostic tasks.
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ABSTRACT 

The evolution towards “more electric” aircraft has seen a 
decisive push in the last decade, due to the growing 
environmental concerns and the development of new market 
segments (Urban Air Mobility). Such push interested both the 
propulsion components and the aircraft systems, with the 
latter seeing a progressive trend in replacing the traditional 
solutions based on hydraulic power with electrical or electro-
mechanical devices. Electro-mechanical brakes, or E-Brakes 
hereby onwards, would present several advantages over their 
hydraulic counterparts, mainly related to the avoidance of 
leakage issues and the simplification of the system 
architecture. Moreover, although it is expected a weight 
increase of the brake, the elimination of the hydraulic lanes 
would still come with an overall weight reduction. Despite 
these advantages, it remains a new, relatively unproven 
technology within the civil aviation field. Within this context, 
the development of PHM solutions would align with the need 
for an on-line monitoring of a relatively unproven 
component. This paper deals with the preliminary stages of 
the development of such PHM system for the E-Brake of a 
future executive class aircraft, iterating on previously 
published material and presenting a particle filtering 
approach based on a new degradation model and data 
provided through a revised high-fidelity model. The paper 
opens with the introduction to the research project and the 
technological demonstrator, positioning the performed work 
within the available literature. PHM activities, performed on 
simulated data-set are then presented and the preliminary 
results discussed. 

Keywords: PHM, EMAs, Brakes, Particle filter. 

1. INTRODUCTION 

Electro-mechanical brakes, or E-Brakes, are the next step in 
the evolution of aeronautical braking systems, and the natural 
consequence of the push for the electrification of civil 
aviation which is strongly affecting the development of future 
platforms. E-Brakes have already found applications in civil 
aviation, with different architectures already flying on the 
latest iterations of the Boeing 787 and the Airbus A-220 and 
have drawn interest in the aeronautic community thanks to 
the significant advantages over their hydraulic counterpart, 
including lower weight, the elimination of long hydraulic 
pipelines and a lower environmental imprint. Despite these 
success stories, they remain a relatively unproven and more 
complex technology with respect to the traditional hydraulic 
solution. The definition of a comprehensive PHM system, 
leveraging the higher number of sensors usually employed on 
electro-mechanical system, would provide additional 
confidence towards their application, lowering the risk of 
unanticipated failures, reducing the aircraft downtimes and 
giving access to strategic information useful to optimize the 
fleet management. Although literature on PHM activities for 
the most common components of electro-mechanical brakes 
is extensive, few papers have been published about the E-
Brakes themselves. In (Ramesh et al., 2021) authors propose 
a Fault Detection and Identification (FDI) algorithm to 
observe and correctly assess the most probable failures 
occurring in a simple electro-mechanical brake for aeronautic 
applications. The analysis considers an aeronautical brake 
actuated by one Electro-mechanical actuator driven through 
a brushed DC-motor and is mainly focused on electrical 
failures. In (Oikonomou et al., 2022) authors investigate the 
prognosis of wear in aeronautical brakes through the analysis 
of historical series of brake pads thickness. Data-driven 
techniques are applied to perform the long-term prognosis, 
and the results of an interesting benchmarking activities 
comparing the performances of several algorithms are 
provided. Results are promising but assume the presence of 
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dedicated sensors to measure the thickness of the brake pads, 
which are not foreseen for the application under study in this 
paper. The E-LISA research project, performed within the 
Clean Sky 2/Clean Aviation framework, has the objective of 
developing an innovative iron bird dedicated to executing 
tests on the landing gear of a small aircraft equipped with an 
electro-mechanical landing gear and electrical brake. The E-
LISA iron bird consists of a multi-functional intelligent test 
facility integrating hardware and software, allowing all the 
tests and analyses perceived as fundamental to be performed 
to demonstrate the maturity of an electro-mechanical landing 
gear, hence paving the way for its implementation in a small 
passenger aircraft. Such tests include the simulation of 
complete landing procedures under different operating 
conditions such as runway friction (wet/dry), presence of 
waving and irregularities along the runway, variable aircraft 
weight, and approach speed. At the same time, the rig will act 
as a technological demonstrator for PHM routines devoted to 
the analysis of the E-Brake health status. This paper opens 
with the description of the case study under analysis, a fully 
electrical landing gear leg for a new executive-class aircraft, 
detailing the system characteristics. Then the architecture of 
the technological demonstrator is presented, highlighting its 
most prominent features and the solutions required to meet its 
functional requirements. The focus is then shifted towards the 
definition of the PHM routines, where a possible scheme to 
detect and prognose the wear of the brake pads is proposed. 
A first-tentative approach to the problem was presented by 
authors in (De Martin, Jacazio, Parisi, et al., 2022), making 
use of a first-trial high-fidelity model and a simplified particle 
filtering approach. This study was used a basis: the model 
was further evolved to take into consideration the effects of 
different combination of environmental conditions and tires 
types, while the prognostic algorithm was substantially 
modified considering a physics-based representation of the 
fault progression. Early results are presented, alongside a 
test-plan to support the simulation findings through 
experimental activities, once the rig is operational. 

2.  CASE STUDY 

The case study under analysis is an E-Brake system for an 
executive-class aircraft with an expected weight at take-off 
ranging between 5.5 and 6.1 tons, depending on the 
passengers’ number and the amount of unspent fuel. Two E-
Brake systems are integral with the Main Landing Gear 
system, one for the Left-Hand side, one for the Right-Side 
each. Depicted in Figure 1, each E-Brake is a multi-disk 
assembly actuated through four Electro-Mechanical 
Actuators (EMAs) controlled in force. Whenever the pilot 
acts on the brake pedals, a force command is sent towards the 
E-Brake system; such command signal is processed by the 
Brakes Control Unit (BCU), which can cut the force 
command signal through the touch-down protection routines, 
avoiding that the brakes are actuated before the aircraft 
rotation during landing has ended. The command signal can 

   
 
Figure 1. Case-study architecture. 

 
be further modulated by the electronic anti-skid system, 
which decreases the force request depending on the runway 
conditions to avoid the occurrence of wheel blockage events 
and excessive slip according to a combination of pilot input 
and automatic recognition of the runway status. The electro-
mechanical actuators are driven by one Brushless-DC motor 
with each, and act on the brake pads through a mechanical 
transmission made of a one-stage reducer and a ball-screw.  
Each actuator is equipped with a force sensor to measure the 
exerted action, while a resolver integral with the motor shaft 
is used to infer its position and realize the Field Oriented 
Control of its phase currents. The test-rig has being design to 
exchange information with the E-Brake during its operations 
interfacing with the BCU. As such all the signals provided by 
the sensors employed in each EMAs are acquired and can be 
used for PHM. Such signals include the angular position of 
the E-Brake motors shaft, the braking command issued by the 
pilot, the anti-skid and touch-down protection signals and the 
exerted force measurement for each EMA. The phase 
currents of each electric motor are acquired as well, along 
with the current request provided by the force control loops.  

3. THE TECHNOLOGICAL DEMONSTRATOR 

The main purposes of the technological demonstrator are to 
support the testing and certification of a novel E-Brake 
system and to foster the definition of dedicated prognostic 
logic. As such, the main functional requirements are twofold. 
On one side it is paramount to be able to conduct the tests 
prescribed by the normative, such as the on-ground start-stop 
test and the landing procedure. On the other side, it is 
important to recreate on the test bench the widest array of 
operating conditions to stress as much as possible the PHM 
routines and provide statistically representative datasets. To 
achieve this goal the test rig is designed to allow the arbitrary 
variation of several operating parameters, including the 
aircraft approach speed, the dynamic load applied on the 
landing gear leg, the friction coefficient between the aircraft 
wheels and the runway and the occurrence of a selected 
number of electrical failure or mechanical faults. The 
architecture of the test rig is depicted in Figure 2, while a 
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details of its mechanical structure can be retrieved in 
(Giannella et al., 2022). The mechanical structure can be 
divided between a fixed part and a moving platform integral 
with the landing gear leg, complete with a wheel and 
electrical brake. The moving platform can translate vertically 
along low friction guides according to the force provided by 
an electro-hydraulic servoactuator controlled through a 160 
l/min servovalve. A calibrated by-pass orifice connects the 
two hydraulic lines serving the actuator to improve the 
dynamic response of the force-controlled system. The test-rig 
behavior is continuously monitored through one linear 
variable differential transformer (LVDT) sensor measuring 
the hydraulic actuator travel, a load cell measuring the force 
exchanged between the actuator and the moving platform and 
a differential pressure transducer sensing the pressure drop 
across the two actuator’s chambers. The hydraulic power 
available for the test-rig operation is that of the facilities in 
which the rig will be installed and is limited at 207 bar. The 
contact between the landing gear wheel and the runway is 
represented through a runway simulator, a rotating disk, 
connected to a selected number of inertia disks, 
representative of the aircraft inertia, through a gearbox. A 
different solution, based on a novel hydraulic system, was 
considered in (De Martin, Jacazio, Ruffinatto, et al., 2022) 
but discarded due to budget constraints. The diameter of the 
rotating cylinder is such to be representative of the expected 
linear speed of the aircraft along the runway during the 
landing procedure and must be higher than the wheel 
diameter to reduce at a minimum the differences between the 
wheel/runway simulator contact and the wheel/real runway 
contact. A gearbox is interposed to significantly reduce the 
mass and the encumbrance of the flywheels, the number of 
which can be increased or decreased to scale-up or scale-
down the weight of the simulated aircraft. The runway 
simulator was designed with the possibility to change the 
external coating. To achieve the variation of the friction 
forces between the wheel and the runway and allow the 
verification of the anti-skid logic behavior in different 
operating conditions, while a sprinkler can be activated to 

reproduce the wet-runway conditions. An electric motor is 
used to accelerate the runway simulator up to the angular 
frequency corresponding to the aircraft horizontal speed 
given the diameter of the rotating disk, while an emergency 
brake is installed in-line with the rotating cylinder, allowing 
to bring the full system to a complete stop in less than 60 s. 
The technological demonstrator is controlled through an 
engineering test station (ETS), which accepts the inputs from 
a central control unit (CCU) that in turn receives the 
commands from an operator via a user interface. The input 
signals are then sent together with rig measurements to a 
dedicated computer running a real-time (RT) representation 
of the aircraft dynamics during landing. Such real-time model 
is then used, along with a model of the runway and a model 
of the landing gear dynamics, to compute in real-time the load 
that must be applied to the test-article. The ETS also include 
the rig control logic, which is designed to manage both the 
position of the moving platform and the force exerted by the 
hydraulic actuator and include a safety routine check to limit 
the damages to the rig and to the test article in case of a failure 
of the anti-skid system during the execution of a test.  The 
structure of the control system is depicted in Figure 3, where 
three main modules can be identified. The Simulation 
Module involves the real-time representation of the landing 
dynamics, including a real-time representation of the aircraft 
dynamics, a runway model, which allows to describe the 
presence of periodical or localized runway irregularities, and 
the model of the landing gear legs, each modelled as a two-
degrees of freedom vibrating systems, where the mechanical  

 

Figure 3. Control system structure. 

Figure 2. Iron bird schematics. 
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Figure 4. Projected limits on the representation of the 
periodical runway irregularities on the test-rig. 

characteristics of the shock-absorber, of the tires and of the 
mechanical structure are provided by the industrial partners 
of the project. The control system is based on two control 
loops, one operating in position and the other on force, 
alternatively active before and after the contact between the 
landing gear wheel and the runway simulator.  The control 
system, best described in (Bertolino et al., 2023) is designed 
to achieve bandwidth higher than 10 Hz in both force and 
position control loops. As shown in Figure 4, the control 
system, combined with the Real-Time simulation of the 
aircraft behavior during landing, it allows to reproduce on the 
test-rig the effects of periodical runway irregularities up to 
100 mm depending on their period, the aircraft mass and its 
expected approach speed (De Martin, Jacazio, & Sorli, 2022). 

4. SIMULATION ACTIVITIES 

To achieve the definition of a PHM scheme for the entire E-
Brake assembly a number of tasks are required. In order, there 
is the need to orderly assess which failure modes or which 
cause of service disruption to investigate, to prepare a high-
fidelity model of the system representative of its operational 
performances and finally proceed to support such activities 
through experimental tests and validation. As stated in the 
introduction the technological demonstrator is not yet in 
function, thus the analysis is so far limited to simulation 
results. The failure modes being investigated includes the 
occurrence of several types of short circuits within the 
windings of the electro-mechanical actuators and wear of the 
mechanical transmission. Such failure modes, although 
important, are fairly common in electro-mechanical actuators 
independently from their function. As such, priority was 
given to the detection and prognosis of the wear of the brake 
pads. Although not a failure-mode per se, the reduction of the 
brake pad thickness is accompanied with a lower dynamic 
response of the brake and requires periodical maintenance 
operations. Currently wear of the brake pads is detected 
through dedicated sensors or through periodical inspection of 

visual indicator on top of the brake itself. Making the monitor 
of the brake pads wear part of the PHM system would allow 
to limit or avoid the necessity of periodical inspections, 
anticipate the maintenance action and avoid unpredicted 
aircraft-on-ground situations.  Authors started analyzing the 
possibility of such a system in (De Martin, Jacazio, Parisi, et 
al., 2022) through a simple particle filtering routine based on 
data coming from streamlined landing simulations. As more 
data were made available the analysis was improved through 
the definition of a higher-fidelity simulation model and a 
more realistic operational scenario. The prognostic routine 
was similarly revised and will be presented in the next 
sections of the paper. 

4.1. System modelling 

The high-fidelity simulation model includes a two-
dimensional representation of the aircraft dynamics during 
landing, a three degrees-of-freedom multi-body model of the 
landing gear legs and of their interaction with the runway, and 
an in-detail representation of the E-Brake dynamics. Parts of 
such model, with particular reference to the aircraft dynamics 
and the vertical displacement of the landing gear leg were 
already described in (De Martin, Jacazio, & Sorli, 2022; De 
Martin, Jacazio, Parisi, et al., 2022) and won’t be reported 
here, limiting the description to the component interested by 
modifications. Starting with the rotational dynamics of the 
wheel and addressing with 𝐹 =  𝑘 (𝑥 − 𝑥 ) + 𝑐 (�̇� −
�̇� ) the vertical force exchanged between the wheel and the 
runway it is possible to express the wheel angular 
acceleration �̈�   as a function of the rolling friction 
coefficient 𝑢 , expressed as a function of the wheel angular 
frequency and of the tire pressure (Carbone & Putignano, 
2013), of the the moment of inertia of the wheel assembly 𝐼 , 
the wheel diameter 𝐷  and the viscous friction coefficient 
roughly representative of the dissipation in the wheel 
supports 𝑐 . 

𝐹 𝜇
𝐷

2
− 𝑥 − 𝑥 sign(𝜆) − 𝐹 𝑢 tanh �̇�

− 𝑐 �̇� − 𝑇 = 𝐼 �̈�  
(1) 

The friction coefficient 𝜇  is evaluated according to a 
modified version of the Burckhardt model (M. Burckhardt, 
1993), as a function of the slip factor 𝜆 between wheel and 
runway simulator and of the experimental parameters 𝛽 , 𝛽  
function of the tires temperature, thread type and runway 
conditions. 

𝜇(𝜆) = 𝛽 1 − 𝑒 − 𝛽 𝜆  𝜇 (𝑝 , 𝑣 )   (2) 

The parameter 𝜇 (𝑝 , 𝑣 )  is function of the tires 
pressure and of the aircraft speed and was fitted on 
experimental dataset provided for different combination of 
thread type and runway conditions for an aircraft of similar 
size to the target platform. An example of the fitter profiles is 
shown in Figure 5, where data for smooth tires on dry-runway  
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Figure 5. 𝜇  values for dry (above) and wet (below) 
runway conditions. 

conditions are compared against data for threaded tires on a 
wet runway. The four Electro-Mechanical Actuators (EMAs) 
responsible for the braking action are controlled in force and 
act in parallel on the multi-disk brake. The control system is 
described as a two-nested control loops, where a sequence of 
Proportional-Integrative controllers operates on the force 
control loop and on the current control loop of each brushless 
motor. The sensors are modelled through second order 
transfer functions replicating the expected dynamics of the 
load cell and of the Hall-effect sensors employed to monitor 
the angular position of the Brushless-DC rotor. The 
simulation of the measure chain is complete with the model 
of the employed A/D converters. The dynamic model of each 
EMA features a functional description of the Electronic 
Power Converter derived from (Mohan et al., 2005) for a 
three-phase inverter controlled through Pulse Width 
Modulation (PWM). The electrical dynamics of the motor is 
described according to a streamlined three-phase model of 
the system, where 𝑉 , ,  and 𝑖 , ,  are the phase voltages and 
currents. 

𝑉 , , = 𝑹𝒂,𝒃,𝒄(𝑇 ) 𝑖 , , + 

[𝑳(𝑇 )]
𝑑

𝑑𝑡
𝑖 , , +

𝑑

𝑑𝑡
𝜙 , , (𝜗 )  

(3) 

𝐑𝐚,𝐛,𝐜 is the electric resistance matrix, which elements 
depends on the windings’ temperature (𝑇 ). The diagonal 
elements of the matrix represent the single-phase resistance, 
while the non-diagonal terms represent the electrical 
resistance provided by the insulating material separating the 
coils of different phases, addressed as phase-to-phase 
resistances hereafter. Such values can be degraded to 
simulate the effects of a turn-to-turn or phase-to-phase short 
respectively.  [𝐋]  is the inductance matrix, accounting for 
self-induction and mutual induction phenomena along with 

the effect of magnetic flux dispersion. Finally, 𝜙 , ,  is the 
concatenated magnetic flux provided by the permanent 
magnets, function of the electrical angle (𝜗 ). The torque at 
the motor shaft can then be computed, leading to the dynamic 
equilibrium of the rotor 

𝑑𝜙

𝑑𝑡, ,
𝑖 , , − 𝑐�̇� − 𝑘 𝜗 − 𝜗

− 𝑐 �̇� − �̇� = 𝐼 �̈�  
(4) 

where 𝜗  and 𝜗  are the angular position of the motor shaft 
and of the gears. 𝐼  is the moment of inertia of the rotor, 
while 𝑘  and 𝑐  address the torsional stiffness of the motor 
shaft and its associated damping. The gear pair is described 
as a rotational mass-spring-damper system, thus leading to 
the following equation,  

𝑘 𝜗 − 𝜗 + 𝑐 �̇� − �̇�

−
1

𝜏
𝑘 𝜗 − 𝜗 + 𝑐 �̇� − �̇� − 𝑇 ,

= 𝐼 �̈�  

(5) 

where 𝜏 is the transmission ratio, 𝑇 ,  the friction torque, 
while 𝜗  is the angular position of the rotating part of the 
screw. The friction torque is computed as the sum of three 
components, one dependent on the acting load, one related to 
the viscous friction and a drag torque component. The power-
screw is modelled as a two-degrees of freedom elements, 
where the rotating part is connected to the translating element 
through a viscoelastic element. Defining with 𝑥 ,  the 
position of the translating portion of the screw pertaining to 
the i-th actuator, it becomes possible to describe the brake 
dynamics, and thus that of the pads. Addressing with 𝑘  the 
stiffness, it is possible to evaluate the braking torque acting 
on the landing gear wheel as a function of the translating mass 
of the brake pads 𝑚 , its translation 𝑥  and the angular 
speed of the wheel �̇�  as, 

𝑇 = 0 ↔ 𝑥 < 𝑥

𝑇 = 𝑅 𝑓 [𝑘 (𝑥 − 𝑥 ) − 𝑐 (�̇� )]𝑥 ≥ 𝑥
 (6) 

 
where 𝑓 = 𝑓 �̇�  is the friction coefficient between the 
brake pads and disk, function of the wheel angular frequency. 
Knowing the braking torque and the wheel angular frequency 
it is possible to compute the mechanical power transformed 
into heat by the braking process. Such power is used within a 
simplified thermal model of the E-Brake assembly to 
estimate at each time step the temperature of the pads and the 
temperature of the electric motor windings considering both 
the thermal power generated by the motor themselves and 
that transmitted to the external environment. Since the pads 
contact the brake disks only when their translation 𝑥  
overcomes a predefined stroke equal to 𝑥 , it is possible to 
model the effects of the pads wear by properly increasing 
such threshold value under the assumption that the brake pads 
return in the original position once the braking procedure is 
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finished. According to (Olesiak et al., 1997; Yevtushenko et 
al., 2017) , wear progression in brake pads can be described 
as dependent on an experimental coefficient 𝑓  and 
𝑘 , function of the local absolute temperature 𝑇 , the 
sliding velocity between disks and pads 𝑣, and the contact 
pressure 𝑝 . The dependency of the friction and wear 
coefficient on temperature is due to how the interaction 
between the disc and the brake pads occurs at a microscopic 
level. The brake performance (and its wear) depends on how 
the material of the pads bonds with the material of the disk 
and with the particles of the pads material which have 
remained bonded with the disc due to the run-in process and 
previous usage. This process is temperature dependent: at 
very-low temperature (-40°C) friction tends to increase in 
mechanical systems. Similar effects occurs at very high 
temperatures, where the bonding effects can be favored by 
localized fusion processes, accelerating the wear rate. 

Δ𝑥 = 𝑓 (𝑇)𝐾 (𝑇)𝑣(𝑡)𝑝(𝑡)𝑑𝑡 (7) 

 Expressing the sliding velocity as a function of the wheel 
angular frequency �̇�  and the radial coordinate of the pads 
with respect to the wheel axis 𝑅 , we have  

𝑣 = �̇� 𝑅  (8) 

The average pressure within the pads/disks contact area can 
be computed as a function of the braking force exerted by the 
four actuators and the pad contact area. 

𝑝 =
𝑘 (𝑥 − 𝑥 ) − 𝑐 (�̇� )

𝐴
 (9) 

An example of the model response is provided in Figure 6, 
where the system behavior in response to an emergency brake 
in presence of a wet runway and smooth tires is presented.  

 

 

Figure 6. Example of the model response. 

The figures depict the behavior of the total braking force 
expressed by the four EMAs, the aircraft speed along the 
runway, the three phase currents of the BLDC motor 
belonging to one of the EMAs (i [A]), the correspondent 
angular rotation of the motor shaft 𝜗  and the slip factor 𝜆 
between the wheel and the runway. 

4.2. Operational scenario and data-base building 

The simulation model is built for two main reasons: to 
generate a data-base to train and stress the PHM routines and 
to help in characterizing the system and provide additional 
information that could be useful to the PHM system itself. 
The first task in generating a reliable operational scenario is 
to characterize all possible sources of uncertainty of the 
system behavior. For the case study under analysis the 
following sources were identified and addressed. 

 Aircraft mass at landing 
 Runway temperature and conditions 
 Tires type (smooth, threaded) and pressure 
 Aircraft horizontal approach speed 
 Type of braking procedure (emergency, normal) 
 Production tolerances in the E-Brake system 
 Pilot reaction time 
 Sensors noise, deviations 

 
The aircraft mass at landing is drawn randomly at each 
simulation from a uniform distribution ranging between 5.5 
and 6.1 tons approximately, which is considered the expected 
variance depending on the passengers number, payload 
presence and type, and the remaining fuel. Runway 
temperature and conditions were taken into account by 
considering the temperature and rainfall distribution of three 
distinct area, each representative of a prevalently cold 
(Vancouver), hot (Dubai) and temperate (Rome) operating 
conditions. Data were obtained through public access data-
base and randomly drawn at each simulation. Tires type is 
chosen at each simulation between threaded and smooth, 
while their pressure is randomly chosen from a normal 
distribution with mean 200 psi and variance 30 psi. The 
aircraft horizontal approach speed is randomly drawn from a 
normal distribution with mean equal to 110 knots and 
standard distribution equal to 5 knots. The type of braking 
procedure (whether emergency or normal) is decided before 
launching the simulation: during emergency stops, the pilot 
commands the E-Brake to supply its maximum force, while 
the anti-skid routine modulates such request to achieve the 
slip factor associated with the maximum friction coefficient 
between wheel and runway. On the contrary, during normal 
operations, the pilot modulates the braking force command 
trying to mimic a sequence of aircraft horizontal speed drawn 
from a pool of experimental results provided by the industrial 
partners of the project for an aircraft of similar size. An 
example of the difference between the two braking 
procedures is provided in Figure 7.  
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Figure 7. Comparison between emergency stop (a) and 
normal braking (b). 

In this comparison, both aircrafts are decelerated down to 16 
knots, which is the limit taxing speed on most civil runways. 
Another uncertainty source related to the brakes 
performances is the pilot reaction time, which is modelled as 
a simple transport delay with time constant variable between 
0.1 and 0.5 s.  
These first uncertainty sources are expected to be the most 
significant for the E-Brake performances.  
The aircraft speed and its mass at landing affects the overall 
kinetic energy to be dissipated through the brakes, while the 
operating conditions, tires type and inflating pressure affects 
the efficiency with which the braking torque produced by the 
electro-mechanical device is transferred to the ground. 
Additional uncertainty sources, affecting the signals 
pertaining the E-Brake that can potentially be used for PHM 
includes the production tolerances, which were over imposed 
onto the main electrical and mechanical parameters of the 
EMAs, and sensors noise, modelled according to the 
indication provided in the manufacturer catalogues. 

5. PHM ALGORITHM 

The PHM algorithm for the wear of the brake pads is based 
upon the scheme presented in Figure 8, designed to leverage 
the physical knowledge of the system and employ the past 
knowledge of the E-Brake operations to better characterize 
the uncertainty distribution. 
Prognosis is achieved through a Bayesian estimation method 
using a particle filtering approach, which provides after each 
landing an estimate of the current level of wear in the brake 
pads leveraging the indirect knowledge of the terms 
employed in the wear function provided in Equation 7. This 
step, functionally part of the fault identification process, is 
necessary to achieve the long term prognosis through 
physics-driven equations by supplying the particle filter with 
pdfs of future usage of the brake based on previous 
information retrieved and stored after each landing. Particle 
filters,  firstly introduced in PHM by (Orchard & 
Vachtsevanos, 2009), take advantage of a nonlinear process 
(fault / degradation) model to describe the expected dynamics 
of the fault progression and a measure model derived from 
the feature/wear progression dependence observed during the 
feature selection phase.  The particle filtering approach was 
chosen over other considered options (LSTMs in particular, 
were considered following previous works on a different 
application (Grosso et al., 2020)) for several reasons. The 
main one is that this process enables the estimation of the 
fault size through physics-based equations; since activities 
have been performed over simulated data-set, the adoption of 
a physics-driven approach was preferred to mitigate the risk 
of not operating on experimental datasets. The second reason 
is that brake pads wear is only one of the many failure modes 
that can occur in electro-mechanical brakes. Other failure 
modes, such as the brake rotors wear, faults in the EMAs 
mechanical and electrical components or issues in the EMAs 
sensors can occur, and have a direct effect on the progression 
of other failure modes. Looking ahead, the authors have 
planned to pursue the definition of a PHM scheme able to 

Figure 8. PHM Scheme. 
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define the expected RUL of the system including the possible 
cross-dependence between different failure modes. Particle-
filtering techniques naturally lend themselves to this step, 
since their results are well-suited to data-fusion algorithms 
(Vachtsevanos et al., 2006). Moreover, being based on a 
physics-based description of the failure mode, the outcome of 
PF algorithms can be more easily interpreted from an 
engineering perspective and more easily included in digital-
twin representations of the system under analysis. 

Prognosis through particle filtering is achieved by 
performing two sequential steps, prediction and filtering. 
Prediction uses both the knowledge of the previous state 
estimate and the process model to generate the a priori 
estimate of the state probability density functions (pdfs) for 
the next time instant, 

𝑝(𝑥 : |𝑦 : )

= 𝑝(𝑥 |𝑦 )𝑝(𝑥 : |𝑦 : ) 𝑑𝑥 :  
(10) 

This expression usually does not have an analytical solution, 
requiring Sequential Monte Carlo  algorithms to be solved in 
real-time with efficient sampling strategies (Roemer et al., 
2011). Particle filtering approximates the state pdf using 
samples or “particles” having associated discrete probability 
masses (often called “weights”) as,  

𝑝(𝑥 |𝑦 : ) ≈ 𝑤 𝑥 : 𝛿 𝑥 : − 𝑥 : 𝑑𝑥 :  (11) 

where 𝑥 :  is the state trajectory and y1:t are the measurements 
up to time t. The simplest implementation of this algorithm, 
the Sequential Importance Re-sampling (SIR) particle filter 
(Arulampalam et al., 2009), updates the weights using the 
likelihood of yt as:  

𝑤 = 𝑤 𝑝(𝑦 |𝑥 ) (12) 

Although this traditional particle filtering technique has 
limitations, in particular with regards to the description of the 
distributions tails, and more advanced resampling schemes 
have been proposed (Acuña & Orchard, 2017), this technique 
was still deemed valid for a purely preliminary analysis. 
Long-term prediction of the fault evolution can be obtained 
by iterating the “prediction” stage, and are used to estimate 
the probability of failure in a system given a hazard zone that 
is defined via a probability density function with lower and 
upper bounds for the domain of the random variable, denoted 
as Hlb and Hup, respectively. Given the probability of failure, 
the RUL distribution for any given prediction can be 
computed along with the risk function (Acuña & Orchard, 
2018). The declination of the particle filter employed in this 
paper is based on a physics-based degradation model and a 
process model describing the dependency between the worn-
out thickness 𝑥 of the brake pads and the selected features. 

𝑥 = 𝐾 𝐸 + 𝑥 + 𝜔(𝑁)

𝑦 = 𝑓 𝑥 , 𝜈(𝑁)
 

(13) 

 

 
Figure 9. Dependency of the proposed feature on external 
factors and on degradation progression. 
 
where 𝐾  is the wear constant, 𝑦  is the feature and 
𝐸  is the gross energy produced during the Nth landing. 
𝜔(𝑁)  and 𝜈(𝑁)  are noises, estimated at each time step 
considering the probability distributions of the parameter and 
the accuracy of the process model through a certain number 
of previous steps. 

The gross energy 𝐸  is estimated as follows, and 
provides an indication of an energy proportional to the terms 
of the modified Archard’s Equation provided in Equation 7, 
following the expression: 

 

𝐸 = 𝑟 𝐹 𝜔 𝑑𝑡 (14) 

where 𝐹  is the force exerted by each actuator and 𝜔  is the 
wheel angular frequency. The feature 𝑦  is defined as the 
average angular position of the EMAs motor for which the 
measured force signal is significantly different from zero at 
the beginning of the braking procedure. Such data point is 
identified computing the rolling variance of the force signal 
and searching for the first point which rolling variance exceed 
0.1. Such feature was successfully identified as the most 
promising in (De Martin, Jacazio, Parisi, et al., 2022) due to 
its high correlation with the degradation process. As shown 
in Figure 9, such feature is also not affected by variations in 
the operating conditions, nor by the braking procedure 
(emergency or normal). For each landing, the quantity 𝐸  
is computed and memorized in a “landing repository”, where 
it is stored along with related aircraft-level information, such 
as the aircraft weight at landing, for future usage.  
During the long-term prognosis, the “landing repository” 
data-base is used to build an array of possible future landings 
through random sampling. If an indication or prevision of the 
area in which the aircraft is going to typically operate is 
available, a planned feature is to further refine the sampling 
procedure to account for the most probable weather 
conditions. The prognostic algorithm is tested against 40 
simulated fault-to-failure processes, where the wear of the 
brake pads evolves dynamically as a function of the system 
behavior and operating conditions (temperature, dynamic 
load, fluid pressure), with increasing number of particles 𝑁  
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(from 50 to 5000) and evaluated according to the traditional 
metrics provided by (Saxena et al., 2008), namely the 
Prognostic Horizon, evaluated as the first real RUL value for 
which the prognosis falls within a ± 20% threshold of the 
real RUL, and the Relative Accuracy RA, defined as a 
function of the ground-truth value of the RUL (RULr) and its 
expected value RUL. 

RA = 1 −
|RUL − RUL| 

RUL
 (15) 

An example of the prognostic output for the case of a is 
provided in Figure 10, where the system behavior is plotted 
against the number of simulated landing procedures 𝑁 . 
The behaviour of the particle filtering algorithm is 
investigated in two steps. At first considering the “filtering” 
performances, thus evaluating whether the system is able to 
correctly assess the severity of the on-going degradation, and 
secondly considering the long-term prognostic capabilities. 
Figure 11 depicts the behavior of the particle filter algorithm 
with respect to the simulated ground truth for the landing 
sequence already used for Figure 10, evidencing the particles 
distribution considering the estimated values assumed by the 
hidden state (the linear measure of the brake pad wear 
progression) and the selected feature. This information is 
given considering four equidistant prediction instances, with 
indication of the considered simulated landing. 
It can be observed that the results of the particle-filtering 
routine are compatible with the simulated ground-truth in all 
of the shown cases, highlighting that the algorithm is able to 
coherently track the fault growth from the fault detection until 
imminent failure conditions. Figure 12 and Figure 13 
describe the algorithm behavior against the simulated ground 
truth from a prognostic perspective. The estimated RUL 
distribution are coherent with the ground truth, and achieve 
convergence towards the simulated end-of-life. 
 

 
Figure 10. Prognostic performance against simulated data-

set (𝑁 = 5000) 
 
 

 

 

 

 
Figure 11. Comparison between PF and simulated ground-

truth during the filtering stage (𝑁 = 5000) 
 
In Figure 12, the RUL distribution at each considered 
prediction step is depicted along the selected value, 
corresponding to the RUL estimate with the highest 
probability of occurrence according to the algorithm. The 
“ground-truth” EOL, coming from simulation data set, is also 
provided. Results shows that the real EOL always falls within 
the prediction distribution, in the near proximity of values of 
risk of failure equal to 1. Although providing only anecdotal 
evidence – a more rigorous approach would be to compare 
the predicted RUL distribution against a real RUL 
distribution – this figure attests that the algorithm converges 
to the EOL in the analyzed case, providing then promising 
results. 
This observation is confirmed by the 𝛼 − 𝜆 diagram in Figure 
13. The small deviation of the expected RUL with respect to 
the simulated ground-truth close to the EOL is expected to 
the prediction uncertainty increasing relatively to the RUL 
estimate. 
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Figure 12. Comparison between estimated RULs at different 

prediction steps (𝑁 = 5000, 𝐸𝑂𝐿 = 600 landings) 
 
The prognostic performances of the algorithm are presented 
in terms of Relative Accuracy and Cumulative Relative 
Accuracy in Figure 14, where the results averaged over the 
40 simulated landing sequences. It can be observed that the 
average Relative Accuracy remains well above the 80% 
threshold, while scoring high marks in CRA as well. 
Finally, the algorithm is evaluated considering its elapsed 
time, to verify whether it is suitable for on-board or on-line 
deployment. Results were obtained on a DELL Precision 
3660 workstation with IntelCore i9-4.2 GHz and 64GB of 
DDR-4 RAM. Results are coherent with a possible real-time 
usage of the algorithm, although out of scope for the current 
project. 
 
 
 

 

 
Figure 13. Dimensional 𝛼 − 𝜆 diagram 

 

6. PHM IMPLEMENTATION AND TEST PLAN 

Given the intermittent nature of the E-Brake operations, PHM 
algorithms are expected to be run offline, without the need to 
suffice restrictive computational constraints to achieve a real-
time identification of the fault occurrence or progression. 
After each landing data are collected and analyzed. These 
same considerations are carried to the technological 
demonstrator, which is thought to monitor the E-Brake health 
status considering the results coming after each test. 

 

 
Figure 14. Prognostic performances (RA, CRA)  
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Figure 15. Algorithm elapsed time  

 
The test plan is designed to verify and validate the most 
critical aspects of the presented work, namely the high-
fidelity model employed to generate the synthetic database 
used to prepare the PHM activities and the wear model itself. 
Similarly, it is necessary to stress the PHM algorithm to 
check for false alarms and evaluate the performance of the 
prognostic output. 
For these reasons the test plan includes: 

 Registration of the qualification tests, including the 
simulated landing and the aborted take-off to 
evaluate the model behavior, considering different 
aircraft mass as detailed in Section 4.2. 

 A number of consecutive landing simulations (at 
least 100), considering different aircraft weight and 
braking operation type (emergency, normal). 

 The visual evaluation, after each landing, of the 
amount of worn thickness from the brake pads. 

Since the test rig is not yet operational authors are not able to 
present the results of these activities, that will be hopefully 
the subject of further dissemination once the experimental 
steps are completed. 

7. CONCLUSIONS 

This paper presents the design of a novel technological 
demonstrator for PHM activities on a fully electrical landing 
gear and the preliminary design of a prognostic routine to 
forecast the wear in the pads of an electro-mechanical brake 
for a short-range aircraft. Since the test-rig is not yet 
operational, PHM activities have been tentatively proposed 
through a high-fidelity simulation model, iterating on the 
results of a previously published study. Such model, 
presented in the paper, is based on well-known equations, and 
translated into a state-of-the-art dynamic simulation engine. 
The PHM scheme is based on equations strictly correlated 
with the physics of the investigated degradation, and 
leverages the previous knowledge of the system usage to 
forecast the long-term estimate of the brake pads RUL. Early 
results are encouraging, but experimental support is needed 
to validate the findings of the simulation activities.  
Further work will include the description and analysis of the 
effects of disks wear and the definition of health monitoring 

schemes to detect and prognose other prominent failure 
modes potentially affecting electrical brakes. 
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ABSTRACT 

This study delves into the creation of anomaly detection 
technology applicable to a range of equipment groups within 
smart factories. This advanced technology uses high-
performance MEMS vibration sensors, edge CMS devices, 
and PHM platforms to tackle issues such as data imbalance, 
learning model limitations, complex equipment operating 
patterns, and real-time processing. It also addresses central 
server concentration, data cycling problem, various 
equipment classification, and algorithm operation problems 
that can arise when implementing systems in the field. Using 
AI-based vibration detection algorithms, data can be 
collected at high sampling rates and analyzed in real-time 
through edge computing, minimizing latency and mitigating 
server capacity issues compared to cloud-based analytics. 
The system continually monitors and learns standard 
performance data from equipment to provide practical 
solutions that minimize equipment failures and downtimes. 
The results of this study are impressive, as it has successfully 
developed anomaly detection framework and PHM systems 
that are expected to enhance the efficiency and sustainability 
of smart factories. Furthermore, the study aims to showcase 
and improve the effectiveness of predictive maintenance in 
both domestic and international automotive factory 
production lines. This revolutionary technology will be a key 
component in smart and software-defined factories and help 
companies achieve intelligent automation. 
 
1. INTRODUCTION 

The rise of smart factories has recently led to an increase 
in production line automation equipment. As a result, 
maintenance activities have become crucial, and the need for 
predictive maintenance technology that can foresee 
equipment failures has emerged. Many companies are 
exploring ways to perform predictive maintenance, from 
installing additional sensors to analyzing controller data. 

Currently, predictive maintenance technology is limited to 
equipment that moves at a constant speed, like large turbines 
and fan motors. 

We have developed a PHM (Prognostics and Health 
Management) system and an AI-based vibration detection 
algorithm capable of predicting anomalies in constant and 
variable-speed equipment to meet this need. Our technology 
stands out as it can collect vibration data at a high sampling 
rate, perform AI learning, and make decisions at the edge. 

The PHM system consists of two primary components: the 
CMS (Condition Monitoring System) module and the PHM 
platform. The CMS module is a device equipped with edge 
computing functions, data collection capabilities, and 
decision-making algorithms. The PHM platform, on the other 
hand, monitors mining data from the CMS module, manages 
its operations, and deploys registered algorithms as a service 
for each CMS. Additionally, the platform is responsible for 
deploying the optimal algorithm as a module. The algorithm 
used in the PHM platform is developed through deep learning 
AI modeling and is registered and deployed as a CMS module 
[1]. 

Four-stage research was undertaken to create an AI-powered 
anomaly detection algorithm that relies on vibration data. 
Initially, a PoC (Proof of Concept) scenario was devised that 
focused on identifying the target equipment (robot reducer, 
automation equipment drive motor, etc.), the operating type 
(constant/variable speed, part/finished product), and the 
target defect type (robot reducer defect, motor bearing 
damage, etc.). Next, data was collected based on specific 
criteria for data type (vibration, current, speed, etc.) and 
collection method (CMS module, PLC, Cloud, etc.). In the 
third stage, signal feature extraction methods were defined 
through feature-based analysis, which uses domain 
knowledge to determine data analysis. An anomaly detection 
method was also developed to check abnormal scores by 
learning the normal group to suit the data imbalance situation 
where it is challenging to secure abnormal data compared to 
normal. The AI model used an Auto-Encoder structure and an 
unsupervised learning method, and an optimal model was 
developed through hyper-parameter adjustment to define the 
anomaly score [2]. The algorithm was verified through PoC 
activities by matching the score of the normal/abnormal state 
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of equipment with the actual motor defect phenomenon. 
The PHM system and AI anomaly detection algorithm 

operate within the production line to learn and monitor the 
equipment's standard performance data. An alarm prompts 
maintenance activities when a score falls outside the normal 
range [3]. This approach minimizes equipment failure and 
ultimately aims to reduce non-operation rates. By leveraging 
data analysis to inform condition-based maintenance 
activities, our system establishes highly efficient 
maintenance and production plans that surpass traditional 
time and usage-based approaches. As a result, we can lower 
costs associated with non-operation rates within the 
production line [4]. 
 
2. BACKGROUND 

Current predictive maintenance systems have typically 
utilized centralized models to analyze and predict facility-
level data gathered from a central server. This approach has 
allowed rule-based algorithms to successfully extract key 
characteristics and implement predictive maintenance, even 
in low data sample rate environments where the facility 
operates at a constant speed. 

However, operation patterns have become more complex 
with the rise of smart factories and diverse automation 
equipment. As the number of transmission equipment 
containing acceleration and deceleration patterns increases 
and the data types become more varied, data quality and 
accuracy have become increasingly important. A high data 
sample rate is required to analyze these transmission facilities 
effectively, and the utilization of AI algorithms has become 
crucial. 

As a solution, we have developed a cutting-edge PHM 
system that seamlessly integrates an edge device and platform. 
With the power of edge computing technology, this system 
can efficiently process data near the facility, thereby reducing 
the volume of data transmitted to the central server. This not 
only lessens network load but also alleviates server burden. 
Furthermore, the system's real-time processing capabilities 
have been enhanced, resulting in a faster response time for 
our predictive maintenance system. 

A framework for detecting anomalies that utilize 
advanced AI algorithms has been crafted to manage high data 
sample rates and identify significant features for precise 
anomaly detection. This framework has been customized for 
different kinds of facilities and effectively fulfills the 
requirements of smart factories. 

Adopting smart manufacturing has necessitated a 
departure from conventional, centralized PHM systems 
towards decentralized, intelligent, and adaptive solutions. 
Incorporating edge computing and robust AI analytics is a 
forward-looking measure that promotes operational 
efficiency and dependability in contemporary automated 
facilities. Such innovations react to the evolving industrial 
landscape and a deliberate strategy to harness sophisticated 
technologies for more accurate fault prediction and 
prevention. 
 
3. CHALLENGES 
3.1. Challenges with PHM system developments 

3.1.1. Data imbalance 
Smart factories primarily collect steady-state data, which 

poses a challenge in detecting anomalies. The lack of 
abnormal data makes developing effective anomaly detection 
models difficult, as supervised learning models require 
sufficient labeled abnormal data. However, intentionally 
creating abnormal states in real environments is not feasible 
[5]. As a solution, an experimental test bench can be created 
to simulate normal and abnormal conditions to ensure a 
continuous supply of abnormal data. This data can be used to 
perform PoC verification. By conducting PoC, we can collect 
normal/abnormal data based on test conditions and create 
labeled data for each facility. This enables the use of highly 
accurate supervised learning models. 

Unsupervised or semi-supervised learning methods are 
commonly used to solve the data imbalance in in-line. 
Unsupervised learning uncovers hidden patterns without 
labels, while semi-supervised learning enhances model 
performance by utilizing limited labeled data. This approach 
leverages smart factory inline data, primarily normal data, to 
establish normal distribution benchmarks for monitoring 
status. We can monitor anomaly score set up the lines divided 
warning and fault. By configuring and implementing the 
system on the production line, we can effectively address 
issues related to data imbalances. 

 
3.1.2. Challenges with learning models 

While unsupervised or semi-supervised learning methods 
can effectively identify anomalies, they do have a drawback 
because it can be challenging to pinpoint the exact cause of 
the anomaly. For instance, if a model detects an abnormality, 
it does not necessarily reveal whether the sensor responsible 
for the anomaly is faulty. To address this issue, it is necessary 
to conduct a thorough re-analysis of the facility's data after an 
anomaly is detected. Data from sensors must be separated and 
examined individually for each moving part or component 
location in the equipment, and specific patterns or 
characteristics contributing to the anomalies must be 
identified. To accurately determine the characteristic 
frequency based on the rotational speed of each component 
and identify any unusual fluctuations, we utilize domain 
knowledge to collect statistical data on gear frequency bands 
prior to the learning process. This stored information can be 
easily accessed through our platform for thorough analysis. 
This approach can be incredibly helpful in taking practical 
measures to resolve the issue. 

 
3.1.3. Equipment challenges with complex patterns of 
robots 

Sophisticated machinery, such as robots, can be 
challenging to monitor for irregularities due to their frequent 
acceleration, deceleration, and complex patterns. 
Additionally, the lengthy cycle times and diverse movements 
of robots make it difficult to identify patterns using traditional 
methods. However, advanced algorithms, including cycling 
techniques and signal processing methods such as time-
frequency transformation (STFT) [6], can be applied to more 
accurately detect abnormal changes. These techniques make 
it possible to detect abnormalities with a higher degree of 
accuracy, even in facilities with complex patterns. 
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3.2. Challenges when applying PHM in the field 
3.2.1. Challenges with the central server concentration 
method 

In a cutting-edge factory setting, copious amounts of data 
are produced from diverse facilities. Specifically, intricate 
automation facilities generate significant quantities of data, 
including high sample rate vibration data. However, the 
conventional approach of transmitting this data to a central 
server for processing results in heightened network load and 
latency [7]. A practical solution to this challenge is to create 
an 'edge + platform system' leveraging edge computing 
technology to analyze data in real-time near the facility, 
extract critical information, and transmit it to the central 
server. This approach can expedite data processing while 
minimizing communication costs and central server storage 
management cost. 
 
3.2.2. Challenges with cycling 

In order to analyze data, it is necessary to cycle the data 
for a certain period, and PLC data is often used for this 
purpose. PLC typically utilizes line start/end process signals 
to timestamp data accurately. While low sample rate data is 
easily timestamped, high sample rate data like vibration 
presents a challenge. While the existing method to set 
timestamps was straightforward given the low data sample 
rate, more intricate equipment necessitates using high-sample 
rate vibration data to prevent information loss through down-
sampling. However, this presents a challenge when 
attempting to set timestamps with PLC due to its limitation of 
about ten samples per second to avoid taxing the controller. 
As vibration sample rates can reach up to 16 k 
Samples/second, the resulting difference of approximately 
1600 times is sufficient for information loss. A cycling or 
robust delay learning method is needed to address this issue. 
 
3.2.3. Challenges with algorithm operation 

Given the dynamic nature of smart factory environments, 
ensuring that AI algorithms remain up-to-date is crucial. To 
achieve this, an MLOps must be implemented, enabling 
periodic retraining and redeployment of algorithms [8]. 
Moreover, a collaborative approach between operating 
departments and maintenance organizations must be 
established to adapt swiftly and effectively, with a mechanism 
in place for rapid feedback and adaptation. 

The upkeep and enhancement of AI algorithms demand 
consistent attention and a well-structured approach. To 
achieve this, the operations, conservation, and AI 
development departments must collaborate closely. Through 
monitoring data, identifying areas that require retraining, and 
leveraging real-time operational feedback, they can optimize 
the predictive conservation system's performance, leading to 
heightened efficiency. 

 
3.2.4. Challenges with directing maintenance workers 

In the early stage of system implementation, maintenance 
workers may face challenges in responding promptly to fault 
alarms. To enhance their response effectiveness, it is 
imperative to set up a system that showcases the blueprint of 
each facility on the platform and highlights the precise 

location of the alarm. The platform clearly presents the 
factory layout, indicating the location of all facilities. Every 
moving part of the facility has sensors and edge devices 
placed in precise locations, making it easy for maintenance 
workers to identify maintenance work locations through 
alarms displayed on the screen. Achieving this level of 
efficiency should be effortless. This approach will 
significantly boost the speed and precision of maintenance 
work. 
 
4. METHODS 
4.1. PHM System 
4.1.1. Vibration sensor 

Smart factory transmission equipment requires more 
precise and accurate data analysis. For this purpose, we used 
a vibration sensor with a sensitivity of 160 mV/g and a 
sampling rate of more than 8 k Samples/second to obtain 
high-quality data. These high-performance wired vibration 
sensors have the disadvantage of incurring additional 
installation costs. Still, applying a cost-effective, inexpensive 
vibration sensor of the MEMS type has compensated for this 
disadvantage. This makes it possible to collect high-quality 
vibration data economically. 
 

Table 1. Vibration sensor 

Vibration 
Sensor 

Type MEMS 
Axis Z (mono) 

Sensitivity 160mV/g 
 

 
Figure 1. Vibration sensor 

 
4.1.2. Edge CMS (Continuous Monitoring System) 

As the amount of data increases exponentially, 
concentrating data on a central server for analysis becomes 
difficult due to storage capacity management and data latency 
issues. In particular, high sampling rate data processing is 
essential in facilities with complex patterns, which makes 
centralized analysis more difficult. To respond to this, we 
developed Edge CMS with edge computing capabilities, 
processing high-sample rate vibration data in real-time at the 
edge, extracting features, and calculating AI scores. The 
system supports 24-bit resolution and a sampling rate of 
16kS/s, allowing processing without data loss. AI algorithms 
are mounted on these Edge CMSs and can make decisions 
immediately near the facility. 
 

Table 2. Edge CMS module 

CMS 
Module 

Max. Sampling Rate 16 k sample/sec 
Channel 8 channel 

Bit Resolution 24 bit 
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Figure 2. Edge CMS module 

 
4.1.3. PHM Platform 
 The PHM platform is located on the central server and 
manages each Edge CMS device applied to each facility. The 
AI algorithm is registered in the platform as learned and then 
distributed to the CMS, which requires updates when 
necessary to optimize and manage abnormality detection. For 
example, if the line situation changes and the operating 
pattern teaching is modified, two weeks' worth of raw data is 
relearned, and the learned model is redistributed to the CMS 
located in the relevant process facility for operational 
management. In other words, the MLOps cycle that allows 
re-learning/re-distribution was implemented. Key features 
and AI scores calculated from the CMS located at each 
facility are transmitted to the platform and displayed to check 
trends by date. If the appropriate standard value is exceeded, 
a warning and fault alarm is given to notify the operator, and 
it displays which equipment and location on the layout shows 
signs of abnormality, helping to instruct maintenance workers 
on maintenance work. The platform layout was modeled after 
each factory line, and the web screen was designed so that if 
an error occurs, the area is marked in red to be visually 
checked immediately. 
 
4.2. Anomaly detection framework 
4.2.1. Cycling Techniques 
‘Cycling’ is ‘Extracting one cycle in operating data patterns 
of equipment’. Our data must be ‘cut off’ in the equipment 
operation cycle. Usually, cutting is done with PLC signals, 
but down-sampling is necessary to match the start / end signal 
timestamps to the data. However, the simple down-sampling 
method may be ineffective when collecting vibration 
ineffective when collecting vibration data at 8kS/s 
 

 
 

Figure 3. PHM platform monitoring screen composition 
 

 

 
 

Figure 4. A configuration block diagram of the PHM 
platform and Edge CMS module connection with AI 

algorithm in the OT/IT range 
 
to analyze transmission equipment that repeats 
acceleration/deceleration. To overcome this, we utilized an 
auto-cycling technique to divide the acceleration, constant 
speed, and deceleration sections. We obtained the specific 
frequency by determining the rotational frequency based on 
the equipment motor's RPM. We then counted the peaks of 
the acceleration/deceleration in both time and frequency and 
set a vibration magnitude threshold to divide the 
acceleration/constant speed/deceleration sections. This 
technique can be applied to various equipment motors, 
including lifts, conveyors, and stackers/destackers for 
transporting logistics boxes or vehicles. Regardless of the 
distance traveled, the acceleration/constant 
speed/deceleration types can be learned and utilized 
separately. 

Advanced gear-shifting equipment, such as robots, faces 
a challenge when splitting acceleration and deceleration 
using auto-cycling techniques. As a result, the entire one 
cycle must be used for learning. The process signals receive 
start and end bits, which are then used to set the cycling point. 
To ensure robust learning despite delays caused by different 
sample rates, features are imaged at a later point. The 
frequency distortion caused by converting the entire cycle is 
resolved through STFT conversion, allowing for the 
utilization of all time-frequency information. 

 
4.2.2. Preprocessing and Conversion 

Data value can vary depending on the unique conditions 
of each facility. To refine normal data, checking its 
distribution, applying DC offset, and filtering where 
necessary is essential. Since most equipment comprises 
motors and gears, confirming rotation frequency in the 
frequency spectrum based on speed is possible. Features are 
extracted to ensure accurate expression of rotational 
frequency and harmonic components based on gear mesh 
theory [9], and window size is set to perform FFT spectrum 
conversion up to the 4kHz band [10], [11]. After conversion, 
RMS statistics are calculated for each harmonic frequency 
band and basic statistics like Min, Max, Average, Kurtosis, 
and Skewness [12]. This data is stored on a server to enable 
detailed analysis and monitoring. The magnitude of the FFT 
spectrum converted to a 1D shape is fed into the AI algorithm 
for further study. The spectrum is transformed with a window 
size of 3 seconds, and data is extracted through window 
sliding with a duration of 0.25 seconds [13]. In the case of 
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slow-speed equipment, the spectrum is reduced to 1.5 kHz, 
and the conversion values for each channel are concatenated 
and studied in the form of a wave set. This process has led to 
the development of an optimized anomaly detection 
framework that applies different conversion techniques to suit 
the specific characteristics of each facility. 

Robots utilize STFT transformation to extract features, 
which involves cycling in the manner described above. The 
output of STFT is a 2D shape from a colormap image, which 
serves as input to the AI algorithm. When features are 
extracted using 1D Conv, some degree of conversion freedom 
allows for flattening and use within the algorithm. The STFT 
value is also stored separately and used for detailed feature 
analysis. The robot stores features in separate channels for 
each axis to allow for more accurate analysis. This approach 
enables the identification of any anomaly score increase in a 
specific channel, which can then be used to issue maintenance 
instructions for the affected axis. The FFT spectrum is re-
extracted for the robot's statistics, using a window size of 3 
seconds within one cycle. The extracted features are stored 
similarly to the driving motor of general equipment and are 
not separately learned by the AI model. They are stored on 
the server for monitoring during detailed analysis. 

 
4.2.3. AI algorithm 

The most effective method for confirming data 
classification is Dimensional Reduction Visualization. This 
involves reducing the extracted features' dimensions and 
representing them on a 2D graph's x and y axes. Doing so can 
ascertain how the feature distribution is formed by date and 
whether it is clustered. LDA (Linear Discriminant Analysis) 
is utilized for dimensionality reduction [14]. The average 
feature value for each date is represented as a single point, 
and each month is color-coded to show how the features 
change visually from one month to the next. 

Supervised learning struggles to classify typical smart 
factory data due to the difficulty of obtaining abnormal data. 
However, clear labeling can ensure the accuracy of this 
method. To address this issue, we developed an algorithm to 
collect abnormal data and classify the collected abnormal 
data so that it can be distinguished from normal data in 
various scenarios, such as motor misalignment, bearing 
failure, bearing cage damage, robot reducer failure, and 
lubricant shortage. We utilized deep learning, specifically a 
convolution method, to capture features easily using spatial 
information of image data. The 1D CNN layer consisted of 3 
layers, utilizing the relu activation function [15], a model was 
created to classify into normal/abnormal through the dense 
layer. After verification, over 97% of the classifications were 
confirmed. The classification model was saved in the system, 
and data on diverse types of defects were collected and 
attributed to the system for future classification purposes. 

In cases where there is insufficiently abnormal data, 
Anomaly Detection can be achieved by establishing a 
baseline of what constitutes "normal" data and monitoring 
any deviations from that baseline through a scoring system. 
An AI algorithm utilizing an auto-encoder structure must be 
introduced to employ this method [16]. Before training the 
model, extracted features are inputted as the model's input 
values. When dealing with robots, input values take the form 

of images, for which a convolution layer is created to 
facilitate image analysis. This layer consists of three layers 
with a relu activation function, and instead of pooling, it 
utilizes the stride technique to employ all pixel information 
[17]. The decoder comprises three Conv2DTranspose layers 
reconstructing the extracted features. Learning uses the Adam 
optimizer, mae loss, and appropriate batch_size and 
learning_rate parameters. The trained model predicts new 
data with the same feature shape, calculates the loss 
difference from the normal group learning value, and 
generates an anomaly score. Anomaly detection is achieved 
by monitoring this score over time and checking the platform 
display for gradual increases.  

 

 
Figure 5. Configuration of vibration-based AI model (Auto-

Encoder) for Anomaly detection 
 

 
5. Verification 
5.1 Verification of PoC 
5.1.1 Construction of Test-bench and data collection 
environment through PoC 

We set up an external test bench and conducted a PoC test 
to gather information on the target equipment. In the case of 
industrial robots, we installed vibration sensors on each axis 
of the reducer part for manufacturers such as Hyundai, ABB, 
Yaskawa, and Kawasaki. We repeatedly drove the machine by 
teaching it a complex, 6-axis movement that could withstand 
heavy use. To collect vibration data from the reducer part, we 
used a motor with the same capacity as the logistics line 
conveyor and lift equipment and connected a load system to 
apply a constant speed drive. We monitored and verified the 
target type by selecting equipment with a high non-operation 
rate in-line, such as when replacing a reducer due to 
mechanical defects. 
 
5.1.2 Development of Motor PHM diagnosis algorithm 
and Verification in Test-bench 

A dynamometer was installed on the motor and reducer 
(manufactured by SEW) to confirm the PoC, which drives the 
automation equipment utilized in actual mass production. A 
load was applied, and critical parts were equipped with a 
vibration sensor to collect data. The system was run at a 
constant speed of 1800rpm with load currents ranging from 
2.5 to 0.1A. 
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Figure 6. Real and dynamometer configuration diagram of 

Motor and Reducer 
 

In our analysis, we compared normal and abnormal data. 
Specifically, we examined changes in vibration magnitude on 
the time axis and alterations in specific frequency values, 
band ranges, and harmonics of the rotating body on the 
frequency axis. Using this information, we conducted a date-
wise assessment to determine if there was a gradual change. 
 

 
Figure 7. Normal data pattern by time/frequency domain 

 

 
Figure 8. Abnormal data pattern by time/frequency domain 

 
Our process involves extracting feature vectors from 

acquired data using FFT spectral transformation. These 
vectors are then input into an autoencoder model, which 
returns an output vector. The model first learns the vector of 
the normal group, compares it with the vector of new data, 
and returns the error value as the final score using MAE. To 
test this, we selected ten days of motor operation data with 
the same conditions and the occurrence time of an 
abnormality. We trained the model using the first three days 
and predicted the next seven days. Finally, we analyzed the 
predictions to identify any changes in the data. 

Figure 9 displays vibration RMS values over time, 
indicating that the RMS only increased at the time of failure, 
making it challenging to predict through rule-based 
measurement value monitoring. However, in Figure 10, the 
Anomaly score gradually increases over time. Figure 11 
displays the average value per date, revealing an increasing 
score from January 28th. As the anomaly score rises, data that 
differs from the standard norm is being collected, making it 
feasible to operate a PHM system that anticipates failure and 
notifies the time of failure via an anomaly score baseline of 
0.2 to 0.3. 

 

 
Figure 9. Comparison of vibration RMS values by date 

 

 
Figure 10. Comparison of Anomaly scores by date 

 

 
Figure 11. Comparison of Anomaly scores average 

 
After the actual abnormal data was acquired, the operation 

stopped due to motor failure after continued operation for two 
months, and a motor disassembly analysis was performed to 
confirm the phenomenon. 
 The cause is damage to the reducer and internal bearing due 
to dynamometer misalignment. Damage to the bearing cage 
and excessive tooth surface wear can be seen in Figure 12. As 
a result, a prediction model for motor failure was developed, 
and it was confirmed that the algorithm could be applied and 
operated by matching the failure phenomenon. 
 
 

 
Figure 12. Result of disassembling bearing of faulty reducer 
 
5.2 Verification of Production factory in-line 
5.2.1 Inline data analysis process 

An aging robot was selected from the in-line welding robots 
used for car body production to verify the development 
algorithm. A vibration sensor was installed, and data was 
collected. The robot was significantly aged after operating for 
11 years without a reducer replacement. Upon analysis of the 
iron concentration in the reducer grease, it was found to be 
approaching the replacement criterion. The data was 
monitored for an additional four months, and the reducer was 
replaced with a new product. The change in Anomaly score 
was checked to verify the replacement. This verification 
process aims to determine whether the aging pattern is 
distinguishable from normal, even if it is not a failure, and 
whether the score can increase gradually and eventually lead 
to a failure. 
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Figure 13. Appearance of aging robot reducer in-line 

 
The anomaly detection process utilized the Auto-Encoder 

model through AI technology. Upon replacement, the data 
was swiftly learned and compared to the data not learned 
before replacement using the AE model for score evaluation 
by date. Below is the comprehensive data analysis procedure 
that is verified based on what is described in Chapter 4. 

Using raw vibration data, we extracted one-cycle data by 
analyzing the similarity or the on/off signals of a PLC. The 
data collected includes six channels and spans 51 seconds, 
with sensors installed on each axis of a 6-axis robot. However, 
the window size was too large to analyze one-cycle data in 
the frequency spectrum. To address this, we used partial data 
corresponding 1~3 seconds to transform to FFT spectrum or 
performed an STFT transformation using total cycled data to 
extract features in both time and frequency bands. This is a  

 
Figure 14. In-line data analysis process 

 
key method for extracting features based on the equipment 
and operation pattern. The converted STFT was then shaped 
into an image with the following input dimensions. 

Abnormal dataset: (580, 385, 387, 3) 
Normal dataset: (185, 385, 387, 3) 
 
To ensure accurate and reliable results, we split 60% of the 

data set into a training dataset of 459 samples and a test 
dataset of 306 samples. This allowed us to effectively 
organize and analyze the data before proceeding with the 
learning process. 
 
5.2.2 Visualization of data distribution 

To visually represent the distribution of data, we employed 
dimensionality reduction using the LDA (Linear 
Discriminant Analysis) technique. This involved breaking it 
down into two-dimensional components and displaying it on 
a 2D graph. M5 to M10 in the graph represent months. After 
the reducer was replaced, October was expressed in brown, 
and the months from May to September before the 
replacement were expressed in a different color. Upon 
observation, we concluded that the data's distribution clusters 
were formed differently before and after the reducer 
replacement. 
 

 
Figure 15. Monthly scatter plots and histograms were 

separated using Linear Discriminant Analysis – Abnormal 
(M5~9_purple) and Normal (M10_brown). 

 
5.2.3 Results of Anomaly Detection Analysis 

We use STFT colormap image as the characteristic feature. 
Utilizing colormap images demonstrated superior feature 
extraction through a convolution layer [18]. This led to a 
highly effective anomaly detection model, which relied on an 
Auto-Encoder structure as its foundation. Specifically, we 
constructed an encoder consisting of three convolution layers 
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and a decoder featuring a convolution transpose layer. 
 50% of the normal dataset was used for learning, and the 
remaining abnormal and normal datasets were used as a test 
set to check the anomaly score. 
A discernible visual difference was observed in the scatter 
plot after comparing the reconstruction error before and after 
replacement with a new product. The distribution graph 
distinguishes the abnormal state in orange color and normal 
state in blue color before and after the replacement time point. 
(Figure 17). Subsequently, upon setting the error threshold, 
the distinction in distribution between the normal state, which 
is represented in dark blue and the abnormal state, which is 
represented in orange, was confirmed through the histogram. 
These findings suggest that the replacement product had a 
significant impact on the reconstruction error and, thus, could 
enhance the overall performance of the system. (Figure 18) 

 
Figure 16. Auto-Encoder Model learning loss graph 

 
 Learning was performed by repeating epochs to minimize 
loss. 

 
Figure 17. Reconstruction error scatter plot by Train/Test set 

 

 
Figure 18. Reconstruction error distribution histogram 

 
It was determined through predictive analysis of the test 

dataset that significant differences in reconstruction error 
exist between the normal and abnormal datasets. The 
formation of distinct clusters in the reconstruction error 
distribution further confirmed these differences. By setting 
the appropriate threshold value and checking the 
classification accuracy, it was ascertained that the 
classification was highly accurate, exceeding 97%. 
Additionally, by monitoring the anomaly score through 
unsupervised learning, variations in data patterns in aging 
equipment were identified as indicative of potential 
breakdowns. 
 
Table 3. Test set classification results depending on metrics 
Accuracy Precision Recall F1 ROC_AUC 
97.04% 99.82% 96.72% 98.25% 97.84% 

 

 
Figure 19. Ab/Normal state confusion matrix of the Test set 

 
6. Smart Factory Application 

Our new smart factory's assembly and logistics lines 
currently utilize the PHM system. It's applied to both 
constant-speed equipment like fan motors and variable-speed 
equipment like robots, lifters, and wireless mobile vehicles. 
Through our research and development, we've been able to 
internalize our technology and significantly reduce 
construction investment costs compared to external products. 
Moving forward, we plan to constantly monitor data and 
enhance our algorithm by identifying and addressing specific 
facility defects. Our ultimate goal is to expand horizontally, 
proving and verifying the effectiveness of predictive 
maintenance on domestic and overseas automobile factory 
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production line facilities. 
 
6.1. Classification of Smart Factory Equipment Group 
6.1.1 Constant speed equipment 

When it comes to equipment that operates at a consistent 
speed, the relevant data values are monitored and analyzed, 
or specific window sizes are set to monitor the score obtained 
from learning features within the frequency spectrum. This 
applies to equipment like painting fan motors, supply/exhaust 
fans, and air blow pumps. 
 

 
Figure 20. Operation pattern of constant speed equipment 

6.1.2 Monotonic acceleration/deceleration pattern 
equipment 

Regarding in-line equipment, movement automation 
equipment may follow a repetitive pattern of acceleration, 
deceleration, and constant speed. This is evident in 
stacker/de-stacker equipment that moves BIW between floors 
in an automobile manufacturing line and conveyor belt drives 
for movement between processes. Despite having variable-
speed capabilities, the acceleration/constant 
speed/deceleration pattern remains constant, allowing for the 
extraction and utilization of features across the frequency 
spectrum by dividing the pattern accordingly. 
 

 
Figure 21. Operation pattern of acceleration/deceleration 

equipment 
 

6.1.3 Monotonic acceleration/deceleration and various 
pattern equipment 
 

In logistics box warehouses, repetitive acceleration and 
deceleration patterns are common, but the locations of the 
logistics boxes can vary greatly. This is particularly true with 
equipment such as the MSC (Multi Stacker Crane) and the 
SC (Stacker Crane). Given the vast number of possible box 
positions, it is not practical to learn the patterns of each 

position individually. Instead, the deceleration, constant 
speed, and acceleration patterns are divided, and learning is 
conducted by selecting features through the frequency 
spectrum. 
 

 
Figure 22. Operation pattern of wireless mobile device 

 
6.1.4 Complex acceleration/deceleration pattern 
equipment 

With the rise of smart factories, 6-axis industrial robots have 
become the primary choice for automation. However, due to 
the complexity of their multi-jointed structure, obtaining 
features for each movement can be challenging. To overcome 
this, the one-cycle pattern for each process is cropped and 
transformed into STFT to extract features using both time and 
frequency. The resulting colormap image is then learned and 
configured to predict one pattern for a new cycle. 

 
Figure 23. Operation pattern of industrial robot 

 

 
Figure 24. Feature extraction method and anomaly score 
calculation/monitoring process for various smart factory 

equipment 

The final process is outlined above. When dealing with a 
fan motor that runs at a constant speed, the frequency 
spectrum of the continuous speed pattern is used as an input 
feature. For an engine that drives a stacker/conveyor or 
wireless mobile device with repetitive 

acceleration/deceleration, the cycle's acceleration/constant 
speed/deceleration pattern is separated by the driving part 
motor and configured through frequency spectrum 
conversion. For industrial robots with intricate patterns, both 
time-frequency features are utilized by imaging and 
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organizing STFT features. An auto-encoder structure 
defines an input shape for each piece of equipment. The 
model is saved by learning the data of the normal group. 
When new data is received, the reconstruction error is 
calculated and compared against the learned features to 
determine how much it differs. Finally, an anomaly score is 
calculated, and the smart factory is monitored by date for 
anomaly detection. 
 
6.2 Smart Factory operation screen 

They are displayed below, as Figure 25 shows the smart 
factory's configuration screen. The process locations that 
have undergone PHM algorithm application are marked, 
allowing for confirmation of AI-predicted vibration data 
anomalies through Anomaly score monitoring. The score's 
baseline is partitioned into warning and fault lines. Crossing 
the warning line triggers a yellow alarm while crossing the  
fault line triggers a red alarm. Workers can observe the red  
 

 
Figure 25. Monitoring screen of the factor layout displayed 

in the PHM system and each facility’s anomaly score 
 
indicator at the factory at the relevant facility location and 
conduct equipment maintenance activities. The score can be 
historically tracked by date/time, and a system utilizing 
MLops has been implemented to enable optimized 
algorithm re-learning and re-deployment. This system aids 
in optimizing the anomaly score baseline while operating 
the factory and conducting intelligent maintenance activities 
accordingly. 
 
7. OPEN PROBLEMS 

Thus far, we have elaborated on developing a PHM 
system and an abnormality detection framework to 
effectively address the challenges that may arise when 
performing predictive maintenance on various facilities 
within a smart factory. However, there are still some 
outstanding issues that require attention. Rest assured, we 
intend to leverage further work to tackle these challenges 
with precision and efficiency. 

 
7.1. Storage space problem 

Despite utilizing edge computing and storing only 
feature extraction results to address some challenges, many 
issues still need to be solved. With the emergence of 
intelligent factories that automate more processes and gather 
vast amounts of data for analysis, the issue of storage 
capacity remains a pressing concern. 

7.2. The problem of wired sensor installation costs 
Vibration data with a high sample rate is ideal for more 

precise analysis. However, the drawback is that it requires 
the installation of vibration sensors and the laying of wired 
cabling. To optimize the return on investment, it is vital to 
classify equipment based on whether it requires high sample 
rate data analysis, like vibration. 

Installing vibration sensors on every axis would provide 
valuable data when analyzing robots, but the associated 
costs would be significant. To mitigate this, it's essential to 
develop technology that relies on multivariate time series 
data, such as current, torque, and speed, collected from the 
robot controller while leveraging multimodal techniques 
and correlational analysis with vibration to ensure optimal 
analysis performance without excessive wiring [19], [20]. 

 
7.3. Problems classifying various types of defects by line 
equipment 

Efficiently identifying different kinds of defects in 
manufacturing plants can be challenging. Establishing a 
seamless collaboration between the operation, analysis, and 
maintenance departments is crucial. Gathering data on each 
defect type during factory operations requires meticulous 
attention to detail and careful feedback collection. 

 
7.4. Problems predicting RUL and lifespan for each 

line facility 
To make precise predictions about facility lifespan [21], 

data must be collected throughout the entire cycle from the 
initial operation to the eventual failure. This data can only 
be obtained once the factory and predictive maintenance 
system have matured, and the technology can only be 
developed when the organization and system are well-
equipped and consistently engage in seamlessly integrated 
predictive maintenance activities. With these measures in 
place, accurate facility lifespan predictions can be 
confidently made. 

 
7.5. MLOps automation level needs to be increased 

The systemization process has been completed; however, 
users need to re-learn and redistribute the system to utilize 
its full potential. Once this is done, the system will need 
further development to enable Continuous Integration and 
Deployment and subsequently automate MLOps. 

 
7.6. Existing smart factory applications are applied to 
new facilities. 

Due to the implementation of predictive maintenance 
technology in smart factories, it is anticipated that the 
emergence of breakdowns caused by aging will be delayed 
in newly established facilities. As a result, tangible 
outcomes may take longer to manifest. Given the challenges 
of collecting defective data in this complex environment, it 
is imperative to undertake individualized efforts to advance 
the algorithm. 

 
7.7. Abnormal signal problems, such as simple line 
failure 

In practice, numerous irregular signals may be present 
alongside the established patterns. These signals may 
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include something as basic as a line fault interruption and 
can be leveraged in detecting abnormalities due to their 
distinct data format. In instances with misleading 
performance data, it is crucial to classify it in a manner that 
recognizes it as one of the typical states rather than 
categorizing it as an anomaly. 

 
7.8. Types of failure problems that do not tend to increase 
gradually 

Our team oversees an algorithm designed to identify 
anomalies by monitoring gradual increases in their score 
compared to a standard value. However, we recognize that 
certain types of failures may not exhibit gradual increases, 
requiring a distinct model for prediction. While we can 
currently diagnose failures that have already occurred, we 
strive to advance our technology to enable predictive 
foresight and prevent these failures altogether. 

 
8. CONCLUSION 

As the demand for predictive maintenance in automated 
facilities grows alongside the expansion of smart factories, 
a new study introduces a necessary PHM (Prognostics and 
Health Management) system and abnormality detection 
framework method. The system includes a MEMS vibration 
sensor, Edge CMS device, and PHM platform, while the 
anomaly detection framework addresses various challenges 
such as cycling techniques, preprocessing, and AI algorithm 
development. This methodology effectively addresses data 
imbalances, learning model limitations, complex equipment 
patterns, and real-time processing issues commonly faced in 
manufacturing plants. It also improves upon the problems 
that arise when deploying such systems in the field, 
including central server concentration, cycling, 
classification of various equipment, and algorithm operation 
problems. 

Cutting-edge anomaly detection technology employs an 
AI-based vibration detection algorithm to collect data at a 
high sampling rate. It uses edge computing to analyze this 
data and make real-time decisions. This approach minimizes 
latency compared to cloud-based analysis and eliminates 
server capacity issues. The system monitors standard 
performance data of equipment, learns from it, and provides 
practical solutions to mitigate issues, ultimately reducing 
equipment failure and minimizing downtime. 

The study has yielded an impressive outcome with the 
development of abnormality detection technology and PHM 
systems that are anticipated to enhance the efficiency and 
sustainability of smart factories. The new smart factory has 
already achieved mass production, and the challenge of data 
imbalance in algorithm development has been overcome 
through data verification. By replacing the reducer of an 
aging robot in a domestic factory, the technology has proven 
to be effective. Additionally, the domestic production of 
these systems can significantly reduce technology 
investment costs compared to foreign products while 
allowing for the internalization of HMG's technology. The 
technology's potential is not limited to smart factories and 
can be deployed in new facilities such as wireless logistics 
carriers. 

Moving forward, we aim to demonstrate and enhance the 

efficiency of predictive maintenance in domestic and 
international automobile factory production line facilities. 
This vital technology is the backbone of smart and software-
defined factories and is poised to assist numerous companies 
in their pursuit of intelligent automation. Our strategy 
involves ongoing data monitoring and algorithmic 
refinement, paving the way for an optimal production line 
experience. 
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ABSTRACT 

The maintenance paradigm based on PHM (Prognostics and 
Health Management) technology, utilizing big data to predict 
process conditions through manufacturing intelligence, is 
rising. However, in most industries, there is lack of accurate 
labeling of sensor data, posing challenges in data utilization 
due to the significant cost of labeling tasks. Consequently, 
recent research has focused on semi-supervised learning 
methodologies, which are applicable in label-absent 
scenarios. Especially, there is a growing emphasis on semi-
supervised autoencoder, which learns both labeled and 
unlabeled data simultaneously. Also, there is a demand for 
the development of fault diagnosis models for essential 
components, such as bearings in most mechanical systems. 
Vibrational data is actively being integrated with artificial 
intelligence for application in bearing fault diagnosis 
frameworks. Nonetheless, diagnosing the condition of 
bearings inside machine systems, especially within the 
machine tool spindle, remains challenging, as the labeling of 
collected data causes significant costs. Therefore, this paper 
aims to develop a fault diagnosis model for unlabeled 
bearings in machine tool spindle using a semi-supervised 
autoencoder. Initially, a monitoring system of bearing 
simulator that imitates a machine tool spindle bearing was 
constructed, and vibration signals from both normal and fault 
bearings were collected based on this system. Subsequently, 
a semi-supervised autoencoder model was developed to 
construct a fault diagnosis model using labeled simulator data 
and unlabeled machine tool spindle bearing data. To evaluate 
the model, additional data of normal and fault bearings in 
machine tool spindle were collected, and the performance of 

the model was compared with a conventional fault diagnosis 
model based on 1D-CNN. 

 

1. INTRODUCTION 

In manufacturing, machine system faults not only degrade the 
quality of the products but also lead to downtime, resulting in 
significant costs. Therefore, Prognostics and Health 
Management (PHM) techniques utilizing sensor data and 
artificial intelligence are widely used to monitor equipment 
and diagnose failures. In particular, deep learning methods, 
such as Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), are used to enhance the 
reliability of failure diagnosis (Wen, Li, Gao & Zhang, 2017; 
Ince, Kiranyaz, Eren, Askar & Gabbouj, 2016; Cabrera, 
Guamán, Zhang, Cerrada, Sanchez, Cevallos, Long & Li, 
2020; Abed, Sharma, Sutton & Motwani, 2015). However, 
acquiring a large amount of high-quality data for deep 
learning training is challenging in industries. While data are 
collected in various processes, almost data lack labels due to 
the high cost of labeling. Therefore, although data are 
abundant, distinguishing between normal and faulty states is 
difficult, posing challenges for developing failure diagnosis 
models. Particularly bearings, the core components of 
machine tools such as spindles, disturb the stable operation 
of the spindle when they break down because real-time 
confirmation and labeling of bearing failure are difficult. 

Therefore, this paper proposes the utilization of data from a 
similar domain system and a semi-supervised autoencoder 
model to diagnose faults in unlabeled bearings of machining 
spindle bearings. First, a testbed capable of simulating the 
rotational motion of machining spindle bearings is 
constructed to create an environment for collecting enough 
labeled bearing data. Then a semi-supervised autoencoder 

First Author (Yongjae Jeon) et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited. 
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structure, which can learn unlabeled real-world data and 
labeled testbed data, is used for fault diagnosis model. By 
learning unlabeled data, domain difference between the 
actual equipment and the testbed is reduced, allowing for the 
extraction of generalized features and thus the development 
of a fault diagnosis model applicable to actual equipment. To 
verify its effectiveness, the performance of the proposed 
model is compared with that of a conventional model trained 
only on testbed data. 

This paper introduces the proposed model and its applications 
in Chapter 2. Chapter 3 describes the data collection process 
for machining spindle bearings and the testbed. Modeling is 
performed in Chapter 4, and a comparison of the performance 
between the conventional model and the proposed model is 
also conducted. 

2. METHODS 

2.1. Autoencoder 

Autoencoder is one of the unsupervised learning algorithms, 
that has an Encoder neural network that reduces the 
dimension of input data, and a Decoder neural network that 
reconstructs the input data from the reduced dimensions. 
Both networks are connected through the latent space, to 
reconstruct the original data from the latent space where 
features of the data are preserved. Typically, the Mean 
Squared Error (MSE) is used as the loss function to minimize 
the difference between the input data and the reconstructed 
data. Hinton and Salakhutdinov (2006) confirmed 
Autoencoder is available for data dimensionality reduction, 
and Kingma and Welling (2013) proposed the Variational 
Autoencoder structure, which combined with probabilistic 
models, for data generation applications. Additionally, 
Sakurada and Yairi (2014) confirmed its usability in anomaly 
detection. 

2.2. Semi-supervised Autoencoder 

Semi-supervised learning is a method of training model 
where one part of the input data is labeled (Reddy, Viswanath 
& Reddy, 2018). This approach is typically used in situations 
where labeled and unlabeled data are mixed. Semi-supervised 
learning uses labeled data to train the model and unlabeled 
data to improve the model's generalization performance. This 
offers the advantage that utilizing data efficiently and 
building models with a shortage of labeled data. 

Semi-supervised Autoencoder is the conventional 
Autoencoder structure with a separate Fully-Connected 
layer(FC layer) to enable learning from labeled data. For the 
task of classification, a Classifier can be added to the Encoder 
and Decoder structure as shown in Figure 1. In this structure, 
labeled data is used to train the Classifier to perform well in 
classification from the reduced dimensions by the Encoder. 
Also, with the unlabeled data the Autoencoder is trained to 
extract generalized features. Additionally, the loss function is 

defined as a joint loss combined with the cross-entropy for 
classification and the Mean Squared Error(MSE) for 
reconstruction, as shown in Eq. (1). Each weight is one of the 
hyperparameters that need to be optimized during the training 
process. As a result, by using both labeled and unlabeled data 
in training, an Encoder that extracts generalized features and 
a Classifier that has high classification performance can be 
obtained. 

 
Figure 1. Semi-supervised Autoencoder structure 

 

 𝐿𝐽 = 𝑤𝑅𝐿𝑅 + 𝑤𝐶𝐿𝐶  (1) 

2.3. Proposed Method 

In this paper, labeled bearing simulator(source) data, which 
is similar to an unlabeled machining spindle bearing(target) 
data, is used for fault diagnosis using the Semi-supervised 
Autoencoder, as shown in Figure 2. Initially, both labeled 
source data and unlabeled target data are used to train a 
feature extractor(Encoder) and reconstructor(Decoder). This 
allows the feature extractor to extract generalized features 
that reduce domain difference between target and source. 
Furthermore, the labeled source data is additionally used to 
train the feature extractor and classifier, making the classifier 
determine a decision boundary that can classify normal and 
fault conditions from generalized features. Through this 
structure and method, it can diagnose normal and fault 
conditions of the unlabeled target data. 
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Figure 2. Diagram of proposed method 

 

3. EXPERIMENT AND DATA ACQUISITION 

3.1. Machining spindle bearing 

The machining spindle bearing, which is the target domain 
for fault diagnosis, has a 6204 ball bearing inside the spindle, 
as illustrated in Figure 3. An accelerometer is attached to the 
spindle for data acquisition. While the spindle was rotating at 
2,000 RPM, 200 data were collected every 0.1 seconds with 
20,000Hz sampling frequency without overlapping, so each 
data had 2,000 points. However, this data was collected 
without labels, lacking information about normal or fault 
conditions. Therefore, to develop a fault diagnosis model, it 
is necessary to use a source domain that is similar to the 
machining spindle bearing, but with information on the 
condition. 

 
Figure 3. Image of machining spindle bearing 

 

3.2. Bearing Simulator 

The bearing simulator is a source domain to imitate the 
operation of a machining spindle bearing, as shown in Figure 
4. It connects the motor on the left and the bearing on the right 
by the shaft to allow rotation. The attached bearing is the 
6204 ball bearing used in the machining spindle, and an 
accelerometer is installed in the Y direction to collect data 
during rotation. The way of data acquisition was identical to 
those for the machining spindle bearing, and 400 data are 
each collected using both normal and fault bearings. 

 
Figure 4. Image of bearing simulator 

 

4. MODELING 

4.1. Model Architecture 

The architecture of the proposed model is explained in Table 
1. The Feature Extractor and Reconstructor were composed 
of 1D convolutional layers and transposed 1D convolutional 
layers, and the hidden layer of the classifier was set as one, 
as shown in Figure 5. A 1D convolutional layer is a network 
that replaces vertical and horizontal convolution with 
unidirectional convolution to apply convolution operation in 
vector data. Through this layer, time-series data can be used 
in training without converting into a matrix. 

 

Table 1. Description of proposed model architecture 
 

Network Layer type 

Feature 
Extractor 
(Encoder) 

Conv. layer 1 
Conv. layer 2 
Max Pooling layer 
Conv. layer 3 
Conv. layer 4 

Reconstructor 
(Decoder) 

Transposed Conv. layer 1 
Transposed Conv. layer 2 
Up sampling 
Transposed Conv. layer 3 
Transposed Conv. layer 4 

Classifier 
(FC) 

Hidden layer 
Output layer 
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Figure 5. Proposed model architecture 

 

4.2. Model Training 

While training the model, the hyperparameters were set as 
follows. The number of filters in all convolutional layers was 
16, the neuron of the hidden layer was set to 16, kernel size 
was set to 7, and stride was set to 5. ReLU was used for the 
activation function for all layers, except the output layer, 
which was set to softmax. The optimizer was Adam, with a 
learning rate of 0.0001, the weights for classification error 
(𝑤𝐶) and reconstruction error (𝑤𝑅) in the joint loss were set 
to 0.5 arbitrarily. A total of 700 iterations were done for 
training with a mix of 200 unlabeled target domain data and 
800 labeled source domain data. 

To evaluate the performance of the proposed model, a 
conventional fault diagnosis model was additionally trained. 
It had only a feature extractor and classifier as shown in 
Figure 6, with the same model structure and hyperparameters 
as the proposed model. Since this model can only be trained 
with labeled data, it is trained with only 800 labeled source 
domain data. 

 
Figure 6. Conventional model architecture 

 

 

4.3. Result 

Model performance comparison was done using additional 
validation data, collected by machining spindle bearing. 
Normal and fault data were collected by operating the 
machining spindle at 2,000 RPM, with normal bearings and 
bearings damaged by impacts. Under the same setting as the 
training data acquisition, 100 data for each normal and fault 
condition were collected. Using these data, the accuracy of 
the proposed model and conventional model were evaluated 
to compare the performance of the models. The final 
accuracy was 76.5% for the conventional model and 97.5% 
for the proposed model which the proposed model has higher 
performance. Figure 7 shows the accuracy of both train and 
validation data at each epoch for both models. Both models 
reached 100% accuracy on the train data. However, the 
validation accuracy of the conventional model initially shows 
an increase, but the accuracy decreases in the end part 
because of the overfitting problem caused by domain 
differences. In contrast, the proposed model's validation 
accuracy did not increase significantly at the beginning but 
reached high accuracy at the end. This happens due to the 
delay in optimizing the autoencoder's error compared to the 
classifier, which can be improved by changing the weight 
ratio. 

 
(a) Conventional model 

 
(b) Proposed model 

Figure 7. Training and validation accuracy at each epoch 
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Figure 8 is a confusion matrix that compares the accuracy of 
the proposed and conventional models with validation data. 
Only 5% of the fault data are misdiagnosed by the proposed 
model, whereas 15% of fault data are misdiagnosed by the 
conventional model. Also, the conventional model 
misdiagnoses 32% of normal data, resulting in low 
performance. 

 
(a) Conventional model 

 
(b) Proposed model 

Figure 8. Confusion matrix of final accuracy 
 

Figure 9 visualizes features extracted by the feature extractor 
from the source domain data used for training and the target 
domain data used for validation, using t-distributed 
Stochastic Neighbor Embedding (t-SNE). Unlike the 
conventional model, which makes it hard to define a decision 
boundary due to the domain differences, the proposed model 
can make a clear decision boundary, showing reduced 
domain differences. 

 
(a) Conventional model 

 
(b) Proposed model 

Figure 9. Result of t-SNE by feature 
 

5. CONCLUSION 

This paper proposes a fault diagnosis methodology with 
multi-domain data using a semi-supervised autoencoder to 
solve the problem of developing fault diagnosis models with 
the lack of label data in the real-world industry. A testbed, 
similar to the domain of actual equipment, was constructed to 
train the proposed model with sufficient labeled data and 
unlabeled equipment data. From this approach, a feature 
extractor that extracts generalized features by reducing the 
influence of domain information, and a classifier that can 
diagnose conditions based on generalized features were 
developed. The model was validated with additional 
machining spindle bearing data, resulting in the development 
of a high-performance fault diagnosis model. This approach 
enables the practical utilization of unlabeled data collected 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 365



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

6 

from industrial machines. Furthermore, it has been 
demonstrated that a high-performance fault diagnosis model 
can be developed with unlabeled data. This can be applied to 
many manufacturing, contributing to the reduction of 
labeling costs across various industries. 

However, this study conducted a fault diagnosis model from 
the perspective of deep learning without considering physical 
method. In case of bearings, the amplitude of certain fault 
frequency increase depending on fault characteristics of 
bearings. The reason for not applying this method is that the 
value at the fault frequency does not appear clearly, because 
of the various signals of the machine tool. Therefore, just 
monitoring the value in the fault frequency is not appropriate 
for bearing fault diagnosis of the machine tool. However, by 
considering both data-driven model and physical method, a 
hybrid model with higher performance can be developed. 

And this study did not include the uncertainty caused by 
various operating conditions of bearings, as it focused on a 
diagnostic model under fixed operating conditions. Also, the 
comparison with other models, that can use the unlabeled 
data, was insufficient. Therefore, the development of a fault 
diagnosis model that can robustly operate under changing 
bearing operating conditions and validation of the 
effectiveness of the proposed methodology through 
comparison with other semi-supervised learning, synthetic 
data generation techniques, and domain adaptation 
technologies are planned for future works. 
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NOMENCLATURE 

𝐿𝐽 Joint loss 
𝑤𝑅 Reconstruction weight 
𝐿𝑅 Reconstruction loss 
𝑤𝐶  Classification weight 
𝐿𝐶  Classification loss 

REFERENCES 

Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new 
convolutional neural network-based data-driven fault 
diagnosis method. IEEE Transactions on Industrial 
Electronics, 65(7), 5990-5998. doi: 
10.1109/TIE.2017.2774777 

 
Ince, T., Kiranyaz, S., Eren, L., Askar, M., & Gabbouj, M. 

(2016). Real-time motor fault detection by 1-D 
convolutional neural networks. IEEE Transactions on 
Industrial Electronics, 63(11), 7067-7075. doi: 
10.1109/TIE.2016.2582729 

 
Cabrera, D., Guamán, A., Zhang, S., Cerrada, M., Sanchez, 

R. V., Cevallos, J., Long, J. & Li, C. (2020). Bayesian 
approach and time series dimensionality reduction to 
LSTM-based model-building for fault diagnosis of a 
reciprocating compressor. Neurocomputing, 380, 51-66. 
doi: https://doi.org/10.1016/j.neucom.2019.11.006 

 
Abed, W., Sharma, S., Sutton, R., & Motwani, A. (2015). A 

robust bearing fault detection and diagnosis technique 
for brushless DC motors under non-stationary operating 
conditions. Journal of Control, Automation and 
Electrical Systems, 26, 241-254. doi: 
https://doi.org/10.1007/s40313-015-0173-7 

 
Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., 

Loccufier, M., Verstockt, S., Walle, R. V. & Hoecke, S. 
V. (2016). Convolutional neural network based fault 
detection for rotating machinery. Journal of Sound and 
Vibration, 377, 331-345. doi: 
https://doi.org/10.1016/j.jsv.2016.05.027 

 
Lu, C., Wang, Z., & Zhou, B. (2017). Intelligent fault 

diagnosis of rolling bearing using hierarchical 
convolutional network based health state classification. 
Advanced Engineering Informatics, 32, 139-151. doi: 
https://doi.org/10.1016/j.aei.2017.02.005 

 
Jiang, H., Li, X., Shao, H., & Zhao, K. (2018). Intelligent 

fault diagnosis of rolling bearings using an improved 
deep recurrent neural network. Measurement Science 
and Technology, 29(6), 065107. doi: 10.1088/1361-
6501/aab945 

 
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the 

dimensionality of data with neural networks. science, 
313(5786), 504-507. doi: 10.1126/science.1127647 

 
Kingma, D. P., & Welling, M. (2013). Auto-encoding 

variational bayes. arXiv preprint arXiv:1312.6114. doi: 
https://doi.org/10.48550/arXiv.1312.6114 

 
Sakurada, M., & Yairi, T. (2014). Anomaly detection using 

autoencoders with nonlinear dimensionality reduction. 
In Proceedings of the MLSDA 2014 2nd workshop on 
machine learning for sensory data analysis (pp. 4-11). 
doi: https://doi.org/10.1145/2689746.2689747 

 
Reddy, Y. C. A. P., Viswanath, P., & Reddy, B. E. (2018). 

Semi-supervised learning: A brief review. International 
Journal of Engineering &Technology, 7(1.8) (pp. 81-85). 
doi: https://doi.org/10.14419/ijet.v7i1.8.9977 

 

 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 366



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

7 

BIOGRAPHIES  

 

Yongjae Jeon is now Ph.D. 
candidate in the Sustainable Design 
and Manufacturing Laboratory, 
Department of Mechanical 
Engineering, Sungkyunkwan 
University. He obtained his 
bachelor's degree (System 
Management Engineering) from 
Sungkyunkwan University in 2020. 
His research interest is AI-based 

prognostics and health management for smart manufacturing.  

 

Kyumin Kim is now master 
candidate in the Sustainable Design 
and Manufacturing Laboratory, 
Department of Mechanical 
Engineering, Sungkyunkwan 
University. He obtained his 
bachelor's degree (Mechanical 
Engineering) from Sungkyunkwan 
University in 2023. His research 
interest is AI-based prognostics and 

health management for smart manufacturing.  

 

Yelim Lee is now master candidate in 
the Sustainable Design and 
Manufacturing Laboratory, 
Department of Mechanical 
Engineering, Sungkyunkwan 
University. She obtained her 
bachelor's degree (Mechanical 
Engineering) from Sungkyunkwan 
University in 2023. Her research 
interest is AI-based prognostics and 

health management for smart manufacturing. 

 

 Byeong Kwon Kang has a master’s 
degree in the Sustainable Design and 
Manufacturing Laboratory, 
Department of Mechanical 
Engineering, Sungkyunkwan 
University. He obtained his 
bachelor's degree (Mechanical 
Engineering) from Sungkyunkwan 
University in 2022 and completed his 
master’s degree in 2024. His research 

interest is AI-based prognostics and health management for 
smart manufacturing. 

 

 Sang Won Lee is now professor in 
the school of Mechanical 
Engineering, Sungkyunkwan 
University. He obtained his 
bachelor's degree in 1995 and 
master’s degree in 1997 
(Mechanical Design and Production 
Engineering) from Seoul National 
University. He obtained his Ph.D. 
degree (Mechanical Engineering) 
from University of Michigan in 

2004. His research interest includes prognostics and health 
management (PHM), cyber-physical system (CPS), additive 
manufacturing, and data-driven design.  

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 367



 1 

DiffPhysiNet: A Bearing Diagnostic Framework Based on Physics-
Driven Diffusion Network for Unseen Working Conditions 

Zhibin Guo1 Jingsong Xie2 Tongyang Pan3 and Tiantian Wang4 

1,2,3,4 School of Traffic & Transportation Engineering, Central South University, China 
marcogzb@csu.edu.cn 

jingsongxie@foxmail.com 
ty.pan@csu.edu.cn 
wangtt@hnu.edu.cn 

ABSTRACT 
Fault diagnosis is essential to ensure bearing safety in 
industrial applications. Many existing diagnostic methods 
require large scales of data from a full range of working 
conditions. However, the structure and working conditions 
differences between machines lead to significant variation in 
data distribution, making it difficult to diagnostic with 
unseen samples. To handle this situation, an unknown 
condition diagnosis Framework (UCDF) based on physics-
driven diffusion network (DiffPhysiNet) is proposed, 
effectively integrating the generation capability of the 
diffusion model and learning from the working conditional 
encoding (WCE). Specifically, signals under limited 
working conditions are gradually convert to noise through a 
forward noising process. Then, DiffPhysiNet reconstructs 
signals from the noise by a reverse denoising process. In 
addition, a physics-driven UNet (Physi-UNet) structure is 
designed to extract WCE for noise level prediction during 
the reverse process. Moreover, an Unsupervised Clustering 
Filter (UCFilter) is constructed to select signals with high 
quality after generation. Signals under unknown working 
condition can be generated with certain WCE. Ultimately, 
extensive experiments on two bearing datasets (SDUST and 
PU) validate the effectiveness of our method compared with 
the state-of-the-art baselines and the ablution test confirms 
the significant role of Physi-UNet and UCFilter. 

1. INTRODUCTION 

Rotating machinery is crucial in modern industry, 
highlighting the need for effective condition monitoring and 
fault diagnosis technology to ensure its security and 
reliability (Kordestani et al. 2021). Deep learning-based 
approaches have gained significant attention in machine 
condition monitoring as a data-driven fault diagnosis 

method(Zio 2022). 

For deep learning to effectively diagnose faults in rotating 
machinery, it requires consistency in the data distribution 
between training and testing sets. However, practical 
industrial applications often present challenges that hinder 
the applicability of deep learning methods, which can be 
concluded as follows: (1) Rotating components often 
operate under varied conditions, such as changes in 
rotational speed and load (Chen and Li 2017). (2) Obtaining 
sufficient labeled data with precise health information 
across all operating conditions can be impractical. (3) 
Domain shift issues arise when attempting to compensate 
for information gaps by utilizing labeled data from multiple 
machines or different working conditions. Also, due to 
discrepancies in data (Ben-David et al. 2010).  

In recent years, various advanced techniques have been 
developed to tackle the aforementioned challenges. One of 
these techniques is domain adaptation (DA), which aims to 
reduce the distribution discrepancy between the source and 
target domains during model training (Wang et al. 2020). 
DA allows the transfer of knowledge acquired from large 
source datasets to construct diagnostic models for smaller 
target datasets with similar characteristics. Wang et al. 
proposed the use of intra-class maximum mean discrepancy 
(MMD) in conjunction with multi-scale ResNet 
architectures to reduce the conditional distribution 
discrepancy of vibration signals (Wang et al. 2020). Hu et al. 
introduced tensor-aligned invariant subspace learning, 
which enables the discovery of a shared tensor 
representation for cross-domain diagnosis cases (Hu, Wang, 
and Gu 2020). Inspired by adversarial learning principles, Li 
et al. developed a method to map knowledge from target to 
source working conditions using generative adversarial 
networks (Li et al. 2021). Domain adaptation techniques can 
improve the robustness and generalization capabilities of 
fault diagnosis models. However, these methods are limited 
by the closed-set assumption, meaning that the source and 

Zhibin Guo et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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target domains have feature distributions that cannot be 
crossed (Si et al. 2021). 

Under this premise, it is necessary to develop a technique 
that takes the out-of-distributed (OOD) fault classification 
into account (Michau and Fink 2019). Generative 
Adversarial Networks (GANs) nowadays adopts an 
unsupervised learning method and automatically learns from 
the source data. In the applications of PHM, conditional 
GANs have been used to control the generation process to 
generate desired distinct classes. Wang et al. introduced an 
enhanced version of Least-Square Generative Adversarial 
Networks (LSGANs) which notably retain more signal 
details compared to traditional methods and exhibit 
significant robustness (Wang et al. 2019). However, these 
methods are only suitable for generating data from 
previously observed conditions and not for generating 
previously unseen conditions in a specific domain 
(Rombach, Michau, and Fink 2023). The latter is the focus 
of our research. For the issue of the diagnostic works under 
unseen working conditions, propose a new framework for 
Open-Partial DA based on generating distinct fault 
signatures with a Wasserstein GAN, which enables a better 
transferability between two different domains (Li et al. 
2022). However, the main drawback of GANs is that they 
are unstable during the training process and it is hard to 
embed diagnostic knowledge during the process of 
generation(Cui et al. 2023). Nowadays, same as a generative 
model, diffusion model does not suffer from GANs-like 
problems of training non-convergence and pattern collapse.  

To achieve the stable and effective diagnostic framework 
for unseen working conditions based on feature embedding, 
we first propose a Physics-Driven Diffusion Network 
(DiffPhysiNet) for unknown condition diagnosis, which can 
generate a complete bearing sample of industrial 
environments and maintain the real-world working 
conditions through physics-informed methods. DiffPhysiNet 
effectively integrates the generation capability of the 
diffusion model and embeds working conditional encoding 
(WCE). Essentially, the forged signals generated by 
DiffPhysiNet guarantee the generation accuracy while 
retaining the utility. To summarize, the primary 
contributions of this work are concluded as follows: 
⚫ A denoising diffusion-based generative model 

DiffPhysiNet is proposed, which can generate high-
quality signal data. 

⚫ A novel neural network structure called Physi-UNet, 
which integrates the residual block and attention 
mechanism to model signal features of bearings. 

⚫ UCFilter is constructed based on K-means clustering 
method to select the valuable signals after generation. 

The remainder of the paper is structured as follows: In 
Section 2, we provide background information relevant to 
our research and in Section 3, we formally introduce the 

proposed diagnostic framework and its components in detail. 
Section 4 outlines the dataset utilized and presents the 
experimental results and in Section 6, we summary our 
work and proposes some research directions for the future. 

2. PRELIMINARY 

In this section, we first briefly introduce the basic 
knowledge of Denoising Diffusion Probabilistic Models 
(DDPM) (Shu, Li, and Farimani 2023) and Fourier Neural 
Operator (FNO)(Rafiq, Rafiq, and Choi 2022), which are 
the fundamentals of the proposed DiffPhyisNet.  

2.1. Diffusion model 

 
Figure 1. Two processes in Denoising Diffusion 

Probabilistic Models 

As shown in Figure 1, the diffusion model that typically 
contains two processes: forward process and reverse process. 
In this setting, a sample from the data distribution 𝑥0~𝑞(𝑥) 
is gradually noised into a standard Gaussian noise 
𝑥𝑇~𝒩(0, 𝐼) by the forward process, where the transition is 
parameterized by 𝑞( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ) = 𝒩(𝑥𝑡; √1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡𝐈) 
with 𝛽𝑡 ∈ (0,1)  as the amount of noise added at diffusion 
step 𝑡.  
A neural network learns the reverse process of gradually 
denoising the sample via reverse transition 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) =
 𝒩(𝑥𝑡−1;  𝜇𝜃(𝑥𝑡 , 𝑡), ∑𝜃(𝑥𝑡 , 𝑡)) .Learning to clean 𝑥𝑇 
through the reversed diffusion process can be reduced to 
learning to build a surrogate approximator to parameterize 
𝜇𝜃(𝑥𝑡 , 𝑡)  for all 𝑡.  The denoising model 𝜇𝜃(𝑥𝑡 , 𝑡)  can be 
trained by using a weighted mean squared error loss which 
we will refer to as: 

ℒ(𝑥0) =∑ 𝔼
𝑞(𝑥𝑡|𝑥0)

𝑇

𝑡=1

∥∥𝜇(𝑥𝑡 , 𝑥0) − 𝜇𝜃(𝑥𝑡 , 𝑡)∥∥
2 (1) 

where 𝜇(𝑥𝑡 , 𝑥0) is the mean of the posterior 𝑞( 𝑥𝑡 ∣∣ 𝑥𝑡−1 ). 
This objective can be justified as optimizing a weighted 
variational lower bound on the data log likelihood. Also 
note that the original parameterization of 𝜇𝜃(𝑥𝑡 , 𝑡) can be 
modified in favor of �̂�0(𝑥𝑡 , 𝑡, 𝜃)or𝜖𝜃(𝑥𝑡 , 𝑡). 

2.2. Fourier neural operator 

 
Figure 2．The full architecture of neural operator 
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The main idea of FNO is to use Fourier transform to map 
high-dimensional data into the frequency domain and 
approximate nonlinear operators by learning the 
relationships between Fourier coefficients through neural 
networks. The FNO architecture is shown in Figure 2, 
which consists of three main steps:  
a) The input 𝑎(𝑥) is lifted to a higher dimensional 

representation 𝑣0(𝑥) = 𝑃(𝑎(𝑥)) by the local 
transformation 𝑃 , which is commonly parameterized 
by a shallow fully connected neural network. 

b) The higher dimensional representation 𝑣0(𝑥)  is 
updated iteratively by: 

𝑣𝑡+1(𝑥) = 𝜎(𝑊𝑣𝑡(𝑥) + (𝒦(𝑎;𝜙)𝑣𝑡)(𝑥)) (2) 

where (𝒦(𝑎; 𝜙)𝑣𝑡)(𝑥)  is a linear transform on the 
frequency domain of the amplitude and the phase of 
𝑣𝑡(𝑥), 𝑊: is a linear transform on the high-dimension 
of the time domain. 𝜎 : is the non-linear activation 
function. 

c) The output 𝑢(𝑥) is obtained by 𝑢(𝑥) = 𝑄(𝑣𝑇(𝑥)) , 
where 𝑄 : is the projection of 𝑣𝑇 , and it is 
parameterized by a fully connected layer. 

ℱ and ℱ−1are denoted as Fourier transform and its inverse 
transform of a function, allowing the operations on the 
frequency domain of the high-dimension. The Fourier 
neural operator (FNO)(Lehmann et al. 2024) aims to map 
between two infinite-dimensional spaces by training on a 
finite set of input–output pairs. It has been demonstrated 
that the FNO can serve as a universal approximator capable 
of accurately representing any continuous operator. 

3.  PROPOSED METHOD 

In this section, we elaborate on the proposed DiffPhysiNet 
framework as shown in Figure 3. We start by presenting the 
diagnostic principles and steps of the proposed method 
under unseen working conditions. Then, we introduce the 
details of the denoising model, i.e., Physi-UNet. 
Furthermore, UCFiler utilize K-means to cluster some 
generated sample to prove the generation quality is also 
introduced. 

3.1. Diagnostic principles of DiffPhysiNet 

As illustrated in Figure 3, aiming at the diagnostic under 
unseen working conditions, 4 parts (a-d) are involved in the 
framework. 

 
Figure 3. The diagram of proposed DiffPhysiNet framework 

(a) The first part is based on the diffusion model which is 
introduced in 2.1, utilizing this generative model rather than 
other generative methods mainly attribute to the style 

embedding convenience which ensures that generated fault 
signatures contain physics-driven features. (b) The second 
part aims to construct a latent space with conditional 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 370



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

4 

encoding methods, making sure of that the projection space 
of working conditions are continuous. (c) The third part 
utilizes an unsupervised clustering method to select 
qualified generated signals guaranteeing the effectiveness of 
the training datasets. (d) The last part is the application stage 
of this proposed method, utilizing the selection of generated 
signals for the diagnostic model training. Then the validated 
diagnostic model can be applied for online fault diagnosis. 

3.2. Structure of Physi-UNet 

As aforementioned, the diffusion model (DDPM), A neural 
network learns the reverse process of gradually denoising 
the sample via reverse transition 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) =
 𝒩(𝑥𝑡−1;  𝜇𝜃(𝑥𝑡 , 𝑡), ∑𝜃(𝑥𝑡 , 𝑡)) .Learning to clean 𝑥𝑇 
through the reversed diffusion process can be reduced to 
learning to build a surrogate approximator to parameterize 
𝜇𝜃(𝑥𝑡 , 𝑡) for all 𝑡. In our proposed framework, Physi-UNet 
is utilized for the process of denoising estimation, of which 
the structure is shown in Figure 4. As illustrated in the 
figure, an implicit U-Net is introduced to enhance Fourier 
neural operator. The denoised signal after (𝑇 − 𝑡) steps is 
utilized as the input, which is then converted into a high-
dimensional representation via the lifting layer 𝑃 , and 
finally the output is obtained through the projection of 𝑄, 
converting the vectors from a high-dimensional space to 1D 
vibration signal (Benitez et al. 2023) . 

The structural design of the Physi-UNet is based on the 
hypothesis that the Fourier spectrum of fault data can be 
expressed as the sum of (1) domain-specific components 
(the spectrum of a signal from normal operation) and (2) of 
fault-specific components representing the specific fault 
characteristics. In other words, this hypothesis allows us to 
express Fourier coefficients (Dang and Ishii 2022) of the 

fault data of a certain class 𝑐  from a specific domain 𝕏 
(𝑥𝑓𝑎𝑢𝑙𝑡,𝕏

𝑐,𝐹𝐹𝑇 ) as a sum of domain-specific characteristics that 
are represented by the domain features 𝑥𝕊𝐹𝐹𝑇  and the fault 
class specific characteristics that are domain-independent 
𝑥𝑓𝑎𝑢𝑙𝑡
𝑐,𝐹𝐹𝑇  𝑓𝑎𝑢𝑙𝑡 and scaled by a factor 𝑤 , which can be 

expressed by: 

𝑥𝑓𝑎𝑢𝑙𝑡,𝕏
𝑐,𝐹𝐹𝑇 = 𝑥𝕏

𝐹𝐹𝑇 + 𝑤 ∗ 𝑥𝑓𝑎𝑢𝑙𝑡
𝑐,𝐹𝐹𝑇 (3) 

The physics-driven fault component and the domain specific 
features are demodulated based on the embedding of Times 
Step 𝑡  and the continuous working conditional encoding 
(WCE), which is of great importance on the guidance of 
feature decomposition. As shown in Eq. (4). 

{
 
 

 
 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎 𝒙𝒕 (

𝑄𝐾⊤

√𝑑
) ⋅ 𝑉

𝑥𝑓𝑎𝑢𝑙𝑡,𝕏
𝑐,𝐹𝐹𝑇 = 𝒙𝒕 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)

𝑄 = 𝑊𝑄 ⋅ 𝑥𝑡 , 𝐾 = 𝑊𝐾 ⋅ 𝑥𝑡 , 𝑉 = 𝑊𝑉 ⋅ 𝑥𝑡

(4) 

where 𝒙𝒕 ∈ ℝ𝑐×𝑛  ( 𝑐  and 𝑛  represent the dimensions and 
length of the signal) is the given input, W𝑄, W𝐾 , and W𝑉 are 
learnable parameter matrices from the embedded Timestep 𝑡 
and the encoded working condition. 
Hence, the fault components of the vibration signals are 
captured in using Fourier bases: 

𝐴𝑖,𝑡
(𝑘) = |ℱ(𝑥𝑓𝑎𝑢𝑙𝑡,𝕏

𝑐,𝐹𝐹𝑇 )𝑘|, 𝛷𝑖,𝑡
(𝑘) = 𝜙(ℱ(𝑥𝑓𝑎𝑢𝑙𝑡,𝕏

𝑐,𝐹𝐹𝑇 )𝑘), (5) 

𝜅𝑖,𝑡
(1),⋯ , 𝜅𝑖,𝑡

(𝐾) = 𝑎𝑟𝑔 𝑇𝑜𝑝𝐾
𝑘∈{1,⋯,⌊

𝜏
2
⌋+1}

{𝐴𝑖,𝑡
(𝑘)}, (6) 

𝑃𝑖,𝑡(𝑥) = ∑  

𝐾

𝑘=1

𝐴
𝑖,𝑡

𝜅𝑖,𝑡
(𝑘)

𝑐𝑜𝑠 (2𝜋𝑓
𝜅𝑖,𝑡
(𝑘)𝜏𝑐 + 𝛷𝑖,𝑡

𝜅𝑖,𝑡
(𝑘)

) , (7) 

 
Figure 4. The structure of proposed Physi-UNet enhanced with FNO and U-Net component 
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where arg TopK is to get the top 𝐾  amplitudes and 𝐾  is a 
hyperparameter. 𝐴𝑖,𝑡

(𝑘), Φ𝑖,𝑡
(𝑘)are the phase, amplitude of the 𝑘-

th frequency after the discrete Fourier transform ℱ 
respectively. 𝑓𝑘 represents the Fourier frequency of the 
corresponding index 𝑘 . In fact, the Fourier layer selects 
bases with the most significant amplitudes in the frequency 
domain, and then returns to the time domain through an 
inverse transform to model the physics-driven fault features.  

The U-Net structure is utilized to synthesis the 
corresponding domain features according to the residue 
component after removing the fault frequencies.  

𝐷𝑖,𝑡(𝑥) = 𝑈𝑁𝑒𝑡(𝑣0(𝑥) − 𝑃𝑖,𝑡(𝑥)) (8) 

where the 𝑃𝑖,𝑡 is selected fault component and the  𝐷𝑖,𝑡 is the 
obtained domain features. 

𝐷𝑖,𝑡  and 𝑃𝑖,𝑡  are then reweighted and activated in the 
following process, the summation and projection combine 
the physic-driven and domain feature components, which 
can be expressed as: 

𝐶𝑖,𝑡(𝑥) = 𝜎2[𝑈𝑁𝑒𝑡(𝑣0(𝑥) − 𝑃𝑖,𝑡) +  𝜎1[𝑊(𝑃𝑖,𝑡)]] (9) 

𝑥𝑡−1 = 𝑄 (𝐶𝑖,𝑡(𝑥)) (10) 

where σ1[∙] and σ2[∙] are the activation function, 𝑊(∙)is the 
reweight layer, 𝑄(∙) is the projection layer aforementioned, 
𝑥𝑡−1is the out put of this diffusion step. 

3.3. Unsupervised Clustering Filter 

Once the DDPM in the DiffPhysiNet training is completed, 
the working conditions of signal generation is controlled by 
the WCE. As shown in Figure 5. the generated signal 
clustered by K-means algorithm, which is an unsupervised 
clustering method. The top of n samples nearest to the signal 
sample center selected as valuable signals.  

The distances between inter-class samples are measured by 
distribution probability based on Kullback-Leibler 
divergence between the joint probabilities 𝑅𝑖𝑗  in the high-
dimensional space and the joint probabilities 𝑇𝑖𝑗  in the low-
dimensional space. The values of 𝑅𝑖𝑗 are defined to be the 
symmetrized conditional probabilities, whereas the values of 
𝑇𝑖𝑗  are obtained by means of the Student’s t-distribution 
with one degree of freedom. The calculation is summarized 
as follows: 

𝑟𝑖𝑗 =
𝑟𝑖|𝑗 + 𝑟𝑗|𝑖
2𝑛

(11) 

𝑡𝑖𝑗 =
(1 + |𝑦𝑖 − 𝑦𝑗|

2)
−1

∑ (1 + |𝑦𝑘 − 𝑦𝑙|
2)−1𝑘≠𝑙

(12) 

where 𝑟𝑖|𝑗  is the distribution probability of sample point 𝑗 
when the sample point 𝑖  is given. 𝑦  is the generated 
samples. The values of 𝑟𝑖𝑖  and 𝑡𝑖𝑖  are set to zero. The 

calculation of the Kullback–Leibler divergence 𝐶𝑑 between 
the two joint probability distributions 𝑅  and 𝑇 is given as 
follows: 
𝐶𝑑 = 𝐾𝐿(𝑅 ||𝑇) =∑ ∑ 𝑟𝑖𝑗

𝑗
log 𝑟𝑖𝑗

𝑖
− 𝑟𝑖𝑗 log 𝑡𝑖𝑗 (12) 

After calculated the Kullback–Leibler divergence 𝐶𝑑  of 
every sample in generated signals, the selection boundaries 
are decided according to the expectation numbers of 
acceptable samples 𝑛 , and 𝑘  value of the Boundary 

Decision indicates the portion of selected samples (𝑘=𝑛 𝑁⁄ ). 
  

 
Figure 5. The steps of unsupervised clustering filter method 

4. EXPERIMENTAL VALIDATION 

4.1. Experiments Setting 

To assess the diagnostic model's performance in unfamiliar 
conditions, we conducted two experimental case studies 
using test rigs from SDUST (Jia et al. 2020) and the 
Paderborn University bearing dataset (PU dataset) for 
bearing fault diagnosis. The first case involves a constant 
domain shift with the rig operating at various constant 
speeds, while the second case examines a constant domain 
shift with the rig operating under multiple conditions of 
variable rotational speeds and loads. These experiments 
confirm the effectiveness of the DiffPhysiNet method, 
which utilizes diffusion models, for complex industrial 
applications. 

 
Figure 6. Experimental platform of SDUST dataset (a) and 

PU dataset (b). 
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4.1.1. Description of SDUST dataset and Case1 

Figure 6 (a) shows the experimental platform of SDUST, 
which includes a motor, a shaft coupling, a rotor, a testing 
bearing, a gearbox, and a break.The bearing type utilized is 
N205EU, with data collected across four health conditions: 
normal (NOR), inner ring fault (I), rolling element fault (B), 
and outer ring fault (O). Four distinct working conditions 
were tested at speeds of 1000, 1500, 2000, and 2500r/min. 
The experiment sets four diagnostic cases for unseen 
working conditions across domains: T1000, T1500, T2000, 
and T2500 as shown in Table 1. 

 

4.1.2. Description of PU dataset and Case2 

The test rig of PU dataset is shown in Figure 6 (b), which is 
mainly composed of a motor, a torque measurement shaft, a 
bearing test module, a flywheel, and a load motor. There are 
7 health conditions, normal (N), inner-race fault (IF) with 
three damage levels (IF1, IF2, and IF3), outer-race fault (OF) 
with two damage levels (OF1 and OF2), and compound 
fault (CF) containing IF and OF. 

Faulty bearings with real damage were acquired from an 
accelerated lifetime test. Vibration data was collected under 
four distinct working conditions, involving rotational 
frequency (Hz), load torque (Nm), and radial force (N), at a 
sampling frequency of 64 kHz. These conditions create four 
domains: P1, P2, P3, and P4, leading to four diagnosis cases, 
as outlined in Table 2. Each category in unseen working 
conditions comprises 2000 samples. 

 

4.1.3. Compared methods 

Some typical or up-to-date technologies were utilized as a 
set of compared methods to validated the effectiveness of 
the DiffPhysiNet framework with the idea of Physi-UNet 
and UCFilter and all the methods used the same 
preprocessing and network back-bone for a fair comparison. 
As shown in Table 3, M1-M6 series are competitive related 

methods, M1 means the Domain Adaption (DA) method 
based on empirical risk minimization (ERM) principle using 
multi-domain data based on the general cross-entropy loss 
of DA method. M2-M4 follow the same setting in (Jiao et al. 
2020; Huang et al. 2022; Han, Li, and Qian 2021) by adding 
a distance metric or distribution alignment as a loss term, 
such as MMD, JMMD, and CORAL. M5 (Li et al. 2020) is 
a start-of-the-art method DG that uses adversarial training 
with normalization strategies and a strategy of multi-case 
training and M6 (Chen et al. 2022)  is a competitive method 
for cross-domain diagnosis under unseen domain through 
triplet loss and data augmentation with Gaussian noise. 

 

4.2. Experimental results and analysis 

4.2.1. Generated signal and analysis 

To assess the effectiveness of the proposed diagnostic 
framework, we illustrate the generated signals in Figure 7. 
Notably, there were no fault samples with a 1000N load and 
an rpm of 40Hz in the training set, yet similar fault samples 
were generated. Thus, DiffPhysiNet can generate fault 
signals for unseen combinations of rpm and load.  

 
Figure 7. Generated signals comparison of time-domain on 
Set R1 of PU dataset and real signals (a)Inner ring fault (b) 

Outer ring fault (c) Cage fault. 

Table 1. Case1: Diagnostic cases of SDUST dataset. 
Diagnostic 

cases Seen Domain Unseen 
Domain 

T1 1500r/min,2000r/min,2500r/min 1000r/min 
T2 1000r/min,2000r/min,2500r/min 1500r/min 
T3 1000r/min,1500r/min,2500r/min 2000r/min 
T4 1000r/min,1500r/min,2000r/min 2500r/min 

 

Table 3. Related methods for comparation 
Methods Description 

M1 DA 
M2 DA with MMD 
M3 DA with JMMD 
M4 DA with CORAL 
M5 ADIG (Li et al. 2020) 
M6 IEDGNet (Chen et al. 2022) 

 

Table 2. Case2: Diagnostic cases of PU dataset. 

Domain Rotational 
frequency Load Diagnostic 

Cases 
Seen 

Domain 
Unseen 
Domain 

p1 25Hz 1000N R1 p2, p3, p4 p1 
p2 15Hz 400N R2 p1, p3, p4 p2 
p3 15Hz 1000N R3 p1, p2, p4 p3 
p4 25Hz 400N R4 p1, p2, p3 p4 
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Comparing the time-domain of the generated signals with 
real signals reveals a high degree of similarity, confirming 
the ability of the proposed method to generate signals under 
unseen working conditions that closely resemble real signals. 
This verifies the effectiveness and practicality of the 
generative model. On the frequency-spectrum comparison 
between the generated signals and the real signals is shown 
in Figure 8. The frequency spectrum of the generated signal 
and the real signal has a high degree of coincidence, 
especially in the low-frequency band where contains most 
damage features according to the vibration theory of bearing 
fault. 

 
Figure 8. Generated signals comparison of frequency-

domain on Set R1 of PU dataset and real signals (a)Inner 
ring fault (b) Outer ring fault (c) Cage fault. 

4.2.2. Experimental results and analysis 

Table 4. presents the diagnostic results for the proposed 
method and comparison methods in Case 1 (SDUST dataset) 
and Case 2 (PU dataset). Several conclusions can be drawn. 
Firstly, the basic DA method achieves notably lower 
average test accuracies of 76.46% and 80.63% in the two 
cases respectively, indicating interference among data 
distributions during training, affecting model generalization. 
Secondly, DA methods using MMD, JMMD, and CORAL 

exhibit improvements over basic ERM, with average 
accuracy gains of 1.57%, 12.06%, and 10.05% respectively 
in Case 1, and 4.04%, 5.27%, and 3.49% in Case 2. These 
methods aim to eliminate distributional discrepancies 
between source domains and learn domain-invariant 
representations. Finally, the proposed method achieves the 
best diagnostic performance in almost all DA cases, with the 
highest average accuracy of 94.15% and 93.27% in both 
experimental cases. Furthermore, it demonstrates superior 
stability compared to com-parison methods in most cases. 
Figure 9. illustrates the classification accuracy of different 
diagnostic cases for Case 1 and Case 2, aiding in the 
comparison of diagnostic results. 

 
Figure 9. Classification accuracy of the different diagnostic 

cases of case 1 and case 2. 

  
Table 4. Diagnostic accuracy (%) of Case 1 and Case2.  

 M1 M2 M3 M4 M5 M6 Proposed 
Case1 
T1 59.73±1.43 59.85±2.48 65.8±3.05 66.51±2.2 73.75±1.91 73.27±3.64 93.03±2.17 
T2 84.65±2.72 83.14±1.28 94.95±2.9 94.81±3.27 95.19±1.52 94.48±2.86 95.6±2.64 
T3 86.28±2.47 89.51±3.21 96.28±1.98 96.76±1.8 98.35±0.84 97.27±0.74 98.06±1.42 
T4 83.19±3.89 83.62±4.67 84.98±6.26 83.96±3.6 90.42±0.76 86.06±2.49 91.37±2.94 
Average 76.46±2.63 78.03±4.66 88.52±3.55 86.51±2.72 88.42±1.26 88.77±2.93 94.15±2.54 
Case 2 
R1 75.92±1.38 92.75±0.69 90.26±2.87 85.86±1.59 90.61±2.17 91.73±1.26 97.6±0.92 
R2 83.26±2.42 72.64±3.57 70.19±4.15 82.47±3.73 83.74±3.33 77.54±3.89 92.36±3.02 
R3 87.33±3.07 90.59±2.26 92.57±3.42 93.52±1.24 84.98±0.94 96.02±1.96 97.29±1.55 
R4 72.04±1.53 78.73±2.59 60.61±4.11 65.73±3.97 86.17±3.12 79.39±2.78 89.81±3.31 
Average 80.63±2.10 84.67±2.27 79.41±3.64 85.89±2.63 87.38±2.39 87.17±2.47 93.27±2.21 
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4.2.3. Feature visualization and analysis 

Compared methods based on domain adaptation (DA) aim 
to learn domain-invariant features, while our diagnosis 
seeks to generate physic-embedded signals to cover unseen 
distributions. we employ feature visualization to validate 
these conclusions. To illustrate the distribution of fault 
features from seen and unseen domains corresponding to 
seen and unseen working conditions, we present 2-D 
features from the second layer of the fault classifier using T-
SNE (van der Maaten and Hinton 2008). For clarity, we plot 
the feature vectors of the SDUST dataset (Case 1) from four 
health conditions under case T1and four colors represent 
four domains, with gray points indicating features extracted 
from unseen domains, while other colors denote features 
from available source do-mains. 

The domain adaptation (DA) based method aims to extract 
generalized features that are consistent across different 
domains, including unseen domains. However, as illustrated 
in Figure 10, the features learned by methods M1-M3 fail to 
capture the generalized representation of the I02 fault due to 
significant domain discrepancies between seen and unseen 
working conditions. Although method M4 may learn more 
robust features compared to M1-M3, it struggles to cluster 
effectively in the seen domains of I02. 

 
Figure 10．Results of feature-dimension reduction via T-

SNE under unseen target working condition:M1, (b) M2, (c) 
M3, (d) M4, (e) Proposed. 

In contrast, the proposed DiffPhysiNet method, leveraging 
the feature embedding capability of Physi-UNet, can 
generate signals with more domain-invariant features. This 
leads to improved classifier training and reaffirms that the 
Physi-UNet structure enables the model to fit not only the 
source data distribution but also data from unseen working 
conditions. 

4.2.4. Parameter sensitivity analysis 

Adjustable parameters are involved in the construction and 
training of the proposed method and considering their 
impact on the model performance, parameter sensitivity 
analyses are performed on all case. 

 
Figure 11. Parameter sensitivity analysis (a) k value: the 

portion of selected nearest generated samples. (b) Diffusion 
steps t: the iteration steps of generation progress. 

𝑘 value represents the proportion of selected samples (𝑘 =
𝑛 ⁄ 𝑁), where 𝑁 is the total number of generated samples 
and n is the number of selected samples among them. These 
selected samples undergo the nearest distribution process in 
the K-means clustering algorithm, as depicted in Figure 5, 
where the Boundary Decision is determined by the k value. 
Figure 11(a) illustrates the diagnostic accuracy for each case 
under different k values ranging from 0.1 to 0.9. The graph 
indicates that when k is below 0.5, meaning less than half of 
the total generated samples are selected, the performance is 
inferior to the baseline M1 method. This could be attributed 
to the reduced generation capability resulting from a smaller 
set of selected samples, causing offsets in the feature 
distribution from the real distribution. Conversely, if k is too 
large, the model's performance declines, likely due to the 
utilization of too many substandard generated signals for 
diagnostic model training. Hence, selecting a value of k 
around 0.7 is recommended. 
𝑡 is the parameter of diffusion steps, the larger the value of 
diffusion steps the more detailed the signal generation 
process will be, as well as the larger the model training time 
and the computational resources it will consume. As shown 
in Figure 11 (b), it can be concluded that the performance of 
DiffPhysiNet framework becomes better and more stable as 
t is bigger than 1000 steps. Regarding the performance of 
M1 method as the baseline, the diffusion steps should not be 
less than 1000. As t increased from 1000 to 1500, the 
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performance of the model stabilizes and does not improve 
significantly. 

5. CONCLUSION 

In conclusion, we propose the DiffPhysiNet framework for 
diagnosing bearing faults under unseen working conditions 
for safety-critical equipment. Leveraging a generative 
diffusion model and working conditional encoding (WCE), 
this framework effectively embeds signal features, and the 
UCFilter method ensures signal quality using principles 
from K-means clustering. Experimental validation on real-
world bearing datasets demonstrates the superiority of 
Physi-UNet over existing approaches, particularly in 
diagnostic accuracy. Feature visualization confirms the 
framework's ability to capture generalized signal features 
under unknown conditions, highlighting the generative 
model's efficacy in signal generation. 
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ABSTRACT

Recent domain adaptation approaches have been shown to
generalise well between distant data domains achieving high
performance in machine fault detection through time series
classification. An interesting aspect of this transfer-learning
inspired approach, is that the algorithm need not be exposed
to fault data from the target domain during training. This pro-
motes the application of these methods to environments in
which fault data is unfeasible to obtain, such as the detection
of loss-of-coolant accidents (LOCA) in nuclear power plants
(NPPs).

A LOCA is a failure mode of a nuclear reactor in which
coolant is lost due to a physical break in the primary coolant
circuit. If undetected, or not managed effectively, a LOCA
can result in reactor core damage.

Three high-fidelity physics based models were created with
divergent behaviour that represent different data domains. The
first model is used to generate source domain data by simu-
lating labelled training data under both nominal and LOCA
conditions. The second and third models act as surrogates of
real plants and are used to generate target domain data, i.e. to
simulate nominal data for training and LOCA condition data
for validation.

Several deep-learning feature encoders (with varying levels
of connectivity) were applied to this LOCA detection prob-
lem. Among these, a ’Baseline’ encoder was used to quan-
tify the improvement that domain adaptation techniques make
to LOCA detection performance under large domain diver-
gences.

Classification accuracy for each model is explored within the

Henry Wood et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

context of LOCA break size and location within each plant
model.

The proposed method for LOCA detection demonstrates how
the dependence upon sparse accident-specific data can be al-
leviated through the use of domain adaptation. Detection ca-
pability of the LOCA condition is maintained even when no
data examples are available in the target domain.

1. INTRODUCTION

There is an opportunity in the nuclear industry to adopt data-
driven methods to help maintain the safe operation of critical
systems, both as a result of the improved availability of sens-
ing instrumentation and the rapid evolution of network archi-
tectures for fault detection (Gomez-Fernandez et al., 2020).
A plethora of approaches for identifying abnormal transient
behaviour, such as a LOCA, exist with foundations in proba-
bilistic methods (Aldemir, 2013), complex fluid-structure in-
teraction models (Mahmoodi et al., 2011) and Markov mod-
elling (Sakurahara et al., 2019). Although effective in fi-
nite environs, conventional methods suffer when attempting
to compensate for the lack of available labelled fault data in
the nuclear domain.

A LOCA occurs when a physical break in the reactor coolant
system releases coolant faster than recovery systems can re-
plenish it. This increases the temperature of the core, which
can damage the plant and potentially release reactivity. De-
tection of this transient behaviour is paramount to the safe
operation of pressurised water reactors (PWRs).

Time series classification through deep learning methods has
seen increased attention (Ismail Fawaz et al., 2019) in previ-
ous years, with myriad techniques being derived to tackle a
spectrum of fault detection problems (Wei & Keogh, 2006).
The nuclear industry has received its share of attention in this
regard, with neural network based methodologies tasked with

1
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aiding the monitoring of numerous aspects of NPPs, includ-
ing diagnosing the source of abnormalities in operation data
(Lee et al., 2021) and tuning a digital twin to provide supple-
mentary NPP data (Wang et al., 2021).

Existing examples of these methods simultaneously identify
and characterise transients whilst making remaining useful
life predictions (Rivas et al., 2024). Typically, though, these
approaches rely upon the assumptions that similar quantities
of nominal and faulty data exist, and that data gathered from
differing NPP sources (physical plants and simulations alike)
will share a similar data distribution.

One branch of deep-learning research aims at tackling this
manner of problem through Transfer Learning. Current works
in industrial contexts display impressive results regarding fault
diagnosis with minimal labelled training data under diverse
application domains (Y. Zhang et al., 2023), as well as com-
binations of global and local models providing more robust
remaining useful life predictions (J. Zhang et al., 2023). Do-
main adaptation (a subset of Transfer learning where data
sources share the same input space) can simultaneously make
data gathered from multiple sources appear more similar, whilst
separating sub-classes within those sources, eg. ’Normal’ and
’Faulty’ data (Qian et al., 2023).

Existing LOCA detection procedures that attempt to over-
come the issue of the lack of available NPP accident data per-
form well in a limited range of operating conditions (Farber
& Cole, 2020). The generalised knowledge available through
leveraging transfer-learning from attainable model data has
not yet been fully exploited in the context of LOCA detec-
tion. Domain adaptation allows the transfer of the knowledge
contained in such a classifier on to a new domain containing
previously unseen behaviour.

In this work, we introduce adaptations to current transfer learn-
ing based fault detection methods with application to the de-
tection of the LOCA condition. The model design process
was guided by system experts in order to construct data ‘fea-
tures’ that well represent the NPP behaviour in both nominal
and LOCA conditions. Results show how domain adapta-
tion is able to retain the fault detection performance that is
achievable for the labelled training data when it is applied to
the surrogate models data domain.

2. PROBLEM FORMULATION

2.1. Domain adaptation overview

Consider data sampled from two distinct domains, Source (S)
and Target (T ). The data from each domain (xS and xT , re-
spectively) posses different distributions. Additionally, sup-
pose that class labels for the data sampled from the Target
domain, yT , are unavailable. Given the data is drawn from
disparate distributions, conventional supervised methods can-
not infer knowledge about the Target domain using data from

the Source domain.

Domain adaptation provides methods for prediction of target
domain labels yT from target domain data xT using the in-
formation present in source domain data and labels xS and
yS . In this work, we will describe a feature extractor as an
encoder: a network designed to construct a feature space Z
using the distributions of xS and xT . The aim of the encoder
is to provide a transformation through which the distributions
of xS and xT appear similar to each other in the feature space
Z.

The generalised feature space Z is used to aid classification
for samples from the target domain, since the encoded rep-
resentations of xS and xT are similar, and we have access
to class labels for the source domain data, yS . There exist
many well documented methods by which the encoder can
construct Z, with two of the most commonly used domain-
adaptation specific measures being Mutual Information (MI)
and Maximum Mean Discrepancy (MMD).

2.1.1. Mutual Information

MI is a statistical quantity that describes how much informa-
tion one variable conveys about another. If we consider these
variables in terms of the feature space representations of the
input domain data, i.e: zS and zT (obtained from passing
xS and xT respectively into the transformative encoder), then
maximising the MI between the Target domain feature space
representation (zT ) and the entire feature space (Z) will en-
courage the encoder to generate features that are generalised
between the two input domains.

The MI between these specific variables can be expressed as
a linear combination of the Shannon Entropy of each feature
space representation (Chen et al., 2021). The Shannon En-
tropy for a distribution A is given by

H(A) = −
∑

a∈A

P (a) lnP (a). (1)

If we state that ZS and ZT are the distributions of the feature
space representations zS and zT respectively, then the MI be-
comes

MI(ZT ;Z) = −
∑

zS∈ZS

P (zS) lnP (zS)−
∑

zT∈ZT

P (zT ) lnP (zT ).

(2)

Maximising this quantity during training promotes the gen-
eration of features that convey the largest amount of shared
information between the Target domain samples and the en-
tire set of observed samples from each domain.
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2.1.2. Maximum Mean Discrepancy

A brief description of the intended function of the MMD term
will be sufficient for understanding its relevance to this work.
The key principal that underpins MMD metrics is the idea that
if two distributions are equal, then their statistical properties
should also be equal. By using MMD, it is possible to per-
form a hypothesis test upon the functions that transform the
input domain distributions into their encoded feature repre-
sentations. These functions are embedded as a Hilbert space,
a convenient mathematical construct which allows linear al-
gebra to be applied to infinite-dimensional vectors.

Formally, the MMD between two distributions A and B on
the sets X and Y can be calculated as

MMD(A,B) = ||EX∼A[ϕ(X)]− EY∼B [ϕ(Y )]||H
= supf∈H(EX∼A[f(X)]− EY∼B [f(Y )]), (3)

where f is a function in the Hilbert space H and ϕ is the
transformation from the input set to the Hilbert space. The
supremum means this is equivalent to taking the maximum of
the mean difference between the distributions A and B.

In practice, the mean of the feature-space distributions is not
known, so the MMD between the two feature-space distribu-
tions must be empirically estimated by

MMD(ZS , ZT ) =
1

m(m− 1)

m∑

i

m∑

j ̸=i

ϕ(zSi
, zSj

)

− 2
1

mn

m∑

i

n∑

j

ϕ(zSi , zTj )

+
1

n(n− 1)

n∑

i

n∑

j ̸=i

ϕ(zTi
, zTj

), (4)

where, m and n are the number of samples drawn from ZS

and ZT , and ϕ is a Gaussian kernel representing the feature
mapping transformation. A minimisation of MMD ensures
that the distributions ZS and ZT are similar across each sta-
tistical moment, which aids in making predictions about the
unlabelled Target domain.

2.1.3. Domain adaptation-oriented loss function

The Negative Log Likelihood, NLL, cost is used to penalise
incorrect classification predictions made by the model and is
given by

NLL(θ) = −
k∑

i=1

(yi ln(ŷθi) + (1− yi) ln(1− ŷθi)) , (5)

Figure 1. An example of an unsupervised domain adaptation
approach. An encoder and classifier are trained simultane-
ously to generate both a representative feature space and ac-
curate class predictions.

where, θ is a set of probabilities attributed to each class pre-
diction, k is the number of predictions made, y is the true
class of each sample and ŷ is the predicted class.

To perform domain adaptation the following loss function is
used:

LDA = NLL(θ) + MMD(ZS , ZT )−MI(ZT , Z). (6)

This is a common form for a loss function seen in an unsu-
pervised domain adaptation setting, visualised in Figure 1.

For comparison, this work will also use a simplified version
of this loss function, LS = NLL(θ), to represent a loss func-
tion used by a conventional supervised learning approach.

3. METHODOLOGY

3.1. Data generation

In light of the lack of labelled relevant NPP accident data,
RELAP5, a nuclear reactor modelling and simulation tool,
was used to generate the data used in this work. Rather than
perform domain adaptation between model generated data
and real data collected from a plant, a high-fidelity physics
models is used under three different configurations that repre-
sent data domains with varying levels of divergence between
them. The model configurations represent 1) A large four-
loop 3600MW civil nuclear plant with nominal historical us-
age, 2) A similar large plant with a greater historical power
usage and 3) A small two-loop 50MW with nominal histori-
cal usage.

3.1.1. Model modifications

To replicate the full range of operating conditions of a civil
nuclear plant, and for a machine learning framework in this
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setting to be trained robustly, data containing examples of dy-
namic events are provided. These events come not only from
the presence of LOCA/faults, but also reflect dynamism in the
normal operation of a plant, such as reactivity insertion.

The specification of a general table used to define the core re-
activity or power (depending upon the reactor kinetics model
used by the script) proved sufficient for providing the kind of
input-derived transient events required. Typically, these input
demands have magnitude between 1-10% of the input reac-
tivity/steam off-take of that observed at the reactor’s steady
state rated power output level.

A small degree of Gaussian noise was added to the input re-
activity demand profile to simulate process noise. The scale
of the input noise was less than 10% of the magnitude of the
changes in input demands. Set-points and thresholds that de-
fine variable and logical trips for control systems in the model
were perturbed to emulate differing operator characteristics
on each run.

Each simulation was performed with or without the presence
of a LOCA (hence being classed as ’Normal’ or ’Faulty’).

Breaks were inserted into the primary circuit of the reactor
coolant system to simulate a LOCA. Breaks are simulated at
the inlet and outlet of the hot and cold legs of the primary
circuit, as well as at the outlet of the steam generator in the
secondary circuit. All breaks used the counter-current flow
model, with standard choking flow. The full abrupt change
model was used meaning that all breaks occurred instanta-
neously, rather than develop throughout the course of one
sample of time-series data. The breaks are modelled as a
valve with given cross-sectional area. The cross-sectional
area of the break-valve is adjusted to define the size of the
break relative to the cross-sectional area of the pipe to which
the break-valve is located. The break sizes are uniformly
sampled in the range [0.02%, 0.2%] of the area of the pipe
for the 3600MW plant, and the range [0.1%, 1%] of the area
of the pipe for the small 50MW plant, representing very small
breaks. Each simulation is run for 1000 seconds.

A summary of the numerical changes to the high-fidelity physics
models is as follows:

• Transient operating power provided by control of reac-
tor rod position or steam off-take at the steam generator.
Operating power level varied between +-10% of the rated
capacity of each plant.

• Gaussian process noise inserted with transient input sig-
nals, scaled to +- 1% of the rated capacity of each plant.

• Control system thresholds shifted by -2%, +2% or un-
changed for each simulation.

• Breaks inserted with magnitudes in the range [0.02%, 0.2%]
and [0.1%, 1%] of the cross-sectional area of the pipe in

which they are located for the 3600MW and 50MW plant
respectively.

• Each simulation is run for 1000 seconds.

3.1.2. Differences between models (domain divergence)

This work focuses on exploring the implication of an increas-
ing divergence between data domains. In this context, this
requires multiple high fidelity physics models from which to
gather data. The first of the template models used describes a
large Four-loop 3600MW PWR with characteristics designed
to be a ’fictitious approximation’ of values present in a West-
inghouse plant.

To provide an example of a relatively small domain diver-
gence, the 3600MW PWR model is used to provide data rep-
resentative of the same plant at different stages in its operating
cycle. To achieve this, different model initialisation applied
that define different average operating power output for the
first year of operation. An ’Underworked’ version of this
Four-loop plant was defined to have operated at 2400MW
(significantly less than the 3600MW rated capacity) for its
first year of operation. This model was used as the ’Source’
domain model. A ’Typically worked’ version of the same
plant is defined to have operated at its rated capacity of 3600MW
for the first year of it’s operation. Additionally, pump speeds
throughout the primary and secondary circuits are increased,
allowing for different dynamics to manifest in this version of
the plant. The model generated data used for the ’Target 1’
domain.

A second, smaller Two-loop 50MW PWR plant was chosen
to represent a more drastic domain change. This plant is sim-
ulated with the same relative changes in input reactivity and
trip set-point attitudes, but possessing disparate dynamics and
steady state behaviour owing to the different physical proper-
ties of the smaller plant. Data generated from this model is
used for the ’Target 2’ domain.

A quick understanding of the degrees of divergence between
these domains can be gained by observing the first principal
component of a principal component analysis performed on
each domain, shown in Figure 2. The distribution of the first
principal component differs greatly depending upon which
domain the data comes from, although the difference between
the Source and Target 2 domains is much larger than that
between the Source and Target 1 domains. This domain di-
vergence would cause a conventional supervised learning ap-
proach to suffer, due to the difficulty in transferring knowl-
edge between disparate domains. Additionally, note the large
degree of overlap that exists between ’Normal’ and ’Faulty’
classes of data in each domain. This implies that, since princi-
pal components analysis is a linear technique, a linear classi-
fier would struggle to separate samples of data from different
classes.

4
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Figure 2. The distributions of the first principal components
of the data from each of the three domains. Note the larger
difference in distributions between the Source and Target 2
domains.

3.1.3. Processed data structure

Observations of the plants were made by simulating sensors
in locations throughout both the primary and secondary cir-
cuits, listed in Table 1. In total, 15 data streams were ex-
tracted from each simulation, representing pressures, temper-
atures, mass-flow rates and valve states, with locations shown
in Figure 3.

In addition to these measured values, the input reactivity pro-

file (the power demand) and the reactor output power were
supplied as part of the data vector provided to the domain
adaptation network. Each batch of data the encoder receives
is made of samples derived from both the Source and Tar-
get domains. At the encoder, these samples are unlabelled.
Each sample x is an N × T vector representing T time-steps
of N sensor readings. The input dimension of the encoder is
B×N×T , whereB is the number of samples used per batch.

Table 1. A list of the measured values used in this work.

Value specification
ID Description Units
0 Cold-leg Coolant Pressure P
1 Cold-leg Inlet Coolant Temperature °C
2 Cold-leg Outlet Coolant Temperature °C
3 Hot-leg Coolant Pressure P
4 Hot-leg Inlet Coolant Temperature °C
5 Hot-leg Outlet Coolant Temperature °C
6 Pressuriser Relief Valve State -
7 Main Steam Isolation Valve State -
8 SG Feedwater Regulating Valve State -
9 Cold-leg Coolant Mass Flow-rate kg/s

10 Hot-leg Coolant Mass Flow-rate kg/s
11 Reactor Coolant Pump Mass Flow-rate kg/s
12 SG Feedwater Inlet Mass Flow-rate kg/s
13 Pressurizer Inlet Mass Flow-rate kg/s
14 Charging Pump Mass Flow-rate kg/s

Figure 3. A simplified view of the primary coolant circuit of
a PWR. The measured sensor values used in this work have
their sensed locations numbered.
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3.2. Model architecture

The network described in this work consists of an encoder,
tasked with extracting generalised feature maps from the raw
input vector data, and a classifier aimed at detecting the pres-
ence of ’Faulty’ data. Different model architectures were
were trialed and they are described in detail below.

3.2.1. Encoder variations

To investigate the impact that the internal structure of the
feature-generation stage of the network has in the context of
NPP time-series data, several forms of encoder were consid-
ered, with increasing degrees of ’connectivity’ between dif-
ferent input sensor readings, visualised in Figure 4.

Baseline Encoder: Separate 1D convolutions

Two kernels per input sensor channel, with kernel grouping
number set equal to the input dimension at each point in the
encoder. This has the effect of training kernels without com-
bining information from multiple sensor channels simultane-
ously. Kernels act along the time dimension of each sensor
reading.

Aggregate Encoder: Summed 1D convolutions

Grouping number for convolutional layers set to 1, meaning
kernels are passed along a single time-series sensor reading,
before being combined in a weighted sum to generate a con-
volution which contains information from each sensor mea-
surement simultaneously.

Recurrent, Fully-Connected Encoder: Gated Dense 1D
convolutions

The summed 1D convolutions have been performed as above
followed by a fully-connected layers Additionally, a gated re-
current unit (GRU) layer is used before the second set of con-
volutions.

These modifications attempt to allow the encoder to efficiently
consider long-term dynamics that may be important to fault
detection in this context.

3.2.2. Classifier & loss function

The classifier is shared by each of the different encoder vari-
ations described above. The classifier consisted of a series of
fully connected layers followed by batch normalisation lay-
ers, shown in Figure 5. A dropout layer is included to en-
courage regularisation and avoid over-fitting.

4. EXPERIMENTAL VALIDATION

The loss function used by each model varies depending upon
whether domain adaptation is used. When a model is ap-

plied without domain adaptation, the loss LS is used. The
loss LDA is used when domain adaptation is required. The
’Baseline’ model was tested in each data domain twice, once
using LS and once using LDA. The Aggregate Encoder and
Recurrent Fully-Connected Encoder were tested on all data
domains using the loss LDA.

4.1. Hyper-parameter tuning result

The model hyper-parameters were tuned heuristically for each
model variant. Hyper-parameters were chosen as

Baseline Model:

• Learning rate: 8e− 4

Figure 4. Architectures of three different encoders used in
this work, with increasing degrees of connectivity between
the input sensor readings.

6

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 383



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

• Dropout percentage for classifier input: 7.0 %

• Scaling factor for MMD term in loss function: 0.5

Aggregate Encoder Model:

• Learning rate: 9e− 4

• Dropout percentage for classifier input: 4.1 %

• Scaling factor for MMD term in loss function: 0.5

Fully-Connected Encoder Model:

• Learning rate: 6e− 4

• Dropout percentage for classifier input: 5.6 %

• Scaling factor for MMD term in loss function: 0.5

4.2. LOCA detection

This section, detailing the results from this work, is divided
into three parts covering, binary LOCA classification perfor-
mance, detection performance by break size and detection
performance by break location.

4.2.1. Binary classification performance

When tested on the the Source domain, each model performed
similarly in classification accuracy, with over 93% of the sam-
ples observed being correctly classified as either ’Normal’ or
’Faulty’ for each model variant, as shown in Table 2. Without
the necessity for domain adaptation in this case, each model
was able to create a robust feature map of the distribution of
data observed in the Source domain. The increased complex-
ity of the Aggregate and Fully-Connected Encoders offered
little to no benefit in this conventional supervised setting, with
the training and testing sets being drawn from the same do-
main.

Disparities in model performance start to appear when the
testing set is drawn from the Target 1 data domain. This
testing set represents a slight shift in data distribution from
the Source domain training set, which reveals the importance
of the inclusion of model architectures specifically designed

Figure 5. Architecture of the classifier used in this work.

to aid in domain adaptation. The models utilising the more
sophisticated domain adaptation-oriented loss function retain
the majority of their classification performance when com-
pared to test results from the Source domain, whilst the Base-
line supervised model, using LS , suffers a sizeable reduction
in classification accuracy.

This difference in performance is owed to the fact that the
domain adaptation-oriented loss function contains terms that
inform the encoder about the statistical properties of the gen-
eralised feature space that it is tasked with creating. Con-
sideration of the MI between the entire feature space and the
encoded representation of the Target 1 domain data helps to
reduce the likelihood of encountering unlabelled Target 1 do-
main samples during testing that do not possess some infor-
mation that the model has previously observed during train-
ing. Prompting this overlap in shared information increases
that chances that the model will hold some ’relevant’ feature
space representation for these ’unique’ unseen phenomena,
which is crucial due to the high variability of the generated
data. Additionally, minimisation of the MMD at the encoder
aids the classifier with inferring class labels belonging to the
unlabelled Target 1 domain data. This is explained by the
fact that a reduction in MMD between the encoded repre-
sentations of the Source and Target 1 domains implies that
samples belonging to one class (for example, ’Faulty’) that
exist in one region within the encoded Source domain fea-
ture space, should exist in a similar ’relative’ location within
the encoded Target domain feature space. It is through this
knowledge transfer that Source domain information can be
leveraged to support Target domain class predictions.

The final domain shift, between training on Source domain
model data and testing on the Target 2 domain data represents
a more severe divergence between domains. As is evident
from the average test accuracies, the conventional supervised
model fails to bridge this gap between differing data distribu-
tions and records a poor performance of less than 50% classi-
fication accuracy. It is at this magnitude of domain divergence
that the increased complexity of the Aggregate and Fully-

Table 2. Average test accuracies (%) of each model type on
each domain set, after being trained on the Source data do-
main.

Model Type Source
Domain

Target 1
Domain

Target 2
Domain

Baseline
Supervised
(No DA)

93.41 78.02 45.57

Baseline
With DA - 91.24 81.46

Aggregate
Encoder 93.96 91.02 89.85

Fully-
Connected
Encoder

93.22 91.27 89.57
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Connected Encoders demonstrate value. Although the DA-
focused loss function is enough to restore the majority of the
lost performance for the baseline model, the less-connected
Encoder lacks the ability to consider the more disparate dy-
namics evident in the Target 2 domain.

In the context of this work, allowing the encoder to combine
input sensor channels at the first convolutional layer before
performing the convolution (such as in the Aggregate and
Fully-Connected encoders), may allow the models to exploit
class-specific relationships between sensed quantities. For
example, in the presence of a LOCA, a brief divergence of
primary circuit hot-leg temperature and pressure may occur.
If these sensed values were provided to the same convolu-
tional kernel at the input layer of the encoder, then the kernel
could utilize this relative disparity to generate a recognisable
identifier of a LOCA class sample. This improvement in per-
formance compared to the ’Baseline With DA’ model sug-
gests that there is more information available with respect to
the problem of LOCA detection if the sensed values are pro-
cessed relative to each other, rather than processed in parallel.

Although the nature of LOCA simulated in this work vary
drastically in magnitude and location within the modelled
plants, there exists the possibility for other fault cases to tran-
spire in an NPP. Without explicit knowledge of the existence
of these faults (other than LOCA), the accurate classification
of these samples as ’Faulty’ would depend upon the similarity
of these encoded samples to the ’Normal’ encoded data. The
performance of the models in this work on LOCA-specific
fault detection is good, meaning the classifier used can dif-
ferentiate between ’Normal’ data, and all other LOCA data.
If another fault case, previously unseen by the models de-
scribed, manifested in a similar fashion to a LOCA, it is likely
it would be identified as ’Faulty’. However, as can be ob-
served in later analysis on model performance by break loca-
tion, there can be large difference in classification accuracy
for a single model across faults from multiple locations, so it
would not be reliable to depend upon these methods as part
of generic ’anomaly detection’ techniques.

An understanding of the impact of the encoder in this work
can be understood if the distributions of the encoded data
from each domain are observed, shown in Figure 6. The
data used in this figure are drawn from the Fully-Connected
encoder. Viewing the first principal component of the post-
encoder data from each domain reveals that the three domains
appear much more similar to each other once expressed in the
generalised feature space the encoder provides. As observed
previously, the encoded distributions still share a large de-
gree of overlap between ’Normal’ and ’Faulty’ data. Since
principal components analysis is a linear transformation, this
suggests that a linear classifier would struggle to reliably pre-
dict the class of unlabelled samples, and that the models used
in this work which perform well must consider nonlinearities

Figure 6. The distributions of the first principal components
of the encoded data from each of the three domains. Note
the more similar distributions compared to the first principal
component of the input space.

in the data.

4.2.2. LOCA detection by break size

An interesting perspective by which to consider the perfor-
mance of these models in the context of NPP fault detec-
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tion is to observe only the primary circuit breaks and identify
the thresholds above which each model can always identify
a LOCA. LOCA detection by break size results are shown in
Figure 7.

In the Source domain setting, each model could reliably cate-
gorise fault data with break size above 0.1% of the pipe cross-
sectional area as ’Faulty’.

The performance is retained when the models are tested on
the Target 1 domain set, however the rate at which the base-
line model without domain adaptation can successfully cate-
gorise samples below 0.1% is substantially lower than in the
source domain.

The performance loss is exaggerated as the gap between do-
mains increases further still: without considering domain adap-
tation, there is no size of primary circuit break that the base-
line model can always categorize correctly as ’Faulty’. With
the only alteration being the inclusion of domain-adaptation
focused terms in the loss function, the Baseline model (With
DA) can, on average, identify 20% more faults successfully.

The other models retain a substantial proportion of their abil-
ity to successfully categorize all break sizes, even in this most
extreme domain divergence example.

4.2.3. LOCA detection by break location

The ’Faulty’ samples in this work were not only drawn from
a range of possible sizes, but also placed at varied locations
throughout the primary and secondary circuit of each PWR.
Primary circuit breaks occur at either the inlet or outlet of the
hot or cold legs. Secondary circuit breaks were inserted at the
outlet of the steam generator for the respective loop. LOCA
detection by break location results are shown in Figure 8.

When tested in the native Source domain setting, both the
Baseline Supervised and Aggregate Encoder models correctly
classify all nominal operation data, along with a consistently
high successful classification rate of primary circuit breaks
as ’Faulty’. The Fully-Connected Encoder sacrifices the suc-
cessful classification of a small number of ’Normal’ samples
in order to correctly identify each primary circuit break ob-
served in this testing environment as ’Faulty’.

Classification of breaks located at the steam generation out-
let was comparatively poor. This is perhaps due to the lower
number of observed examples of secondary circuit breaks dur-
ing training, or the potential for secondary circuit breaks to
be harder to identify under the lower-fidelity of the secondary
circuit physical model in comparison to the primary circuit.
Only the Fully-Connected Encoder model is able to correctly
classify any of these samples as ’Faulty’, which suggests that
secondary circuit breaks appear more similar to ’Normal’ op-
erational data from the perspective of these classifiers.

In the Target 1 domain, representing a slight shift in domain

Figure 7. Successful classification rate by fault break size for
each model combination, when tested on each domain.

distribution from the source domain, the Baseline Supervised
model retained its ability to identify ’Normal’ operational
data, whilst ’Faulty’ sample classification accuracy degraded.
As in the Source domain, the Baseline Supervised and Aggre-
gate Encoder models were not able to correctly identify any
secondary circuit breaks as ’Faulty’. The Baseline With DA
model (using LDA) gives some improvement in primary cir-
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Figure 8. Successful classification rate by fault location for
each model combination, when tested on each domain.

cuit break identification, but remains unable to recognise the
’Faulty’ class of secondary circuit break samples. As in the
previous testing domain, the Fully-Connected Encoder is the
only model capable of correctly classifying any steam gen-
erator outlet samples, albeit a very small proportion of the
samples it observed.

In the most extreme example of domain divergence between
the Source domain and the Target 2 domain, the classification
ability of the Baseline Supervised model, using LS , deteri-
orates. In this unfamiliar domain, the Supervised model is
barely able to correctly classify any ’Normal’ data. The Base-
line model using LDA restores some classification ability of
’Normal’ samples, and improves the detection of ’Faulty’ sam-
ples in all locations except the secondary circuit. Once again,
the Fully-Connected Encoder displays the best detection per-
formance for secondary circuit breaks. This indicates the im-
portance of combining the sensor channels at the Encoder
level in order to generate generalised features which can re-
main relevant between disparate training and testing domains.

5. CONCLUSION

The results detailed in this work highlight the value in in-
corporating domain adaptation techniques in scenarios where
discrepancies exist between the training and testing data do-
mains. Even when the scale of these discrepancies can be-
come large, fundamental DA concepts provide a significant
improvement in performance when compared to a conven-
tional supervised learning approach. Additionally, the results
draw attention to the importance of combining input sensor
channels in this context. Models which consider informa-
tion from multiple sensed sources simultaneously during their
construction of each encoded feature map retained a much
greater proportion of their classification ability seen in the
Source domain classificaiton performance.
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ABSTRACT

Conventional data-driven predictive maintenance (PdM) so-
lutions learn from samples of run-to-failures (R2F) to esti-
mate the remaining useful life of an asset. In practice, such
samples are scarce or completely missing. Simulation mod-
els can be oftentimes used to generate R2F samples as a re-
placement. However, due to the complexity of the assets,
creating realistic simulation models is tedious, or even im-
possible. Thus generated R2F data cannot be used to create
reliable PdM models as they are highly sensitive to noises
in the sensors or small deviations in system working condi-
tion. To address this, we present a new concept of simu-
lation data generation based on supervised domain adapta-
tion for a regression problem where the remaining useful life
(RUL) or the health index (HI) of the system is predicted.
Apart from input and output domain shift, given the changes
in the dominant failing component and its degradation pro-
cess, the function mapping sensor readings to RUL and/or

* This research was supported by Innosuisse - Swiss Innovation Agency,
Innosuisse Grant no: 58020.1 IP-ENG, entitled MaintAIn - AI supported
hybrid Predictive Maintenance.
** These authors contributed equally.
*** These authors contributed equally.
Kiavash Fathi et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

HI is also prone to changes and thus is a random process it-
self. Therefore, we aim to generate R2F training data from
different working conditions and possible failure types using
parameter randomization in the simulation model. By sam-
pling from various configurations within simulation model’s
parameter space, we ensure that the trained data-driven PdM
model’s performance is not impacted by the initial conditions
and/or the changes in the degradation of the system’s condi-
tion indicators. Our results indicate that the model is robust to
signal reading manipulation and showcases a more spread-out
feature importance across a wider range of sensor readings
for making predictions. We also demonstrate its applicability
on the real-world factory physical system whilst our models
were mainly trained using generated data.

1. INTRODUCTION

Accurate prediction of a production asset’s health state en-
ables effective implementation of a predictive maintenance
(PdM) solution. Such a solution can help reduce both the
cost and occurrence of unscheduled maintenance of the tar-
geted production asset (Cui, Du, & Hawkes, 2012; Rahat et
al., 2022). With the advancements in sensor technologies,
data acquisition and analysis, numerous PdM solutions pre-
dict the remaining useful life (RUL) and/or the health index
(HI) by either date-driven models, model-based models or hy-
brid of the two.
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Figure 1. Overview of the proposed method

The data-driven models use historical data to train the model
of RUL, so their quality depends on the data quality. It is thus
of utmost importance that the training data meets the min-
imum data quality requirements (Liu, Wang, Ma, Yang, &
Yang, 2012). However, it is rarely the case that the available
data from a production asset not only has enough samples of
failure, but also covers all possible failure types of the sys-
tem (Fathi, van de Venn, & Honegger, 2021).

This in turn raises the need for the data generation via simu-
lation models, which underlines the importance of currently
missing related work on simulation-to-real transfer and do-
main adaptation (DA) techniques for RUL and/or HI estima-
tion in PdM.

The model-based approaches leverage mathematical and phys-
ical models to estimate the RUL. This usually requires pa-
rameter tuning, e.g., using Markov process model or Winner
process, for converging to the behavior of the physical sys-
tem (Hanachi, Liu, Banerjee, Chen, & Koul, 2014; Si, Wang,
Hu, Zhou, & Pecht, 2012; Thelen et al., 2022). The param-
eter tuning is highly sensitive to the parameter initialization,
which is normally based on the empirical knowledge from
the physical system (Lei et al., 2016). Even when the system
parameters are estimated correctly, any changes in the pro-
duction setting and/or the production asset itself requires a
re-calibration.

Both the data-driven and the model-based approaches suffer
from inadequacy in practical solutions: the relevant data is
either missing, or the models are not robust enough, respec-
tively.

Hybrid PdM models combine the two approaches by learning
from both the historical data and the data synthetised from
the simulation models. The hybrid models have proven to
be effective in terms of reliability and efficiency, and address
some of the issues of pure data-driven or model-based solu-
tions, such as reduction in data acquisition time and increased
model robustness (Chang, Fang, & Zhang, 2017; D. Chen
et al., 2022; Lin, Yu, Wang, Che, & Ni, 2022; Didona &
Romano, 2014). In practice, the sampling from simulation
models can not come up for the lack of historical data, so
the conventional hybrid PdM models are also heavily depen-
dant on annotated data. They are normally applied to systems

for which extensive labelled datasets are available, e.g., RUL
prediction for lithium-ion batteries and aircraft engine (Fei,
2022; Saxena, 2023). As large datasets are not available
for production assets in a manufacturing factory, the conven-
tional hybrid models are inapplicable in the manufacturing
setting.

In this paper, we focus on hybrid modelling for this spe-
cific scenarios where gathering extensive labelled data from
the physical system is non-trivial (or even impossible), and
where precise and robust simulation models are unavailable.
To compensate for that, we propose to extract as much value
as we can from both sources by applying the domain adapta-
tion between the simulation and the real-world scenarios (see
Fig. 1).

In the same vein, we further improve the robustness by con-
sidering the data distribution shifts which are a common con-
sequence of diverse manufacturing requirements in an Indus-
try 4.0 setting due to flexible and adaptable production (Fathi,
Sadurski, Kleinert, & van de Venn, 2023). In order to cover
as much of the parameter space of the system as possible, we
alter accordingly the modelling of the initial condition and
the degradation of the system.

The main contribution of this paper is thus four-fold. We:

1. Propose a hybrid PdM solution which relies mainly on
the data from a simulation sub-module and few samples
from the target domain for training its data-driven sub-
module (supervised DA),

2. Propose a new concept of simulation data generation aim-
ing for domain adaptation called Parameter and Data Per-
turbation (PDP), for covering as much of the parameter
and degradation space of the physical system as possible,

3. Inspect the impact of the changes in the generated data
from the simulation sub-module and the physical system
on the performance of the data-driven sub-module,

4. Demonstrate how the additional simulation data used for
model training results in a more spread-out feature im-
portance across a wider range of sensor readings from
the system while making predictions.

The rest of the paper is outlined as follows. First, some re-
lated work addressing synthetic data generation from simula-
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tion models for dealing with scarce labelled data and domain
adaptation are presented. Afterwards, the details of the sim-
ulation model are provided. Thereafter, the results of model
training using the simulation model data with PDP are pre-
sented. Lastly, discussion and the future work of this work
are presented and some conclusions are drawn.

2. RELATED WORK

2.1. Lack of annotated data from the target system

One method used for reducing the time spent gathering data
from the target application using hybrid modelling is boost-
rapping (Didona & Romano, 2014). The main idea of boos-
trapping is to rely on a simulation model of the target use
case and to generate initial synthetic training set for the data-
driven model training. Thereafter, the data-driven model tries
to incorporate knowledge from the target system as soon as a
data point is available. In (Didona & Romano, 2014), the au-
thors propose to remove the synthetic data points in the vicin-
ity of samples from the target system to prevent obfuscating
information from the real samples. However, for the purpose
of RUL prediction in PdM, the annotated samples from the
physical system are scarce and costly to gather. Hence, we
propose to instead to keep these valuable samples and to com-
bine them with data from different working conditions of the
system generated from the simulation model

2.2. Adaptation to different working condition

Another important issue impacting the performance of data-
driven PdM models is the varying working condition of the
production assets in industry. These constant changes can
make models trained with a specific working condition (a.k.a.
source distribution) obsolete as changes occur in the system (Ragab,
Chen, Wu, Kwoh, & Li, 2020). They cause a data distribu-
tion shift between the data employed to train the PdM model
and the data acquired during the model’s deployment in the
production line. This discrepancy between the source and
target distribution raises the need for techniques such as do-
main adaptation. In fact, domain adaptation aims to train a
model on multiple source domains which are annotated so
that the model can generalized to new and unseen target do-
mains (Farahani, Voghoei, Rasheed, & Arabnia, 2021).

To the best of our knowledge, no other PdM work adopted do-
main adaptation methods for robust RUL and HI estimation
in light of lacking annotated historical data from the physical
system using simulation-to-real transfer techniques. More-
over, the current literature (Farahani et al., 2021; Yu, Fu, Ma,
Lin, & Li, 2021; Rahat et al., 2022; Yang, Lei, Jia, & Xing,
2019; Gao, Liu, Huang, & Xiang, 2021; Wang, Taal, & Fink,
2021) reduce PdM to be a binary or a multi-class variable.
We treat it as estimating the RUL or HI as a continuous value
for better adaptability to different scenarios.

In addition, given the degradation process of different criti-
cal components of a production asset, the labelling function
mapping the input space to the output space, can not only
be different in the target domain, but also change in the tar-
get domain given the dominant degradation process of any
arbitrary critical component (Cortes & Mohri, 2011; Nejjar,
Geissmann, Zhao, Taal, & Fink, 2024)

These two, the estimation of RUL and/or HI as a continuous
variable under the assumption of scarcity of annotated data
from the target domain, and the possibility of data distribution
shifts in the target domain are the primary motivation behind
the proposed PDP method outlined in this work (Fig. 2).

2.3. Simulation-to-real transfer

Numerous application, especially safety-critical system, suf-
fer from lack of labelled data as gathering such datasets is
costly or endangers the human operator (Kaufmann et al.,
2020; Tiboni, Arndt, & Kyrki, 2023). Therefore, simula-
tion models are used to recreate different scenarios which
are also labelled for model training. Nonetheless, modelling
errors and the complexity of physical systems prevent the
zero-shot deployment of data-driven models trained with such
simulation models. One way for increasing the robustness
of the trained models is randomize the dynamic parameters
of the system which is a.k.a. domain randomization (Peng,
Andrychowicz, Zaremba, & Abbeel, 2018). Doing so in-
creases the robustness of the trained model at the the cost of
its optimality (Tiboni et al., 2023). In this paper, we use the
same method to cover as much as the parameter and degra-
dation dynamics space as possible. Different starting con-
ditions, model parameter and degradation processes are the
main sources of domain randomization in this paper (Fig. 2).

3. SIMULATION MODEL

Data-driven monitoring systems require continuous data col-
lection that must extend over a period of time before they can
provide effective results (Bonomi et al., 2021). Such data col-
lections, referred to as run-to-failure (R2F) data, are normally
expected to start from a healthy production asset state and
end with the asset failing or malfunctioning. In the present
scenario, there is the additional consideration that R2F tests
are, by their nature, long-lasting while accelerated destructive
testing is not always possible. Additionally, these tests are
expensive with uncertain success. We propose to use a simu-
lated model of the system to obtain realistic data (Ferrario et
al., 2019) on its response to the system’s most common types
of wear and tear.

The model creation phase is critical because it must satisfy
several conflicting requirements:

• The model must be complex enough to represent deteri-
orating operating conditions realistically.
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Figure 2. DA via PDP

• The model must be simple enough to be calibrated in a
short time and from accessible data.

• The model must take into account the system whose con-
dition is being monitored, the measurement instruments
used, and how the data are processed. To some approx-
imation, it must also take into account the context in
which the system operates (e.g., the effect of other com-
ponents).

To meet all these needs, we developed a system with the fol-
lowing characteristics:

• Our models follow the multi-physical system (Simscape)
as a concentrated variable model. This allows parameters
to be easily configured.

• The model is wrapped in a Python script that allows gen-
erating the random parameters, handles post-processing,
and eventually repeats or recovers the simulation scenar-
ios in case of failure.

3.1. Overview of the simulation model

Our specific use case is the condition and life monitoring of
a series of pneumatic cylinders. Based on its characteristics,
we separate the model into 5 macro blocks (Fig. 3):

1. Control system block: modeled as timed output signals.

2. Air feeding system and sensor block: modeled while
taking into account the fluid dynamic aspect and the char-
acteristic times of the sensors (i.e., thermometer, pressure
switch and flow switch). The generated data are saved as
time series on temporary files.

3. Valve blocks: modeled as adjustable restrictions con-
trolled with a Boolean signal taking into account the fluid-
dynamic aspect and implementation delays (Fig. 5).

4. Pipe blocks: modeled from the fluid dynamics and heat
transfer point of view.

5. Cylinder block: the fluid-dynamic, mechanical, and ther-
mal parts of the cylinders are modeled. The latter takes
into account the velocity damping systems included in
the final section of the cylinder and the speed controller

valves outside the cylinder. This block also contains the
modeling of possible failure types: air leakage is mod-
eled as an adjustable restriction between the two cham-
bers or between the chambers and the outside, and the
state of the seal as a parameter that changes the friction
force of the plunger. These parameters can be set with
configurable constants prior to simulation. (Fig. 4).

After simulation, we read the simulated time series and com-
pare them against the readings of the measuring instruments
with the goal of obtaining the same results as the real system.
During the reading, the acquisition frequency of the real sys-
tem, the interaction with the cylinder’s limit sensors, and any
post-processing are taken into account.

In order to optimize the computing load and the amount of
data transmitted, we later do not to use the time series di-
rectly. Instead, we represent the operation of the system with
only a few particular values. For example, for each pneu-
matic cylinder, the actuation delay, the time of arrival, the
airflow at departure, the airflow at arrival, the maximum air-
flow, the amount of air absorbed during the movement, the
average pressure, and the minimum pressure are collected.

After the model is created, a calibration is performed using
the available data, and the values obtained are compared with
the actual values to check for a match.

To model wear damage, after an analysis of component fail-
ure modes (Nakutis & Kaškonas, 2008; Belforte, Raparelli, &
Mazza, 1992; J. Chen, Zio, Li, Zeng, & Bu, 2018), effective
parameters are identified to represent the state of the system.
In the analyzed use case, the possible leakage is character-
ized as three adjustable local restrictions (between the first
chamber and the environment, between the second chamber
and the environment, or between the chambers) while the seal
state is an adjustable friction coefficient.

Simulations are performed from an ideal operating state cor-
responding to the HI of 100% (the state of the part at the
time of system calibration, assumed to be healthy) to a fail-
ure state, corresponding to the HI of 0%. The law by which
the condition is calculated depends on the use that is made
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Figure 3. View of the physical model with macro blocks and the structure of major ones highlighted.

ChamberA

Solid_end

Chamber B

1
QA

2
QB

3
C

4
R

5
A

6
B

Speed_controller

A B

Speed_controller

A B

Simscape

variable_friction

R

Sealing status

C

ChABWallConv1
ChABWallConv2 Arrival_impact_controllerA

B

Pos

Pos_ref

Departure_impact_controller
A

B

Pos

Pos_ref

Figure 4. Detail view of one of the blocks modeling the behavior of pneumatic cylinders. It can be seen the variable restrictions
that model leakage and the customized block that models seal friction.

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 393



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

A1 A2 A3 A4

1
Ctrl

-1

K K K K

++ 1

A

B

3

4

1

2

P

T

Figure 5. Detail view of one of the blocks modeling the be-
havior of pneumatic valves.

of the monitored machine and the requirements that it must
have. For example, in the case of pneumatic cylinders, it is
calculated based on the change in movement time and energy
used.

3.2. Parameter perturbation in simulation model

To make the model effective under different operating con-
ditions, we run several simulations by varying the system
boundary conditions and the damage progression law. In the
logic of keeping the algorithm simple and applicable to differ-
ent types of models, each failure mode was treated indepen-
dently (thus each parameter modeling wear progresses at dif-
ferent rates but does not affect others). Of course, the effects
that these parameters have on the operation of the simulated
device sum up and affect the HI.

This process can be schematized in the following points (see
Fig. 6):

1. Preparation: The model is calibrated from the condi-
tions measured in the real system. Then it is determined
what is the critical value of each of the parameters that
represent the damage (the value that alone would bring
the part HI to 0) through a series of simulations in which
the main operating parameters are varied (see Fig. 7) and
from which matrices of critical values are obtained.

2. Generation of the modeled system: At this stage, the
system’s own characteristics, those that are not expected
to change over time are determined. These parameters
are the damage progression laws for each component and
each failure mode, and also additional static parameters
such as the position of the control valves. Every damage
progression is determined by a quadratic law defined as
follows:

l < P 

START

Preparation 

 Set P (Number of 
modeled system)
i = 0

Generation of the lth
modelled system

Determining the increment
 of cycles per iteration

Preparation of iterations

Run model

Failure detected ?

Update cylces and times,
increment damage

Post processing

END

yes

yes

no

no

l++

Figure 6. The flowchart of the script running the simulations

{
(n < nf ) : Kdi,j(n) = n2 · (2−4·nli)

n2
f

+ n · 4·nli−1
nf

(n ≥ nf ) : Kdi,j(n) =
2nf (2nli−1)−x(4nli−3)

nf

(1)
model whereKdi,j is the damage progression coefficient
for the failure mode i of the device j, n is the number of
cycles made by the device, nli ∈ [0.25, 0.7] is the non-
linearity index, nf is the number of cycle that, would
bring the part to failure. The law is formulated to be al-
ways increasing while being parabolic up to the nf value,
and then proceeds linearly. The damage progression co-
efficient multiplied by the critical damage values deter-
mines the value of the corresponding failure parameter.

3. Determining the increment of cycles per iteration: For
each model defined in the previous step, a series of sim-
ulations must be run in which the number of cycles per-
formed by the machine increases progressively so as to
increase the various damage parameters. The simulations
must proceed until the HI of at least one of the parts drops
to 0. To keep the computation time acceptable, it was
decided that only one cycle is actually modeled in each
simulation while the cycle counter and time are recalcu-
lated using these formulas:

nk = nk−1 +min (nf,i,j) /N (2)

tk = tk−1 +min (nf,i,j) · tn (3)
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Figure 7. The figure shows the critical matrices for a pneumatic cylinder. The matrices represent the critical value of various
damage parameters (friction reduction, friction increase, leakage between chambers, leakage between the second chamber and
the environment) as a function of supply pressure and speed control valve adjustment. It can be seen that the critical friction is
greatly influenced by pressure while the critical value of leakage is more influenced by valve adjustment.

Where, nk in the number of cycles made by the device
in the iteration k, nf,i,j is the cycles to fail for the fail-
ure mode i of the device j, N is the desired number of
iterations, tk is the virtual time in which the simulation k
takes place, and tn is the number of cycles performed in
the unit of time.
This reduces the computational time by simulating only
a number of cycles equal to about N , which are equally
spaced. In practice, the number of simulations may vary
in relation to N , as the overlapping effects of increasing
different damage parameters may dampen or accentuate
their impact on the part condition.

4. Preparation of iteration: Before each simulation, some
parameters that may vary during the lifetime of the part,
such as environmental parameters, are randomly calcu-
lated. Specifically, in the presented use case, the pressure
of the air supply system, the ambient pressure, the am-
bient temperature, the sampling start time, the pressure
drop of the supply system, and the friction coefficient of
the sealing of each cylinder are varied.

5. Run to failure: For each iteration first the damage pa-
rameters are calculated using the equation:

Pi,j,k = Kdi,j,k (nk) · Pcrit,i,j (4)

wherePi,j,k is the damage parameter for the failure mode
i of the device j and the iteration k, Kdi,j,k (nk) is the
damage coefficient for the failure mode i of the device
j and the iteration k (see Eq. 1 and 2), Pcrit,i,j is the
critical parameter value for the failure mode i of the de-
vice j computed from the critical matrix crested in the
preparation phase.
After the computation of the damage parameters, the phys-
ical model is run, and finally, the HI of each part is cal-
culated. In case one of the parts has a HI equal to or less
than zero the iterative process is terminated otherwise the
next one is run.

6. Post-processing: At the end of the iterations, the col-
lected data is saved and labeled with the RUL and the HI
(depending on the use case) related to the corresponding
iteration.

4. DATA ANALYSIS AND PREDICTION MODEL PERFOR-
MANCE

In the conducted studies we assume that labelled data from
the target domain (physical system) is available, which cate-
gorizes the proposed method as a supervised DA solution (Motiian,
Piccirilli, Adjeroh, & Doretto, 2017). In fact, as soon as the
generated R2F data from the simulation and the labelled as-
set sensor readings are available, the acquired data can be
used to train a prediction model. In addition, gradient boosted
trees (T. Chen & Guestrin, 2016) have been used to estimate
the health status of the physical system, defined as HI or RUL,
given the sensor readings from it. For evaluating the per-
formance boost from PDP, two separate regression models
(XGBR) with the same complexity will be trained using the
following datasets:

• Limited annotated data (10% of the available data) from
the physical system (the model trained with this dataset
is referred to as XGBR1)

• Limited annotated data (10% of the available data) from
the physical system and the R2F from the simulation
model by employing PDP (the model trained with this
dataset is referred to as XGBR2)

4.1. Use cases and experiments

In this industrial project, two different systems, from SMC
Schweiz AG1 and TCI engineering2, are tested as use cases
to inspect the scalability of the proposed method. The for-
mer, is a pneumatic pick and place demonstrator which can
be used to mimic different failure types given various work-
ing conditions (e.g., by changes in the main pressure of the
compressed air). For this use case, the deployed model is
used to predict the RUL of the system as degradation in the
physical system does not cause any significant financial loss.
In fact, this demonstrator is used to create real R2F data for
testing the accuracy of the RUL predictions.

The latter; however, is used in a production line owned by

1https://www.smc.eu/de-ch
2https://www.tci-sa.ch/en/
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a third-party company and thus no failures can be artificially
built during production. For this use case only the HI of the
system is predicted as no failure samples are available from
the physical system. As shown later, given the changes in
the working conditions, the customer’s needs and minor in-
spections, there are numerous fluctuations in the HI values,
resulting them not to be monotonic.

In what follows, the results of model performance compari-
son for predicting the RUL and HI is provided in detail. How-
ever, the similar results of feature importance distribution for
RUL and HI predictions, subsection 4.3, and the robustness
to the noise, subsection 4.5, are not included in order to con-
serve space. Nonetheless, this omission does not diminish the
completeness of this paper in any manner.

4.2. Model accuracy for predicting the HI

The XGBR1 and XGBR2 prediction models are tested on
the data attained from the physical system which were not
previously exposed to them during model training. These
model have the R2 scores of 0.676 and 0.853 respectively,
which indicates the superiority of the model trained with sim-
ulation data. Moreover, for ensuring that sample selection
does not impact the accuracy comparison between XGBR1
and XGBR2, these accuracy values are calculate as the mean
of accuracy given different seeds for sampling data from the
physical system.

In addition, Fig. 8 demonstrates the progression of the HI of
the physical system during approximately 3 months. Given
the fact that, the data acquisition from the physical system did
not start right after a maintenance, there is no reference asset
behavior which represent a fully healthy behavior. Therefore,
the calculated HI values are equally biased to start from a
value which is as close to 1 as possible. In addition, as stated
in subsection 4.1, numerous internal and external factors con-
stantly impact the physical system during production, which
prevents a monotonic HI sequence.

4.3. Feature importance distribution

The trained XGBRs can provide insight about the importance
of different sensor readings from the system. In fact, impor-
tance values indicate how influential one feature is in deter-
mining the output of the prediction model. Considering that,
data reading from industrial assets is not always perfect, it
can be expected that there are scenarios where the attained
data from an asset contains noise, has missing values or in an
extreme case the installed sensor does not provide any data.
In such situations, it is vital to determine the role of different
sensor readings and also try to train models which use a wider
range of sensor readings from the physical system. By doing
so, erroneous predictions from the model are prevented, re-
sulting in enhanced model reliability.

Figure 8. Asset HI along with XGBR1 and XGBR2 predic-
tions

On a separate note, by comparing the significance of different
asset readings, it is also possible to verify if the trained pre-
diction model has converged to a PdM solution or is merely a
preventive maintenance model relying on the cycle number.

As it can be seen in figures 9 and 10, given the sparsity of
data from the physical model, the XGBR trained only using
the data from the physical system has a highly unbalanced
feature importance across different readings of the studied
asset. Therefore, from a model reliability point of view, the
simulation model can significantly enhance the performance
of the model. Please note that for sake of anonymity and
data protection for the involved industrial partner in the con-
ducted studies, hashed sensor reading names are provided in
the aforementioned figures.

4.4. Model comparison for predicting the RUL

The XGBR1 and XGBR2 trained for the SMC Schweiz AG
demonstrator have fairly similarR2 scores of 0.980 and 0.917
respectively. The higher accuracy in predicting the RUL is
partially attributed to fact that the controlled laboratory setup
allows us to control all the boundary conditions. Whereas in
the shopfloor, the system is influenced by numerous factors
that cannot be controlled or predicted, e.g., a drop in pres-
sure or regulation intervention. Additionally, it is also due
to the fact that the induced failure in the system is a result
of (semi-)linear opening of the valves in the demonstrator for
mimicking leakage in various parts of the system. Nonethe-
less, as discussed in subsection 4.3, the XGBR1 model puts
more emphasis on the information about the cycle count and
ignores the information from the rest of the available sensor
readings making it a less desirable solution given PdM re-
quirements, especially in case that a faster failure than the
ones seen before during model training occurs in the system.
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Figure 9. Feature importance among different asset sensor readings for XGBR1 model. This model relies on a limited number
of sensor readings from the system

Figure 10. Feature importance among different asset sensor readings for XGBR2 model. This model has a more spread-out
feature importance across different sensor readings of the system
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Figure 11. Impact of asset reading noise on the accuracy of
the trained prediction models

4.5. Robustness to asset sensor reading noise

In this part of the conducted studies, the impact of noise on
the most decisive asset readings on the accuracy of the XGBR1
and XGBR2 for the TCI engineering case are examined. For
manipulating the asset sensor readings, 8 of the most influen-
tial features given the values in figures 9 and 10 are selected.
Thereafter, samples of each of these features (xi ∈ X) are
distorted as follows:

xinew = xi+Max{xj}|X|
j=1×noise level×d ∼ N(0, 1) (5)

where |X| is the total number of feature readings, noise level
is scalar value (see Fig 11) and d is a sampled value from
N(0, 1) which represents normal distribution with mean of
0 and standard deviation of 1. Fig 11 shows the impact of
noise on the R2 score of the predictors. As it can be seen,
regardless of the added noise value, the performance of the
model trained with the additional simulation data is superior
which suggest the robustness of the trained model compared
to the prediction model trained only with scarce data from the
physical system.

5. DISCUSSION AND CONCLUSION

Gathering annotated data from a physical system for devel-
oping PdM solutions is one of the most time-consuming and
expensive steps which inhibits many end users in industry for
utilizing the full potential of their production assets. In the
conducted studies, we aimed to introduce a novel approach
for RUL and HI prediction model training which uses data
generated from a simulation model and a minimal set of sam-
ples from the physical system as apposed to complete R2F
datasets from the asset. We aimed to highlight the impor-
tance of simulation data generation with PDP for covering as
much as of the parameter space of an asset for enhancing the
performance of the prediction model despite the scarcity of

asset readings. It was shown how the proposed method, in
the best case scenario, increases the R2 score of the trained
model by 26% while simultaneously using a wider range of
sensor readings from the physical system. Furthermore, the
results of model performance deterioration in presence of as-
set reading noise demonstrated that, regardless of the added
noise to the readings, the R2 score of the model trained with
the additional simulation model data is higher. For the future
work, we aim to develop classifiers for different working con-
ditions of an asset and then find the corresponding regions of
the data generated from the simulation model for a more fine-
tuned data generation. In addition, we aim to inspect the per-
formance of the prediction model in different regions of the
parameter space and generate data from the simulation model
which explicitly can boost the performance of the model in
the chosen region of the parameter space.
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ABSTRACT 

Dynamic models of gears are recognized for offering a 
promising platform for gaining a profound understanding of 
the dynamic response, particularly the vibration signature. 
Wear is considered among the most common and concerning 
fault mechanisms in gears, yet its recognition and subsequent 
diagnosis remain challenging. In this study, we introduce an 
existing dynamic model of spur gear vibrations and extend its 
validation for distributed wear-like faults. The novelty of this 
work lies in addressing the complexities associated with 
modeling distributed faults using simplified yet sophisticated 
approaches. These involve variance among defected teeth, 
calculation of time-variant gear mesh stiffness, and 
consideration of the forces induced by the fault. The model is 
validated through pioneering controlled experiments, 
analyzing dozens of degrading distributed wear-like faults. 
This comparison verifies our capability to generate realistic 
simulations of vibration signals from worn gears. To bridge 
the discrepancy between the induced and simulated faults, the 
model first constructs the healthy profile of the inspected 
gear, incorporating manufacturing errors and tooth 
modifications. Subsequently, meticulous photography 
enables the replication of faults in the model with a high 
resemblance to the experiment. The results demonstrate a 
strong correlation between measured and simulated signals, 
as verified through trend analysis of features extracted from 
synchronous average signals in both the cycle and order 
domains. This study lays the groundwork for in-depth 
investigation into the physics of gear wear, paving the way 
for potential applications such as fault severity estimation and 
intelligent fault diagnosis in future studies. 

1. INTRODUCTION 

Predictive maintenance of gear wear is crucial, considering 
gears’ pivotal role in rotating machinery and their constant 
susceptibility to failure due to operation in harsh regimes. 
Gear fault types can be broadly classified into localized faults 
such as breakage and cracks, and distributed faults such as 
abrasive wear and fatigue pitting. Abrasive wear, caused by 
oil contamination and sliding motion, leads to continuous 
destruction of the tooth surface, posing a viable risk of 
catastrophic failure due to reduced gear efficiency and high 
stress concentrations. Nevertheless, Feng, Ji, Ni, and Beer 
(2023) reviewed the latest developments in gear wear 
monitoring and demonstrated that diagnosing gear wear 
through vibration analysis is still challenging due to the 
intricate patterns manifested in the signature that remain 
unresolved. Physical models, such as tribological models 
(Archard, 1953) and dynamic models (Liang, Zuo, and Feng, 
2018; Mohammed & Rantatalo, 2020), have been suggested 
over the years in order to bridge this gap. 

Most of the published dynamic models of gear wear typically 
analyze the effects of wear on the time variant gear mesh 
stiffness (gms). Liu, Yang, and Zhang (2016) utilize a spur 
gear model to study the changes in the gms and transmission 
error due to wear, as well as the wear expression in the 
vibrations. Brethee, Zhen, Gu, and Ball (2017) introduce a 
helical gear model, validated through endurance tests, and 
analyze both the gms and the increase in frictional excitation 
with wear. Many other studies (Chen, Lei, and Hou, 2021; 
Cui et al., 2023; Ren & Yuan, 2022; Shen et al., 2020), 
incorporate Archard’s tribological model in the dynamic 
model to calculate the worn surface, demonstrating the effect 
of wear on the dynamic characteristics. However, most of 
these models lack experimental validation, and in general, the 
coefficients in Archard’s equation are largely unknown, 
making their evaluation in the models nontrivial. 

In this work, we introduce a novel approach for modeling 
distributed wear-like faults in spur gears, validated through 
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experimentation. By leveraging simplifying assumptions, 
this modeling approach effectively captures the dynamic 
response of worn gears, while also facilitating its adaptation 
by other scholars in their models. In Section 2, we introduce 
the framework of the existing dynamic model, establishing 
the groundwork for this study. Section 3 delves into the 
simplified wear modeling approach, while Section 4 presents 
the experimental setup. Model validation is detailed in 
Section 5, accomplished through vibration analysis of the 
synchronous average signals and their spectrum. Finally, 
Section 6 concludes this work, providing insights and 
suggesting potential directions for future research. 

2. DYNAMIC MODEL 

This study adopts the dynamic model for spur gears proposed 
by Dadon, Koren, Klein, and Bortman (2018), which has 
been experimentally validated for healthy gears and various 
localized faults, serving as the foundation for this study. The 
simulated system has an open gearbox with torsional shafts 
connecting the driving pinion to a motor and the driven gear 
to a brake applying external torque, as illustrated in Figure 1. 
The vector of generalized coordinates (u) consists of 13 
degrees of freedom: six for each wheel, representing linear 
displacement (xi,yi,zi) and angular position (θi,φi,ψi) in space 
(where i=p,g), and another for the brake’s angle (θb). Figure 
2 presents a block diagram illustrating the model's stages. The 
vibration signal is generated by solving the Euler-Lagrange 
equations of motion, as described in Eq1. 

 Mü + Cu̇ + K(u) ∙ u = F(t, u) (1) 

Here, M, C, K , and F  are the mass, damping, and stiffness 
matrices, and the excitation force vector, respectively. The 
non-linearity in K(u) arises from the time-variant gear mesh 
stiffness (gms), computed using the potential energy method. 
The model is configured with parameters such as gear 
module, number of teeth, tooth width, and surface quality, 
alongside operational conditions like input speed and load. In 
contrast to many published models, where the gms is the sole 
non-linear component, this model introduces non-linearity in 
the excitation force vector. It incorporates deviations from the 
involute profile, such as surface roughness and faults, as 
displacement inputs along the Line of Action (LoA), which 
are subsequently transformed into forces by appropriately 
multiplying them with the gms. Thus, the excitation force 
consists of three components overall: the motor torque, the 
brake torque, and the force induced by displacements along 
the LoA, as shown in Eq. 2. 

 F = kθpθm ∙ θ̂p + Tb ∙ θ̂b + gms ∙ δ ∙ c̅ (2) 

Here, kθp  is the input shaft torsional stiffness, θm  is the 
motor’s angle, Tb is the brake’s torque, δ is the displacement 
along the LoA, and c̅ is a vector of geometric coefficients 
projecting this force onto u. θ̂p  and θ̂b  are unit vectors 
pointing to θp, θb, respectively. 

 
Figure 1. The simulated system (Dadon et al., 2018). 

 

 
Figure 2. A schematic block diagram of the dynamic model. 

3. GEAR WEAR MODELING 

Any model development is grounded in premises that aim to 
balance the tradeoff between simplicity and reality 
(Mohammed & Rantatalo, 2020). We make the following 
assumptions that simplify our ability to simulate gear wear: 

Assumption I: The worn profile is linear (or piecewise linear) 
and uniform along the tooth width, as illustrated in Figure 3. 
Assumption II: The nominal parameters of the worn profile 
vary slightly among teeth. 

Assumption III: The worn profile influences the cross-section 
properties of the tooth, thereby impacting the potential strain 
energy and, consequently, the gms. 

Assumption IV: Contact properties such as contact ratio, 
pressure angle, and initial contact point remain unchanged. 
However, any deviation from the nominal LoA is treated as a 
displacement input in the excitation force. 

It is crucial to acknowledge the limitations of these 
assumptions, as the gear wear mechanism is more complex, 
involving details not covered by these simplifications, such 
as sliding motion and improper contact. Nonetheless, these 
simplifications establish a foundation for comprehending the 
general wear behavior. The following subsections explore the 
effects of wear on the gms and the excitation force. 
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Figure 3. The simulated worn profile. 

3.1. Effects of Wear on the Gear Mesh Stiffness 

The computation of the gms commonly involves two steps, 
both are affected by wear. The first step employs the potential 
strain energy method for calculating the equivalent stiffness 
of a meshing tooth pair from engagement to separation. In 
this case, the influence of wear is self-evident, as tooth 
geometry is changed, and potential strain energy is derived 
from integration with respect to volume. The second step 
involves combining the equivalent stiffness of all tooth pairs 
based on the contact ratio governing the transition from a 
single pair to a double pair. In a healthy state, the equivalent 
stiffness can be computed once and then replicated and 
concatenated to form the cyclic gms. This procedure stays 
largely similar in case of localized faults, except for swapping 
the equivalent stiffness of one healthy pair with that of the 
defected pair. However, with distributed wear faults, where 
the worn profile varies among teeth, the equivalent stiffness 
is calculated individually for each tooth pair, and then 
meticulously combined, as depicted in Figure 4. 

 
Figure 4. Construction of the gms signal in case of a healthy 

status, localized fault, and distributed fault. 

3.2. Effects of Wear on the Excitation Force 

One of the non-trivial assumptions made is that contact 
properties remain wear-invariant. While this assumption may 
be controversial, it is not without basis when appropriately 
compensated. As explained previously, deviations from the 
LoA are treated as displacement inputs in the excitation 
forces. The computation of the fault displacement involves 
straightforward geometric manipulations according to Eq. 3, 
using parameters depicted in Figure 5. Given that the fault 
displacement is unique for each tooth, it is multiplied by the 
equivalent stiffness of its corresponding pair, and the 
resulting product is then combined using the same procedure 
as in the gms, as depicted in Figure 6. 

 δfault = (Yinvlt − Ydef) ∙
cos(γ)

cos( + γ)
 (3) 

 
Figure 5. An illustration of the fault displacement 

calculation and the required parameters. 

 
Figure 6. Generation of excitation force through fault 
displacement along the LoA, multiplied by the gms. 

4. EXPERIMENTAL SETUP 

We conducted an extensive controlled experiment for model 
validation, employing a dedicated test apparatus for spur 
gears. Vibration data were collected for both a healthy (H) 
status and 35 degrading wear cases (Wi), using piezoelectric 
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accelerometers, alongside rotational speed measured by 
tachometers, as depicted in Figure 7. Details regarding the 
experimental program and gearbox parameters can be found 
in Table 1. The degradation of a reference tooth throughout 
the experiment is showcased in Figure 8. This figure includes 
photographs illustrating three cases corresponding to the 
beginning, middle and the end of the experiment. 
Additionally, a heatmap depicts the contour of all wear cases, 
with the color gradient correlating with fault severity. 

 
Figure 7. The experimental setup employed for validation. 

 

 
Figure 8. Photographs and heatmap depicting the profile 

degradation of a reference tooth throughout the experiment. 

Table 1. Gearbox parameters and experimental program. 

Gearbox parameters 
Module 3mm 

Reduction ratio 35:18 
Precision grade DIN8 

Experimental program 
Input speed 15rps, 45rps 
Output Load 10Nm 

Sampling rate 50kS/s 
Signal duration 60s 
Health status H, {Wi}i=1

35  

5. MODEL VALIDATION 

The validation of the proposed wear modeling approach is 
empirical, relying on a qualitative comparison between 
simulation and experiment. This comparison involves 
analyzing trends in energy-based (such as rms) and shape-
based (such as kurtosis) features extracted from the 
synchronous average (SA) signal and the difference signal in 
the cycle domain, and the SA spectrum in the order domain 
(Matania, Bachar, Bechhoefer, and Bortman, 2024). For both 
simulated and measured data, the SA is computed after the 
raw vibration signal undergoes angular resampling based on 
the output shaft’s speed. It is essential to note that while the 
simulated signal is directly calculated at the wheels’ center, 
the measured signal is significantly influenced by the 
transmission path between the gearbox and the sensor. This 
influence results in expected differences in spectral behavior, 
such as attenuations and resonances (Bachar et al., 2021, 
2023). Consequently, experimental and simulated results are 
presented with left and right y-axes, with energy-based 
features normalized by the healthy (H) status according to Eq. 
4, ensuring comparability of general trends. 

 Fnorm =
|F − FH|

FH
 (4) 

5.1. SA Analysis in the Cycle Domain 

Figure 9 compares SA signals at 45rps in healthy status and 
for severe wear. Expected impulses appear in all the SAs. 
Both experiment and simulation show an amplified signal 
without sharp and rare impulsive responses due to wear, as 
expected. This observation highlights challenges in wear 
monitoring, as faulty signals may not emphasize the fault, 
creating a false impression of a healthy transmission. 

 
Figure 9. Comparison of SA signals between simulation 

(right) and experiment (left) at 45rps, in healthy (green) and 
severe wear (orange) statuses.  

Figure 10 analyzes trends in SA rms, difference rms, and 
difference kurtosis across fault severity. Experimental results 
are depicted with error bars representing the scattering in the 
feature values. The following insights can be derived from 
these results: 
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• There is a strong correlation between simulation and 
experiment in rms trends, particularly evident in difference 
rms, where rms increases monotonously with wear 
degradation. Moreover, the "wavy" trend is observable in 
both simulation and experiment, suggesting that this 
behavior may have a physical basis. 

• The higher speed (45rps) exhibits superior correlation 
between simulation and experiment. The purportedly 
weaker correlation at 15rps may be attributed more to the 
effects of speed and transmission path on the vibration 
signature (Bachar et al., 2021) rather than discrepancies. 

• Kurtosis values are generally low and remain relatively 
stable. Given that kurtosis emphasizes sharp, rare impulses, 
which distributed wear faults are not expected to, it might 
not be suitable for gear wear monitoring. This insight is 
evident both in simulation and experiment. 

• In most cases, discrepancies between simulation and 
experiment are more evident in more severe faults. 

 
Figure 10. Trend analysis of features extracted from the SA 

and difference signals across fault severity at 45rps (top 
row) and 15rps (bottom row). 

 

5.2. SA Analysis in the Order Domain 

A comparison of the SA spectra across fault severity is 
presented in the spectrograms in Figure 11. For clarity, the 
top row in each spectrogram, corresponding to the healthy 
status (H), is thicker and separated from the degrading wear 
cases by a line. High amplitudes at the gearmesh harmonics 
are observed in all spectra, as expected. Furthermore, across 
both speeds and for both simulation and experiment, the 
general behavior with respect to fault severity is similar; that 
is, the spectral energy mostly varies monotonously with 
health degradation. However, the optimal wear manifestation 
for fault detection and degradation monitoring varies across 

different frequency bands for each combination of data 
source and rotational speed, as expected. The differences in 
spectrum background are expected to lead to such 
discrepancies, but as long as they are acknowledged, focus 
can be placed on the similarities obtained between 
experiment and simulation. 

 
Figure 11. SA spectra across fault severity between 

experiment (left) and simulation (right) at 45rps (top) and 
15rps (bottom).  

Early research on gear monitoring (Randall, 1982) 
demonstrates the impact of distributed wear faults on gear 
mesh harmonics and modulation sidebands in the spectrum. 
To capture similar behaviors between simulation and 
experiment, we compute the gear mesh energy (gme) and 
modulation sideband energy (sbe) in the spectrum (X) 
according to Eq. 5-6 and compare their trends across fault 
severity, as depicted in Figure 12. 

 gme = ∑ |X(gm × n)|

 mma 

n=1

 (5) 

 sbe = ∑ ∑ |X(gm × n ± m)|

 m 2⁄

m=1

 mma 

n=1

 (6) 

Here, gmmax is the maximum number of gearmesh harmonics 
available within bandwidth. The following insights can be 
derived from the spectral analysis results: 

• There is a strong correlation between simulation and 
experiment in both gme and sbe trends, closely mirroring 
the energy-based feature analysis in the cycle domain in 
Figure 10.  

• Both spectral energies exhibit a monotonic variation with 
wear degradation, displaying the same "wavy" trend as 
discussed in the cycle domain analysis. 

The spectral analysis aligns with the feature analysis in the 
cycle domain, confirming the similarity between simulated 
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and measured signals. Despite relying on a set of non-trivial 
assumptions, the proposed simplified modeling approach 
successfully captures the general wear patterns in the 
simulated signal. Moreover, while features for monitoring 
localized faults focus mainly on signal shape and modulation 
sidebands, gear mesh energy is also crucial for diagnosing 
wear faults. This holds true in both simulation and 
experiment across different speeds. Discrepancies between 
simulation and experiment, stemming from the assumptions 
made, are more pronounced in severe wear faults, as expected 
due to the challenging assumption of invariant contact 
properties with wear. Nevertheless, the strong similarities 
between simulation and experiment validate the model's 
ability to generate a simulated vibration signal reflecting the 
fundamental characteristics of gear wear. 

 
Figure 12. Comparison of spectral analysis of the gme (left) 
and sbe (right) between simulation and experiment at 45rps 

(top row) and 15rps (bottom row). 
 

6. CONCLUSION 

Gear wear monitoring is crucial for predictive maintenance, 
yet identifying patterns in the vibration signature associated 
with wear remains challenging. This study aims to bridge this 
gap by introducing a novel, simplified approach for 
simulating distributed wear-like faults. We make a set of 
assumptions to investigate wear characteristics essential for 
health monitoring, incorporating wear faults into an existing 
framework of dynamic model for gear vibrations. We 
demonstrated the impact of wear on the non-linear gear mesh 
stiffness and the excitation force according to the proposed 
modeling. Extensive controlled experiments validate our 
approach, comparing experimental and simulated results 

across different speeds and fault severities. A visual 
examination of the synchronous average signal and its 
spectrum across fault severity confirms that the proposed 
wear modeling closely resembles the experimental results, 
yielding similar insights. In-depth trend analyses of features 
in both cycle and order domains reveal crucial insights into 
the intricacies of wear monitoring, capturing "wavy" trends 
as the fault deteriorates. This underscores the importance of 
analyzing energy-based features, such as gear mesh energy 
and sideband energy, rather than shape-based features, for 
monitoring distributed wear faults. The strong correlation 
between experimental and simulated results confirms the 
feasibility of our approach, suggesting it as a simple yet 
effective enhancement for simulating wear faults in any 
standard dynamic gear model. Our study opens avenues for 
practical applications, including refining the simplified 
model for real-system applications and developing novel 
methods for wear prediction in future work. 
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ABSTRACT

When analyzing vibration and sound signals from rotating
machinery, accurately tracking individual orders is crucial
for diagnostic and prognostic objectives. These orders cor-
respond to sinusoidal components, also known as determinis-
tic signals, whose amplitude and phase are modulated in re-
sponse to the angular speed of the machine. The extraction of
these components leads to a more comprehensive approach
to differential diagnostics. When the machine operates un-
der varying conditions, consistently tracking the orders be-
comes challenging, particularly in nonstationary regimes with
very fast variations. Typically, this issue is addressed us-
ing common techniques such as Vold-Kalman filter (VKF),
where the bandwidth of the selective filter is adjusted to han-
dle the speed variations. However, in the presence of high-
speed fluctuations, manual adjustment of these weights be-
comes difficult to balance the compromise between achiev-
ing accurate tracking by effectively filtering around the speed
variations, and maintaining a low estimation bias by reduc-
ing noisy errors. To overcome this constraint, the proposed
methodology is driven by the need to integrate speed fluc-
tuations into an optimal solution using VKF. This adapta-

Fadi Karkafi et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

tion involves the consideration of angular acceleration pro-
files within the innovation process. In this context, the band-
widths are automatically adjusted to their optimal values ac-
cording to the machine’s regime. Optimality is achieved by
crafting a model dependent on the order signal-to-noise ratio
(SNR) and the auto-regression coefficient. This optimization
allows for a practical adjustment tailored to the distinctive
characteristics of each order. A comprehensive analysis of the
resulting model transfer function reveals crucial insights into
the impact of the given order SNR and the speed fluctuations.
Subsequently, the methodology undergoes performance as-
sessment through simulations and synthetic cases, showcas-
ing its viability and effectiveness across various regimes. No-
tably, its practical application is highlighted in envelope-based
bearing diagnosis, during operations characterized by variable-
speed conditions, thus underlining its promise in real-world
applications.

1. INTRODUCTION

In mechanical systems, gears and rolling-element bearings
play vital roles in power transmission, necessitating reliable
operation (Randall & Antoni, 2011). Vibration and acoustic
signals emitted by these mechanical pieces (Braun, 1986) ex-
hibit distinct cyclostationary (CS) behavior (Antoni, 2009).
Gears generate first-order cyclostationary (CS1) components
with a periodic mean, forming a harmonic spectrum corre-
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sponding to their fundamental period. Rolling-element bear-
ings, on the other hand, exhibit second-order cyclostationary
(CS2) components marked by periodic autocovariance and an
instantaneous envelope. These distinctions are crucial for dif-
ferential diagnosis (Antoni & Randall, 2002), providing in-
sights into overall system health. In stationary conditions,
Fourier analysis simplifies the identification of CS1 compo-
nents, which are characterized by their corresponding ampli-
tude and phase. This facilitated the rise of order tracking,
enabling the extraction of these characteristic components.
These orders correspond to sinusoidal signals, also termed
deterministic components, wherein its amplitude and phase
modulations are influenced by the machine angular speed with
respect to a reference angle. Subtracting the tracked ones
reveals residual random aspects, including the CS2 environ-
ment, offering a comprehensive diagnostic perspective.

However, as mechanical systems venture into varying nonsta-
tionary regimes, the complexity deepens. These distortions
are mainly introduced by the change of the machine power in-
take and the effect of transmission from the excitation source
to the sensor. Even with the application of angular resampling
to address frequency modulations stemming from nonstation-
arity (McFadden, 1989; Bonnardot et al., 2005; Borghesani et
al., 2012), the Fourier coefficients representing an order in the
spectrum lose their pristine sparsity. This degradation arises
from the dynamic evolution of the envelope and is highly em-
phasized in the presence of high speed fluctuations.

An essential technique in navigating this complexity is the
Vold-Kalman filter (VKF) (Vold et al., 1997). Proposed by
Vold and Leuridan, VKF has been a cornerstone in the esti-
mation of individual order components instantaneous ampli-
tude and phase. This selective filtering is adapted by adjusting
its bandwidth correspondingly to handle nonstationary condi-
tions for each order (M.-C. Pan & Wu, 2007b). Further ad-
vancements have led to schemes that simultaneously estimate
multiple orders, such as the angular-displacement (AD) (M.-
C. Pan & Wu, 2007a) and angular-velocity (AV) (M. Pan et
al., 2016) VKF. Considering other notable methods, the Slid-
ing Window Tracking (SWT) (Pai & Palazotto, 2009) tech-
nique was introduced to track the varying instantaneous am-
plitude of a noise-contaminated signal with a moving aver-
age. It employs a constant and a pair of windowed regular
harmonics to fit the data, providing implicit noise filtering ca-
pabilities. Recently, the so-called local synchronous fitting
(LSF) has been proposed (Abboud et al., 2022). It was intro-
duced as an enhancement to the global one (GSF) (Daher et
al., 2010) in the sense that it estimates a cyclic-nonstationary
(CNS) mean, but through a local polynomial fit, using the
well-known Savitsky-Golay filter (Savitzky & Golay, 1964).
The properties of the filter was also discussed in (Abboud
et al., 2019). Interested readers can refer to (Randall et al.,
2011) for a comparison among more relevant separation tech-
niques.

While SWT, LSF and VKF are highly accurate in terms of en-
velope estimation, their limitations become pronounced when
mechanical systems transition into fast nonstationary varia-
tions. On the one hand, even though SWT attempts to ad-
dress nonstationary behavior, it assumes a fixed sliding win-
dow length, which is not optimal for handling high speed
fluctuations. On the other hand, LSF suffers from the esti-
mation of the Fourier coefficient from the centered signal by
applying a linear angle-invariant convolution. In fact, from
a signal point of view, this operation aims at estimating the
mean (trend) of a non-stationary time series. While the clas-
sical low-pass filtering is efficient when the noise is (angle-
stationary), it can be highly compromised in the case of non-
stationary noise, in particular when the noise is impulsive. Fi-
nally, while the VKF’s bandwidth can be customized to han-
dle nonstationary speed variations, the compromise between
accurate tracking and maintaining low estimation bias is em-
phasized. In addition, within high speed variations, manually
adapting the filter nonstationary parameters may pose chal-
lenges in achieving optimized solutions leading to unbalance
this compromise. Other variants and extended versions of
the filter considered tracking the components of interest by
maximizing the kurtosis (Dion et al., 2013) and tuning the
bandwidth accordingly (Feng et al., 2022) to take into account
the high amplitude fluctuation. The high-speed environment
necessitates a methodology that explicitly incorporates speed
fluctuations into its definition. Consequently, rather than ad-
justing the filter bandwidth parameters to meet predefined ob-
jectives, an optimal approach involves integrating speed fluc-
tuations directly into the model.

Therefore, the paper aims to present a novel VKF optimized
solution where the innovation process is directly affected by
the speed fluctuations, thus the bandwidth is automatically
adapted, yielding stationary hyper-parameters to be tuned:
the order signal-to-noise ratio (SNR) and the auto-regression
coefficient. Section 2 states the problem with a particular
attention to formulating the transmission path effect from a
CNS view, followed by a detailed exposition of the method-
ology in Section 3. Sections 4 and 5 validate the effectiveness
of the proposed solution on numerical and experimental sig-
nals. In light of the obtained results, the paper is sealed with
a general conclusion in Section 6.

2. PROBLEM STATEMENT

This section introduces the basic model that will serve to de-
fine the solution, which consists of Fourier series whose com-
plex exponentials are function of the variable angle, θ, being
a reference angle in the machine, and the coefficients are only
dependent on the speed ω = dθ

dt , with the load effect omitted.
Practically, when vibration and acoustic responses are mea-
sured from rotating and reciprocating machinery, the effects
of flow noise, turbulence, and transient events are captured,
in addition to the sum of rotational dynamics x(t), such that
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the total measured signal y(t) is:

y(t) = x(t) + ν(t), (1)

where ν(t) is causal and uncorrelated with x(t) such that it
doesn’t affect its generation or behavior. A temporal repre-
sentation of a rotating machine’s excitation is defined as

x(t) =
∑

k

ak(t)e
j2παkθ(t)+Φk , (2)

where the harmonic cyclic order αk = k
Θ such that Θ stands

for the angular period of the rotating component of refer-
ence, θ(t) is the angular position of the reference expressed
in [rad] and ak and Φk are respectively the slowly varying
complex envelopes and phases. In the particular case of con-
stant operating speed (i.e. θ(t) = ω0t), ak(t) become essen-
tially constant over time, representing the Fourier coefficients
in the harmonic series. In such scenario, the synchronous
average (SA) is one of the most used tools to extract such
components (Braun, 1975; McFadden, 1987), with minimum
disruption in the residual signal (Randall et al., 2011). The
SA simply consists in slicing the signal (often after an angu-
lar resampling step) into cycles equal to the rotation period
of the mechanical piece of interest and performing an em-
pirical average to reject (or reduce) non-synchronous com-
ponents including noise and interfering components. How-
ever, in the case of speed varying excitation, the complex
envelopes ak(t) become slowly varying and principally de-
pendent on the operating speed and its fluctuations (Abboud
et al., 2016). Despite mild conditions under which higher
derivative orders can be neglected, high-speed fluctuations
still induce non-stationary behavior in the envelope, poten-
tially leading to inaccurate estimations for each given order.
Therefore, the study focuses on the first derivative order to
showcase the impact of speed fluctuations on the determinis-
tic component evolution, given by:

x(t) =
∑

k

ak(ω(t))e
j2παkθ(t)+Φk . (3)

3. PROPOSED METHODOLOGY

The mechanical vibration nature specifies that the envelope
functions should be smooth and slowly varying over time.
One way of specifying this, is to demand that a repeated dif-
ference should be small, which satisfies the following VKF
equation in stationary mode,

∂qak(t)

∂tq
= εk(t), (4)

where q is the derivative order and εk is a process of uncer-
tainties that degrades the envelope. During this study and for
simplicity, an order q = 1 will be elaborated. This leads to
the fact that, in stationary regime, the envelope will tend to be
constant with stationary uncertainties. However, this model

turns out to be more sophisticated in the case where ω(t) is
varying with respect to time because the uncertainties also
become nonstationary. This can be formulated as follows:

∂ak(ω)

∂ω
= εk(ω). (5)

With the angular velocity varying over time, the application
of the chain rule leads to the formulation:

∂ak(ω(t))

∂t
= ω̇(t)εk(ω(t)). (6)

Given the existence of multiple regime scenarios, it is essen-
tial to consider both stationary and nonstationary modes, al-
lowing for a generalized modeling approach. This results in
envelope uncertainties attributed to

∂ak(ω(t))

∂t
= (1 + λω̇(t))εk(ω(t)), (7)

where λ serves as a weighting coefficient. To optimize the
model based on diverse domain processes derived from (1)
and (7), a discrete-time realization is established. The main
processes are expressed as follows:

{
yk[n] = ak[n]e

jαkθ[n] + ν[n]

ak[n]− βkak[n− 1] = (1 + λω̇[n])εk[n]
(8)

where yk[n] represents the raw noisy component correspond-
ing to the kth harmonic and βk is the auto-regression coeffi-
cient whose value is close to 1. In the following, both ν[n]
and εk[n] are supposed to follow complex Gaussian normal
distributions with respective variance σ2

ν and σ2
εk

: ν[n] ˜
CN(0, σ2

ν) and εk[n] ˜ CN(0, σ2
εk
). Since ω̇[n] and εk[n]

are independent, one can deduce that their product variance
is equal to (1+λω̇[n])2×σ2

εk
. Thus, the definition of the two

processes:

P1 : Yk −AkEk = V, (9)

where Yk, Ek and V are expressed as follows:

Yk =




...
yk[n]

...


 ,Ek =




. . .
ejαkθ[n]

. . .


 ,V =




...
ν[n]

...


 .

P2 : DkAk = Ψξk, (10)

such that Ak and the sparse matrix Dk are expressed as

Ak =




...
ak[n]

...


 , Dk =




1 0 0 . . . 0
−βk 1 0 0 0
0 −βk 1 0 0
... 0

. . . . . . 0
0 0 0 −βk 1



,
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along with Ψ and ξk expressed as:

Ψ =




...
1 + λω̇[n]

...


 , ξk =




...
εk[n]

...


 .

3.1. A Posterior Estimate of the Envelope

With regards to the envelope’s dependencies, one can explic-
itly describe its likelihood and prior distribution. As a result,
the a posterior estimation of Ak can be defined by the Maxi-
mum a posteriori estimate (MAP):

Âk = Argmax(P (Ak|Yk))

∝ Argmax(P (Yk|Ak)P (Ak)).
(11)

After setting Γk = DkAk to simplify the process formu-
lation, the Bayes Theorem can be applied to P2 in order to
compute P (Ak) as follows:

P (Ak) =

∫
P (Ak,Γk)dΓk. (12)

One can deduce from Eqs (10) and (12) that

P (Ak) = P (Γk)|Dk|, (13)

To initiate the MAP estimate, the likelihood conditional prob-
ability P (Yk|Ak) and the prior one P (Ak) can be expressed
accordingly:

P (Yk|Ak) =
1

πσ2N
ν

e
− ∥Yk−EkAk∥2

σ2
ν , (14)

P (Ak) =
1

πσ2N
εk

Ω
e
− ∥AT

k DT
k Ω−1AkDk∥

σ2
εk |Dk|, (15)

where [Ω]ij = δijΨ[i]2 and δij is the Kronecker delta. Plug-
ging Eqs (14) and (15) into Eq (11) result minimizing an ob-
jective function J(Ak) represented by:

J(Ak) ≈
∥Yk −EkAk∥2

σ2
ν

+AT
kD

T
k

Ω−1

σ2
εk

DkAk (16)

such that MT represents the transpose of M. In order to
find the minimum, the derivative of J(Ak) with respect to
the variable of interest Ak is set to 0: ∂J(Ak)

∂Ak
= 0. As a

result, the estimated Âk can be computed as

Âk =

(
I+

σ2
ν

σ2
εk

DT
kΩ

−1Dk

)−1

EH
k Yk (17)

such that EH
k is the conjugate of Ek and I is the identity

matrix. It can be identified from the resulted model that, Âk

depends on the constant ratio ρk =
σ2
ν

σ2
εk

which is none other

than the inverse SNR of the kth harmonic.

3.2. Filter Frequency Response Function

In order to interpret the model frequency response function
(FRF), a simple scheme is considered in Fig. 1 such that the
objective is to find |Hk(f)|2 that would result in Ak(f) from
Yk(f). In order to define |Hk(f)|2, the speed ω(t) is assumed

Figure 1. Scheme illustrating the transfer function Hk(f)
processing input Yk(f) to produce output Ak(f).

to be constant or slowly varying, ensuring fixed frequency and
allowing the FRF to make sense for each frequency, which
results in ω̇[n] ≈ 0. In addition, it is noteworthy that, as
the filter automatically adapts to speed fluctuations, its sta-
tionary parameters remain valid regardless of the operating
regime. Consequently, the FRF will be analyzed primarily
under stationary conditions, ensuring correct parameters es-
timation. Recalling the processes described in Eq. (8), its
respective power spectral densities would take the following
form:

SYk
(f) = E|Yk(f)|2 = E|Ak(f)|2 + E|V (f)|2, (18)

SAk
(f) = E|Ak(f)|2 =

E|ξk(f)|2
|1− βke−j2πf |2 . (19)

Knowing that E|V (f)|2 = σ2
ν and E|ξ(f)|2 = σ2

ε , SHk
can

be computed as follows:

SHk
(f) =

SAk
(f)

SYk
(f)

=
1

1 + ρk|1− βke−j2πf |2 . (20)

Based on Eq. (20), it seems to behave like a low pass filter.
For a comprehensive understanding, it is crucial to investigate
the parameters of the FRF and the frequencies associated with
typical filters. In this analysis, the following parameters are
defined in the logarithmic:





ln(|H(0)|2) = −µ0

ln(|H(fp)|2) = −µp

ln(|H(fs)|2) = −µs

(21)

such that

1. fp: The passband frequency.

2. fs: The stopband frequency.

3. −µ0: Log of the FRF at f = 0.

4. −µp: Log of the FRF at the passband frequency fp.

5. −µs: Log of the FRF at the stopband frequency fs.

4
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To illustrate these parameters, consider Figure 2 that depicts
an example of lowpass filter with the passband frequency fp,
stopband frequency fs and other associated parameters.

Figure 2. Illustration of a theoretical first-order lowpass filter
with the corresponding characteristics.

In Figures 3a and 3b, the FRF for the proposed filter is illus-
trated under various conditions. Each figure depicts the FRF
for different values of ρk, showcasing the impact of this pa-
rameter on the filter’s behavior.

(a)

(b)

Figure 3. Plots of the frequency response function using var-
ious ρk values with respect to (a) βk = 1 and (b) βk = 0.8.

Furthermore, the illustrations explore the influence of βk, pre-
senting results with βk = 1 & βk = 0.8 respectively. The dis-
tinctive curves in each plot reveal the sensitivity of the filter to

the model parameters ρk and βk, providing valuable insights
into its performance characteristics.

4. NUMERICAL EXPERIMENT

Deterministic components encountered in rotating machine
signals operating under nonstationary regimes are generally
sinusoidal components whose amplitudes and phases are mod-
ulated through smooth functions. These amplitude modu-
lations typically arise from resonance encounters or shifts
in internal forces. Phase alterations may stem from varia-
tions in time delays resulting from mechanical system trans-
fer functions interacting with excitation frequencies, or from
torsional oscillations in shafts. To capture these dynamics,
the following sinusoidal model is adopted:

y[n] =
3∑

k=1

ak[n]sin

(
2πk

n∑

m=0

ω[m] + Φk[n]

)
+ ν[n]

(22)
where

1. y[n] is the generated signal sampled at 10kHz over a 10
second acquisition window (i.e. resulting in 100 ksam-
ples)

2. ω[n] stands for the instantaneous frequency of the ref-
erence rotating shaft (i.e. the fundamental frequency of
the process associated with the order 1) simulated using
a first order autoregressive process (see top Figure 4),

3. ak[n] and Φk[n] are respectively the amplitude and the
phase modulations associated with the kth harmonic (see
middle and bottom Figure 4), made of linear combination
of the square of ω[n], ν[n] is a stationary gaussian noise.

Figure 4. Plots of: (top) the speed constructed using a first or-
der auto-regressive process, (middle) the 3 amplitudes ak[n]
and (bottom) the 3 phase modulations Φk[n] associated with
the sinusoids of the synthetic signal.

The signal-to-noise (power) ratio equals -10dB. The proposed
methodology is implemented on the signal, alongside three
other methods for comparative analysis: SWT, LSF, and VKF
with stationary bandwidth in order to assess the efficacy of the
speed adaptation proposed in this study. For SWT, the win-
dow length was optimized to achieve the best performance,

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 411



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

resulting in a length of 125 samples per sliding window. LSF
is applied to the signal after resampling in the angular do-
main, employing a polynomial order of 5 and a window length
of 75 samples. The conventional and proposed VKF param-
eters, namely βk and ρk, are fine-tuned to achieve the values
presented in Table 1. These parameters are crucial as they

Table 1. Filter tuned parameters for the simulation case.

Parameters Value
βk {0.988, 0.991, 0.957}
ρk {45, 35, 75}
λ 1

directly impact the filtering process and subsequent signal
analysis. The actual (noise-free) signal, the estimated signals
and corresponding errors are displayed in Figure 5 for each
method. It is clear from the figure that the proposed estima-
tion is more accurate than the other used techniques: Table 2
shows that the proposed error signal has a significantly lower
relative mean error compared to SWT, LSF and VKF.

Table 2. Relative mean errors of each used method.

Used method Relative mean error %
SWT 4.18
LSF 8.44
VKF 6.60
Proposed method 1.84

Figure 5. The actual noise-free signal (blue line), the deter-
ministic signal estimate (green line) and the corresponding
errors (red line) using the (top-left) SWT method, (top-right)
LSF method, (bottom-left) conventional VKF and (bottom-
right) proposed method.

For further interpretation of the proposed methodology, the
envelope estimation is visualized in Figure 6 to assess the
evaluation with respect to the reference one (actual envelope).
It is essential to see how the model kept track of the envelope
related to each of the 3 cyclic orders. In addition, the FRF
along with the extracted component of the first cyclic order
are displayed in Figures 7 and 8 to have a better comprehen-
sive understanding of the model with respect to the chosen

Figure 6. Plot showing the assessment of the estimated en-
velopes (dashed lines) with respect to the actual ones (full
lines).

parameters βk and ρ1. It can be seen in the resiudal within
the Figure 8 that the first tracked order was completely ex-
tracted after using the FRF displayed in 7. After iterating

Figure 7. Scaled squared order spectrum of demodulated an-
gular signal with FRF for first order, illustrating passed and
rejected frequencies.

Figure 8. Order spectrums of: (top) the raw signal, (middle)
the first extracted component and (bottom) the residual signal.

over the 3 orders, the spectrograms of the raw, extracted and
residual signals are displayed in Figure 9. Since the signal
is generated in a nonstationary regime, time-frequency repre-
sentation (TFR) is a popular tool to present those time-variant
components before resampling into the angular domain. This
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is done to show that the proposed methodology filters well
the 3 harmonics of interest from the raw signal.

Figure 9. Simulation close-up spectrograms of the generated
signals. (Left) Raw signal, (Middle) extracted components,
and (Right) residual signal.

5. APPLICATION

This section presents the evaluation of the methodology us-
ing real experimental data acquired from the KU Leuven Di-
agnostic test rig (Yazdanianasr et al., 2024), as depicted in
Figure 10. The test rig comprised an electric drive motor, a
first housing containing a healthy bearing, and a second hous-
ing with two cases: one featuring large damage to the inner
race of the test bearing and another case involving small dam-
age to the outer race. The bearings used are SKF 2206 ETN9
bearings. The experimental setup also included the mount-
ing of two ICP accelerometers (PCB-model number 352A10)
on the housing of the bearings. Additionally, two B&k type
4188 microphones were installed as seen in the figure of the
test rig. Furthermore, a smartphone, capturing through its mi-
crophone (considered as the low quality microphone in this
acquisition), was placed behind the second microphone. Fi-
nally, an encoder was installed on the end of the electric mo-
tor to keep track of the angular position, providing a reliable
estimate of the angular speed. Notably, the sampling fre-
quency for all sensors, excluding the smartphone, was about
102.4 kHz. Given the smartphone’s sampling frequency of
44.1 kHz, resampling was necessary to synchronize its data
with that of the other sensors. The experiment aims to discern

Figure 10. KU Leuven Diagnostic test rig.

both types of faults mentioned before, captured under a non-
stationary regime. Naturally, signals from the accelerometer

positioned on the upper part of the damaged bearing housing
provide insights into significant damage to the inner race fault
case. However, the experiment goes a step further by utiliz-
ing signals from the smartphone, which captures data from
a distance near the upper part of the housing, revealing small
damage for the outer race case. This small fault presents a sig-
nificant challenge, as its detection amidst the presence of CS1
components can be particularly difficult to achieve, polluted
by additional noise from the outside environment. Therefore,
the experiment will be divided into two cases: the Large Inner
Race Fault Case and the Small Outer Race Fault Case.

5.1. Large Inner Race Fault

In this initial experiment, the speed profile employed, as de-
picted in Figure 11, primarily exhibited random behavior to
provide a highly nonstationary condition. The corresponding
raw accelerometer signal is also displayed in Figure 12. In

Figure 11. First experiment random walk-like speed profile

Figure 12. First experiment raw accelerometer signal depict-
ing the varying signal envelope.

the initial phase, pinpointing the bandwidth containing crit-
ical CS2 information is essential. Utilizing the well known
kurtogram (Antoni & Randall, 2007) can facilitate the detec-
tion of pertinent details. In this instance, the bandwidth yield-
ing the highest kurtosis fell within the range of [815, 865]
shaft order. Consequently, the CS1 orders to be tracked align
with the speed components that reside within the frequency
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band of [16300, 17300] Hz. After identifying 6 speed depen-
dent orders, their deterministic components were extracted
using the proposed technique. Upon fine-tuning the param-
eters of the methodology, the values shown in Table 3 were
attained. The speed fluctuation weight λ was set the same for

Table 3. Filter tuned parameters for the first experiment.

Parameters Value
βk {0.995, 0.987, 0.999, 0.979, 0.988, 0.954}
ρk {4320, 7664, 4211, 8853, 5333, 9912}
λ 0.01

all harmonics to control the stationary-nonstationary adjust-
ment. To evaluate the impact of the model with the specified
parameters, close-up spectrograms of the raw signal, the ex-
tracted CS1 components, and the residual are presented in
Figure 13. This enables observation of the significant atten-
uation of the speed components, tracked with the defined or-
ders. Additionally, the speed profiles corresponding to the
tracked orders are displayed with red dashed lines. The de-

Figure 13. First experiment close-up spectrograms of the vi-
bration signals. (Left) Raw signal, (Middle) extracted compo-
nents, and (Right) residual signal with tracked speed profiles
(red dashed lines).

scribed processing steps are applied both to the raw signal
and the residual one to compare the attenuation of speed de-
pendent deterministic components. Initially, angular resam-
pling is performed to mitigate frequency modulations. Sub-
sequently, both angular signals undergo filtering within the
specified bandwidth to isolate bearing signature information.
A Hilbert transform is then employed to extract the envelope
of the resulting complex signal. Finally, the squared enve-
lope spectrum (SES) of the angular filtered signals is com-
puted for evaluation. Figure 14 compares both SES, empha-
sizing the bearing fault contribution after the elimination of
the extracted components. The analysis reveals that while ex-
tracting deterministic components, it also impacted the BPFI
modulations. These modulations, typically associated with
CS2 components, showed attenuation due to interactions with
deterministic speed components. This suggests that the BPFI
signature, not being entirely random, led to the attenuation of
its deterministic part.

5.2. Small Outer Race Fault

In the second experiment, the utilized speed profile, illus-
trated in Figure 15, primarily demonstrated a steady-hop be-

Figure 14. Squared envelope spectrum of: (top) raw signal
and (bottom) residual signal highlighting the BPFI multiples
(red dashed lines), the speed harmonics (blue dashed lines)
and the modulations of the first BFPI (purple markers), show-
ing the attenuation of the speed components in the residual
one.

havior. The corresponding raw smartphone microphone sig-
nal is also displayed in Figure 16 to demonstrate the variation
of its envelope in tandem with the changes in speed. Sim-

Figure 15. Second experiment steady-hop speed profile

Figure 16. Second experiment raw smartphone microphone
signal depicting the variation of the signal envelope mirroring
the changes in the speed profile.

ilar to the initial steps taken in the first experiment, efforts
were made to identify the bandwidth containing crucial CS2
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information. However, in this instance, the analysis was per-
formed using data acquired from the smartphone instead of
the accelerometer. The analysis revealed that the bandwidth
with the highest kurtosis, as determined by the kurtogram,
fell within the range of [333, 353] shaft order. For the sec-
ond experiment, a similar process was followed to identify 8
speed dependent orders and extract their deterministic com-
ponents using the proposed technique. The parameters of the
methodology were fine-tuned to achieve the values described
in Table 4. To assess the impact of the model with these spec-

Table 4. Filter tuned parameters for the second experiment.

Parameters Value
βk {0.947, 0.955, 0.994, 0.936,

0.961, 0.887, 0.947, 0.984}
ρk {12206, 11791, 8645, 13662

9197, 21111, 12206, 10167}
λ 0.01

ified parameters, close-up spectrograms of the raw signal, the
extracted CS1 components, and the residual are provided in
Figure 17 which facilitates observation of the significant at-
tenuation of the speed components tracked with the defined
orders.

Figure 17. Second experiment close-up spectrograms of the
vibration signals. (Left) Raw signal, (Middle) extracted com-
ponents, and (Right) residual signal with tracked speed pro-
files (red dashed lines).

Figure 18. Squared envelope spectrum of: (top) raw signal
and (bottom) residual signal highlighting the BPFO multiples
(red dashed lines), the speed harmonics (blue dashed lines)
and the cage frequencies (purple markers), showing the at-
tenuation of the speed components in the residual one.

Similarly, for the second experiment, the processing until the
computation of the SES was carried out on the raw signal and
its residual to identify the Ball Pass Frequency Outer Race
(BPFO). A comparison of both raw and residual SES are il-
lustrated in Figure 18.

6. CONCLUSION

The paper introduced an extension of the Vold-Kalman Filter
for better tracking of large nonstationary operating regimes.
This extension is achieved by dynamically adapting the fil-
ter’s bandwidth to accommodate fluctuations in speed. In the
preliminary analysis, the frequency response function is also
examined to provide insights into the filter’s behavior. Nu-
merical simulations are conducted to evaluate and compare
the performance of conventional techniques against the pro-
posed methodology. Additionally, the dependency on speed
fluctuations is tested in a real-world application, specifically
for enhanced bearing diagnostics. The adaptability to speed
fluctuations ensures consistent and accurate performance across
varying operational conditions, enhancing the effectiveness
of machinery health monitoring. Looking ahead, future re-
search could explore extending the proposed methodology to
a higher filter order and automating the hyperparameter se-
lection.
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ABSTRACT

This paper introduces a novel approach to machinery fault
diagnosis, addressing the challenge of domain generalization
in diverse industrial environments. Traditional methods often
struggle with domain shift and the scarcity of balanced, la-
beled datasets, limiting their effectiveness across varied oper-
ational conditions. The proposed method leverages the abun-
dance of healthy machinery signals as a reference for extract-
ing domain-specific information. By doing so, it removes the
domain-related variances from the observation signals, focus-
ing on the intrinsic characteristics of faults. The methodol-
ogy is validated with a case study, demonstrating enhanced
diagnosis accuracy and generalization capabilities in unseen
domains. This research contributes to the field of vibration-
based intelligent fault diagnosis by providing a robust solu-
tion to a long-standing problem in machine condition moni-
toring.

1. INTRODUCTION

In the domain of industrial maintenance, ensuring the reliabil-
ity and efficiency of rotating machinery is a central challenge.
Among the various strategies employed, vibration-based fault
diagnosis stands out as a proven technique for preemptive de-
tection and mitigation of potential failures (Randall, 2010).

The advent of the Industrial Internet of Things (IIoT) and
the proliferation of sensor technologies have led to an un-
precedented availability of machinery data. This, in turn,

David Latil et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

has facilitated the application of intelligent diagnosis meth-
ods (Liu, Yang, Zio, & Chen, 2018) which showed impres-
sive performance. Despite this, the use of these methods in
real industrial scenarios has been proven difficult, mainly be-
cause it relies on a central assumption which is often hard
to meet. Indeed, most Machine Learning (ML), including
Deep Learning (DL) diagnosis techniques learn a represen-
tation of the training data in order to generalize to unseen
examples. The unseen examples, also referred to as test data,
must then follow the same distribution as the training data
to ensure effective generalization by the model. The unpre-
dictability of industrial environments and the varying work-
ing conditions of rotating machines significantly challenge
this assumption. This results in overfitting on the working
conditions the model has been trained on, and leads to a dra-
matic decrease in performance when conditions change.

Transfer learning has emerged as a popular strategy to address
this challenge, aiming to leverage knowledge from one do-
main to improve performance in another. Specifically, meth-
ods employing distance metrics to bridge the gap between
source and target domains have shown promise. However,
these approaches typically assume availability of the target
domain data during training, a scenario often impractical in
the field. (Azari, Flammini, Santini, & Caporuscio, 2023).
Indeed, despite the wide availability of surveillance data pro-
vided by IIoT sensors, the vast majority of available data pre-
dominantly reflects healthy working conditions, as faults are
infrequent.

Domain generalization is then a more fitting problem for-
mulation for situations where the target domain remains
unknown during the model training phase. Unlike domain
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adaptation, domain generalization aims to produce models
which generalize well to domains unseen during training.
For instance, in (Zhao & Shen, 2023) the authors proposed a
mutual-assistance network for semi-supervised domain gen-
eralization, while in (Shi et al., 2023) a dynamic weighting
strategy and a batch spectral penalization regularization term
was employed to tackle the domain generalization problem.
In (Jia, Li, Wang, Sun, & Deng, 2023) a deep causal fac-
torization network is used, taking advantage of the causal
properties in bearing signal models. The authors of (Zheng
et al., 2021) combined apriori expert knowledge on vibra-
tion analysis and a deep neural network to generalize to un-
seen operating conditions. In (Wang et al., 2023) the au-
thors used domain-specific discriminators to explicitly re-
move domain-specific information from the signals, creating
domain-invariant representation, yielding to better general-
ization to unseen working conditions. However, the current
landscape of domain generalization solutions is primarily
characterized by complex deep learning architectures. Al-
though effective, these architectures tend to obscure the in-
terpretative transparency of these models, thus contributing
to the ’black box’ phenomenon often cited as a major pit-
fall of state-of-the-art models. Consequently, recent works
such as (Kim et al., 2024) proposed an explainable diagnosis
technique for single-domain generalization tasks using a pri-
ori knowledge to produce domain-invariant representations,
showing increased performance on unseen target domains.

By tackling the domain shift challenge, our research intro-
duces a novel preprocessing technique tailored to address the
domain shift problem and the challenges induced by non-
stationary vibration signals. This technique leverages the
abundance of healthy signal data as a reference for identi-
fying domain-specific information. We operate under the
assumption that healthy signals contain such domain-specific
information, which can impede the generalization capabilities
of the models.

This approach aims to systematically eliminate domain-
specific characteristics from the diagnosis data using ad-
vanced signal processing techniques, thereby isolating the
intrinsic characteristics of faults. By focusing on the features
that are truly indicative of machinery health, irrespective of
operational conditions, our method proposes a step towards
achieving domain-agnostic fault diagnosis. This approach al-
lows us to benefit from the excellent performance state-of-the
art intelligent models without increasing their complexity to
achieve cross-domain fault diagnosis tasks.

The contributions of this paper are as follows:

1. A sparse representation-based signal processing tech-
nique is proposed to decompose the non-stationary noisy
signals into their relevant components

2. Decomposed reference healthy signals are used to re-
move domain-specific information from the observation

Figure 1. Generalization paradigms

signals

3. The domain-invariant signals from a source domain are
used train a simple classification model. Preprocessed
signals from target domains are used to validate the
generalization improvements on domains unseen during
training.

The rest of this paper is organized as follows: in section 2 the
method for domain-specific information removal is exposed,
in section 3 an experimental setup and protocol is proposed
to validate said method, and in section 4 the results are pre-
sented.

2. BACKGROUND

2.1. Domain generalization

Let us consider a rotating machine having N different work-
ing conditions, which translate into N different domains
noted as Di = {(xij , yij)}ni

j=1, where (xi, yi) is the data-
label pair for the jth sample in the ith domain. Let us also
consider the situation where the label space is shared across
domains, but only one domain is fully labelled and accessi-
ble during training, while in all others only healthy samples
are known as such and are unseen until testing. This con-
stitutes a realistic data availability scenario, where healthy
data is abundant but fault data is scarce and usually represent
a small subset of possible working conditions. The differ-
ences between domain adaptation, domain generalization,
single-domain generalization and the Considered scenario
are illustrated in Figure 1.

2
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In this single-domain generalization scenario, the goal is to
train a classifier considering the limited data availability and
then demonstrate the generalization capability on unseen do-
mains.

2.2. Vibration signals under time-varying working condi-
tions

Rotating machines operating under varying working condi-
tions not only cause the domain shift problem. Their vi-
bration signals also contain specific challenges which makes
them hard to process.

Vibration signals generated by rotating machines operating
under constant or almost-constant working conditions can be
described using Eq. 1.

x(t) = d(t) + r(t) + n(t), (1)

where d(t), r(t) and n(t) refer to deterministic, random and
background noise contributions respectively. Under constant
operating conditions, we can formulate several assumptions
on the nature of these contributions. Deterministic contri-
butions are almost-periodic as they are phase-locked to the
shaft angle, and the random part is often described as cyclo-
stationary (Antoni, Bonnardot, Raad, & El Badaoui, 2004),
while background noise is often assumed to be Gaussian
white noise coming from sensor and environmental noise.

Under varying operating conditions however, significant changes
occur in the vibration signals of rotating machines which sig-
nificantly challenge the assumptions previously made. For in-
stance, when the rotating speed of the machine varies in time,
the deterministic contributions are no longer periodic, while
cyclostationary contributions become cyclo-non-stationary
(Abboud et al., 2016). This emphasizes the enhancements
outlined in this study, which will be discussed in the follow-
ing section.

3. PROPOSED METHOD

A preprocessing technique aiming to reduce the effects of
domain shift induced by varying working conditions is pro-
posed. The preprocessing technique is composed of two main
tasks: the vibration signals must first be decomposed into
their relevant parts, then the decompositions from reference
signals are used to identify and remove domain-specific infor-
mation from the signals in each domain. An overview schema
of the method is illustrated in Figure 2.

3.1. Decomposition of vibration signals based on Sparse
Representation

Many signal processing techniques have been proposed over
the years to accurately handle vibration signals produced by
rotating machines operating under time-varying working con-

Figure 2. The proposed method to produce domain-irrelevant
signals

ditions. Considering the shortcomings of classical frequency-
domain techniques, methods such as time-frequency analy-
sis are often a suitable tool to handle these signals (Zhang &
Feng, 2022). However each time-frequency has its own draw-
backs, and choosing the right technique is often difficult. In
this study, the Sparse Representation (SR) (Feng, Zhou, Zuo,
Chu, & Chen, 2017) framework is adopted to decompose the
vibration signals using a redundant basis.

Considering the morphological specificities of the different
contributions present in vibration signals, SR allows not to
be limited by the choice of a single basis, which might not be
able to accurately represent all types of contributions. Instead
a union of basis can be used, with the assumption that a more
efficient and sparse representation can be achieved.

This union of basis is referred to as a dictionary, and each el-
ement of the dictionary is an atom. Several dictionaries have
been proposed over the years, for instance the author of (Qin,
2018) used an impulse wavelet along with Fourier atoms to
denoise bearing fault signals, while in (Cai, Selesnick, Wang,
Dai, & Zhu, 2018) the authors used a union of a Discrete
Cosine and a Short-time Fourier basis to diagnose faults in a
gearbox.

These analytic dictionaries are very useful to identify compo-
nents whose morphological characteristics, such as the natu-
ral frequency of the system, are known a priori. However in
most cases there’s a very limited amount of prior information
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available on industrial machines. Therefore, this study adopts
a minimalistic dictionary approach, accommodating both de-
terministic and stochastic elements in vibration signals. This
is achieved through integrating Fourier and Unit bases, repre-
senting these contributions respectively.

SR can be achieved through either greedy methods like
Matching Pursuit (MP) (Mallat & Zhang, 1993), or optimization-
based techniques such as basis pursuit (BP) (Chen, Donoho,
& Saunders, 1998). In the latter, the optimization objective is
to minimize the reconstruction error, regularized by the norm
of the sparse vector, expressed in Eq. 2.

min
x

{
F (x) =

1

2
∥y −Ax∥22 + λψ(x)

}
, (2)

where y ∈ RN×1 is the input signal of sizeN , A ∈ RN×K is
the dictionary where K > N , x is the sparse vector, λ is the
regularization parameter and ψ is a sparsity-inducing penalty.

In this study, the Generalized Minimax Concave (GMC)
penalty is used due to its ability to overcome the ampli-
tude underestimation issue associated with the l1 penalty,
while still preserving the convexity of the overall optimiza-
tion objective, as highlighted by (Selesnick, 2017). The GMC
penalty, defined in Eq. 3, serves as a key component in our
approach.

ψGMC(x) = ∥x∥1 −min
v

{
∥v∥1 +

γ

2λ
∥A(x− v)∥22

}
, (3)

where γ > 0 controls the convexity of the GMC penalty,
which is set at γ = 0.8 as advised in (Selesnick, 2017). The
λ term is the regularization parameter. In this study, we set
empirically λ = 1.4.

There are many algorithms designed to find the minimizer to
this convex optimization problem. In this work we use the
forward-backward splitting algorithm.

An example of decomposition using the proposed method is
illustrated in Figure 3 where a signal containing a rolling ele-
ment bearing fault is decomposed using Eq. 2. The different
contributions from the Fourier and Unit basis are represented
in blue and red respectively.

3.2. Removal of domain-specific components from the ob-
servation signals

After windowing and decomposing the signal using the pro-
posed SR method, decompositions of healthy signals from
each available domain are utilized as reference. It is assumed
that these signals contain domain-specific characteristics that
do not carry relevant diagnosis information and may con-
tribute to the domain-shift issue. In every domain, atoms

Figure 3. Decomposition of a signal containing an Inner Ring
fault (a), into its deterministic contribution (blue in (b)) and
random contributions (red in (b).

which are used to represent the reference signals are system-
atically removed from observation signals in order to produce
domain-invariant signals, as illustrated in Figure 2.

Additionally, the effects of varying speeds must be consid-
ered. Order Tracking is often used to resample the signal
from the time domain to the order domain. However it re-
quires information on the instantaneous rotating speed of the
machine, which is often not available in industrial scenarios.

Consequently, we use the Fourier atoms from the sparse de-
compositions in order to estimate the instantaneous rotating
speed without the need for additional hardware using the
ridge tracking technique proposed in (Iatsenko, McClintock,
& Stefanovska, 2016). The signal is then resampled from the
time domain to the order domain, so that all domains share
the same rotating speed reference.

4. EXPERIMENTAL VERIFICATION

In this study, the Machinery Fault Simulator from Spec-
traQuest was used as test rig (pictured in Figure 3). It consists
of an 3-phase 1HP motor, a main shaft with two Rexnord
ER12K bearings and a gearbox linked to the main shaft by a
double groove rubber belt. Three different couplings between
the motor and the shaft are available (rigid, jaw, beam). A
magnetic brake on the gearbox can be used to manually vary
the load applied on the gearbox. The motor’s speed can vary
from 0 to 6000 RPMs.

4
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Figure 4. The SpectraQuest test bench

Table 1. Considered faults

Defect Type Severity
Bearing Inner ring High

Outer ring High
Rotor Static unbalance Low

Static unbalance High

The vibration signals are acquired using three IFM VSA005
accelerometers sampling at 25.6 kHz, placed on the rightmost
bearing housing. A high sampling rate is indispensable as
some faults occur at high frequencies. Several artificial de-
fects representative of most naturally occurring faults are in-
troduced as summarized by Table 1.

In the present investigation, the test bench was employed to
generate datasets across five distinct domains. Each domain
is characterized by a specific speed curve that exemplifies an
acceleration and deceleration cycle—commonly referred to
as coast-up and coast-down phases. Such cycles are emblem-
atic of the fluctuating operational conditions frequently en-
countered within industrial environments.

The domain shift problem is illustrated in Figure 5. A light-
weight one-dimensional Convolutional Neural Network (1D-
CNN) was used, based on the architecture described in Ta-
ble 4, was trained on a single domain. The 1D-CNN is
recognized as the state-of-the-art architecture (Borghesani,
Herwig, Antoni, & Wang, 2023) for intelligent vibration-
based fault diagnosis. Despite the impressive performance
for working regimes of 1500 RPMs, the model accuracy
drops significantly when the rotating speed varies.

Subsequently, five transfer tasks were defined, each depicted
in Table III. The construction of these tasks allows defining
actual transfer scenarios in the presence of varying working
conditions.

The subsequent discussion will illustrate how the suggested
pre-processing technique enhances the generalization capa-
bilities of the CNN model, without requiring the adoption of

Figure 5. The domain shift problem: model accuracy de-
creases significantly when used on working conditions not
represented in the training data

Table 2. Domains

Domain Speed (RPM)
A 0 to 1500
B 1500
C 1500 to 2500
D 2500
E 2500 to 1500
F 1500
G 1500 to 0

Table 3. Cross-domain diagnosis tasks

Task Source domain Target domain
1 B A
2 B C
3 B D
4 B E
5 B F
6 B G

5
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a more complicated model.

Table 4. 1D CNN Architecture

Layer Type In. Ch. Out. Ch. Kernel/Stride/Size
Conv1d 1 3 Kernel=100, Stride=1
MaxPool1d - - Kernel=8, Stride=8
Conv1d 3 3 Kernel=50, Stride=1
MaxPool1d - - Kernel=5, Stride=5
Linear (FC1) 195 32 -
Dropout - - p=0.5
Linear (FC3) 32 5 -

5. RESULTS AND DISCUSSION

The model was trained in each task with 120 samples per
source domain, with a sample being a 3125-long vibration
signal in 10 different runs. The lambda parameter was set
empirically to 1.2, the learning rate to 0.001, the number of
epoch to 200. The early stopping strategy was employed to
obtain a satisfying trained model. Note that the model itself is
not the focus of the present study, it is merely used to demon-
strate the generalization capabilities increase enabled by the
proposed method.

The accuracies on unseen test domains with and without the
preprocessing employed are then compared. It is important
to note that whether with or without the preprocessing runs,
the target domains were never included in the training data,
meaning that the inference is performed on never-seen-before
domain distributions.

The diagnosis results on each of the cross-domain diagnosis
tasks are shown in Figure 4. Where it can be seen that the
proposed pre-processing method increases the cross-domain
accuracy of the model. The task 4 yields a diminished in-
crease because the rotating speed of the target domain is iden-
tical to the source domain, showing that the proposed method
does not decrease the adequate performance of in-distribution
classification performance of modern models.

It must also be noted however that the first and sixth task’s
accuracy are not improved by the proposed method as very
low decreasing speed carry very little energy and thus very
little information, making it difficult to apply the proposed
preprocessing scheme.

This study addressed the common issue of ’domain shift’
caused by changes in a machine’s operational environment
that often lead to errors in machine fault detection by sophis-
ticated computer models. The proposed approach sought to
simplify the diagnosis process by filtering out the environ-
mental noise from the signals machines give off, focusing in
on the genuine indicators of malfunctions.

To validate the proposed technique, a test bench that simu-
lates a variety of operational conditions and failures machines
might encounter in real-world scenarios was utilized. Across

Figure 6. The effects of the proposed preprocessing method
on the test accuracy of the model

five different domains, representing a range of typical indus-
trial settings, our results indicate that our method, which em-
ploys a simple decision model with few parameters, was ca-
pable of identifying machine faults with an efficacy compara-
ble to the more complex, state-of-the-art models currently in
use.

6. CONCLUSION

In conclusion, this paper has presented a preprocessing tech-
nique that utilizes sparse representation to extract the domain-
agnostic diagnosis information of machinery health signals,
thereby significantly reducing the interference of domain-
specific noise. The proposed method has been validated
through a series of transfer tasks across different domains,
revealing a significant improvement in model generalization
without the necessity of resorting to complex neural network
architectures.

On top of the generalization improvements, the proposed
scheme use physically interpretable features which makes
it easier to understand the output of the simple lightweight
model employed here.

The study’s limitations also open up new avenues for re-
search, particularly in the domain of signal acquisition under
extremely low-energy conditions. Addressing the shortfall in
task 1 and 5 performance, where low decreasing speed re-
sults in signals with minimal information content, remains a
challenge for future investigation.
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4 LEMI, Faculté de technologie, Université de M’hamed Bougara Boumerdes, 35000 Boumerdes, Algeria
ma.aitchikh@univ-boumerdes.dz
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ABSTRACT

Efficient gear and bearing diagnosis has become a critical re-
quirement across diverse industrial applications precisely due
to their complex design and exposure to difficult operating
conditions, which predispose them to frequent failure. Early
fault identification remains problematic, as defects are com-
monly obscured by extensive background noise. Moreover,
the exponential increases in gearbox data further complicate
the defect classification process, confusing even the most so-
phisticated algorithms and significantly making the proce-
dure time consuming. Singular Value Decomposition (SVD)
has proved to be highly efficient in signal denoising, stabil-
ity preservation, and feature extraction reliably under vary-
ing conditions, filtering out non-linear signals to reconstruct
relevant features only. However, its considerable computa-
tion time necessitates exploring alternatives like Randomized
SVD (RSVD) to mitigate processing time while maintaining
classification accuracy. In this work, an intelligent algorithm
for gear and bearing fault diagnosis is developed, incorpo-
rating Maximal Overlap Discrete Wavelet Packet Transform
(MODWPT) and Time-Domain Features for feature extrac-
tion. RSVD is employed for signal denoising and feature re-
construction, while K-Nearest Neighbor (KNN) for feature
classification. The combined techniques ensure enhanced di-
agnostic accuracy, addressing critical challenges in industrial
maintenance and performance optimization.

Keywords: Fault diagnosis, Gearbox, Feature extraction,
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Rotating machines.

1. INTRODUCTION

In rotating machines, particularly gearboxes, gears and bear-
ings are susceptible to vulnerabilities due to their complex
design and severe operating conditions which often compro-
mise system reliability, leading to frequent failures requir-
ing unscheduled maintenance and, ultimately, machine break-
downs. Notably in wind turbines, over 50% of gearbox faults
come from bearings (de Azevedo et al., 2016), while approx-
imately 80% of transmission machine problems are due to
faulty gears (Soualhi et al., 2019). Consequently, the urgent
need for machine fault diagnosis arises to ensure the safety
and reliability of mechanical transmission systems. More-
over, today’s competitive, dynamic and technology-driven in-
dustrial environment requires industry to adapt to new tech-
nologies, and to continually reduce costs (Benaggoune et al.,
2020).

Intelligent fault diagnosis techniques primarily rely on ma-
chine monitoring parameters, with vibration analysis being
a prevalent method for detecting early defects by identify-
ing any deviations in these parameters. Vibration signals are
especially favored due to their non-intrusive nature in ma-
chinery operation, making them a widely adopted tool for
fault detection and analysis (Afia, Gougam, Rahmoune, et
al., 2023). This approach enables continuous monitoring
of machine health, allowing for timely interventions to pre-
vent potential failures and to optimize maintenance sched-
ules. Extracting fault-related characteristics from vibration
signals poses a significant challenge, particularly in the ini-
tial fault development stages (Afia, Gougam, Rahmoune, et
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al., 2023). Moreover, gears and bearings can incorporate a
variety of defects, compounding the fault detection classifi-
cation complexity. Recognizing these defects requires high-
lighting relevant information gleaned from measured vibra-
tion signals in a mathematically meaningful manner. Features
serve as crucial signal characteristics aimed at encapsulating
the overall data within a reduced dimensionality, facilitating
their utilization in the classification process. Despite the com-
plexities involved, effective feature extraction remains inte-
gral to accurately diagnosing faults and ensuring machinery
reliability. Many decomposition methods have been devel-
oped for feature extraction. For instance, Gilles has proposed
the empirical wavelet transform (EWT) (Afia, Gougam, Rah-
moune, et al., 2023), in which input data is decomposed into
multiple modes using a set of adaptive wavelet filters. The
resulting EWT modes are narrow-band functions with fewer
mixed modes, beneficial for many applications (Gilles, 2013).
Nevertheless, EWT is highly dependent on the mode number
selection, with improper selection potentially causing unde-
sirable decomposition results (Adel et al., 2022). Further-
more, the wavelet filtering bandwidth adaptability in EWT
is inherently limited, following a linear proportional band-
width pattern (Adel et al., 2022). Discrete wavelet transform
(DWT) is an alternative technique extensively used in fault
diagnosis and condition monitoring (Syed & Muralidharan,
2022). DWT decomposes signal data through band pass fil-
ters in the time and frequency domains, producing a set of
signals with specific frequency bands (Syed & Muralidharan,
2022). Yet, the dyadic step in the subsampling process rep-
resents a significant limitation in DWT efficiency (Adel et
al., 2022). The Maximal overlap discrete wavelet transform
(MODWT) has been developed as an optimized version of
DWT to address the issue (Adel et al., 2022). Like DWT,
MODWT invariably presents problems associated with poor
frequency resolution [6]. As a solution, maximal overlap dis-
crete wavelet packet transform (MODWPT) has appeared as
a more suitable choice. MODWPT decomposes complex sig-
nals into individual components while maintaining circular
shift equivariance, which is crucially important for gear and
bearing condition monitoring (Adel et al., 2022). Moreover,
MODWPT provides numerous improvements compared to
MODWT, including uniform frequency bandwidths, the abil-
ity to overcome time-varying transformations, and to recon-
struct the original signal without any information loss (Adel
et al., 2022). MODWPT can extract relevant features from
vibration data without compromising accuracy, thereby en-
hancing fault diagnosis processes.

Time-energy indicators such as kurtosis, entropy, root-mean
square (RMS), etc., represent useful indicators in advanced
signal processing algorithms for classifying different fault
types (Soualhi et al., 2019; Gougam, Afia, Aitchikh, et al.,
2024; Soualhi et al., 2020; Tahi et al., 2020). However, detect-
ing bearing and gear signatures in early stages is extremely

difficult as defects features are inherently weak. In such case,
acquired vibration signals are often overwhelmed by a sub-
stantial amount of low-frequency noise, which makes signifi-
cant impact on the analysis results’ accuracy. For instance, in
the event of local failure within the bearing, vibration signals
exhibit a distinctly non-stationary behaviour, complicating
the diagnostic process even more (Afia, Gougam, Touzout, et
al., 2023). Consequently, achieving efficient fault identifica-
tion continues to be an important issue in rotating equipment
fault diagnosis. Addressing this issue is critical for enhancing
the efficiency and accuracy of fault classification algorithms,
necessitating strategies for noise reduction and optimization
in feature selection processes. Singular value decomposition
(SVD) is among the most commonly used methods, as high-
lighted in (Gougam et al., 2018; Touzout et al., 2020) due to
its remarkable signal noise reduction and feature extraction
capabilities, particularly in complex noise conditions. SVD
is able to effectively reflect the matrix features since the sin-
gular values represent the intrinsic matrix features (Gougam
et al., 2018; Touzout et al., 2020). Furthermore, SVD can
maintain stability and improve the robustness of feature ex-
traction under varying conditions. Since it is invariant, sta-
ble, and efficient for denoising, SVD has been used in prac-
tical applications, such as gear and bearing fault identifica-
tion, to filter the nonlinear signal and ensure that only useful
features are reconstructed. Despite its numerous advantages,
the primary limitation of SVD lies in its high computational
complexity. Addressing this challenge, Halko et al. proposed
randomized SVD (RSVD) as an enhanced version of SVD
(Halko et al., 2011). RSVD operates by generating an approx-
imate basis for a range of input matrices through a process of
”random sampling,” wherein samples of the input matrix are
multiplied by a random matrix (Song et al., 2017). This ap-
proach effectively captures the fundamental characteristics of
the input matrix, including its singular values and most rele-
vant vectors, reminiscent of data compression techniques. By
enabling standard factorizations such as QR decomposition
and SVD to be computed on a substantially smaller matrix
than the original, RSVD significantly diminishes the compu-
tational cost (Song et al., 2017).

After feature extraction and noise reduction, K-Nearest
Neighbor (KNN) has been widely adopted for gear and bear-
ing fault detection and classification (Afia et al., 2024). The
primary objective of this research is to investigate the effec-
tiveness of a machine learning classifier in accurately classi-
fying features extracted from vibration signals using MOD-
WPT alongside temporal statistical indicators and RSVD.
This paper presents a gear and bearing fault diagnosis method
using vibration analysis, aiming to discern and categorize
five distinct gear and bearing conditions. During the feature
extraction phase, experimental vibration signals are decom-
posed by MODWPT, yielding several wavelet coefficients
(WCs). Subsequently, 38 statistical features are applied to
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each decomposed mode to construct a feature matrix corre-
sponding to each gear and bearing condition. RSVD is then
employed to reduce noise and to reconstruct feature matrix,
ensuring the retention of pertinent features. Finally, KNN
is utilized for feature classification, enabling the detection,
classification, and identification of the five gear and bearing
health states with precision and accuracy. This methodology
represents a comprehensive approach towards enhancing gear
and bearing fault diagnosis through advanced signal process-
ing techniques and machine learning algorithm.

2. PROPOSED METHODOLOGY

In this section, the different steps of the proposed methodol-
ogy are discussed. First, a total of 16 raw experimental vibra-
tion signals representing either a gear or a bearing state are
decomposed using maximal overlap discrete wavelet packet
transform (MODWPT) by 6 levels into 26 wavelet coeffi-
cients (WC) with different frequency levels. For one state, 16
matrices of (64 × 1048560) are produced, wherein 1048560
is the signal points number. Then, 38 combined time features
are applied to each WC to construct the feature matrix corre-
sponding to each condition. For one condition and one time
feature, each matrix of (64×1048560) would be converted to
a vector of 64 rows. Therefore, for one condition (16 mea-
surements), a feature matrix (16 × 64) is provided to repre-
sent each gear or bearing condition. Combining 38 time fea-
tures gives a feature matrix (608 × 64). After that, RSVD is
used to reduce noise by calculating the right eigenvector, the
singular value, and the left eigenvector in which Each fea-
ture matrix is reconstructed retaining the useful information
only. The reconstructed feature matrices are used as inputs
for KNN to detect, identify and classify the different states.
To avoid over-fitting during the training and testing phases,
10-fold cross-validation is used, in which the dataset is ran-
domly divided into 10 complementary subsets. Each subset
is retained in turn, and the training model is trained on the
remaining nine-tenths. Figure 1 provides an overview of the
proposed technique.

3. MAXIMAL OVERLAP DISCRET WAVELET PACKET
TRANSFORM

MODWPT uses raw data X = [X0, X1, ......, XN−1]
T as in-

put for filtering and data decomposition. As with Mallat’s al-
gorithm (Gougam, Afia, Soualhi, et al., 2024; Too, Abdullah,
Mohd Saad, & Tee, 2019), MODWPT is based on quadra-
ture mirror filters. g̃l and h̃lq respectively represent a low-
pass and a high-pass filters, each of length L (assumed to be
even).Thus, the developed filters are given in Equation 1.
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Figure 1. Diagram of the proposed method.
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MODWPT differs from Mallat’s approach by using interpola-
tion instead of a 2-base decimation operation. Specifically, at
each MODWPT level, 2(j−1) − 1 zeros are inserted between
two consecutive adjacent coefficients of g̃l and h̃l. Thereby
ensuring that the wavelet coefficients produced (WT) for each
wavelet sub-band maintain the same length as the input signal
(Afia et al., 2024; Gougam, Afia, Soualhi, et al., 2024). For a
discrete-time sequence x(t), t = 0, 1, ........, N − 1, where N
is the sequence length, the wavelet coefficientsWj,n,t of the
nth sub-band at level j are calculated according to the follow-
ing equations in which n = 0, 1..., 2j−1,W0,0,t = x(t) (Afia
et al., 2024; Gougam, Afia, Soualhi, et al., 2024):

f̃n,l =

{
g̃l, if n mod 4 = 0 or 3
h̃l, if n mod 4 = 1 or 2

(2)

4. TEMPORAL FEATURES

The aim of this step of the methodology is to detect pattern
changes in a given signal, in which statistical parameters are
useful for extracting features related to the different machine
states, since a failure will produce a change in the overall
signal energy. For this purpose, 38 temporal features are used
for feature extraction. The used time features are discussed
in (Too, Abdullah, Mohd Saad, & Tee, 2019; Too, Abdullah,

3
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& Saad, 2019).

5. RANDOMIZED SINGULAR VALUE DECOMPOSITION

Standard approaches use the extracted features from the pre-
vious step and directly train machine learning models for
classification. However, achieving efficient fault classifica-
tion accuracy seems to be a major issue in rotating equip-
ment fault diagnosis, requiring noise reduction and optimiza-
tion feature selection algorithms. In this situation, RSVD is
used to reflect matrix features since singular values represent
intrinsic matrix features, thus maintaining stability and im-
proving the feature extraction reliability under varying condi-
tions in practical applications, such as gear and bearing fault
identification, by filtering the nonlinear signal and ensuring
that only useful features are reconstructed with low computa-
tional complexity. For a matrix with m×n as dimension and k
as rank, SVD gives this formula ofZ = XSY ∗, in which X is
an orthonormal matrix (m × k), Y is an orthonormal matrix
(n × k), while S is a non-negative diagonal matrix (k × k)
which is defined in (Chakraborty et al., 2017):

Wj,n,t =

L−1∑

l=0

f̃

n,l

Wj−1,[n/2](t−2j−1l) mod N (3)

S =




σ1
σ2
...
σk


 (4)

σj is the non-negative diagonal matrix S are the singular val-
ues of Z arranged as follows: σ1 ≥ σ2 ≥ σ3 ≥ σ4 ≥ σk ≥ 0.
TheXandY columns are the left and right singular vectors,
respectively, while the singular values are related to the ma-
trix approximation. At each level j, the numberσj + 1 is
equal to the spectral norm deviation between Z and an opti-
mal rank-j approximation, in which (Too, Abdullah, & Saad,
2019):

σj + 1 = min {kZ −Bk : B has rank j} (5)

And the SVD of a matrix Z ∈ Rm×n is described as below
(Chakraborty et al., 2017):

Z = X
∑

Y T (6)

With X and Y being orthonormal, while
∑

is a rectangular di-
agonal matrix with diagonal entries being the singular values
signified by σi. The column vectors of XandY representing
the left and right singular vectors respectively, are indicated
byxiandyi. In terms of xiandyi, the truncated SVD (TSVD)
approximation ofZ as a matrixZk is defined by (Chakraborty

et al., 2017):

Zk =
k∑

i=1

σixiyi
T (7)

And the randomized SVD (RSVD) is given as follow [23]:

Ẑ = X̂
∑̂

Ŷ T (8)

In which and are each orthonormal while is diagonal that has
as diagonal entries. The column vectors of and are referred
as , and correspondingly. Elucidate the residual matrix of a
TSVD approximation and the residual matrix of RSVD ap-
proximation are given below (Chakraborty et al., 2017):

Rk = Z − Zk, and R̂k = Z − Ẑk (9)

While the random projection of a matrix is elucidated as in
(Too, Abdullah, Mohd Saad, & Tee, 2019):

Y = ΩTZ or Y = ZΩ (10)

In which Ω is a random matrix with independent and iden-
tically distributed entries. RSVD is an algorithm that exam-
ines approximate matrix factorization by employing random
projections to divide the entire process into two steps. First,
a random sampling is performed to obtain a reduced matrix
with a range close to Z ′s range. Thereafter, the reduced ma-
trix is factorized using the first step on the matrix Z to find
the orthonormal column matrix Q for ξ > 0 as defined in
(Chakraborty et al., 2017):

∥∥Z −QQTZ
∥∥2
F
≤ ξ (11)

In the second step, the SVD of the reduced matrix QTZ ∈
Rl×m is calculated, where l ≪ n. Based on X̂Σ̂Ŷ T to de-
note the SVD ofQTZ, Z is given in the following expression
(Chakraborty et al., 2017):

Z ≈ (QX̃)
∑̂

Ŷ T = X̂
∑̂

Ŷ T (12)

Where X̂ = QX̃ and Ŷ are orthogonal matrices.

6. K-NEAREST NEIGHBORS

The reconstructed feature matrices are used as inputs for
KNN to detect, identify and classify the different states. KNN
is a simple and effective supervised classification approach,
particularly in the field of pattern recognition, since it oper-
ates without the need for specific learning steps (Too, Ab-
dullah, & Saad, 2019). When classifying a new input sam-
ple, KNN identifies the nearest neighbors of the training
dataset and assigns the most common class to the new sam-
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Figure 2. Gearbox setup schematic.

ple on the basis of a similarity measure. This process is con-
ducted via unsupervised algorithmic methods, in which re-
sults are ranked on the basis of the majority of KNN cate-
gories (Anggoro & Kurnia, 2020). The algorithm works as
follows:

1. Determining the parameter k, representing the number of
nearest neighbors.

2. Calculating the distance between the evaluated and the
training data.

3. Sorting the distances from high to low values.

4. Selecting the nearest distances up to the order of k.

5. Assigning the appropriate class based on the majority
vote among the nearest neighbors.

7. APPLICATION AND RESULTS

The described methodology is applied to experimental data,
which includes various fault states as well as a healthy state.
The experimental setup is designed for multi- faults classifi-
cation. With the proposed methodology, our objective is to
evaluate the effectiveness of the extracted features in separat-
ing the different health states .

7.1. Case Study

components: motor, brake, planetary gearbox and parallel
gearbox (see Figure 2) (Afia, Gougam, Rahmoune, et al.,
2023). Defects (Table 1) were investigated in two distinct op-
erating modes, with rotational speeds and loads (20Hz − 0V
and 30Hz − 2V ).

Eight 608A11 vibration sensors were placed on the test bench
surface, with a 0.5 Hz-10 kHz frequency range, a ±50g mea-
surement range and 100 mV/g accuracy. Vibrations in the
planetary gearbox directions were measured using three sen-
sors, another three sensors to measure vibrations in the three
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Figure 3. Gear and bearing defects.

Table 1. Types of bearing and gear components

.

Component Types Description

Gear
Chipped Crack in the feet
Miss Missing
Surface Wear
Root Crack

Bearing
Ball Crack
Comb Crack in inner and outer ring
Inner Crack
Outer Crack

directions of the parallel gearbox, and the remaining sensors
monitored the drive motor. Load measurement was provided
by an FT293 torque transducer with a measuring range of
±5V and an accuracy of 4 Nm/V, placed between the motor
and the planetary gearbox. Signal acquisition was achieved
using a Spectra PAD compact data acquisition instrument
able to process up to 20 channels, with a 1024 Hz sampling
rate and a 512 second sampling window (Afia, Gougam, Rah-
moune, et al., 2023).

7.2. Result and discussion

Raw vibration signals measured by the eight accelerometers
corresponding to all five bearing and gear states for two op-
erating modes (see TABLE I) are decomposed into 64 WCs
using MODWPT. 38 time-based features are applied to each
WC to create the feature matrices describing each gear or
bearing’s health state. Afterwards, RSVD computes right
eigenvector, singular value and left eigenvector, and then each
gear or bearing’s feature matrix is reconstructed. The recon-
structed matrices are taken as KNN inputs.

Model stability is an extremely important factor in determin-
ing potential model reliability in terms of overfitting, data
variability or model sensitivity. By considering accuracy over
repeated training iterations, a more complete model reliabil-
ity assessment is provided. To evaluate the machine learning
model’s accuracy, TABLE II provides overall accuracy over
ten training iterations using the proposed approach with and
without RSVD. Figure 4 compares the model accuracy over
ten training iterations, while Figs.5 and 6 provide a better il-
lustration of the classifier’s overall performance in terms of
confusion matrices.

Compared with MODWPT and MODWPT-SVD, MODWPT-
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Table 2. Classification accuracy of faults.

Method
Classification accuracy (%)

Gear
MODWPT 96.45 96.51 96.68 96.38 96.55 96.58 96.22 96.71 96.48 96.28
MODWPT-SVD 96.81 96.74 96.78 96.97 96.84 96.88 96.97 96.71 97.01 96.68
MODWPT-RSVD 97.60 97.66 97.93 97.63 97.53 97.80 97.57 97.99 97.74 97.96

Bearing
MODWPT 95.23 95.46 95.26 95.53 95.43 94.93 95.56 95.82 95.16 94.77
MODWPT-SVD 95.89 96.12 95.72 95.49 95.76 95.43 95.79 95.53 95.20 95.30
MODWPT-SVD 97.27 97.01 96.97 96.74 97.20 96.78 97.11 96.74 96.84 97.07

 

 

 

 

 

 

Figure 4. Model accuracy gear (a) bearing (b).

RSVD has achieved the best accuracy rates, mainly 97.99%
for gears and 97.27% for bearings. This highlights our pro-
posed method as a superior feature extraction technique, mak-
ing it the optimal choice among the evaluated methods. Fig-
ure 4further confirms the proposed model’s stability, provid-
ing highly satisfactory results in terms of fault classification.
Thus, for accurate early defect detection and classification,
MODWPT, with RSVD, provides the optimal approach.

8. CONCLUSION

The paper presents an enhanced fault diagnosis technique for
gearboxes. Feature extraction, classification and experimen-
tal processes have been described in detail. The proposed al-
gorithm, applied to real-time gearbox vibration signals in dif-
ferent health states, successfully identified all gear and bear-

 

 

 

 

 

 

Figure 5. Confusion matrices for all gear states.

 

 

 

 

 

 

Figure 6. Confusion matrices for all bearing states.
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ing states accurately and efficiently.
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ABSTRACT

As the main cause of thermal runaway, the prompt identifica-
tion of Internal Short Circuit (ISC) occurrences in lithium-ion
batteries (LIBs) has emerged as a critical priority for ensur-
ing battery safety. To address this critical need, for a compre-
hensive understanding of ISC behaviors, an electrochemical-
thermal-ISC coupled model has been developed in this work
to simulate battery performance across various ISC levels.
This model is also utilized to validate the efficacy and robust-
ness of the advanced detection approach proposed. By inte-
grating both thermal and electrical aspects using the Pseudo
Two-Dimensional (P2D) and Energy Balance Equation (EBE),
our model serves as an efficient surrogate for ISC experi-
ments. Key ISC indicators have been analyzed and integrated
into the proposed ISC detection algorithm to enhance its ef-
fectiveness. The algorithm utilizes an Equivalent Circuit Model
(ECM)-based approach for estimating ISC resistance. This
research not only advances our understanding of ISC dynam-
ics but also establishes a robust framework for the timely and
reliable detection of ISCs. These advancements significantly
enhance the overall safety and reliability of LIBs in electric
vehicles (EVs).

1. INTRODUCTION

With the increasing growth and application of LIBs, partic-
ularly in EVs, concerns over battery safety have escalated
due to a significant number of car fire accidents Chen et al.
(2021). Among the recognized types of battery failure modes,
ISC is considered the most significant safety concern for LIBs
B. Liu et al. (2018).

While many studies have used mechanical abuse to induce

Yiqi Jia et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

ISC modes and quantify their effects on temperature, State of
Charge (SoC), and other measurements, the precise mecha-
nism of spontaneous ISC during the daily use of EVs remains
unclear Huang et al. (2021). Therefore, early detection and
accurate identification of ISC before it leads to thermal run-
away (TR) have become key research areas.

According to Feng et al., generating failure data is a primary
objective in developing a comprehensive online ISC detec-
tion approach Feng, Weng, Ouyang, and Sun (2016). Vari-
ous methods have been employed in previous literature to in-
duce ISC experimentally, including mechanical deformation
like the nail penetration test Abaza et al. (2018) and crush
tests Zhu, Zhang, Sahraei, and Wierzbicki (2016), as well
as heating triggers such as inserting ISC devices within cells
Orendorff, Roth, and Nagasubramanian (2011) and overheat-
ing Spinner et al. (2015). Additionally, dendrite growth and
external short circuit (ESC) substitute tests have been used by
L. Liu et al. (2020); Feng, He, Lu, and Ouyang (2018). Due
to the challenges associated with reproducibility and safety in
ISC experiments, researchers also opt to develop battery ISC
models to capture ISC effects on main signals Kim, Smith,
Ireland, and Pesaran (2012); Feng et al. (2016).

In this study, we generated ISC data by modeling a high-
fidelity ISC model. Given that temperature growth and volt-
age drop are key ISC indicators Lai et al. (2021); Wu et al.
(2023), we coupled a thermal and electrochemical model to
simulate these responses for ISC detection algorithm devel-
opment.

Another primary objective is the formulation of the detection
algorithm. Achieving online and onboard diagnosis in EVs
relies on signals measured by Battery Management Systems
(BMS), necessitating a computationally efficient algorithm.
Over recent years, several approaches leveraging voltage sig-
nals for ISC detection have been proposed, including observ-
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ing abnormal voltage changes Keates, Otani, Nguyen, Mat-
sumura, and Li (2010); Sazhin, Dufek, and Gering (2016);
Seo, Goh, Park, Koo, and Kim (2017), capturing differences
between predicted and actual values Yokotani (2014), and ap-
plying algorithms utilizing voltage signals Seo, Park, Song,
and Kim (2020); Hu, Wei, and He (2020). Regarding another
key ISC signal, temperature response, only limited works have
utilized it through model-based approaches Feng, Ouyang, et
al. (2018); Jia, Brancato, Giglio, and Cadini (2024).

In this study, we implemented the Extended Kalman Filter
(EKF) algorithm based on a simplified lumped electrical-thermal
model, as proposed in our previous work. Model parameters
were estimated from a dataset generated by the high-fidelity
plant model. Utilizing both the voltage and temperature sig-
nals, the direct indicator, RISC , was set as the state in the
algorithm to be estimated to identify ISC levels.

The remainder of this paper elaborates on the detection ap-
proach in Section 2, provides a detailed description of the
built ISC plant model in Section 3, presents the detection re-
sults and validation of the proposed approach in Section 4,
and concludes in Section 5 by summarizing the findings and
their implications.

2. AN OVERVIEW OF ISC DETECTION APPROACH

Figure 1 presents the comprehensive framework of the ISC
detection approach proposed in this study.

As shown in the upper part of the figure, a coupled electrochemical-
thermal model (plant model) is developed to generate a dataset
representing the operational behavior of a healthy battery, as
detailed in subsequent sections. The Recursive Least Squares
(RLS) parameter estimation tool is then employed to derive
lumped model parameters, facilitating an accurate representa-
tion of battery electrical signals with computational efficiency
for online detection algorithms.

The Equivalent Circuit Model (ECM) is chosen as the lumped
electrical model due to its simplicity and widespread use in
battery State of Charge (SOC) estimation in Battery Manage-
ment Systems (BMS). The temperature lumped model, rep-
resented by Equation 1, incorporates heat generation from
internal resistance and ISC resistance, as well as heat dis-
sipation through natural air convection between the battery
surface and the environment. To parameterize the ECM, the
Hybrid Pulse Power Characterization (HPPC) working profile
is applied to the plant model. The HPPC current and voltage
simulated from the plant model are utilized for parameter es-
timation. Details of the estimated parameters applied for the
detection algorithm are provided in Table 1.

mCm
dT

dt
=

V 2

RISC
+R0I

2 − hA(T − Ta) (1)

Figure 1. The overall ISC detection approach

Table 1. Battery parameters in lumped model

Symbol Value Unit
Q 2.3 Ah
R0 0.0249 Ω
R1 0.0072 mΩ
R2 0.3641 mΩ
τ̇1 13.18 s
τ̇2 9.66 s

Figure 1 shows that, in the lower part (online detection phase),
simulated ISC signals are obtained by introducing a parallel
resistance as the ISC input for both the electrochemical and
thermal models. The ECM-thermal-ISC model integrates pa-
rameters generated offline, including an additional item for
ISC resistance, as a state to be estimated, into the model-
based EKF algorithm for implementation and evaluation.

As highlighted by Hu et al. (2020), the state estimation pro-
cess in the EKF consists of two primary stages: prediction
and update. During the prediction stage, estimated state val-
ues are computed using model equations within the algorithm,
incorporating the error covariance from the previous estima-
tion step. This stage forecasts the next state based on the
current state estimate and system dynamics. In the subse-
quent update stage, predicted states are refined by integrating
measurements from sensors, which in this case are simulated
values from the high-fidelity model.

The key aspect of the algorithm employed here involves in-
corporating the ISC resistance as one of the estimated states
by integrating it into the ECM within the framework of the
EKF algorithm. The state vector can be expressed as:

x = [z, iR1, iR2, 1/RISC ]
T , (2)

while the input and output vectors are:

u = [it, vt]
T , (3)

2
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y = [vt, T ]
T , (4)

For further details regarding the functions and implementa-
tion of the algorithm, as well as other parameters applied,
please refer to our previous work Jia et al. (2024).

3. MODEL IMPLEMENTATION

In this section, the detail of the electrochemical-thermal-ISC
model developed to simulate the battery ISC is further de-
scribed. The cell we simulated in this research is the A123
LiFePO4 26650.

3.1. Coupled Electrochemical-thermal Model

The electrochemical model employed is P2D model, which
is based on a set of Partial Differential Equations (PDEs) de-
scribing the dynamics of physical processes within the bat-
tery electrodes and electrolyte Jokar, Rajabloo, Désilets, and
Lacroix (2016). The main equations of the model are shown
as below: Mass conservation of Li+ in the spherical active
material:

∂cs
∂t
− 1

r2
∂

∂r

(
r2Ds

∂cs
∂r

)
= 0 (5)

where cs represents the concentration of Li+ in solid phase , r
is the particle radius of the electrodes, Ds is the intercalation
diffusivity.

Charge conservation in the electrodes:

σeff
∂2ϕs
∂x2

= jf (6)

where σeff is the effective elective electrical conductivity, ϕs
is the electrical potential in solid phase, jf is the electrode
current density (I/As) and As is the specific interfacial area.

Mass conservation in the electrolyte phased:

∂(εece)

∂t
=

∂

∂x

(
Deff

e

∂ce
∂x

)
+

1− t0+
F

jf (7)

where εe is the volume fraction of phase in electrolyte phased,
ce is the concentration of Li+ in electrolyte, Deff

e is the elec-
tive electrolyte diffusivity, F is the Faraday’s constant, t0+ is
the transference number.

Charge conservation in electrolyte:

∂

∂x

(
κeff ∂ϕe

∂x

)
+

∂

∂x

(
κeff

D
∂ ln ce
∂x

)
+ jLi = 0 (8)

where κeff is the effective electrolyte conductivity, ϕe is the
potential of the eletrolyte phase, jLi is the reaction flux.

Over-potential and cell voltage:

η = ϕs − ϕe − U = ϕs − ϕe − (Uref − (T − Tref)
dU

dT
) (9)

where the T is the temperature of the battery cell.

The detail equations and the specific parameters used in this
P2D model are sourced from the research by Prada et al.
(2012). The temperature of this model is obtained from the
output of the thermal model.

The thermal model is built based on the energy balance theory
proposed by Bernardi et alBernardi, Pawlikowski, and New-
man (1985). The temperature change with time can be de-
scribed as Eq. 10

mCm
dT

dt
= I(U − V − T dU

dT
)− hA(T − Ta) (10)

In this equation, the first part of the right side is the heat gen-
eration while it can be outputted from the electrochemical
model, while I is the overall current, U is the open circuit
voltage (OCV), V is the terminal voltage and −T dU

dT is the
reversible entropy change. The second part of the right is
the heat dissipation while h, 10 W/m2/K is the heat trans-
fer coefficient, A, 0.00634 m2 is the inner surface area of
the battery cell and Ta, 298 K is the environmental tempera-
ture. In the left side, m, 0.07 Kg is the mass of the battery
cell and Cm, 1100 J/kg/K is the heat capacity. These data
are extracted from the battery data-sheet and other literature
A123 Systems (2012); Song, Hu, Choe, and Garrick (2020);
Bernardi et al. (1985).

The P2D electrochemical model and the thermal model can
be coupled as shown in the figure 1, similar with Feng et al.
(2016). As demonstrated in Eq.9 and Eq.10, the coupling
achieved by considering the temperature dependent OCV. To
be specific, the average temperature generated from the ther-
mal model based on the heat generation and dissipation is
timely converted to the electrochemical model by effecting
the OCV.

3.2. ISC Model

As we illustrate in the figure 1, by paralleled the extra ISC
resistance to the P2D, the ISC can be simulated. Therefore,
the total current will be described as bellow:

I = It + IISC = It +
V

RISC
(11)

At the same time, the heat generated from ISC counted from
the Eq 12. should be added into the overall thermal equation.

QISC = I2RISC (12)

3.3. Simulation Result

By setting different values of the RISC value, various levels
of ISC can be simulated based on the P2D-thermal-ISC model
implemented here. Lower the RISC correspond to more se-
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Figure 2. ISC simulation results

Figure 3. ISC detection results for RISC = 10Ω

vere ISC conditions. The corresponding measurements sim-
ulated from the model are shown in figure 2 . Consistent
with the findings in Feng, Ouyang, et al. (2018), the contin-
ual loss of SOC and the increase in heat generation are two
main indicators of ISC occurrences. This is demonstrated by
the quicker voltage drop and higher temperature rise observed
with more severe ISC levels.

4. ISC DETECTION RESULTS

To validate the proposed approach, measurements including
voltage and temperature were generated from the built model
using the Urban Dynamometer Driving Schedule (UDDS) pro-
file. These signals were utilized by the algorithm to estimate
the RISC online, with ISC simulated by specifying the RISC

profile. The covariance of the measurement noises was set to
be 0.1 mV and 2.5 mK, respectively.

For evaluating the performance of the early detection approach,

Figure 4. ISC detection results for RISC = 20Ω

we set RISC to a moderate level by dropping its value from a
relatively high value (representing no ISC) to 10 Ω and 20 Ω,
which are considered moderate ISC levels in other research
studies (Feng, He, et al., 2018; Hu et al., 2020; Seo et al.,
2020). The comparison between the algorithm’s estimated
states and simulated states from the built model is depicted in
the top two sub-figures of Figure 3 and 4. Despite some fluc-
tuations observed in the estimated RISC , these are attributed
to measurement noise and the simplified model used within
the EKF algorithm. Nonetheless, the estimated RISC closely
and promptly tracks the simulated ISC value after its occur-
rence, demonstrating rapid and accurate detection of early
ISC.

Specifically, from the results, it can be observed that after
ISC is triggered, the estimated value converges to the true
value within two minutes, while the temperature rises to 299
K for both cases. This implies that the approach can provide
an alarm for severe ISC levels based on the estimated value
of RISC before the temperature reaches a critical threshold,
thereby preventing further thermal runaway or loss of battery
capacity. Moreover, the SOC estimation displays good con-
sistency with the real value. Furthermore, the voltage drop
and temperature rise observed in the simulated results after
ISC occurrence, as depicted in the figure, illustrate the pri-
mary ISC responses. These indicators demonstrate good con-
sistency between the simulated data and the calculated data
generated from the built-in model in the algorithm and the
estimated states.
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5. CONCLUSION

In this research, an electrochemical-thermal-ISC model was
constructed in COMSOL to simulate ISC events and vali-
date the proposed model-based ISC detection algorithm. This
model combines the P2D model for electrical signals with the
EBE for the thermal model, coupling them through tempera-
ture changes and the relationship between OCV and temper-
ature.

The ECM-based algorithm demonstrated promising perfor-
mance in early ISC detection. The ECM parameters utilized
in the algorithm were derived through parameter estimation
using a dataset generated from the high fidelity model under
healthy battery conditions. .

In conclusion, the proposed method holds potential for appli-
cation in BMS for early ISC detection, owing to its simplicity
and efficiency. However, future research will focus on devel-
oping a more comprehensive battery model that considers the
temperature response of physical electrochemical parameters
to better capture dynamic responses and temperature distri-
bution within the battery cell. Furthermore, enhancements to
the algorithm will aim to incorporate temperature response
and achieve precise localization of ISCs.
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ABSTRACT

Accurate estimation of the state-of-charge (SOC) in lithium-
ion batteries (LIBs) is paramount for the safe operation of bat-
tery management systems. Despite the effectiveness of exist-
ing SOC estimation methods, their generalization across dif-
ferent battery chemistries and operating conditions remains
challenging. Current data-driven approaches necessitate ex-
tensive data collection for each battery chemistry and operat-
ing condition, leading to a costly and time-consuming pro-
cess. Hence, there is a critical need to enhance the gen-
eralization and adaptability of SOC estimators. In this pa-
per, we propose a novel SOC estimation method based on
Regression-based Unsupervised Domain Adaptation. We eval-
uate the performance of this method in cross-battery and cross-
temperature SOC estimation scenarios. Additionally, we con-
duct a comparative analysis with a widely-used classification-
based unsupervised domain adaptation approach. Our find-
ings demonstrate the superiority of the regression-based un-
supervised domain adaptation method in achieving accurate
SOC estimation for batteries.

1. INTRODUCTION

Accurate real-time estimation of the state-of-charge (SOC)
in batteries holds paramount importance across various do-
mains, including electric vehicles and renewable energy stor-
age systems. The SOC represents the percentage of remain-
ing capacity, serving as a pivotal indicator of the battery’s
condition for facilitating effective operations.

Precise SOC estimation is imperative for optimizing energy
utilization and mitigating premature degradation, consequently
reducing maintenance costs and environmental impacts. How-
ever, SOC determination poses a formidable challenge due
to its dependence on multiple interconnected variables such

Mohammad Badfar et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

as voltage, current, resistance, and temperature, complicating
precise estimation (Z. Wang, Feng, Zhen, Gu, & Ball, 2021).
Thus, the development of robust and adaptable SOC estima-
tion methods is essential to meet the escalating demand for
sustainable energy solutions. Conventional SOC estimation
approaches often falter in dynamic environments character-
ized by temperature variations, load fluctuations, and battery
aging. Compounding this challenge is the diverse array of
battery types with varying chemistries. Conventional meth-
ods necessitate significant investments in time and resources
to acquire labeled data specific to each battery variant for ac-
curate SOC estimation. Consequently, there arises a crucial
need for innovative, adaptable SOC estimation methods ca-
pable of addressing these challenges while reducing reliance
on expensive labeled data sources.

Numerous methodologies have been proposed for SOC es-
timation, employing diverse sensor data and modeling tech-
niques. Traditional approaches, such as look-up table meth-
ods and direct-counting methods, often rely on simple al-
gorithms but struggle with real-time estimation due to their
requirement for stable discharge currents (Shen, Li, Meng,
Zhu, & Shen, 2023). Conversely, model-based methods ad-
dress this limitation but demand prior knowledge of battery
characteristics, rendering them less suitable for dynamic and
varied operational conditions. Recent advancements have in-
troduced data-driven methods, which eschew reliance on do-
main knowledge and instead utilize battery parameters such
as current, voltage, and temperature measurements to develop
SOC estimators. Various data-driven techniques have been
proposed for battery SOC estimation. (Li, Wang, & Gong,
2016; Hu et al., 2014; Tong, Lacap, & Park, 2016; Khumprom
& Yodo, 2019; Chandra Shekar & Anwar, 2019). How et
al. offer a comprehensive review of SOC estimation methods
(How, Hannan, Lipu, & Ker, 2019). The primary drawback of
data-driven approaches lies in their dependence on substantial
training data, which can be expensive and time-intensive to
acquire. In response to the challenge of limited data, transfer
learning (TL) has emerged as a potent technique in machine
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Figure 1. Structure of the Proposed Deep Neural Network Architecture for SOC Estimation using Domain Adaptation.

learning.

In the realm of battery SOC estimation, transfer learning holds
promise by leveraging existing data from one domain (e.g., a
specific battery type or environment), known as the source
domain, to enhance SOC estimation performance in a differ-
ent, less well-characterized domain, referred to as the target
domain. Fine-tuning, the most popular TL approach, involves
further training a pre-trained neural network model, origi-
nally trained on a large dataset for a different domain, using
a smaller dataset specific to the target domain. Fine-tuning
has recently been applied to battery SOC estimation to trans-
fer knowledge between different ambient temperatures of the
same battery type (Y.-X. Wang, Chen, & Zhang, 2022), or be-
tween different battery types (Bhattacharjee, Verma, Mishra,
& Saha, 2021). However, fine-tuning necessitates access to
labeled examples from the target domain, which may not al-
ways be readily available. In the case of lithium-ion batteries
(LIBs), obtaining reliable labeled data under real-world con-
ditions is particularly challenging.

To address the challenge of lacking labeled data for the tar-
get domain, machine learning researchers have introduced
Unsupervised Domain Adaptation (UDA). Originating in the
computer vision domain, UDA tackles the broader issue of
transferring knowledge from a source domain to a target do-
main where labeled data is scarce (Long, Cao, Wang, & Jor-
dan, 2015). This is particularly pertinent in scenarios where
the characteristics of the target domain evolve over time, di-
verging from the source domain, and making traditional su-
pervised learning approaches inadequate. Batteries are sub-
jected to diverse environmental conditions, undergo degra-

dation over time, and witness frequent introductions of new
battery chemistries. A central strategy of UDA techniques is
to generate domain-invariant feature representations by align-
ing feature distributions between domains (Wilson & Cook,
2020). This facilitates model adaptation to new and dynam-
ically changing environments, enabling effective generaliza-
tion without access to labeled data in the target domain.

A common approach for generating domain-invariant feature
representations is to minimize a divergence measured as the
distance between distributions. Maximum mean discrepancy
(MMD) (Borgwardt et al., 2006), multi-kernel MMD (MK-
MMD) (Gretton et al., 2012), and lastly, correlation align-
ment (CORAL) (Sun & Saenko, 2016) are among the popu-
lar divergence minimization techniques. Recently, there has
been growing interest in applying UDA techniques to esti-
mate battery SOC (Shen, Li, Liu, Zhu, & Shen, 2022; Bian,
Yang, & Miao, 2020; Oyewole, Chehade, & Kim, 2022; Ni,
Li, & Yang, 2023; Meng, Agyeman, & Wang, 2023). While
these UDA techniques were initially developed for classifica-
tion tasks, SOC estimation poses a regression task. A signif-
icant distinction between regression and classification prob-
lems is that regression problems are less robust to feature
scaling, potentially impacting model robustness when align-
ing feature distributions with UDA methods (Chen, Wang,
Wang, & Long, 2021).

To address this challenge, a specialized domain adaptation
method for regression problems has emerged. DARE-GRAM
(Nejjar, Wang, & Fink, 2023) is one such recent domain adap-
tation regression (DAR) technique motivated by the closed-
form solution of ordinary least squares (OLS). Unlike pre-
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Figure 2. Measured Current, Voltage, and Battery Temperature During LA92 Drive Cycle. (a) Panasonic LiB and (b) LG LiB.

viously discussed classification-based methods that directly
align features, DARE-GRAM aligns the inverse Gram ma-
trix of the features. The authors demonstrated the capability
and robustness of this method through experiments on three
benchmark computer vision regression datasets.

In this paper, we explore the application of unsupervised do-
main adaptation (UDA) techniques within the framework of
transfer learning (TL) to enhance the precision of battery State
of Charge (SOC) estimation. We conduct a comparative study
between a well-established classification-based domain adap-
tation method (CORAL) and DARE-GRAM, a regression-
based method, marking the first application of a regression-
based UDA method to battery management tasks, to the best
of our knowledge. We examine their efficacy across a range
of TL tasks and settings, aiming to provide comprehensive
insights into their performance and suitability for addressing
the complex challenges posed by evolving battery landscapes
and diverse operational conditions.

The remainder of this paper is organized as follows. Section
2 presents the proposed methodology. Section 3 elucidates
the LiB datasets and implementation details. Section 4 offers
the experimental results and discussion. Finally, Section 5
concludes the paper.

2. METHODOLOGY

2.1. Problem Statement

We begin by defining the problem of cross-battery state-of-
charge (SOC) estimation. The source domain Ds represents
the battery type with labeled data Xs = {xsj , ysj}ns

j=1, where
ns denotes the number of source samples. Conversely, the
target domain Dt represents the battery type with unlabeled
data Xt = {xtj}nt

j=1, where nt represents the number of tar-
get samples. xsj and xtj are the temporal measurements of
voltage, current, and temperature for both source and target
batteries until the current time-step, each with a length of l.
Additionally, ysj represents the SOC at the current time-step
for sample j. Specifically, each sample comprises previous

voltage, current, and temperature measurements from time-
step k − l + 1 to the current time-step k as input, with the
SOC of the current time-step k as the label. This paper aims
to establish an SOC estimation model to predict the SOC of
the target battery ytj utilizing source data Xs and target data
Xt, assuming the existence of a distribution discrepancy be-
tween the source and target data.

2.2. Deep Neural Network

Our approach leverages a deep neural network architecture
to tackle the intricate task of state-of-charge (SOC) estima-
tion. The architecture of our proposed network is depicted
in Figure 1, comprising two main modules: a feature ex-
tractor and a predictor. The feature extractor plays a pivotal
role in capturing the temporal dynamics and patterns inher-
ent in the battery data, facilitating the extraction of informa-
tive features crucial for precise SOC estimation. This module
may encompass convolutional layers in convolutional neural
networks (CNNs), recurrent layers in recurrent neural net-
works (RNNs), or fully connected layers in feedforward neu-
ral networks. Each type of feature extractor possesses distinct
strengths and weaknesses, and their performance can vary de-
pending on the specific problem at hand. Subsequently, the
extracted features are propagated through a fully-connected
layer with a single output node, tasked with mapping these
features to the SOC estimation.

2.3. Domain Adaptation

Unsupervised Domain Adaptation (UDA) techniques can be
instrumental in mitigating the domain discrepancy between
source and target domains. These methods facilitate the align-
ment of feature distributions across domains, thereby enabling
the effective transfer of knowledge from the source domain
to enhance state-of-charge (SOC) prediction in the target do-
main. Metric-based UDA methods aim to alleviate cross-
domain distribution discrepancies by applying static criteria.
In this study, we leverage a classification-based UDA method,
CORAL, and a regression-based UDA method, DARE-GRAM.
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Table 1. Results of BiGRU Network for Different Domain Adaptation Methods: Panasonic Battery as Source Domain and LG
Battery as Target Domain

Source Temp. Target Temp. No TL CORAL DARE-GRAM
MSE MAE MSE MAE MSE MAE

-20◦C

-20◦C 0.093 0.252 0.103 0.266 0.031 0.143
-10◦C 0.156 0.342 0.097 0.270 0.018 0.105
0◦C 0.368 0.522 0.182 0.342 0.017 0.106

10◦C 0.354 0.513 0.195 0.357 0.091 0.260
25◦C 0.358 0.516 0.184 0.348 0.090 0.260

-10◦C

-20◦C 0.089 0.257 0.025 0.134 0.018 0.110
-10◦C 0.031 0.148 0.037 0.161 0.016 0.100
0◦C 0.134 0.305 0.016 0.107 0.009 0.075

10◦C 0.354 0.513 0.040 0.150 0.008 0.071
25◦C 0.356 0.514 0.007 0.075 0.086 0.256

0◦C

-20◦C 0.049 0.167 0.046 0.162 0.034 0.146
-10◦C 0.015 0.106 0.007 0.07 0.008 0.066
0◦C 0.018 0.114 0.013 0.101 0.005 0.057

10◦C 0.018 0.099 0.004 0.05 0.011 0.077
25◦C 0.028 0.131 0.003 0.044 0.02 0.122

10◦C

-20◦C 0.415 0.56 0.164 0.344 0.102 0.28
-10◦C 0.376 0.53 0.153 0.324 0.067 0.219
0◦C 0.366 0.521 0.046 0.192 0.013 0.091

10◦C 0.03 0.154 0.028 0.151 0.003 0.046
25◦C 0.009 0.071 0.005 0.065 0.006 0.068

Correlation Alignment (CORAL) (Sun & Saenko, 2016) stands
as a potent domain adaptation technique designed to align
the second-order statistics of both the source and target do-
mains. Its primary objective is to diminish the distribution
discrepancy between these domains by matching their covari-
ances. This process involves whitening the source and target
data to eliminate disparities in variances and subsequently
re-coloring the source data to align with the color (covari-
ance) of the target data. By aligning these statistical proper-
ties, CORAL effectively enhances the similarity between the
source and target distributions, thereby bolstering the trans-
ferability of models from the source domain to the target do-
main. CORAL demonstrates particular efficacy in scenarios
where distribution shifts predominantly stem from alterations
in data covariances.

DARE-GRAM (Nejjar et al., 2023) harnesses the power of
the inverse Gram matrix to align the feature space, taking into
consideration the discriminative capability of the final linear
layer. This approach prioritizes angle alignment and scale
alignment to foster greater compatibility between the source
and target domains. The underlying motivation is to identify
a feature space conducive to facile learning by a shared lin-
ear regressor. Leveraging the ordinary least-squares (OLS)
closed-form solution, the method estimates the parameters of
the linear layer for regression purposes. By emphasizing the
alignment of the angle and scale of the inverse Gram matrix,
DARE-GRAM presents a more stable and robust approach
compared to direct feature alignment. DARE-GRAM loss
function is expressed as follows:

LDAREGRAM (Fs, Ft) = αLcos(Fs, Ft) + γLscale(Fs, Ft)
(1)

where Fs and Ft are extracted features from the source and
target domains, respectively. α and γ are hyper-parameters
governing the influence of angle and scale alignment, respec-
tively. Lcos(Fs, Ft) corresponds to angle alignment, aiming
to maximize the cosine similarity between the Fs and Ft.
Meanwhile, Lscale(Fs, Ft) represents the scaling alignment
term, endeavoring to minimize the discrepancy between the
k-principal eigenvalues, where k is selected using a specified
threshold.

2.4. Training Process

During the training phase, we leverage both source and target
data to cultivate domain-invariant representations. The net-
work is guided by two distinct loss functions: the SOC pre-
diction loss, aimed at minimizing the disparity between pre-
dicted and actual SOC values in the source domain, and the
domain alignment loss, which mandates the resemblance of
feature distributions between the source and target domains.
The synergy of these loss functions ensures that the network
acquires both precise SOC prediction capabilities and domain-
invariant features, thereby augmenting SOC estimation accu-
racy in the target domain. The total loss of the deep network
in an end-to-end training scenario is subsequently computed
as follows:

Ltotal = LSOC + LDomainAdaptation (2)

whereLSOC denotes the prediction loss, andLDomainAdaptation

represents the domain adaptation loss. Since both LSOC and
LDomainAdaptation losses are equally critical to the success
of the model, we set equal weights to both losses to prevent
either loss from dominating. We employ two domain adapta-
tion methods introduced in the previous section to calculate
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the domain adaptation loss.

3. EXPERIMENTAL SETUP

3.1. Dataset Description

In this study, the efficacy of the proposed method is evalu-
ated using two publicly available LiB datasets: 1) the Pana-
sonic 18650PF dataset (Kollmeyer, 2018) acquired from the
University of Wisconsin–Madison, and 2) the LG 18650HG2
dataset (Naguib, Kollmeyer, & Skells, 2020) obtained from
McMaster University in Hamilton, Ontario, Canada.

For the Panasonic 18650PF dataset, testing involved brand-
new 2.9Ah Panasonic 18650PF cells in an 8 cu.ft. thermal
chamber, utilizing a 25 amp, 18 volt Digatron Firing Cir-
cuits Universal Battery Tester channel. Similarly, for the LG
18650HG2 dataset, testing was conducted with brand-new
3Ah LG HG2 cells in an 8 cu.ft. thermal chamber, employ-
ing a 75 amp, 5 volt Digatron Firing Circuits Universal Bat-
tery Tester channel. Both datasets encompassed a series of
drive cycles, including US06, HWFET, UDDS, and LA92,
performed for each battery. Notably, the battery tests in both
datasets were conducted at discrete ambient temperatures rang-
ing from -20◦C to 25◦C. Figure 2 illustrates the voltage, cur-
rent, and battery temperature measurements of the two batter-
ies during the LA92 drive cycle.

3.2. Implementation Details

The Panasonic and LG batteries are designated as the “source”
and “target” batteries, respectively. Specifically, each exper-
iment involves one Panasonic battery type under a particular
ambient temperature serving as the source domain, while LG
battery type under a different ambient temperature acts as the
target domain. The target data is evenly partitioned into train-
ing and testing sets, with the training set utilized for domain
adaptation and the testing set employed for performance as-
sessment. As our objective is to assess the efficacy of various
unsupervised domain adaptation methods for near-real-time
State of Charge (SOC) estimation, we restricted the input sen-
sor data history to the ten most recent observations, ensuring
a balanced evaluation across methods without sacrificing gen-
erality.

In the deep neural network architecture, we employ Bidirec-
tional Gated Recurrent Unit (BiGRU) modules as feature ex-
tractors. GRUs are well-suited for tasks involving sequen-
tial information as they efficiently capture temporal depen-
dencies while maintaining a simpler and more streamlined
architecture compared to Long Short-Term Memory (LSTM)
networks. Moreover, initial experiments conducted as part of
our model development phase demonstrated that GRUs out-
performed LSTMs in terms of both prediction accuracy and
training efficiency. In addition, (Ye & Yu, 2021) demon-
strated the efficiency of BiGRU for battery state-of-health

Figure 3. Heatmap of Target Mean Squared Error (MSE)
for Different Domain Adaptation Methods under Different
Source and Target Temperatures (◦C). a) No TL, b) CORAL,
and c) DARE-GRAM.

prediction. We run an initial set of experiments to determine
the best hyper-parameters to be used in the deep learning

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 442



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 4. Comparison of Domain Adaptation Methods in State-of-Charge (SOC) Estimation. (a) Target MSE, (b) Target MAE,
(c) Training Time (s), (d) Target MSE for Different Temperatures of the Target Battery when the Source Battery is Panasonic
in 0◦C, (e) Target MSE for Different Temperatures of the Target Battery when the Source Battery is Panasonic in -20◦C

, and (f) Target MSE Over Training Epochs.

model. The architecture of the feature extractors comprises
five layers, each containing 200 hidden units, with a fully-
connected (FC) layer consisting of 400 neurons. Addition-
ally, L2 regularization and dropout techniques are applied to
enhance the model’s generalization and robustness. The num-
ber of training epochs is set to 25 for all experiments, with
Mean Squared Error (MSE) serving as the loss function for
the SOC prediction module.

In addition to utilizing the DARE-GRAM method, we also
conduct experiments using the CORAL technique, a well-
established classification-based domain adaptation approach,
for performance comparison purposes. Furthermore, we per-
form experiments without any domain adaptation, denoted as
the ”No TL” model. In ”No TL” model experiments, the
training process excludes the utilization of target data, with
the testing set of target data reserved solely for evaluating the
performance of the trained model on the source data. This
article utilizes mean-square error (MSE) and mean absolute
error (MAE) as the performance evaluation metrics.

4. RESULTS AND DISCUSSION

We conduct a thorough analysis of cross-battery state-of-charge
(SOC) estimation, comparing the performance of regression-

based and classification-based domain adaptation methods.
We present the results of our experiments, focusing on the
SOC estimation achieved by the BiGRU network with differ-
ent domain adaptation methods.

Table 1 and Figure 3 summarize the SOC estimation out-
comes. In each experiment, the Panasonic battery serves as
the source domain, while the LG battery serves as the target
domain. While no single domain adaptation method outper-
forms all others across every experiment, the DARE-GRAM
method consistently demonstrates superior performance. Out
of the 20 transfer learning tasks conducted, DARE-GRAM
outperforms other methods in 15 tasks. Figures 4a,b illus-
trate box plots for the Mean Squared Error (MSE) and Mean
Absolute Error (MAE) values across all tasks for different do-
main adaptation methods, further highlighting the superiority
of the DARE-GRAM approach.

However, it is worth noting that despite its superior perfor-
mance, the DARE-GRAM method demands more training
time. As depicted in Figure 4c, the average training time of
the model for DARE-GRAM method is approximately 40%
longer compared to other methods. This disparity in compu-
tational costs can be attributed to the computation of the do-
main adaptation loss function. While DARE-GRAM yields
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Figure 5. Comparison of Domain Adaptation Methods in
SOC Estimation for Panasonic Battery at 10◦C to LG Battery
at 10◦C Task.

impressive results, its computational overhead may pose prac-
tical considerations in certain contexts.

While the DARE-GRAM method demands a relatively longer
training time over a fixed number of epochs, it exhibits a no-
tably faster convergence, requiring significantly fewer train-
ing epochs to reach a stable state. Figure 4f shows the MSE
of the target domain for different domain adaptation methods
and the ”No TL” model over the training epochs for one trans-
fer task (Panasonic -10◦C to LG -10◦C). This plot shows that
with only one epoch, SOC estimations of the target domain
for the DARE-GRAM model are significantly more accurate
than other methods.

Figure 4d,e shows the results of two different temperatures of
the source battery. In each plot, the MSE values of different
domain adaptation methods and the ”No TL” model are de-
picted over different temperatures of the target battery. These
two plots indicate that cross-battery SOC estimation using the
measurements of the source battery under -20◦C temperature
is significantly more challenging than 0◦C. Another impor-
tant finding is that as the difference between the temperatures
of the source and target domains increases, the transfer learn-
ing task becomes more rigorous.

Figure 5 illustrates the SOC estimation using different do-
main adaptation methods for a specific task (Panasonic 10◦C
to LG 10◦C). While the performance of the CORAL method
closely resembles that of the ”No TL” model, the DARE-
GRAM method yields more accurate SOC estimations. DARE-
GRAM estimates are somewhat inferior to the other methods
when the battery is at full SOC.

The results reveal that for certain transfer tasks, such as Pana-
sonic at 0◦C to LG -10◦C, even the ”No TL” model achieves
satisfactory performance. This suggests that at under certain
settings, the model trained solely on the source data can effec-
tively estimate the state-of-charge (SOC) for the target data
without the utilization of any domain adaptation or transfer
learning methods in general.

5. CONCLUSION

In this work, we introduced a regression-based unsupervised
domain adaptation method, DARE-GRAM, for SOC estima-
tion. Through a series of experiments, we assessed the per-
formance and effectiveness of DARE-GRAM in cross-battery
SOC estimation, comparing its results with those obtained us-
ing the classification-based UDA method, CORAL. Our find-
ings consistently demonstrate the superiority of the DARE-
GRAM method in achieving accurate SOC estimation. DARE-
GRAM consistently outperformed CORAL, showcasing its
robustness and adaptability across various battery domains.
Moreover, DARE-GRAM exhibited the ability to prevent neg-
ative transfer, ensuring that knowledge transfer did not com-
promise SOC estimation performance. Furthermore, our re-
sults underscored the influence of ambient temperature on
model transferability. When the ambient temperatures of both
the source and target batteries were similar or closely aligned,
the transferability of the model was notably enhanced, lead-
ing to improved SOC estimation accuracy. Overall, our study
highlights the effectiveness of DARE-GRAM as a powerful
tool for enhancing SOC estimation in diverse battery manage-
ment scenarios, offering valuable insights for future research
in the field.
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ABSTRACT

Predictive maintenance has become a highly favored applica-
tion in Industry 4.0, particularly in complex systems with re-
quirements for reliability, robustness, and performance. Air-
craft engines are among these systems, and several studies
have been conducted to try to estimate their remaining lifes-
pan. The C-MAPSS dataset provided by NASA has greatly
served the scientific community, and several works based on
physical models and data-driven approaches have been pro-
posed. However, several limitations related to data quality
or data availability of failures persist, and integrating domain
knowledge can help address these challenges. In this arti-
cle, we are currently implementing a new approach based
on knowledge coupled with qualitative spatial reasoning to
study the propagation of faults within system components un-
til complete shutdown. Region Connection Calculus (RCC8)
formal model will be used to describe the component rela-
tionships, drawing inspiration from the C-MAPSS dataset.

1. INTRODUCTION

In Industry 4.0, predictive maintenance (PdM) allows for the
detection of anomalies and the anticipation of upcoming break-
downs in equipment, machines, or components (Nunes, San-
tos, & Rocha, 2023). Through the continuous collection of
multi-sensor data and system performance analysis, this main-
tenance strategy relies on machine learning (ML) algorithms
capable of building models with the ability to detect early
signs of impending failures or malfunctions. Early detection
of anomalies allows for prevention, anticipation of corrective
actions, and reduced downtime. In this context, PdM solu-
tions rely on estimating the remaining useful life (RUL) be-
fore failure (Zio, 2022), which represents the remaining oper-
ating time before a component or machine failure. Several ap-

Meriem Hafsi et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

proaches are cited in the literature: model-based, data-driven,
knowledge-based, or hybrid approaches combining the previ-
ous three (Cardoso & Ferreira, 2021). In the aeronotic con-
text, Aircraft engines are among these systems, and several
studies have been conducted to try to estimate their remaining
lifespan (de Pater, Reijns, & Mitici, 2022). The C-MAPSS
dataset provided by NASA 1 has greatly served the scientific
community. The solutions proposed in the literature mainly
address data-driven approaches (Kumar, 2021; Vollert & Theissler,
2021; Barry, Hafsi, & Mian Qaisar, 2023; Asif et al., 2022),
but very few hybrid approaches (Dangut, Jennions, King, &
Skaf, 2022) are proposed or tested and no approach attempt-
ing to integrate domain knowledge or expert knowledge exists
(Barry & Hafsi, 2023; Mayadevi, Martis, Sathyan, & Cohen,
2022).

In this study, we aim to focus on the C-MAPSS dataset ref-
erenced in the domain literature and attempt to explore a new
approach based on knowledge coupled with qualitative spa-
tial reasoning to study the propagation of faults within sys-
tem components until complete shutdown. RCC8 rules will
be used to describe the component relationships, drawing in-
spiration from the C-MAPSS dataset (Saxena, Goebel, Si-
mon, & Eklund, 2008), which corresponds to a dataset gener-
ated by simulating the operational functioning of aircraft en-
gines, with the aim of evaluating the performance of RUL es-
timation models. The main objective concerns the modeling
of a domain ontology or a semantic graph from the domain
knowledge integrated into the C-MAPSS dataset. Spatial and
topological representation of system components will be ad-
dressed by using RCC8 relations.

2. CONTEXT

Commercial Modular Aero-Propulsion System Simulation (C-
MAPSS) developed by NASA, is a simulation tool for a re-
alistic large commercial turbofan engine flights, used for the

1data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data
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Table 1. Overview of C-MAPSS Dataset with segmentation
into 4 subsets and description of each subset’s characteristics.

FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249

Test Trajectories 100 259 100 248

Conditions 1 6 1 6

Failure modes 1 1 2 2

PHM’2008 challenge to generate un large dataset called C-
MAPSS dataset (Saxena et al., 2008). It consists of a sim-
ulated engine model in the 90, 000lb thrust class. It also in-
cludes an atmospheric model that can simulate operations at
various altitudes (sea level to 40, 000ft), Mach numbers (0
to 0.90), and sea-level temperatures (−60 to 103F ). The C-
MAPSS dataset is commonly utilized in the field of PdM and
engine health prognostic (Vollert & Theissler, 2021). These
data are often employed for developing and assessing engine
health diagnostic algorithms, failure prediction models, and
PdM strategies. The dataset is segmented into different simu-
lation units as demonstrated in Table 1, where each represent-
ing an individual engine, with varied failure profiles. Due to
its complexity and diversity, C-MAPSS serves as a popular
testbed for validating PdM techniques in the aerospace engi-
neering field.

Researchers often leverage this dataset to benchmark their al-
gorithms and methodologies, comparing the performance of
different approaches in predicting engine failures and assess-
ing the health status of engines. Moreover, C-MAPSS pro-
vides a valuable resource for studying the behavior of engines
under various operating conditions and environmental factors
(Vollert & Theissler, 2021).

3. RELATED WORK

3.1. Predictive Maintenance & PHM Background

In light of the evolving and knowledge-intensive nature of
the manufacturing domain, there has been a growing interest
in employing semantic technologies (Xia, Zheng, Li, Gao,
& Wang, 2022), particularly ontology-based approaches, for
PdM. Recent research has introduced various ontologies and
rule-based extensions aimed at enhancing knowledge repre-
sentation and reuse in PdM with several applications in Indus-
try 4.0 (Dalzochio et al., 2020) like in Machinery: (mechan-
ical machines) (Nuñez & Borsato, 2018), (bearings) (Cao,
Giustozzi, Zanni-Merk, de Bertrand de Beuvron, & Reich,
2019), elevator running systems (Hou, Qiu, Xue, Wang, &
Jiang, 2020), hydraulic systems (Yan et al., 2023), Cyber-
Physical Systems (Cao et al., 2022a; Oladapo, Adedeji, Nzen-
wata, Quoc, & Dada, 2023) and industrial robots (X. Wang,
Mingzhou, Liu, Lin, & Xi, 2023). This section provides a re-
view of the most significant research efforts in this area. In

Table 2. Related work applied semantic approaches in the
context of Industry 4.0.

Reference Application Field Proposition

(Nuñez & Borsato,
2018)

Mechanical machines Ontology-based model

(Cao, Giustozzi, et
al., 2019)

Bearings / rotating ma-
chinery

Ontology-based ap-
proach

(Hou et al., 2020) Elevator running sys-
tem

Knowledge graph-
based approach

(Cao et al., 2022a) Cyber-Physical Sys-
tems

Hybrid approach based
on statistical and sym-
bolic AI technologies

(Chhetri, Kurteva,
Adigun, & Fensel,
2022)

Hard Drive Failure Pre-
diction

Knowledge Graph
Based approach

(Yan et al., 2023) Hydraulic systems Knowledge graph-
based approach

(X. Wang et al.,
2023)

Industrial robots in in-
telligent manufacturing

PdM method based on
data and knowledge

(Oladapo et al.,
2023)

Routine maintenance in
Industry 4.0

Fuzzified Case-Based
Reasoning

(Li, Zhang, Li,
Zhou, & Bao,
2023)

steel factory bridge
cranes

Knowledge-based ap-
proach

(Cao, Samet, Zanni-Merk, De Bertrand de Beuvron, & Reich,
2019), the authors argue that existing PdM approaches have
been limited to predicting the timing of machinery failures,
while lacking the capability to identify the criticality of the
failures. This may lead to inappropriate maintenance plans
and strategies. Authors introduce a novel ontology-based ap-
proach to facilitate PdM in industry, by combining fuzzy clus-
tering with semantic technologies. Fuzzy clustering tech-
niques are employed to determine the criticality of failures
based on historical machine data, while semantic technolo-
gies utilize the results of fuzzy clustering to predict the tim-
ing and severity of these failures. In (Cao et al., 2022b),
the authors address the problem of complexity arising from
heterogeneous industrial data, which leads to a semantic gap
among manufacturing systems. There is an increasing need
for uniform knowledge representation and real-time reason-
ing in Cyber-Physical Systems (CPS) to automate decision-
making processes. In response to this challenge, the authors
propose a hybrid approach that combines statistical and sym-
bolic AI. They introduce a system called Knowledge-based
System for PdM in Industry 4.0 (KSPMI), which utilizes sta-
tistical techniques such as ML and chronicle mining, along
with symbolic AI technologies like domain ontologies and
logic rules. This hybrid method enables automatic detection
of machinery anomalies and prediction of future events. The
effectiveness of the approach is demonstrated through evalu-
ation on both real-world and synthetic datasets. In (Chhetri et
al., 2022), authors raise the need to improve hard drive failure
prediction, given its critical role in computing systems. The
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authors point out that existing studies mostly rely on either
ML or semantic technology, but each approach has its lim-
itations: ML lacks context-awareness, while semantic tech-
nology lacks predictive capabilities. To address these limi-
tations, the authors propose a hybrid approach that combines
the strengths of both ML and semantic technology to enhance
hard drive failure prediction accuracy. In (Yan et al., 2023),
authors are interested in the problems due to the knowledge-
intensive and heterogeneous nature of the manufacturing do-
main, the data and information required for PdM are normally
collected from ubiquitous sensing networks. This leads to
the gap between massive heterogeneous data/information re-
sources in hydraulic system components and the limited cog-
nitive ability of system users. To address this limitation, the
authors propose a virtual knowledge graph-based approach
for digitally modeling and intelligently predicting maintenance
tasks.

3.2. Knowledge Representation & Spational Reasoning

In the industrial domain, representing knowledge involves or-
ganizing and structuring information about processes, sys-
tems, and domains. This helps in better understanding and
decision-making. With the advancement of technology in In-
dustry 4.0, effective knowledge representation is crucial for
optimizing operations and driving innovation. In (Smith et
al., 2019), authors highlight the need for a comprehensive on-
tology to support digital manufacturing, particularly in terms
of standardizing terminology across various branches of the
advanced manufacturing industries. They propose to develop
an upper ontology for the Industrial Ontologies Foundry (IOF),
based on the Basic Formal Ontology (BFO), to serve as a
foundation for creating a suite of ontologies tailored for dig-
ital manufacturing. In (Confalonieri & Guizzardi, 2023) au-
thors discuss the Multiple Roles of Ontologies in Explainable
AI. Knowledge-based approaches for RUL estimation have
several advantages over other methods (Barry & Hafsi, 2023),
including the ability to incorporate domain-specific knowl-
edge and experience into the model, and the ability to han-
dle complex systems where data-driven methods may not be
effective. However, they also have limitations, such as be-
ing dependent on the availability of expert knowledge and
the potential for subjective judgments to influence the model.
From an Operations perspective, knowledge-based methods,
including fuzzy systems, provide a direct and cost-effective
means for RUL estimation by leveraging expert knowledge.
These methods prioritize ease of implementation and inter
rater reliability. However, their effectiveness is closely tied
to the quality of expert input.

Qualitative spatial reasoning, a branch of artificial intelligence,
plays a significant role in enhancing decision-making pro-
cesses within the industrial domain (Fraske, 2022). This ap-
proach focuses on analyzing spatial relationships and con-
figurations without precise numerical measurements, allow-

Figure 1. The 8 basic relations of RCC formalism.

ing for a more intuitive understanding of industrial environ-
ments and processes. In the context of Industry 4.0, where
smart manufacturing systems heavily rely on interconnected
and sensor-rich environments, qualitative spatial reasoning
offers valuable insights for optimizing resource allocation,
scheduling tasks, and ensuring efficient workflow manage-
ment (Ladron-de Guevara-Munoz, Alonso-Garcia, de Cozar-
Macias, & Blazquez-Parra, 2023).

RCC (Region Connection Calculus) is a logical formalism
used in qualitative geometry intended for representing and
reasoning about qualitative spatial relations among regions
(Marc-Zwecker, De Bertrand de Beuvron, Zanni-Merk, & Le Ber,
2013). Based on the primitive connection relation C(x, y),
where x and y represent spatial regions consisting of a set
of points in a plane, delimited by a continuous boundary.
The RCC8 formalism defines eight basic relations between
regions in space. These relations are exhaustive and mutually
disjoint, allowing the definition of any relation between two
spatial regions (Y. Wang, Mengling, Liu, & ye, 2018). The
eight basic relations are DC (disconnected), EC (externally
connected), PO (partially overlapping), EQ (equal), NTPP
(non-tangential proper part), TPP (tangential proper part), NTPPi
(the inverse of non-tangential proper part), and TPPi (the in-
verse of tangential proper part) as illustrated in Figure 1 (Lima,
Costa, & Moreno, 2019).

4. PROPOSITION

To develop a PdM method based on relationships between
industrial components, we propose an approach with appli-
cation to C-MAPSS aircraft engines as follows: (1) Domain
study and advanced data characteristics analysis of aircraft
engine components and sensors. (2) Formalization of knowl-
edge in concepts and relationships with a focus on topological
relationships between components. (3) Upgrading and de-
scribing topological relationships between components based
on basic RCC8 relationships. (4) Configuration of a rule-base
(based on assumptions) for error propagation across defined
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relationships. (5) Determination of alert thresholds for each
sensor and component to configure reasoning rules by using
data-driven techniques. (6) Test the method and compare it
with existing data-driven approaches.

This structured approach describes the steps involved in ap-
plying a knowledge-based PdM approach to aircraft engines,
integrating domain knowledge with data-driven techniques
for effective fault detection and planning main

4.1. Practical Insights into Knowledge Representation for
C-MAPSS Scenario

To model and formalize domain knowledge, it is important
to understand the functioning of the engine, its components,
and the generated data. C-MAPSS consists of four datasets,
with each dataset further divided into training and test sub-
sets (Saxena et al., 2008). Each time series originates from
a different engine of the same type. Three operational set-
tings, which significantly affect engine performance, are in-
cluded in the data. Furthermore, the data are contaminated
with sensor noise. The engine operates normally at the begin-
ning of each time series but begins to degrade at some point
during the series. Multiple aircraft engines undergo varied us-
age throughout their operational history. A single engine unit
may experience different flight conditions from one flight to
another. Due to various factors, such as flight duration and en-
vironmental conditions, the extent and rate of damage accu-
mulation will vary for each engine. Although the data is sim-
ulated, numerous phenomena and challenges have been incor-
porated to enhance the realism of the dataset. For instance, an
initial wear is simulated reflecting typical manufacturing in-
efficiencies observed in real systems. The initial wear, man-
ifested as minor alterations in pressure, temperature, airflow
measurements, etc., is primarily intended to introduce a cer-
tain level of manufacturing variability into the data. Indeed,
each engine is not identical upon leaving the factory due to
manufacturing tolerances and differences in production pro-
cesses, introducing variability right from the beginning of
their use. Additionally, some non-ideal starting conditions
or pre-existing degradations are simulated as initial wear due
to manufacturing inefficiencies or storage conditions prior to
use. Finally, noise is introduced at various stages of the simu-
lation process, ultimately affecting the sensor measurements
and mirroring real-world conditions (Saxena et al., 2008).

The engine consists of multiple components, as depicted in
Figure 2 (Sánchez-Lasheras, Garcia Nieto, de Cos Juez, Bayón,
& González, 2015) :

• Fan: The fan component draws in air, providing the ini-
tial thrust and airflow into the engine, crucial for com-
bustion.

• Combustor: This section mixes fuel with the incom-
ing air and ignites it, generating high-pressure and high-
temperature gas for propulsion.

Figure 2. Schematic illustration of an aircraft engine model.

• LPC (Low-Pressure Compressor): It further compresses
the air before it enters the combustion chamber, enhanc-
ing efficiency and power output.

• HPC (High-Pressure Compressor): This component
significantly raises the pressure of the air, preparing it for
combustion and ensuring optimal engine performance.

• N2: Represents the low-pressure shaft, connected to the
LPC and fan, responsible for driving the fan and low-
pressure compressor.

• HPT (High-Pressure Turbine): Extracts energy from
the high-pressure gas flow to drive the HPC, maintaining
compression efficiency.

• LPT (Low-Pressure Turbine): Utilizes remaining en-
ergy in the gas flow to drive the fan and LPC, contribut-
ing to overall engine power generation.

• Nozzle: This component accelerates the exhaust gases to
produce thrust, directing the flow and converting thermal
energy into kinetic energy.

The C-MAPSS dataset simulates engine operation data with-
out providing a detailed description of the sensors utilized. In
real-world engines, a diverse array of sensors is commonly
employed to monitor various operational and performance
parameters. These sensors may encompass:

• Pressure sensors: To measure pressure in different parts
of the engine, such as combustion chambers, air inlets
and outlets, and fuel lines.

• Temperature sensors: To monitor temperature in crit-
ical areas of the engine, such as combustion chambers,
turbines, and exhaust sections.

• Flow sensors: To measure the flow rate of fuel, air, or
coolant circulating through the engine.

• Vibration sensors: To detect abnormal vibrations or signs
of imbalance in rotating components of the engine, such
as turbine shafts and bearings.
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Table 3. Description of the 21 C-MAPSS Sensors.

Sensor ID Measurement Unit
T2 Fan inlet temperature ◦R
T24 LPC outlet temperature ◦R
T30 HPC outlet temperature ◦R
T50 LPT outlet temperature ◦R
P2 Fan inlet pressure psia
P15 bypass-duct pressure psia
P30 HPC outlet pressure psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio -

Ps30 HPC outlet Static pressure psia
Phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio -

htBleed Bleed Enthalpy -
Nf dmd Demanded fan speed rpm

PCNfR dmd Demanded fan conversion speed rpm
W31 HPT Coolant air flow lbm/s
W32 LPT Coolant air flow lbm/s

• Speed sensors: To monitor the rotational speed of en-
gine components, such as turbines and compressors.

• Position sensors: To determine the position of valves,
flaps, and other moving components of the engine.

• Exhaust gas sensors: To analyze exhaust gases and mon-
itor emissions, including gas composition and pollutant
levels.

These sensors play a crucial role in collecting engine opera-
tion data, which is then used to assess performance, diagnose
issues, and predict potential failures as part of PdM and en-
gine health monitoring. Table 3 provides an overview of the
sensors included in C-MAPSS.

4.2. Conceptualization and Formalization of Knowledge
Domain Ontology

A specialized methodology is used to conceptualize and de-
velop the domain ontology. The Methontology methodol-
ogy, developed by (Fernández-López, Gomez-Perez, & Ju-
risto, 1997), provides a framework for constructing ontolo-
gies at the knowledge level. It includes the identification of
the ontology development process and a lifecycle based on
evolving prototypes, along with specific techniques for pro-
cess description as depicted in Figure 3 (Blázquez, Fernández-
López, Garcı́a-Pinar, & Gomez-Perez, 1998).

Our ontology creation follows a systematic approach. The
initial step involves the preparation of a formal document
meticulously describing the domain to be represented accord-
ing to the previous section. Subsequently, the conceptualiza-
tion phase ensues, entailing the definition of concepts, prop-
erties, and relationships. For instance, an illustration of the
main concepts related by three types of relations in two levels

Figure 3. Development process ontology with the Methontol-
ogy methodology.

Figure 4. Diagram of ontology classes (concepts) in two main
levels.

(subsumption relation/is-a, part-of/part-whole relation, and
semantic relations) is provided in Figure 4. Following con-
ceptualization, the third step focuses on formalizing the con-
ceptual knowledge into a language understandable by com-
puters. This modeling can be implemented in an ontology
editing tool. In our case, we express the formal ontology in
Description Logics (DL) language (Baader, Horrocks, & Sat-
tler, 2005) and implement it using the OWL (Web Ontology
Language) format (Taylor, 2009) within the open-source on-
tology editor Protégé 5.6 2. Once the ontology is created,
it can be used to annotate and enrich the C-MAPSS dataset
with semantic information about the components and their
relationships, facilitating advanced analyses and data inter-
operability. In line with these principles, we establish a con-
ceptual framework to represent pivotal elements and relation-
ships within the C-MAPSS dataset domain. This domain in-

2Protégé editor: https://protege.stanford.edu/
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Figure 5. Diagram of modules and their connections in the
aircraft engine model.

formation is captured as knowledge within a domain ontol-
ogy named EngineFailureOntology. Within this ontology, we
delineate various concepts, including: Aircraft engine, En-
gine component, Flight, Condition, Cycle, Measure, Sensor,
Heath state, etc. The Definition in DL of Some Design Ex-
amples is Provided as Follows:

Engine ≡ ComplexDevice ∧ hasComponent some (Turbine
⊓ Compressor ⊓ Shaft)

Sensor ≡ Device ∧ measures some (Temperature ⊓ Pressure
⊓ Vibration)

TemperatureSensor ≡ Sensor ∧ measures only Temperature

OperationalSetting ≡ Setting ∧ includes some (EngineSpeed
⊓ Load ⊓ AmbientConditions)

4.3. Description of Topological Relationships Between Com-
ponents

This step involves defining the topological relationships be-
tween components using the extension of RCC8 relations and
drawing inspiration from diagram in Figure 5, which high-
lights the interconnections between components.

Some examples to illustrate how RCC8 relations can be used
to describe spatial interactions among components of the C-
MAPSS engine as follow:

Disjointness DC(Fan,Nozzle) : Fan and Nozzle components
are mutually disjoint, as they occupy distinct spatial areas
within the engine. This relationship can be expressed by:

Fan ⊓Nozzle ≡ ∅
Others disjoitness relationships can be expressed as follows:
Combustor ⊓Nozzle ≡ ∅
Combustor ⊓ Fan ≡ ∅
LPC ⊓ LPT ≡ ∅
External-Connected EC(HPC, Combustor): The Com-
pressor (HPC) touches the Combustor because the compressed
air from the compressor is then directed to the combustor for
the combustion process. This relationship can be expressed
as follows:

HPC ⊓ Combustor ̸= ∅
Other components are externally connected to each other; these
relations can be expressed as follows:

HPC ⊓ LPC ̸= ∅
LPC ⊓N2 ̸= ∅
N1 ⊓ Combustor ̸= ∅
HPT ⊓ LPT ̸= ∅
LPT ⊓N2 ̸= ∅
LPT ⊓Nozzle ̸= ∅
The shaft or rotor (corresponding to the N2 component) is a
tangential proper part of the turbine because it is physically
attached to the turbine and rotates together with it. Addition-
ally, some of its parts are covered by two other components:
N1 and HPT. These relations can be expressed as follows:

N2 ⊓HPT ̸= ∅
N2 ⊓HPC ̸= ∅
Partially Overlapping PO(Fan , LPC): The fan overlap
some part of the low pressure chamber and it overlap partially,
as they share a common space within the engine. This relation
can be expressed by:

Fan ⊓ LPC ̸= ∅
The definition of topological relations based on the 2D dia-
gram allows for connecting various components to facilitate
the propagation of alerts if a malfunction is observed on a
component. This enables the system to identify spatial inter-
actions and dependencies between components, enhancing its
capability to detect and propagate alerts effectively through-
out the system.

4.4. Reasoning with SWRL rules

Several reasoning rules can be defined in collaboration with
domain experts in aeronautics. In this study, we rely on ex-
tracting rules from our understanding of the data.

The first rule that can be defined pertains to subjecting a com-
ponent to significant variations, which may cause fluctuations
in sensor values, potentially leading to component fragility
and resulting in localized and then generalized malfunction.
The risk of impacting neighboring components directly may
consequently increase. This rule will be formulated in the
form of a SWRL (Semantic Web Rule Language) rule. Af-
ter defining this rule, the next steps involve loading the time
series data from the dataset, initiating the reasoning process,
generating a new dataset, and studying the correlation of the
new variables obtained through reasoning, in the form of new
links or instance values in the knowledge base, with the RUL
value. Although it is a logical rule, it is necessary to define
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Figure 6. Main steps of the proposed approach involve treat-
ing each time series separately and creating features based on
the proposed spatial reasoning.

alert thresholds for each sensor to weigh the estimated risk
on each component. The definition of these thresholds can
be initially done through advanced analysis of the C-MAPSS
dataset using ML techniques. Subsequently, collaboration
with aeronautical experts can further refine these thresholds.

Finally, we propose this validation technique because the dataset
does not provide information on the types of failures and
faulty components. Therefore, we will evaluate the validity
and performance of our approach by assessing whether the
learned knowledge has a positive or negative impact on the
estimation of RUL through ML techniques.The process of the
proposed approach is illustrated in Figure 6.

5. DISCUSSION

The present study aimed to investigate a novel approach grounded
in knowledge representation and spatial reasoning to predict
failures by examining fault propagation and its repercussions
across components, ultimately impacting the entire system.
While similar methodologies have been explored in scien-
tific literature for analogous yet distinct problems, the ap-
plication of this approach remains novel within the context
of our investigation. Despite the inherent complexity associ-
ated with its implementation, the potential contribution of this
approach towards enhancing the explainability of machine
learning (ML) models and elucidating degradation mecha-
nisms holds substantial promise.

5.1. Consensus on the representation of domain and ex-
pert knowledge

The conceptualization, formalization, and formulation of rules
within this study are predicated upon assumptions crafted within
the confines of our research framework. However, it is im-
perative to acknowledge that such methodologies necessitate
close collaboration with domain experts to ascertain the valid-
ity and relevance of the defined rules for effective reasoning.
To further validate the efficacy of the approach delineated in
this article, future endeavors will entail concerted efforts to
engage domain experts in refining the formalization of knowl-
edge and iteratively updating the associated reasoning rules.
This iterative process of validation and refinement holds the
potential to fortify the robustness and applicability of the pro-
posed approach in real-world industrial settings.

5.2. Transition to RCC8 3D Formalism

Furthermore, it is essential to note that the rules of RCC8 per-
tain to regions in a 2D plane. In this study, we took into ac-
count the 2D diagram of components; however, transitioning
to 3D objects could offer intriguing avenues for exploration in
future research. By extending our analysis to encompass 3D
objects, we can potentially enhance the fidelity and accuracy
of our predictive models, thereby augmenting the applicabil-
ity of our approach in diverse industrial scenarios.

5.3. Lack of data on failure types and their origins

Our study is based on the analysis of failure propagation among
components, which assumes that a malfunction in one com-
ponent can be detected or identified. However, the C-MAPSS
dataset does not provide the necessary data to obtain this in-
formation. Preliminary work is required to estimate the health
status of each component and define a threshold indicating
failure at its level, as well as to study the propagation to other
components. For this purpose, several SWRL reasoning rules
can be specified to transition a component to a failure state
when its condition is deemed critical. This also involves a
detailed analysis of sensor data. For instance, sensors that
detect abnormal fluctuations in the data of a component may
indicate an impending failure.

6. CONCLUSION & FUTURE WORK

In the context of Industry 4.0 overall, and specifically in the
estimation of aircraft engine lifespan, our objective in this
article was to investigate the possibility and feasibility of a
knowledge-based approach focusing on component degrada-
tion as a separate entity before overall system failure, by ex-
ploring the potential of qualitative spatial reasoning. The pro-
posed method is currently under implementation, and its re-
sults have not yet been evaluated. However, the approach
appears to offer tangible benefits, particularly in enhancing
our understanding of internal functioning and incident prop-

7

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 452



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

agation among components. The next steps in this work in-
volve finalizing the proof of concept and obtaining prelimi-
nary results. Subsequently, we plan to engage with domain
experts to refine the established conceptualization and define
reasoning rules that accurately reflect real-world scenarios.
Depending on the outcomes, there is potential for applying
the method to a cyber-physical system to enhance the explain-
ability of machine learning models in place.
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ABSTRACT 

Track quality geometry measurements are crucial for the 
railways’ timely maintenance. Regular measurements 
prevent train delays, passenger discomfort and incidents. 
However, current fault diagnosis or parameter deviation 
relies on simple threshold comparison of multiple laser 
scanners, linear variable differential transformer (LVDT) and 
camera measurements. Data threshold exceedances enact 
maintenance actions automatically. However, issues such as 
measurement error, and sensor failure can result in false 
positives. Broad localisation resolution prevents trending/ 
inferencing by comparison with healthy data baseline at the 
same position over periodic inspections.  

False alarms can result in costly ineffective interventions, are 
hazardous and impact the network availability.   

This paper proposes a novel methodology based on 
convolutional neural network (CNN) technique for detecting 
and classifying track geometry fault severity automatically. 
The proposed methodology comprises an automatic flow of 
data for quality assessment whereby outliers, missing values 
and misalignment are detected, restored and where 
appropriate curated. Improved, “clean” datasets were then 
analysed using a pretrained CNN model. The method was 
compared with a suite of machine learning algorithms for 
diagnosis including k-nearest neighbour, support vector 
machines (SVM), and random forest (RF).  

The analysis results of a real track geometry dataset showed 
that track quality parameters including twist, cant, gauge, and 
alignment could be effectively diagnosed with an accuracy 
rate of 97.80% (CNN model). This result represents a 
remarkable improvement of 38% in comparison with the 

traditional threshold-based diagnosis. The benefits of this 
research are not only associated with maintenance 
intervention cost savings. It also helps prevent unnecessary 
train speed restrictions arising from misdiagnosis.   

1. BACKGROUND  

Rail transportation’s convenience, punctuality and cost-
effectiveness have made it the preferred mode for medium 
distance travelers and freight (Ghofrani et al., 2018; Wang et 
al., 2018)  Train services as well as the total mileage of track 
is increasing, which poses a considerable challenge for the 
effective maintenance of railways infrastructure (Durazo-
Cardenas et al., 2018). Degraded rail tracks can cause bumps 
and swaying when trains pass at high speed and can even 
cause derailments, putting at risk the safety of passengers. In 
the event of a failure, delays to the network can also cause 
significant economic losses (Sasidharan et al., 2020). 

Wear and degradation are inevitable, and the railways have 
implemented safe, tolerance limits for track quality 
parameters (Railtrack PLC, 1998). Today, tracks are 
regularly inspected and repaired by dedicated infrastructure 
maintenance teams. This usually implies a combination of 
sophisticated track quality inspection trains and on-foot 
crews that validate and repair the defects flagged by the 
inspection trains. However, this requires experienced 
technicians working in hazardous environments, while 
reducing the availability of the network. Clearly, false alarms 
raised by the inspection trains contribute to further downtime 
and costs.  

1.1. Measurements and data parameters 

The New Measurement Train is an automatic inspection train 
that is currently the primary method of collecting track 
geometry data on the British Railways (New Measurement 
Train (NMT), 2024) . It uses multiple laser scanners, linear 
variable differential transformer (LVDT), gyroscopes and 

Isidro Durazo-Cardenas et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited. 
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accelerometers and cameras Data from thirteen-time domain 
track parameters are acquired, plus additional imagery 
systems, accumulating terabytes of data. The NMT can 
measure track condition at 125mph and cover up to 115,000 
miles in a year. 

Cross-level, Gauge and Curvature are the essential features 
of a track alignment, transverse and vertical deviation. Cross-
level is defined as the vertical height difference between the 
tops of the two tracks, while the distance between the two set 
of rails is known as the Gauge. Curvature is the radius of the 
arc of the rail, which describes the degree of curvature of the 
rail. For straight rails, the desired cross-level value 
approaches zero. while for curved rails, this closely matches 
the design value.  

The Twist parameter combines deviations in vertical, and 
longitudinal dimensions and is typically measured at 3m 
intervals (Twist3m). The Cant parameter describes the 
difference between the track cross-level and the design cross-
level value on curved track. 

 
Figure 1 rail track quality parameters. Adapted from 

D’Angelo et al., (2018). 
 

Top and Alignment (AL) account for the deviation between 
the actual track and the optimal planned path, where top is 
the vertical distance deviation of the top surface. AL refers to 
the horizontal distance deviation (Railtrack PLC, 1998). On 
the other hand, Dip is a measure of the depression of the track. 

The standard deviation of the measured data parameters is 
compared to their threshold values for each 1/8 of mile. 
Exceedances are logged during the train inspection and 
corrective action notice are issued.  Based on the severity of 
the faults detected and the nominal speed of the line, the 
health of the track section will be classified as Good, 
Satisfactory, Poor, Very Poor, and Super Red. Speed 
restrictions are then issued considering the parameter 
criticality, with 20 miles per hour being the lowest speed 
restriction, before track blockage. Network Rail 
standards(NR/L2/TRK/001/MOD11, 2015 also prescribe the 

actions to be taken upon threshold exceedances for each 
parameter, with these ranging from:  

1. Block the Line 
2. Correct before 36h. 
3. Inspect in 72h and correct before 14 to 28 days. 
4. Correct before 7 to 14 days. 
5. Correct before 14 to 28 days. 
6. Add it to the maintenance plan. 

1.2. Dataset description 

The data used in this this study comprises time series 
measurement data of the thirteen track parameters described 
above covering the Southampton-Waterloo line in both 
directions over a period of one year. This is considered a 
major line serving many commuter areas including 
southwestern suburbs of London and the conurbations based 
around Southampton. Datasets typically comprise CSV 
acquisition and PDF maintenance team activity logs, and 
track defect reports. Network Rail reports track quality 
assessments every 1/8 of mile, with up to 1000 measurements 
for each parameter acquired. Datasets typically exceed 2 GB.  

1.3. Machine learning and related work 

Machine learning is often used to analyze large amounts of 
data and identify connections, offering exceptional potential 
for anomaly detection analysis (Popov et al., 2022).  Recent 
studies report on machine vision and SVM used to analyze 
images for track defect detection (Aydin et al., 2021). 
However, the settings could be significantly costly as it 
requires high specification tools (cameras, effective fast 
transmission systems, and efficient storage). Moreover, the 
large number of images generated bring real time processing 
challenges hence, affecting on time performance.  

Based on time series data, reported accuracy of some 
traditional machine learning algorithms appears to be 
relatively low. Considering the disruption, cost and effort 
involved in railways repairs, higher accuracy is essential. For 
example, results of SVM algorithm used to detect combined 
track degradation from car body vibrations reported an 
accuracy of 80% (Tsunashima, 2019).  Lasisi & Attoh-Okine, 
(2018),used Principal component analysis (PCA) to combine 
track geometry parameters into a lower-dimensional form 
and then used SVM, Linear discriminant analysis (LDA), and 
Random Forest (RF) to detect orbital faults with an accuracy 
of 92%. However, the true positive rate (precision) is only 
about 66%, potentially leading to many false alarms. 

Several studies have compared the performance of machine 
learning methods. Sresakoolchai & Kaewunruen, (2019) used 
a range of supervised and unsupervised machine learning 
models to analyse track geometry data and sentence faults. 
The results showed that the non-linear models fitted 
significantly better, with deep neural network (DNN) having 
the highest accuracy at 94.3%, followed by convolution 
neural network (CNN) with 93.8%. The linear models all had 
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accuracy rates below 50%, with SVM being the poorest at 
20%. The results showed that the relationship between 
features and labels is highly non-linear. 

In this context, we propose and effective method to 
automatically detect and classify track defect using data 
driven approaches. The next section introduces the 
methodology. 

2. METHODOLOGY 

The five-step approach employed in this investigation is 
illustrated in Error! Reference source not found.. The 
initial data acquisition step is associated with the acquisition 
of data. Two different types of data were gathered for the 
analysis. The first datasets comprise of time series signals 
representing key track quality parameter measurements such 
as, the location, time, the CANT, the TOP, the gauge, the AL, 
the Cross-level and the Curvature. The second dataset 
represents a set of pdf files containing a threshold-based 
detection report and human based investigation maintenance 
logs. These files are useful to annotate the track fault 
observed in the time series data. 

  

 
Figure 2 Flow chart of methodology steps. 

 

Step two focuses on the enhancement of individual datasets 
quality. This was critical step given the issues often 
encountered with time series data. These datasets typically 
emanate from a variety of instrumentation sources and are 
prone to a myriad of consistency issues, including 
measurement discrepancies caused by instrument 
malfunctions or user errors. These issues manifest as missing 
data points, misaligned signals, and a significant presence of 
noise, each of which can distort the true signal and lead to 
inaccurate analyses if not properly addressed. To address the 
absence of data, a localized regression method is 
implemented. This approach leverages nearby data points to 
estimate and impute the missing values, assuming that these 
points observe a similar behavioral pattern. Such assumption 
is justified given that time series data often exhibits temporal 
correlation. The efficacy of the imputation process is vital, as 
it directly affects subsequent analyses. In addition to 
imputation, the dataset processing phase employs a 
combination of Dynamic Time Warping (DTW) and Cross 
Correlation techniques to detect and correct misalignments in 

the signals. DTW is an algorithm that allows for elastic 
transformation of time series, enabling the identification of 
similarities between data sequences that do not align 
perfectly in time. When used in conjunction with Cross 
Correlation, it becomes a powerful tool to detect shifts and 
distortions in the signal, thereby aligning them appropriately 
for further analysis. Further refining of the dataset includes 
processing of the maintenance log reports which undergo a 
procedure to extract and quantify salient features, such as 
fault type, spatial and temporal coordinates of the 
occurrences, severity of the detected faults, and the 
associated maintenance activities required. This information 
is crucial for understanding the context of the faults and 
planning preventive measures. 

The third stage integrates the outputs of the previous stages, 
creating a consolidated dataset that is primed for machine 
learning analytics. This stage is pivotal as it synthesizes the 
cleaned and aligned time series data with the qualitative 
information extracted from the maintenance logs, setting the 
foundation for robust analytical models. 

The fourth stage is the heart of the analysis, where two 
primary categories of machine learning techniques are 
employed: supervised and unsupervised learning methods. 
Unsupervised learning techniques, such as the Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN), 
are adept at identifying novel fault types that may not have 
been previously recognized. DBSCAN is privileged for its 
proficiency in handling noise within the dataset, a common 
issue in large-scale industrial applications. However, while 
unsupervised methods excel at detection, they often falter in 
classification. To counter this, supervised learning methods 
are applied, harnessing the labelled data produced by 
unsupervised techniques to train models that can not only 
detect but also classify fault types. This dual approach 
ensures that newly occurring faults are not only detected but 
also categorized correctly. The supervised techniques 
selected for this stage include robust and widely used 
algorithms such as Convolutional Neural Networks (CNNs), 
which are particularly adept at spatial data recognition; k-
Nearest Neighbors (kNN), which classifies data based on the 
proximity to known cases; Random Forests (RF), an 
ensemble method that improves prediction robustness; and 
SVMs, which are effective in high-dimensional spaces. 

Finally, the last stage focuses on the evaluation of the model's 
performance, employing three key metrics: precision, recall, 
and the F1-score. Precision assesses the model's accuracy in 
predicting fault occurrences, mitigating the risk of false 
positives. Recall measures the model’s ability to identify all 
actual fault occurrences, thereby reducing false negatives. 
The F1-score harmonizes these two metrics, providing a 
single measure of the model’s accuracy in classification 
tasks, balancing the trade-off between precision and recall. 
This comprehensive and iterative process is essential for the 
identification and classification of faults in complex systems, 
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such as those encountered in Network Rail's infrastructure. 
By meticulously processing the data and employing a blend 
of machine learning techniques, the methodology aims to 
yield a high-performing model capable of detecting and 
classifying faults, thus enhancing the maintenance and 
reliability of the rail network. 

3. RESULTS AND DISCUSSION  

3.1. Dataset analysis 

The datasets used in this study come from Network Rail and 
pertains to track geometry data acquired between 2016 and 
2017 during inspections run along the Southampton railway 
line. These datasets consist of 625 pdfs reports, 300 
multivariate time series data which includes track geometry 
measurements, maintenance team activity logs, and track 
defect reports. The temporal scope extends over 33 days, with 
an average monthly coverage of three days. The location 
parameter, although not a track geometry feature, is a crucial 
piece of information in the dataset because it provides a 
baseline for comparing data from different measurement time 
at the same point. The positioning errors in the recording 
could reach 100 m. The instrument failure can also cause 
some positions to be recorded as missing points, resulting in 
various positions for the same serial number in the data sets. 
Missing data at a position t is imputed by using and 
interpolation of different data points observed at a location [t-
w] and [t+w], where w (set to 5) helps including of 
neighbouring data points to enhance the imputation accuracy. 
For the alignment, the data points must first be aligned so that 
they are of the same length between data and that data points 
of the same ordinal number are in the same position. To 
perform the alignment, first DTW method was used to 
compute pairwise distance between the measurement, and 
close distance signal were used to compute a reference signal. 
Hence maximum value between the cross correlation and the 
reference signal were used to shift the measurement. Error! 
Reference source not found. and Error! Reference source 
not found. show an example before and after the alignment 
was performed using the Twist3m measurement.  

 
Figure 3 Twist3m measurement before alignment. 

 
After the temporal data alignment, the maintenance log files 
(shown in Error! Reference source not found.) are 
processed to extract the track identifier (trackid), the mileage, 
the type of fault (shown in the column “channel”), the peak 
value observed and the corresponding threshold value. These 

data are used to locate the fault in the temporal data and hence 
annotate it. We segmented by file instead of by time series 
index as the initial experiment on time index split provided 
imbalanced issues. 
The final annotated 300 multivariate time series datasets with 
about 20000 datapoints each are split into training (60%), 
validation (20%) and testing (20%). 
 

 
Figure 4 Twist3m after alignment. 

 
 

 
Figure 5 Example pdf report. 

3.2. Algorithms parameters 

The parameters summarised in Error! Reference source not 
found. were empirically tested and configured for this 
analysis.  

For Convolutional Neural Networks (CNN), the setup 
includes Conv2D, MaxPooling2D, and Dense layers with 
ReLU and Softmax activations, optimised using adaptive 
moment estimation (ADAM) with a learning rate of 0.001.  

The RF is configured with 100 trees, no maximum depth to 
allow full growth, a minimum of 2 samples required to split 
a node and uses the Gini criterion for quality of splits. 
DBSCAN was set with an epsilon value of 0.5 for maximum 
neighbourhood distance, and a minimum of 5 samples for 
core points, while employing Euclidean distance for its 
metric. DBSCAN being an unsupervised method cannot map 
automatically with classes, hence we mapped manually the 
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cluster with a script that computes the cluster centre and the 
known fault centre.  

The k-NN algorithm uses 5 neighbours, uniform weights, 
automatically selects the algorithm for computing, and 
utilizes the Minkowski metric. Lastly, the Support Vector 
Machine (SVM) is configured with an RBF kernel, 
regularization parameter C set to 1.0, 'scale' for gamma, and 
a polynomial degree of 3, optimizing for non-linear data 
separation. Each configuration reflects the algorithm's focus, 
from spatial clustering and decision forests to similarity-
based learning and hyperplane optimization, illustrating the 
adaptability and specificity required for effective machine 
learning applications. 

Table 1 Methods and parameter settings. 
 

Method Parameter Configuration Example 
CNN Layers: Conv2D, MaxPooling2D, Dense; 

Activation: ReLU, Softmax;  
Optimizer: Adam; 
Learning Rate: 0.001 

RF Number of Trees: 100; 
Max Depth: None; 
Min Samples Split: 2; 
Criterion: Gini 

DBSCAN Epsilon: 0.5; 
Min Samples: 5; 
Metric: Euclidean 

kNN Number of Neighbours: 5; 
Weights: Uniform; 
Algorithm: Auto; 
Metric: Minkowski 

SVM Kernel: RBF; 
C: 1.0; 
Gamma: Scale; 
Degree: 3 

 

3.3. Analysis 

The evaluation of the employed method on the testing 
datasets through precision, recall, and f1-score metrics offers 
a detailed perspective on their performance in predictive 
modelling tasks. With a multiclass classification problem, 
average performance results are computed. As highlighted in 
Error! Reference source not found., CNN showcased a 
well-rounded performance with a precision of 97.8%, a recall 
of 97.69%, and an f1-score of 97.73%, indicating a high 
degree of accuracy and reliability in identifying relevant 
instances. RF also demonstrated a strong balance between 
precision (93.6%) and recall (95.21%), culminating in an f1-
score of 94.4%, which underscores its effectiveness in 
handling various data scenarios. DBSCAN, with a precision 
of 100%, indicates a perfect identification of relevant 
instances within its clusters, though its lower recall (88.60%) 
suggests some relevant instances may not be captured within 

its clusters, reflected in an f1-score of 93.95%. kNN and 
SVM both achieved high precision rates (97.6% and 100%, 
respectively) but with slightly lower recall rates (90.37% and 
87.95%, respectively), leading to f1-scores of 93.84% and 
93.58%, highlighting their precision in classification but at 
the expense of some sensitivity.  

Table 2 Method performance on the datasets. 
 

Method Precision (%) Recall (%) f1-score (%) 

Threshold 59.8 53.80 56.64 

CNN 97.8 97.69 97.73 

RF 93.6 95.21 94.4 

DBSCAN 100 88.60 93.95 

kNN 97.6 90.37 93.84 

SVM 100 87.95 93.58 

 

Figure 6 CNN confusion matrix. 
 

Focusing on CNN, Error! Reference source not found.7 
provides a confusion matrix table displaying the performance 
of a classification model on a testing set, summarizing how 
well the model distinguishes between five fault classes: 
Gauge Fault, Twist Fault, AL Fault, Cant, and Top. The 
matrix shows actual class labels on the vertical axis 
(TARGET) and predicted labels on the horizontal axis 
(OUTPUT), with each cell containing the count and 
percentage of instances. Diagonal cells (in green) represent 
correctly classified instances, while off-diagonal cells (in red) 
indicate misclassifications. The overall performance is 
impressive, with the model correctly classifying 97.80% of 
the instances (2445 out of 2500) and misclassifying only 
2.20% (55 out of 2500). Notably, "AL Fault" has the highest 
accuracy (99.00% correct), while "Top" has the highest 
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misclassification rate (4.00%), indicating a specific area for 
potential improvement. The table also includes sum totals for 

each class, providing a comprehensive overview of the 
model's classification capabilities. Figure 8 showing detailed 
performance tabulation was obtained by computing the 
relevant performance indicators from Figure 7. 

Figure 7 CNN detailed performance. 
 
Discussion of these results illustrates the inherent trade-offs 
between precision and recall metrics across different 
algorithms. CNN and RF, with their balanced precision and 
recall, are suited for applications where both false positives 
and false negatives carry significant consequences, providing 
a robust option for complex classification tasks. The perfect 
precision of DBSCAN and SVM suggests their utility in 
scenarios where the cost of false positives is high, making 
them ideal for applications requiring high confidence in the 
prediction of positive instances. However, their lower recall 
rates indicate a potential shortfall in identifying all actual 
positive instances, which could limit their application in 
scenarios where missing any positive instance carries a 
higher risk. kNN, while slightly less precise than SVM or 
DBSCAN, offers a good compromise between precision and 
recall, making it a versatile choice for many practical 
applications. These results underscore the importance of 
choosing the right algorithm based on the specific 
requirements and constraints of the task at hand, considering 
the balance between identifying relevant instances accurately 
while minimising false identifications. Although these 
algorithms have various degree of success, they still 
overperform traditional thresholds technique which precision 
is 59.8%. 

Comparing the machine learning model performance from 
the literature with the metrics provided reveals a notable 
advancement in precision, recall, and F1-score. While the 
literature highlights variances in SVM accuracy from 20% to 
80% across applications, this implementation showcases a 
substantial leap approaching 100% precision for SVM, 
underscoring a highly effective application or different 
context. Similarly, The CNN and kNN models not only 
surpass some of the literature's DNN and CNN benchmarks 
with CNN achieving a near parity with the highest reported 
accuracy of 94.3% (Sresakoolchai & Kaewunruen, 2022) but 
with superior precision and recall. The inclusion of DBSCAN 
in this analysis, demonstrating a 100% precision, further 
highlights the potential of selecting and tuning models to suit 
specific data characteristics and problem contexts. This 
synthesis underscores the importance of advanced model 
fine-tuning, the choice of metrics for performance evaluation, 
and the adaptability of machine learning algorithms to 
achieve higher efficacy in complex, non-linear problem 
spaces, especially in critical applications like fault detection 
in railway systems. In terms of training time, Figure 6 shows 
the models average estimated time (in blue) and their 
standard deviation denoted as Std (orange). Random Forest 
(RF) and Convolutional Neural Network (CNN) methods 
demonstrate the shortest training times, approximately 1000 
and 1200 seconds respectively, with minimal variability. 
These observations highlight that while SVM is 
computationally intensive, RF and CNN are more efficient, 
making them suitable choices when computational resources 
or time are limited. 

 
Figure 8 Average Model training time. 

4. CONCLUSION 

This paper presents a machine learning methodology that 
successfully improves false alarm rate of railway track 
quality inspections by 38%. While the datasets examined in 
this paper only pertain to one specific route, the methods 
presented here are applicable to all other railway lines across 
Britain, since the same NMT inspection vehicle is used.  

In the railways, repair interventions are costly, typically 
requiring a manual confirmation of the fault severity, parts, 
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labour, travel, service disruptions (denial), and penalty fees, 
as well as being hazardous for the on-foot personnel 
involved. The ability to correctly diagnose faults also ensures 
unnecessary speed restrictions are removed, improving 
journey times and passenger comfort. Evidently, the 
proposed methodology can potentially have considerable 
financial impact.  

Future work includes an analysis of the potential cost savings 
achieved using this methodology as well as the integration of 
context knowledge in the diagnostics.  
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ABSTRACT 

This study proposes an approach to monitor multiple 
components in complex mechanical systems using a single, 
externally placed remote sensor. In automobiles and 
petrochemical plants, where numerous components (e.g., 
powertrain, bearing, and gear), sensor placement is often 
compromised by cost and installation environment 
constraints, resulting in sensing the components far from the 
regions of interest. To address this challenge, this paper 
proposes an Operational Transfer Path Analysis (OTPA)-
based approach that derives the transfer functions between 
the vibration excitation source and the measurement point 
(i.e., receiver). The model for OTPA enables the reverse 
estimation of the excitation source’s signal from the receiver. 
Subsequently, the estimated (i.e., synthesized) source signal 
is fed into a diagnostic model to identify system faults. The 
OTPA and diagnostic models are constructed using neural 
network architectures, enabling better adaptation to 
operational conditions and system-induced nonlinearities. 
The proposed approach is validated from case studies using 
hydraulic piston pumps in construction vehicles and next-
generation electric vehicles. 

1. INTRODUCTION 

Rotating machine components inevitably produce vibrations 
during operation, which sensitively reflect the health 
condition of the rotating machines. Hence, vibration data is 
predominantly used for fault diagnosis. Such data is often 
complex and high-dimensional, making effective analysis 
challenging. Several years ago, deep learning-based 

approaches were proposed for fault diagnosis in rotating 
machines. For instance, Zhao, Yan, Chen, Mao, Wang, and 
Gao (2019) significantly improved the accuracy of motor 
fault diagnosis using Convolutional Neural Networks (CNN). 
Their research demonstrates that CNN can successfully 
classify complex vibration patterns and detect early signs of 
faults in motors. Additionally, Chen, Zhang, Cao, and Wang 
(2020) utilized one-dimensional Nonlinear Output Frequency 
Response Functions and Stacked Denoising Auto-Encoders 
(SDAE) for diagnosing faults in Permanent Magnet 
Synchronous Motors (PMSM). The superiority of the 
proposed method was validated using data from simulations 
of nonlinear systems such as PMSMs in passenger vehicles. 

The existing methods discussed above input data captured 
from sensors attached to key rotating components such as 
motors and bearings into deep-learning models for fault 
diagnosis. Such approaches are effective when sensors can be 
installed at fault-sensitive points of the rotating machines. In 
the testbed of the rotating machines, multiple sensors can be 
attached at various points to diagnose rotating machines 
effectively using collected vibration data. However, in most 
operating rotating machines, vibrations arise from numerous 
rotating parts, and installing sensors at each potential 
vibration point is often impractical due to cost and 
environmental constraints. If it is possible to diagnose health 
conditions using a single sensor installed far from the 
vibration source, it could significantly reduce costs for data 
acquisition. Upon further literature review, several 
innovative studies were found. Choudhary, Mian, Fatima, 
and Panigrahi (2022) and Yao, Liu, Song, Zhang, and Jiang 
(2021) creatively proposed diagnosing rotating machines 
using non-invasive acoustic sensors. Even while acoustic 
sensors have the amazing benefit of being able to detect 
signals over long distances, their susceptibility to external 

Jeongmin Oh et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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noise can make them inappropriate for use in particular 
machines such as passenger vehicles. 

This paper proposes a novel approach to address two 
challenges: (1) difficulty in installing vibration sensors on 
various rotating components within rotating machines, and 
(2) reduced signal sensitivity and increased interference from 
external noise when using vibration signals measured at 
external points. Through Operational Transfer Path Analysis 
(OTPA), the vibration signal measured at an external point is 
converted into a vibration signal from the core vibration 
source, and faults are diagnosed using a denoising deep 
learning model. 

The remainder of this paper is organized as follows: Section 
2 describes the OTPA concept, which forms the theoretical 
background of this paper. Section 3 discusses the proposed 
approach. Section 4 presents two case studies using a 
hydraulic pump in a construction vehicle (CV) and a 
drivetrain of an electric vehicle to verify the proposed 
approach. Finally, Section 5 summarizes the content of this 
paper. 

2. THEORETICAL BACKGROUND 

OTPA is a technique that identifies and quantifies the paths 
through which vibration and noise are transferred from a 
source to a receiver (van der Seijs, de Klerk, and Rixen, 2016). 
Within rotating machines, the input excitation source and the 
output receiving point can be represented as shown in Figure 
1. The relationship between the input excitation source and 
the output receiving point can be modeled by Frequency 
Response Function (FRF) as in Eq. (1). through which the 
response at the receiving point due to an input at the 
excitation source can be calculated. 

( ) ( ) ( )  =X H Y                           (1) 

The transfer function is formulated as: 
(1) ( ) (1) ( )

1 1 11 1 1 1

(1) ( ) (1) ( )
1

M N
N

M N
r r M MN r r

x x H H y y

x x H H y y

    
     =    
        

 

(2) 

where r represents the total count of data sets collected for 
each point during operation.  

In the process of delineating the transfer function matrix, it is 
imperative to compute the inverse of the matrix X. However, 
typically, the matrix X is not a square matrix, its inverse 
matrix cannot be calculated. To overcome this limitation, the 
Singular Value Decomposition (SVD) technique is employed 
(Cheng, Zhu, Chen, Song, Zhang, Gao, Liu, Nie, Cao, and 
Yang, 2022). SVD enables the decomposition of the matrix 
X as shown in Eq. (3). 

=X UΣVT                                    (3) 

where U signifies the unitary matrix; Σ denotes the diagonal 
matrix constituted by singular values; and VT represents the 
conjugate transpose of the unitary matrix V. Through Eq. (3), 
it is feasible to obtain the pseudo-inverse of matrix X, a 
process equivalently captured in Eq. (4). 

1+ −=X VΣ UT                                  (4) 

Subsequently, the formulation of the transfer function is 
articulated as: 

= +H X Y                                      (5) 

 

 
(a) 

 
(b) 

Figure 1. Scheme of the transfer path: (a) gearbox, (b) 
electric vehicle chassis. 

3. METHODOLOGY 

This section presents the proposed approach in this paper. 
Section 3.1 elaborates on the selection of critical points 
within rotating machines for vibration signal acquisition and 
the preprocessing of these signals for the OTPA model. 
Section 3.2 discusses the architecture of the OTPA model, 
which transforms measured vibration signals at the receiver 
into the source vibration signals, and the architecture of the 
fault diagnosis model that inputs the synthesized vibration 
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signals. Finally, Section 3.3 describes the training procedure 
of the models and the metrics employed for performance 
evaluation. 

3.1. Data Acquisition and Signal Preprocessing  

For the deployment of the OTPA model, initial steps involve 
the identification of crucial data acquisition points. For 
instance, in a standard gearbox scenario, sources can be 
designated as the motor, the receiver as the output case, and 
transition locations as shafts 1, 2, and 3, as depicted in Figure 
2(a). Similarly, for electric vehicles (EVs), the source 
(excitation point) is determined as the motor, the receiver as 
the driver’s seat, and transition points include the shock 
absorber mount, subframe mount, and motor/reducer mount, 
illustrated in Figure 2(b). 

Subsequently, acquired vibration signals are converted into 
frequency spectra using the Fast Fourier Transform (FFT). 
To mitigate discontinuity issues stemming from finite signal 
length, a Hanning window is utilized. The overlap rate is 
50 %. 

 
(a) 

 
(b) 

Figure 2. Source, receiver, and transition locations:  
(a) CV gearbox, (b) EV chassis. 

3.2. Model Building 

The proposed model framework, as shown in Figure 3, is 
comprised of an OTPA deep learning model and a drivetrain 
fault diagnosis deep learning model. The OTPA deep 

learning model features two serially connected pairs of a 
feature extractor and a regressor. The initial OTPA module 
pair aims to model the transfer function relationship between 
the receiver signals and those of the transition locations. The 
subsequent pair focuses on modeling the transfer function 
relationship between the transition location signals and the 
excitation source signals. 

Feature extractors are composed of 1D convolutional layers, 
with subsequent regressors mapping the extracted features to 
vibration signals at transition locations and the drivetrain. 
Signals measured at the receiver, upon traversing the first 
feature extractor and regressor combination, are transformed 
into vibration signals at transition locations; these are then 
converted into drivetrain vibration signals via the second 
combination. The final loss function, as represented in Eq. (6), 
summation of the L1 losses at transition locations and the 
drivetrain. 

total trans sourceL L L= +                            (6) 

where Ltrans represents the loss at transition locations; and 
Lsource denotes the loss at the excitation source. The proposed 
deep learning model is trained to minimize the combined loss 
of transition and excitation source locations. 

The difference between the proposed deep-learning-based 
OTPA and conventional OTPA methods lies in the feature 
extractor. Traditional OTPA methods calculate output signals 
for specific input signal frequency components using transfer 
functions, assuming linear independence among 
measurement directions and locations (de Klerk & Ossipov, 
2010). However, such assumptions do not hold when 
nonlinear interactions within rotating machine components 
exist. Conversely, the proposed method integrates all 
frequency components as a singular input to the feature 
extractor for overall output calculation. Furthermore, the 
feature extractor leverages activation functions within each 
layer to learn the nonlinearities between measurement 
directions and locations. Significantly, 1D convolutional 
layers facilitate the learning of local band-specific features 
within the frequency domain, an advantage under variable 
speed conditions common in rotating machines. 

The preprocessing stage involves augmenting the receiver 
vibration signals with Gaussian noise of varying intensities, 
creating a dataset with a broad range of signal-to-noise ratios 
for deep learning model training. While the input data for 
model training incorporate noise-enhanced signals, the 
output data utilize the original, unaltered vibration signals. 
The objective is to train the deep learning model on input data 
variability, thus ensuring signal transformation accuracy 
against external noise influences. This approach anticipates 
effective vibration signal conversion even in harsh 
operational conditions characterized by significant external 
noise. 
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The deep learning model for fault diagnosis employs a 
conventional Multi-layer Perceptron (MLP) architecture. 
Input data consist of triaxial (x, y, z) drivetrain frequency 
domain vibration signals. Parallel-configured MLPs for each 
channel extract data features, which after layer normalization, 
are concatenated. The combined features traverse another 
MLP layer, ultimately outputting indices pertaining to fault 
types. 

 

 
Figure 3. Model construction in the proposed approach. 

3.3. Model Training and Performance Evaluation 

The synthesized source vibration signals from the deep- 
learning-based OTPA model are inputted into a trained fault 
diagnosis deep learning model for assessing the rotating 
machines’ condition. Activation functions across layers in 
both the OTPA and fault diagnosis models utilize the 
Rectified Linear Unit (ReLU), with loss functions employing 

L1 and cross-entropy functions, respectively. The optimizer 
of choice is Adam. 

To objectively evaluate the deep learning models’ 
performance, k-fold cross-validation is conducted. The Mean 
Absolute Error (MAE) metric assesses the regression fit of 
the OTPA model. Additionally, accurately realizing local 
band amplitude fluctuations in the synthesized vibration 
spectrum, akin to the measured spectrum, is crucial. This 
aspect can be assessed through variance, thus employing the 
correlation coefficient as an auxiliary performance metric. 

4. EXPERIMENTS 

4.1. Case Ⅰ: Hydraulic Piston Pump 

Hydraulic piston pumps are integral in various industries 
such as construction, maritime, and mining for energy 
conversion processes. Compared to electric vehicle systems, 
hydraulic piston pump systems usually have shorter distances 
between the excitation source and the receiver, resulting in 
less variance due to external noise. This study investigates the 
denoising efficacy of the proposed method by artificially 
introducing external noise to vibration signals obtained at the 
receiver. 

 

 
Figure 4. Hydraulic piston pump testbed, measurement 

points, and transfer path.  

4.1.1. Overview  

A hydraulic piston pump used in a 22-ton excavator was 
selected as the subject of our test bed, depicted in Error! 
Reference source not found.. The pump operates at 1800 
rpm with a discharge pressure maintained at 350 bar. It is 
equipped with an axial piston pump at both the front and rear, 
forming a pair. Artificial defects were introduced into the rear 
pump piston. 

The primary failure modes of axial piston pumps are known 
to be surface wear between the piston and slipper. Wear 
occurs due to the chemical degradation of internal lubricants, 
potentially leading to piston detachment from the slipper, 
ultimately damaging the piston pump. Based on an 
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understanding of these failure origins, mechanisms, and 
modes, piston surface defects were simulated by artificially 
altering the piston surface tolerances, thereby mimicking 
increased part tolerances. Tolerances ranging from 0 to 15 μm 
were classified as normal, 90 to 120 μm as partially-degraded, 
and 120 to 150 μm as severely-degraded. 

Assuming the front pump as the receiver and the rear pump 
as the excitation source (i.e., the location of fault occurrence), 
it was hypothesized that utilizing the synthesized vibration 
signal from the front to the rear pump for diagnosis could 
achieve higher accuracy. This is because the front pump, 
physically distant from the actual fault-occurring rear pump, 
acquires vibration signals that are more susceptible to 
external noise and contain attenuated signals from the rear 
pump. 

 

 

 

4.1.2. Data Acquisition and Signal Preprocessing 

Vibration data were collected under the conditions detailed in 
Error! Reference source not found. using triaxial 
accelerometers mounted on the axial piston pump. As 
described in Section 3.1, the acquired signals were 
preprocessed and converted into frequency spectra using FFT. 
A Hanning window of 10,240 data points was used without 
overlap between consecutive windows. The frequency 
domain of the transformed vibration signals ranged from 0 
Hz to 5,120 Hz. For data set efficiency, frequency domains 
from 0 Hz to 1,280 Hz were utilized. 

To simulate environments with greater distances between 
vibration acquisition points and more susceptibility to 

external noise than the hydraulic piston pump samples used 
in this study, data was augmented by adding Gaussian noise 
to the assumed receiver signal (front signal), thereby 
decreasing the SNR as detailed in Error! Reference source 
not found.. 

4.1.3. Model Construction and Training 

The architecture of the OTPA deep learning model consists 
of 1D CNN and FC layers, incorporating feature extractors 
and regressors. Input data comprise frequency spectra of 
triaxial vibration signals measured at the front pump, while 
output data consist of the rear pump’s triaxial vibration signal 
spectra. Hyperparameter optimization, conducted empirically, 
set training epochs at 150, batch size at 64, and learning rate 
at 0.0001. 

For the fault diagnosis deep learning model, the inputs consist 
of three-channel excited source spectra with 1,280 data points. 
Outputs predict the fault vector. Hyperparameter 
optimization resulted in setting training epochs at 50, batch 
size at 64, and learning rate at 0.0001. This case study 
implemented a five-fold cross-validation. 

4.1.4. Results 

Vibration signal synthesizing results are presented in Figure 
5. Using the conventional SVD-based OTPA method, MAE 
values of 0.0106 m/s² for the original test dataset and 0.0437 
m/s² for the dataset with the lowest SNR of -10 dB were 
observed. In contrast, the proposed method yielded MAE 
values of 0.0057 m/s² for the original dataset and 0.0070 m/s² 
for the -10 dB SNR dataset, demonstrating superior 
performance across all SNR datasets compared to the existing 
method. Notably, despite all methods showing increasing 
error trends with higher noise levels, the proposed method 
exhibited significantly lowered error growth rates, indicating 
its robustness against noise. Correlation coefficient 
comparisons also affirmed the superior performance of the 
proposed method, highlighting the effectiveness of the 
proposed deep learning-based vibration signal synthesizing 
method. 

Piston fault diagnosis outcomes, comparing front signals to 
synthesized rear pump signals, are illustrated in Figure 6. 
Diagnosis performance using front signals was evaluated 
based on models trained on identical front signals, whereas 
diagnosis with synthesized rear signals was based on models 
trained on actual rear signals. Up to SNR 20 dB, both front 
and synthesized rear signals demonstrated near-perfect 
diagnostic accuracy. However, as noise levels increased, the 
diagnostic accuracy based on front signals declined sharply, 
whereas the accuracy based on synthesized signals remained 
relatively stable. Notably, for datasets not included in the 
training process with SNR of -10 dB, front signals showed 
the diagnostic accuracy of 38.59%, while synthesized signals 
achieved a significant difference of up to 89.08%. This 
indicates that, in noisy environments, inputting synthesized 

Table 1. Experimental setup for hydraulic piston pump 
testbed. 

 
Operation condition 1800 rpm 
Load condition 350 bar 
Oil temperature 50 °C 
Number of samples 3 EA 

Fault condition 
(Clearance) 

Normal (0~15 μm) 
Rear partially-degraded 
(90~120 μm) 
Rear severely-degraded 
(120~150 μm) 

Sampling rate 10,240 Hz 

Measurement points 6 channels (Rear, front x, y, 
z axis) 

Acquisition time 900 sec 
 

Table 2. Train and test dataset configuration for case Ⅰ. 
 

Training Original, 
SNR 20, 10, 0 dB 

Test Original, 
SNR 20, 15, 10, 5, 0, -5, -10 dB 
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signals from the front to the rear pump enables better 
differentiation of piston defects, demonstrating the OTPA 
model’s effectiveness in denoising. 

 
(a) 

 
(b) 

Figure 5. Performance comparison of the proposed with 
existing methods for vibration signal conversion: (a) 

Maximum absolute error and (b) Correlation coefficient. 
 

 
Figure 6. Accuracy comparison of the proposed and existing 

methods in fault diagnosis. 

 
 

 
Figure 7. Driving speed profiles. 

 

4.2. Case Ⅱ: Electric Vehicle Drivetrain 

This case study sought to validate the efficacy of the 
proposed method by implementing it to EVs in the field, 
synthesizing vibration signals acquired from the driver’s seat 
into drivetrain signals for fault diagnosis. This section 
consists of subsections including data acquisition and signal 

Table 3. Experimental setup for electric vehicles. 
 

OTPA setup 

Sources: electric motor, gearbox 
Transitions: mounts, subframe, G-bush, 
knuckle, shock absorber 
Receiver: driver’s seat 

Driving 
conditions 

Constant speed of 30, 50, 80, 100 km/h 
Full acceleration from 0 to 120 km/h with 
wide open throttle (WOT)  
50% acceleration from 0 to 120 km/h with 
middle tip in (MTI) 

Measurements Sampling rate: 25,600 Hz 
Data acquisition duration: 25~65 seconds 

 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 468



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

7 

preprocessing, model building, training, and performance 
evaluation, and results. 

4.2.1. Data Acquisition and Signal Preprocessing 

Vibration data from an electric vehicle, having completed 
approximately 300,000 km of operation, were collected. 
Experimental conditions are detailed in Error! Reference 
source not found.. Using a triaxial accelerometer (DYTRAN 
3093M4) with the sampling rate of 25,600 Hz, data were 
acquired from key components within the EV chassis. The 
EV drivetrains, comprising motor and gearbox components, 
were prepared by installing faulty or healthy components to 
simulate different health condition combinations. Data 
collection covered various driving conditions, including 
constant speeds of 30, 50, 80, 100 km/h, and dynamic 
acceleration-deceleration cycles (Wide Open Throttle; WOT 
and Middle Tip In; MTI), as illustrated in Error! Reference 
source not found.. 

Following the methodology outlined in Section 3.1, collected 
vibration signals underwent preprocessing before being 
transformed into frequency spectra using the Hanning 
window of 25,600 data points and the 50% overlap between 
consecutive windows. The frequency range of the 
transformed signals was from 0 to 12,800 Hz. The data from 
0 to 4,000 Hz deemed most informative for the dataset. 

4.2.2. Model Building, Training and Performance 
Evaluation 

The input to the OTPA deep-learning model consisted of 
triaxial vibration spectrum data acquired from the driver’s 
seat. These signals were processed through first feature 
extractor and regressor to convert them into transition 
locations vibration signals, which were then further 
converted (or synthesized) into drivetrain vibration signals 
via second feature extractor and regressor. After optimizing 
hyperparameters, the training epochs was 150; the batch size 
was 64; and the learning rate was 0.0001. Performance 

evaluation of the OTPA model was segmented into constant 
speeds, acceleration, deceleration, and overall conditions. 

The drivetrain fault diagnostic deep-learning model followed 
the same approach as described in the previous case study. 
Inputs were the frequency spectra of the converted drivetrain 
signals, with outputs categorizing into four classes: “normal,” 
“faulty motor,” “faulty reducer,” and “faulty motor and 
reducer.” After optimizing hyperparameters for the drivetrain 
fault diagnosis model, the training epochs were 50; the batch 
size was 64; and the learning rate was 0.0001. The EV 
drivetrain fault diagnosis model’s performance was evaluated 
under interpolation and extrapolation conditions. In the 
interpolation condition, models were trained using datasets 
encompassing all three driving profiles (constant speeds, 
WOT, MTI), then tested on the same driving conditions. For 
extrapolation, models were trained exclusively on WOT 
datasets and tested on constant speeds and MTI datasets not 
used during training. A three-fold cross-validation was 

conducted for this case study. 

4.2.3. Results 

The performance of the proposed models was presented in 
Error! Reference source not found.. The proposed model 
showed the MAE of 11.47 dB and the sum of correlation 
coefficients of 1.42. The conventional SVD model showed 
the MAE value of 16.23 dB, significantly higher by 41.4% 
compared to the proposed model. The sum of correlation 
coefficients was 25.4% lower at 1.06 than the proposed 
model. This underscores the superior performance of the 
proposed model in the operational transfer path analysis. 

Subsequent fault diagnosis using the synthesized signals was 
performed. The performance of the drivetrain fault diagnostic 
deep-learning model was divided into interpolation and 
extrapolation conditions for evaluation. The drivetrain fault 
diagnostic results for each input signal are summarized in 
Table 5. Interpolation performance showed nearly 100% 
diagnostic accuracy for both actual driver’s seat and 

Table 4. Performance evaluation of OTPA models in case of EV. 
 

Transfer path Driving speed 
profile 

Mean absolute error (dB) Correlation coefficient 

Proposed method SVD Proposed method SVD 

From driver’s seat 
to transition 
locations 

Constant speed 5.58 6.17 0.77 0.73 
WOT 5.84 6.22 0.67 0.66 
MTI 5.81 6.31 0.70 0.67 
Average (=A) 5.67 6.21 0.74 0.70 

From transition 
locations to 
drivetrains 

Constant speed 5.47 10.25 0.70 0.37 
WOT 6.60 9.16 0.63 0.39 
MTI 6.24 9.89 0.64 0.31 
Average (=B) 5.80 10.02 0.68 0.36 

From driver’s seat 
to drivetrains Total (= A + B) 11.47 16.23 1.42 1.06 
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drivetrain signals, and similarly high accuracy for signals 
synthesized via the proposed methods. However, the 
conventional SVD approach showed a slight decline to 95.60% 
accuracy when performing OTPA under varying operational 
and condition settings (multiple SVDs), and a significant 
decrease to 34.83% when a single model approach (single 
SVD) was applied across all conditions. 

For extrapolation, the driver’s seat signals exhibited a 
diagnostic accuracy of 90.38%, and drivetrain signals 
showed 99.32% accuracy. This indicates that the diagnostic 
model distinguishes drivetrain fault modes more effectively 
when drivetrain signals are inputted under new driving 
conditions than when driver’s seat signals are used. 
Additionally, synthesized drivetrain signals, excluding the 
conventional SVD method, also demonstrated nearly 100% 
accuracy, similar to actual drivetrain signals. This indicates 
that the synthesized signals accurately reflect the fault 
characteristics of actual drivetrain signals, suggesting the 
effectiveness of the proposed method in accurately 
diagnosing faults in electric vehicle drivetrains under various 
operational conditions. 

 

5. CONCLUSION 

This paper presented an approach based on Operational 
Transfer Path Analysis (OTPA) deep-learning modeling for 
diagnosing faults in rotating machines. The proposed method 
aimed to address two primary challenges: (1) the absence of 
vibration sensors at the excited source and transition 
locations in rotating machines, and (2) the reduction in signal 
sensitivity due to external noise interference when utilizing 
vibration signals measured at the receiver. Initially, the 
transfer paths between the noise generation point (source), 
transition locations, and the sensor acquisition point (receiver) 
were defined. Subsequently, a denoising deep-learning model 
was proposed based on the OTPA concept to capture the 
nonlinear relationships between the frequency spectra of the 
excited source, transition locations, and the receiver. To 
validate the effectiveness of the proposed approach, two case 
studies were conducted. The case study involving a hydraulic 

piston pump in construction vehicles demonstrated that the 
OTPA deep-learning model could convert noise signals into 
target point vibration signals, significantly reducing noise. At 
the SNR of -10 dB, the signal conversion accuracy, based on 
MAE values, indicated that the proposed approach exhibited 
approximately six times lower error and 50% higher fault 
diagnosis accuracy than conventional methods. In the case 
study using an operational electric vehicle, the signal 
conversion accuracy improved by 59% under various 
operational conditions compared to the conventional SVD 
method, and the fault diagnosis accuracy of the proposed 
approach improved by about 10% under new operational 
conditions compared to existing seat signal-based diagnostics. 

The contributions of this research can be summarized in three 
key points. First, we proposed an approach that allows for the 
diagnosis of excited sources and transition locations in 
rotating machines without installed vibration sensors, using 
OTPA deep-learning model. Second, the proposed deep-
learning model for OTPA demonstrated its capability to 
address nonlinearities occurring under various operational 
and fault conditions. Lastly, we introduced a deep learning 
model that effectively reduces the impact of external noise 
infiltrating during machine operation and amplifies the 
excited source’s vibration signal. 
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ABSTRACT 

Autonomous vehicles (AVs) are undergoing level 4 
technology development and should have a system that can 
be operated without driver’s intervention, so that it must be 
possible to diagnose failures and predict life cycle 
themselves. In this study, we propose a technology to 
estimate signal changes and sensor faults through transfer 
learning-based domain generalization (TLDG) using limited 
actual vehicle test information from LiDAR for autonomous 
vehicles. Because autonomous vehicles operate in various 
climate/weather conditions over the world, their mechanical, 
electrical and electronic components must also have stable 
performance in all environmental conditions. However, an 
electronic device, especially laser diode (LD), which is one 
of core components of LiDAR, shows various degradation 
aspects depending on environmental conditions. We acquired 
multivariate LiDAR performance data under various 
environmental conditions through an actual vehicle test 
driving of about 2,000 km in summer and winter, and based 
on this, we create the LiDAR fault diagnosis and performance 
prediction model generalized to the domain under various 
environmental conditions. Fault prediction and estimation 
model created through summer and winter data in the 
environment domain will also adapt to other environmental 
conditions such as spring and fall. To develop highly accurate 
performance estimation models under various environmental 
conditions based on limited data, it is very important to 
extract correlations and characteristics between data, 
including environmental conditions. We employ the data 
augmentation techniques to solve the problem of lack of 
training data and apply bi-directional Bayesian transfer 
learning to generalize data and models under uncertainty. To 
prove the effectiveness of the present study, the data from 

actual vehicle tests conducted at different temperatures will 
be divided into train data and test data, and the validity of the 
generalized degradation performance estimation model will 
be statistically validated. The proposed domain 
generalization method, i.e., TLDG can be utilized to estimate 
signal changes and sensor faults in LiDAR under 
unexperienced environmental conditions such as weather 
changes, and even freezing and hot regions. 

1. INTRODUCTION 

With the advancement of automobile technology, such as 
autonomous driving, the need for technology to diagnose and 
predict automobile failures is emerging. For example, there 
are AI-based vehicle big data analysis, pre-failure diagnosis 
and remaining life prediction of parts and systems, and 
predictive maintenance technology, and these technologies 
ultimately aim to improve vehicle safety and availability. In 
level 4 autonomous driving, there is no driver intervention, 
so the system must independently diagnose and predict 
failures to ensure safety. Real-time fault diagnosis of 
autonomous systems is being studied in a variety of ways 
using data-driven approaches.  

AV sensors are composed of composite materials and 
various electronic elements. As a result, the performance of 
the sensor may vary depending on the weather environment, 
and abnormal operation of the sensor may occur under severe 
conditions (Zhao et al., 2023). Abnormality diagnosis is 
possible by detecting and scoring abnormal information from 
changes in sensor performance. Real-time fault diagnosis of 
autonomous driving systems is being studied in a variety of 
ways, mainly using edge artificial intelligence (edge AI) and 
data-based approaches (Gültekin et al., 2022). Research on 
anomaly detection based on statistical and classification 
techniques has been active (Ahmed et al., 2016), and recently, 
research on AI technique-based methods such as adversarial 
learned denoising shrinkage autoencoder (ALDSAE) has also 

Sanghoon Lee. et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 472



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

2 

been actively conducted in the field of autonomous vehicles 
(Fang et al., 2023). 

Failure prediction and evaluation using transfer learning-
based domain generalization presents an innovative approach 
to solving key problems in the automotive industry and 
robotics fields (Xu et al., 2019). Domain generalization 
techniques frequently provide solutions to rotating machinery 
fault diagnosis problems. The initial approach developed and 
verified the model under conditions where both training and 
test data were available. Recently, a method has been 
proposed to generalize learned knowledge to a new target 
domain without assuming the availability of test data (Li et 
al., 2020). Additionally, a new approach called cross-domain 
augmentation diagnosis, which enables robust defect 
detection even when the target domain is unknown, is also 
being studied (Li et al, 2023). However, previous research 
addresses domain generalization and domain expansion 
techniques for signals with repetitive operating patterns, such 
as rotating devices. This is difficult to apply in problems 
considering multiple stresses because only limited 
parameters are covered when performing domain 
generalization. Because automobiles are used all over the 
world, all systems must operate in a variety of temperature 
environments. Therefore, when developing safety 
improvement technologies such as failure prediction, they 
must be trained or verified considering the distribution of 
various climate environments. However, due to the 
considerable time and financial investments required for 
collecting data through sensor performance measurements 
across various temperature environments, there are inevitable 
limitations to the available training and test datasets. 
Moreover, since sensor components comprise various 
electronic elements and composite materials, they 
demonstrate different operating characteristics upon 
temperature fluctuations. Consequently, there is the potential 
for poor performance when diagnosing faults based only on 
limited training data. This problem can be solved through 
transfer learning-based domain generalization technology, 
and in this study, we aim to solve the fault detection problem 
of LiDAR sensors by applying this technology. 

In this study, we review the failure modes of LiDAR sensors 
and select target parameters necessary for failure diagnosis 
and prediction. The main contributions of the study are as 
follows: 

• Through FMEA analysis of LiDAR defects, we 
investigate the causal relationship of LiDAR failures that 
may occur in the vehicle environment, and this allows us 
to present a practical and versatile model as it deals with 
hardware level defects by selecting key parameters. 

• To solve the problem of accuracy degradation due to 
outliers encountered in domain generalization problems, 
we propose an Archimedes spiral-based preprocessing 
method based on the relationship between input and 
output data. 

• The proposed method provides considerable diversity 
and flexibility by allowing sensor faults to be predicted 
with minimal information under diversifying 
environmental conditions, and the same method can be 
easily applied for other failure modes. 

The rest of the paper is organized as follows. Section 2 gives 
a failure mode analysis to select key parameters for this study. 
Section 3 presents preprocessing techniques for outlier data, 
and Section 4 describes the domain generalization method. 
The experimentally study is shown in Chapter 5 and finally 
we conclude in Chapter 6. 

2. FAILURE MODE ANALYSIS 

LiDAR uses a laser light source to measure distance and 
recognize the surrounding environment and obstacles. It 
consists of various components such as laser diodes, 
thermoelectric elements, signal processing modules, optical 
lenses, and galvano scanners. In the driving environment, 
stresses such as heat, vibration, and electrical noise 
continuously occur, which can causes breakdowns of LiDAR 
sensors (Chang et al, 2023). The potential failure modes of 
frequency modulated continuous wave (FMCW) LiDAR are 
shown in Table 1. Thermal management of FMCW lidar 
sensors is directly related to sensor performance. When 

Table 1. Failure mode analysis of AV LiDAR sensor 
 

Components Potential failure mode Potential effects of failure Potential factors of failure 

Laser 
device 

Decrease light intensity Loss of distance information High temp/humid., Thermal fatigue 
Fail to detect a returned signal Increase in false detection High humid, Vibration 
Fail to keep managed temp. Non-operation of the sensor High/Low temperature 

Control 
board 

Open circuit Non-operation of the sensor Thermal fatigue, Vibration 
Short circuit Unintended operation Ingress of dust and moisture 

Lens 
Fail to focal length Increase in missed/ false detection Thermal fatigue, Vibration 
Surface contamination Increase in missed/false detection Ingress of dust and moisture 

Galvano- 
meter 

Poor responsiveness of actuator Decrease in sampling rate of scanning Low temperature, Vibration 
Optical axis misalignment Increase in missed/false detection Thermal fatigue, Vibration 
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analyzing design vulnerabilities through accelerated stress 
testing, a failure mode in which the laser output of the LiDAR 
sensor was suddenly cut off under high temperature 
conditions was identified. This failure mode occurs when the 
ambient temperature of the laser diode module rises above 
approximately 75°C. Considering the climate environment of 
hot weather regions and the sensor self-heating, it can be 
classified as a failure mode that requires management 
because it is a condition that can be sufficiently exposed. The 
laser diode module uses a Peltier-based thermoelectric cooler 
(TEC) and controls voltage and current to enable the laser 
diode to maintain a constant temperature. However, when the 
ambient temperature exceeds a certain range, TEC control 
ability is lost, and thermal runaway of the laser diode module 
occurs. 

3. OUTLIER DETECTION 

In this paper, a study is conducted using the data of the 
multivariate database acquired through actual vehicle driving 
test. In the case of actual vehicle driving test data, outliers 
occur due to uncertainty factors such as road environmental 
conditions, equipment defects, and frequency errors. To 
create a robust model, these outliers must be selected and 
processed in advance and used for training. 

As a study on outlier detection, a study has been conducted 
to propose a fast diagnostic method for internal short circuit 
(ISC) through local-gravitation outlier detection (Yuan et al, 
2023). There is also research on the performance 
improvement of mechanical failure diagnosis based on audio 
signal analysis (MFDA) based on outlier detection (Tang et 
al, 2022).  

We would like to propose a signal processing method 
through Archimedes spiral as a new outlier detection method. 
Using the following method, Archimedes spiral can be used 
to create a deep learning model that is generalized to the 
domain without overfitting. When Archimedes Spiral is 
expressed using a polar coordinate system, it can be 
expressed as Equations (1) using the real constant 𝑎,  𝑏 and 
the angle 𝜃. Changing the parameter b controls the distance 
between loops. Since we want to check that the output value 
changes for the input variable, we just need to check how the 
distance of the spiral changes at a specific angle set as the 
input variable. Here, when input data is 𝑥!"#$%  and output 
data is 𝑦&$%#$%, it can be expressed as Equation (2). Next, to 
solve the problem that is not visually clear by setting the 
starting point as the origin when drawing the spiral, the data 
was normalized between 2𝜋 and 4𝜋 at the start of the second 
spiral, as shown in Equation (3) and (4). When the data is 
sorted through this, data including the uncertainty factor 
appears as an area, and data processing based on the 
confidence interval is possible according to the data area.  

 

 𝑟 = 𝑎 + 𝑏 ∙ 𝜃 (1) 

 

 (𝑟, 𝜃) = (𝑥!"#$% ∙ 𝑦&$%#$%, 𝑥!"#$%) (2) 

 

 

 

𝑥"&'()*!+,- =
𝑥'). − 𝑥(!"	
𝑥()/ − 𝑥(!"

 (3) 

 

 

 

𝑥!"#$% = 2𝜋 ∙ 𝑥"&'()*!+,- + 2𝜋 

𝑦&$%#$% = 2𝜋 ∙ 𝑦"&'()*!+,- + 2𝜋 
(4) 

As illustrated in Figure 1, if you enter the temperature data 
of LiDAR in 𝑥 and the current TEC current to be estimated 
in 𝑦 , normal data and outlier data are distinguished. In 
addition, it is possible to statistically process the outlier of the 
data through the confidence interval. Ultimately, we want to 
create a regression deep learning model through the data 
classified as normal and generalize it to the domain. 

 
(a) 

 
(b) 

Figure 1. Archimedes spiral of LiDAR temperature to TEC 
current of laser diode, (a) Archimedes spiral, (b) 

Comparison of preprocessing results 
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4. TRANSFER LEARNING-BASED DOMAIN 
GENERALIZATION 

In this paper, we propose a transfer learning-based domain 
generalization method to overcome the limitations of data 
acquisition under various environmental conditions, 
including extreme conditions. It is known that transfer 
learning can improve predictive performance in terms of 
interpolation or extrapolation of the model by utilizing only 
a small amount of data from the target domain based on the 
model generated using the source domain (Weiss et al, 2016). 
However, domain generalization differs in predicting 
physical phenomena in the unseen domain region using 
improved models. We intend to gradually transfer a small 
amount of data to the target domain, use it to predict data in 
the new unseen area, and use it again as target data for 
transfer learning to generalize the domain. As illustrated in 
Figure 2, First, we created a regression model based on deep 
natural network (DNN) that predicts TEC current using 
temperature, humidity, current, and voltage data for the 
underlying source domain. Next, after importing the feature 
extraction area of the underlying source domain model to be 
untrainable, transfer learning was performed by adding new 
layers for transfer learning. 

 
Figure 2. Architecture of transfer learning 

5. EXPERIMENTAL STUDY 

5.1. Datasets 

In this paper, LiDAR data acquired through actual vehicle 
driving data in summer were used. Temperature, humidity, 
current, and voltage data were measured including TEC 
current of the Laser diode, and actual vehicle driving test data 
of more than 1000 km including city, country, and highway 
were acquired. The sensor used was the FMCW 4D LiDAR 
G-Series from Infoworks, and the internal and external 
temperatures of the sensor were measured using the SHT45-
AD1B temperature sensor from Sensirion. Actual vehicle test 
data was obtained by installing the LiDAR on a Hyundai 
Azera and collecting TEC current and temperature data under 
actual driving conditions. Through this, 283,706 data points 
were acquired every 0.25 seconds. As illustrated in Figure 3, 
The left axis represents temperature, and the right axis 

represents TEC current. The environmental temperature is 
28.96°C to 45.65°C, and in the case of TEC current, it may 
be confirmed that outlier exists. Among them, 268,402 data 
in which outliers were removed were selected through outlier 
detection based on Archimedes spiral. In addition, the ratio 
of training, validation, and test data was divided into 0.6, 0.2 
and 0.2, and normalization was performed and used for 
training and model evaluation. For training, the temperature 
range of the training data and the temperature range of the 
test data were set by setting the scenarios of interpolation and 
extrapolation, respectively. And for transfer learning, 0.5% 
of the test data was arbitrarily extracted and set as data from 
the target domain. 

 
Figure 3. Actual driving test data for temperature (°C) and 

TEC current (mA) 

5.2. Results 

This paper proposes a method for predicting data based on 
outlier detection and transfer learning using actual driving 
data. All data were utilized in a state where outlier detection 
was conducted by Archimedes spiral. This method shows 
superior performance compared to other preprocessing 
techniques. Specifically, when comparing accuracy using 
methods interquartile range (IQR) and Hampel filter, the 
outlier detection performance was 3.23% for method IQR and 
83.26% for method Hampel filter, while our proposed 
method demonstrated a performance of 100%. Before 
represents the result before performing transfer learning, and 
after represents the performance after transfer learning. First, 
looking at interpolation case 1, data from 35°C to 40°C were 
used as test data, and other data were used as training data. 
Although the error improved from 0.01 to 0.0009 based on 
mean absolute error (MAE), the r-squared of the DNN model 
was so good that the interpolation problem did not require 
transfer learning. This was also shown in the case of 
interpolation case 2. However, in the case of extrapolation, 
the performance error of the model before transfer learning is 
relatively large. However, if improvement is made through 
transfer learning, in case 3, it improved from 0.81 to 0.96 
based on r-squared, and MAE also improved from 0.027 to 
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0.010. Finally, in the case of case 4, which used only data up 
to 35°C as training data, it improved from 0.77 to 0.99 based 
on r-squared, and MAE also improved from 0.066 to 0.014. 
The results of case 4 are expressed visually through Figure 4.  
The prediction accuracy gradually decreases in the case of 
test data far from the area of the train data. However, after 
transfer learning, prediction accuracy has improved even in 
areas away from training data. 

 
Figure 4. Extrapolation result for Case 4 in Table 2 

6. CONCLUSION 

In this paper, we propose a transfer learning-based domain 
generalization model for FMCW LiDAR signals that change 
with external temperature changes. This introduces a new 
approach to predicting LiDAR sensor errors by allowing 
sensor behavior to be predicted in unseen regions. LiDAR 
failure mode analysis justifies the selection of TEC current as 
a predictor and experimentally demonstrates the nature and 
validity of this signal. Real-world driving data often contains 
outliers due to various errors, and using Archimedes Spiral-

based data preprocessing improves the prediction accuracy of 
the model. In the generalization task, temperature, humidity, 
current, and voltage data from the source domain were used, 
and transfer learning was performed using a DNN-based 
regression model and a new Dense Layer. The generalized 
model showed high accuracy and proved to be effective for 
extrapolation. Extensive training data covering a variety of 
climate conditions can further improve the accuracy of this 
model. The existing model was developed using only 
summer data, but future iterations will incorporate winter 
data to develop a domain generalized model that takes low-
temperature environments into account. Through 
interpolation methods, it may be possible to predict sensor 
failure under all climatic conditions in Korea. Our goal is 
failure prediction under severe weather conditions. This is an 
extrapolation technique, and we plan to develop a domain-
generalized model that can predict failures in hot areas like 
Phoenix or even in extreme cold areas like Minneapolis. This 
research could have important implications for diagnosing 
and predicting electronic component failures at the vehicle 
level and could be widely applied to other components as 
well. 
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ABSTRACT 

Predictive analytics with machine learning approaches has 
widely penetrated and shown great success in system health 
management over the decade. However, how to convert the 
prediction to an actionable plan for maintenance is still far 
from mature. This study investigates how to narrow the gap 
between predictive outcomes and prescriptive descriptions 
for system maintenance using an agentic approach based on 
the large language model (LLM). Additionally, with the 
retrieval-augmented generation (RAG) technique and tool 
usage capability, the LLM can be context-aware when 
making decisions in maintenance strategy proposals 
considering predictions from machine learning. In this way, 
the proposed method can push forward the boundary of 
current machine-learning methods from a predictor to an 
advisor for decision-making workload offload. For 
verification, a case study on linear actuator fault diagnosis is 
conducted with the GPT-4 model. The result demonstrates 
that the proposed method can perform fault detection without 
extra training or fine-tuning with comparable performance to 
baseline methods and deliver more informatic diagnosis 
analysis and suggestions. This research can shed light on the 
application of large language models in the construction of 
versatile and flexible artificial intelligence agents for 
maintenance tasks. 

1. INTRODUCTION 

Predictive analytics for product health management has 
attracted increasing attention from the industry with the rise 
of machine learning in the last decade. With the advent of 
advanced data processing and statistics methods, features and 
patterns of the system's running state can be captured from 
historical logs and sensor data. By doing this, potential 
system failure can be forecasted and allow people to outline 
the plan for maintenance or adjustment in advance of system 
deterioration. This can not only prolong the lifespan of the 

system but also lead to lower costs of periodic checking and 
overhauls in traditional preventive and reactive maintenance 
(Zonta et al., 2020).  

Since the 2010s, deep learning that builds upon artificial 
neural networks (ANNs) played an essential role in predictive 
analytics and performed state-of-the-art results in many 
situations. Without tedious and complex feature engineering, 
deep learning can be effectively and efficiently applied to 
different data formats and draw relatively accurate 
predictions in an end-to-end way compared to other methods.  

Even though the exciting breakthrough brought by deep 
learning for predictive maintenance, most of the research on 
this topic mainly focuses on boosting prediction metrics of 
the proposed methods such as precision or recalling rate, 
which provide limited information to the maintenance plan 
outlining (Roy et al., 2016). A higher prediction accuracy 
may indicate a more stable and reliable alarm in practical 
applications but does not necessarily suggest helpful decision 
support. It is practical and meaningful to know how to 
address an issue rather than merely anticipate it, especially in 
dealing with a complicated system containing numerous 
variables. Under this circumstance, predictions may only be 
treated as notifications and consequently ignored by human 
operators due to restricted proactive guidance. Thus, there is 
a strong call for extending machine learning beyond predictor 
to a more engaged advisor for action recommendation and 
insightful analysis (Matyas et al., 2017). 

The mentioned main issue cannot be overcome by pure data-
driven approaches based on statistics and algorithms since 
data collected from sensors only represent low-level signal 
patterns that are hard to analyze by human beings. Thus, it is 
difficult to form useful and helpful advice or guidance for 
decision-making (Sapna et al., 2019). To address this 
challenge, knowledge of contextual information is required 
to elaborate the prediction results into high-level 
representations such as natural language or graph-structured 
data so that human beings can view them straightforwardly. 
Hence, the industry calls for a more advanced agent system 
that can generate human-understandable descriptions for 
reviewing and validation based on detected faults.  

First Author (Haoxuan Deng) et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited. 
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The critical gap lies in the missing link between sources on 
the low-level data side and the high-level knowledge side. 

In the last five years, there has been dramatic progress in the 
natural language process (NLP) because of the occurrence of 
large language models (LLMs). By pretraining a very deep 
neural network with billions of parameters on an extensive 
textual corpus, the LLMs can be multi-task learners with 
impressive performances on a wide range of tasks including 
article summarization, multilingual translation, and text 
generation. More importantly, recent research indicates the 
emergent capability of the LLMs for multi-step reasoning to 
accomplish more complex tasks without much human 
supervision and hardcore programming (Bommasani et al., 
2021).  

This exciting phenomenon indicates a solution to the 
mentioned challenge that the link can be regarded as a step-
by-step transformation workflow starting from data to 
knowledge using LLMs with proper prompts. A basic idea is 
to allow LLMs to be aware of the fault in the system at first, 
and then parse relevant search queries related to the predicted 
fault for knowledge retrieval in the database. The obtained 
search results can then be combined and summarized as a 
document for action recommendation. In this way, the LLM 
is an information fusion unit to elaborate predictions with 
information from different databases for decision support.  

According to this motivation, in this research, GPT-4, a 
popular large language model released by OpenAI (OpenAI 
et al., 2023), is applied to implement the above idea. The 
agent is built upon a fault classification model and external 
knowledge databases for the retrieval-augmented generation 
of the system maintenance support documentation. In 
addition, a use case on linear actuator fault diagnosis will be 
conducted for proof-of-concept verification. In summary, the 
contribution of the paper can be summarized as: 

Develop an agent for linking prediction results with the 
knowledge base to generate descriptions for maintenance 
decision-support based on the large language model. 

The remaining of the paper is organized in the following 
structure. In section two, some related work of this research 
will be presented for a preliminary introduction to the critical 
concept used in the proposed method. In section three, the 
system diagram and the framework will be illustrated in detail 
including the principles and workflow of the method. Then, 
there is a use case for linear actuator fault diagnosis will be 
conducted and experiments will be carried out to first show 
the effectiveness of methods for fault detection without extra 
training and fine-tuning. After that, another experiment will 
show how the LLMs can output a more context-related 
conclusion for a more satisfactory decision support delivery 
based on predictions. 

2. RELATED WORK 

 

2.1. Random Convolution Kernel Transformation 
(ROCKET) for Time Series Classification 

For system state monitoring, multiple sensors will be 
installed on an asset to record a series of time-ordered data 
points during the system running. The collected time series 
will vary when the equipment works under different 
conditions, conversely, the time sequence data can represent 
in what situation the system is working and suggest what 
potential fault will probably be. To build the relationship 
between the time sequence with the corresponding system 
state, a classifier is the most effective way to implement, and 
this task is called Time Series Classification (TSC). It is one 
of the basic and essential time series mining that aims to 
assign unseen samples with labels in the training data by 
pattern exploitation. With TSC, a real-time collected time 
series can be categorized into states for a quick diagnosis. 
Therefore, the TSC is vital and commonly blind tightly to the 
industrial Internet of Things (IoT) for automatic system fault 
detection.  

However, it is a challenge to apply conventional statistical or 
machine learning methods for the TSC. The main reason is 
the continuity property of the sequence of observable data 
points along time. Unlike textual data, which can be 
discretized by a set of sub-words (tokens) for processing, it is 
difficult to figure out the proper segmentation and 
transformation of the given time series for dimensionality 
reduction. This will cause an issue called the ‘curse of 
dimensionality’ and the model will be hard to recognize and 
capture discriminative features in the data for categorization. 

There are fruitful results in TSC (Faouzi, n.d., 2022). 
Baseline methods such as K-nearest neighbors (KNN) 
classification with dynamic time warping (DTW), the bag-of-
pattern method (BoP), and the remarkable ensemble classifier 
HIVE-COTE are proposed for this purpose, but they suffer 
from heavy computation and memory usage. Approaches 
based on deep learning such as recurrent neural network 
(RNN), InceptionTime (Fawaz et al., 2019), and relatively 
new Transformer-based models (Nie et al., 2022) are 
becoming popular. Although these methods boosted the 
accuracy and are able to generalize to different datasets 
compared to traditional machine learning, the model has to 
be trained to optimize parameters for inference which are 
either time-consuming or resource-intensive. Even worse, all 
the deep learning methods require retraining when samples 
are out of training data leading to a low extendibility in 
industrial applications.  

To address these challenges, random convolution kernel 
transformation, short for ROCKET, was proposed to 
transform the time series into a vector representation using a 
random convolution kernel for classification (Dempster et al., 
2019). Unlike conventional convolutional neural networks 
(CNN), parameters in the ROCKET are generated randomly 
and require no optimization or fine-tuning during the data 
transformation. Without an iterative learning process, the 
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ROCKET is efficient in computation and can adapt to 
different time sequences. Also, the ROCKET combined with 
traditional classification models such as the 1-NN classifier, 
support vector machine (SVM), and ridge classifier can 
achieve or even exceed state-of-the-art TSC algorithms with 
lightweight computation in an endurable timespan.  

Therefore, considering the computational efficiency, 
extendibility, and performance, the ROCKET will be applied 
as the method for time series processing in this project. Using 
ROCKET as an encoder for the time series classification, the 
vectorization result will be processed and recognized by the 
LLMs to outline the prescription. 

2.2. Retrieval-Augmented Generation (RAG) 

Research on the application of LLMs in various workflow 
automation is conducted to unleash the power of LLM’s 
human-like logical reasoning and inference capability. 
However, one of the main challenges comes in the 
hallucination issue of the LLMs. It means that the fake or 
incorrect information will be generated by LLMs. This can 
cause failure in task performance and may hurt the 
trustworthy between humans and the LLMs when they are in 
cooperation (Huang et al., 2023). 

An effective approach for alleviating the hallucinating issue 
is to enable the LLMs to generate their responses based on 
some factual evidence from other existing sources such as the 
internet or knowledge databases. According to the retrieved 
information, the LLMs can follow the requirements and 
instructions given in the prompt to compile information that 
is rooted in ground truth and users’ demands. It combines the 
searching techniques and the generation ability of LLMs to 
offer reliable and user-friendly information to people. This 
concept is defined as retrieval-augmented generation (RAG). 
The RAG has successfully been used in text, image, and 
multimodality searching and generation, but the application 
in the time series analysis on industrial sensor networks is yet 
fully explored. This piece of research is an initial exploration 
of applying the same idea for time series classification and 
allowing the LLM can generate the document based on the 
prediction to mitigate the hallucinations. In this research, the 
RAG will be the main methodology for retrieving historical 
time series samples to label the newly arrived data as a 
prediction outcome. The fault analysis can then be generated 
based on the retrieved result by the LLM. 

2.3. Prompting Engineering, Chaining, and LLMs Agent 

To obtain desirable outcomes from the LLMs, it is crucial to 
craft proper instructions for model commanding, and this 
concept is referred to as prompt engineering. Depending on 
the emergent capability, the LLMs can generate responses 
following descriptions in the prompts, and this is an effective 
way to alleviate the hallucination issue. Despite the 
usefulness, it is also cumbersome to tune the proper prompt 
to get satisfactory outcomes in a trial-and-error way.  

Instead of composing zero-shot prompts fully manually for 
LLMs to arrive at solutions immediately, (Wei et al., 2022) 
proposed chain-of-thought prompting that breaks down 
complex tasks into sequential sub-tasks and encourages the 
LLMs to figure out answers to each problem. By doing this, 
the LLMs can enhance their ability to successfully carry out 
intricate tasks such as math reasoning and arithmetic 
computations. In addition, (Yao et al., 2022) developed the 
ReAct prompting to enable LLMs to incorporate external 
tools usage and observation results obtained after tools 
leverage into their reasoning activity. The experiment 
indicated an apparent improvement in performance for LLMs 
on interactive text-based games and online shopping tasks as 
compared to traditional imitation learning or reinforcement 
learning approaches. 

Furthermore, multiple prompts for different purposes can be 
serialized into a chain for workflow automation. Building on 
this advantage, the concept of the LLM agent, or AI agent, 
emerges to facilitate more functional applications of LLMs 
across diverse domains. The fundamental principle is to treat 
the LLMs as a connector or a controller among toolsets 
including databases, calculators, and web browsers to 
produce a series of actions based on their logical reasoning. 
In each step, LLMs can yield more reliable intermediary 
results and merge findings from prior stages to aggregate a 
more solid outcome in the final. Moreover, users can monitor 
the problem-solving process and understand the rationale 
provided by the agent, offering an opportunity for human 
intervention via a natural language interaction. Preliminary 
successful implementations of the LLMs agent in various 
fields are illustrated in (Xi et al., 2023).  

3. DESIGN OF THE CONTEXT-AWARENESS AGENT  

3.1. Initial Analysis 

To compile a report of fault diagnosis with fault type, fault 
description, and potential recovery or maintenance strategies, 

 
(a) 

 

 
(b) 

Figure 1. Different methods to convert predictions to 
descriptions (a). End-to-end generation (b). Multi-step 
transformation with the LLM 
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a direct way, as shown in Figure 1. (a), is to define a rule-
based system that allows the prediction to go through and 
route to a corresponding solution. Or to craft a dataset of 
prediction-solution pairs to train a model for transformation. 
However, defining rules and collecting datasets manually are 
human-labor intensive and time-consuming. Also, the 
predefined rule-based system or model is hard to update and 
extend to unseen situations. From this perspective, end-to-
end generation may be friendly in the development stage but 
may be challenging to maintain when the model or the system 
has been deployed in the production environment in 
industrial environments due to low adaptability to a 
dynamically evolving situation. 

Another way to consider this problem is to divide the 
transformation into a series of steps with the LLM, external 
database, and tools (usually a bunch of calling Application 
Programming Interface), as shown in Figure 1. (b). After 
receiving the prediction from the data processing step, LLM 
will be asked to recognize the fault based on the prediction 
result and try to reason about what problem should be solved 
based on providing the contextual background described in 
the documentation. The generated search queries will then be 
thrown to a database by LLM’s tools calling capabilities to 
retrieve relevant information on repairing suggestions. 
Finally, the LLM can be instructed to summarize all 
information into a report for human beings to review. 

In this way, the workflow can be independent of a fixed set 
of rules and ensure contextual information is involved in the 
final description generation. In each step, human operators 
can track and offer comments or feedback to inject their 
expertise into the agent by providing prompting to get a more 
comprehensive result. The essential idea of the proposed 
method is the multi-step generations based on factual 

evidence, which is the core idea of the RAG. In the following 
section, the details of the agent system will be illustrated. 

3.2. Overview of the Agent System 

The diagram of the agent system is illustrated in Figure 2. A 
set of historical data will be transformed into a set of vectors 
and stored in memory for comparison. The method for 
sample vectorization is the ROCKET as introduced in the 
above section. In detail, several randomly generated 
convolution operators will slide the input time series to 
conduct dot product computation. In mathematics, according 
to the paper (Dempster et al., 2019), the outcome from 
implementing a kernel, w, with dilution, d, and bias b, on a 
specific set of time series X from position i in 𝑋𝑖 is presented 
as follows: 

𝑋𝑖 ∗ 𝑤 = (∑ 𝑋𝑖+(𝑗×𝑑) × 𝑤𝑗
𝑙𝑘𝑒𝑟𝑛𝑒𝑙−1
𝑗=0 ) + 𝑏            (1) 

A feature map M will be obtained from the kernel 
computation, and two real values will be extracted as features 
for each kernel including the maximum values and the 
proportion of positive values (ppv) in the M by the following 
formula: 

𝑝𝑝𝑣(𝑀) =
1

𝑛
∑ [𝑚𝑖 > 0]𝑛−1
0                        (2) 

Where 𝑚𝑖  is the numerical value in the feature map. 
Therefore, there will be two features produced per kernel 
operation, and for an effective time series representation, 
10000 kernels are used to transform the data leading to 20000 
features to represent each time series. The ROCKET 
algorithm is applied to all samples in the historical database 
which will be stored for retrieval. Since there is no parameter 
optimization and fine-tuning during the data processing, the 
computational efficiency can be extremely fast compared to 

 

Figure 2. The diagram of the agent system 
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deep learning or other statistical methodologies. Therefore, 
the requirement on hardware configuration is much lower 
enabling a constant vectorization of new samples as 
experience accumulation. 

When an unlabeled sample comes, it will also be transformed 
into a vector or said embedding and compute the Euclidean 
distance among all embedded samples in the vector store. 
After sorting based on distance, the most similar records will 
be considered as the target and the label will be assigned to 
the new data for classification result. For a common RAG 
implementation, in each retravel, the first five similar, or said 
the top-5 similar records will be extracted to promise a high 
hitting rate. In this agent system, top-5 retrieval is applied. 

In the next step, the top-5 similar retrieval results will be fed 
to the LLM with a prompt to warp the prediction with 
contextual information including background introduction, 
technical details, and the system configuration to form a fault 
diagnosis statement in the following format: 
Retrieval results: [‘fault type1’, ‘fault type2’, …, ‘fault type5’] 
Diagnosis results: [‘fault type’] 
Inference evidence: [fault type1 with <score1>, …] 
Description of the Fault: This state indicates that… 

In this compact diagnosis report, retrieval results will be 
shown, and the classification is presented as ‘fault type’. In 
addition, inference evidence is the list of scores of the 
retrieval. In this case, the Euclidean distance is used for an 
interpretable purpose so that people can understand how the 
system gets the result. The more similarity between the 
unlabeled one and the records, the smaller the Euclidean 
distance will be. The description of the fault is summarized 
in the given document to explain to human operators clearly 
what is happening in the system with plain natural language. 

In the next step, the brief statement is fed back to the LLM 
later and the fault type will be recognized for parsing the 
query for searching the database. For example, if the detected 
fault is ‘spalling’ on a ball-screw actuator given in the 
statement, the LLM can generate highly related several 
searching strings: 

• How to recover spalling damage in ball-screw actuators? 
• What are replacement options for ball-screw actuators 

with spalling damage? 
• Replacement options for ball-screw actuators with 

spalling damage. 
• Diagnosing spalling in linear actuators for effective 

maintenance. 
These questions are then used for matching contents in a 
database, for instance, a general knowledge base e.g. 
Wikipedia, or a specific expert system with the tool usage 

capability of the LLM. All the obtained information will be 
summarized to direct maintenance suggestions and action 
recommendations in the final step.  

4. USE CASE ON LINEAR ACTUATOR FAULT DIAGNOSIS  

4.1. Experimental Setup 

The time series data1 is collected on a linear actuator system 
reported in the paper (Ruiz-Carcel & Starr, 2018). The 
detailed description including the mechanical components, 
structure, and parameters of configuration are all illustrated 
clearly in the article. This paper will not fully reintroduce the 
actuator system. The dataset acquired during the testing is the 
starting point of the introduction to the agent system 
application use case.  

 At first, the rig was operated under typical working 
conditions without any malfunctions to gather a substantial 
volume of data that represents the system’s behavior under 
varying loads and motion patterns. Two distinct motion 
profiles were examined: 

• Trapezoidal profile with a constant speed set point 
• Sinusoidal profile with a smooth transition speed 
In this paper, only data under the trapezoidal profile is 
considered for simplicity, the utilization of multiple profiles 
can be taken into account in future upgrades. The trapezoidal 
profile is tested for normal and faulty conditions under three 
distinct load scenarios: 20kgf, 40kgf, and -40kgf. The full 
motion sequence was repeated 5 times in one working 
situation under a load as one test. Each test will be conducted 
10 times repetitively to generate a dataset with an adequate 
amount of observation in each case studied. a total of 50 
samples, in every scenario analyzed. Furthermore, three 
distinct mechanical flaws in different degradation levels were 
intentionally introduced into various portions of the system 
to simulate modes typically experienced by these types of 
machines. The faults of the system in this dataset include: 

• Spalling from level 1 to level 8 (8 states) 
• Lack of lubrication from level 1 to level 2 (2 states) 
• Backlash from level 1 to level 2 (2 states) 
In short, including the normal and all other flaw states, there 
are 13 different types and 650 samples in each load 
circumstance leading to a total of 1950 samples. For 
evaluation, 20% of all samples will be randomly selected to 
form a testing dataset, and the remaining samples will be used 
for constructing the vector store as introduced in section 3.2.  

4.2. Implementation 

For analysis, samples under all 13 flaws in each load can be 
visualized in Figure 3 and Figure 4 after using the moving 
average smoothing with the window size 20 and 15 
respectively reported in the paper (Ruiz-Carcel & Starr, 

1.The dataset can be found on the link: 
https://cord.cranfield.ac.uk/articles/dataset/Data_set_for_Data-
based_Detection_and_Diagnosis_of_Faults_in_Linear_Actuators_/5097649 
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2018). As shown in Figure 3, no matter in which situation, 
the position error signals in each fault are distributed too 
close to be separated from others, while the pattern of current 
signals is more distinguishable. Therefore, the current signal 
is the univariant for time series processing in this use case. 

Then the univariant time series will be transformed into a 
vector representation using the ROCKET. To further improve 
the computational efficiency, a trick from the variant of the 
ROCKET, namely MiniROCKET (Dempster et al., 2020), is 
applied. The main difference is that the kernel length usage 
is fixed to 9, instead of randomly selected from choices {7, 9, 

11} in the original ROCKET. By doing this, it can make the 
result more deterministic. In this use case, the ROCKET is 
implemented with the Python package called Pyts (Faouzi & 
Janati, 2020). 

Then the vector consisting of features computed from each 
kernel (20000 dimensions) will be stored together as a vector 
database for retrieval. 

During the validation, prediction accuracy will be tested in 
three different loading conditions individually and the 
average value will also be computed. For the diagnosis report 

Figure 3. Position error (mm) signals in different fault 
states under three load conditions after smoothing. (a) 
20kgf (b) 40kgf (c) -40kgf  

 
(a) 

 
(b) 

 
(c) 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Current (A) signals in different fault states under 
three load conditions after smoothing. (a) 20kgf (b) 40kgf 
(c) -40kgf  
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generation, given a loading, randomly select a sample from 
the testing dataset to review the fault statement and the 
relativity between the generated recommendations and the 
fault type.   

4.3.  Results 

To summarize the results of the experiment, different 
methods for the classification based on the ROCKET features 
with Euclidean distance metric are listed in Table 1. The 
comparison between the proposed fault detection method is 
compared with the performance of the strong deep learning 
baseline method, the InceptionTime. There is an obvious gap 
between the top-1 precision based on the ROCKET 
vectorization and the baseline algorithm, only around 60% on 
average versus the InceptionTime, which is more than 80% 
over three loading circumstances. However, the 
computational time can be cut down dramatically by the 
ROCKET method. For the same historical dataset, for 
instance, using all 520 samples under 20kg, the result can be 
obtained with CPU (i7-12700H @3.30Hz) for about 25 
seconds, while using the InceptionTime with 100 training 
epochs, the prediction drawn from scratch requires more than 
60 seconds on GPU (Nvidia GeForce RTX 3060 Laptop 
GPU). Even though the deep learning model can quickly 
conclude after training, the parameters are fixed once the 
training is done. When out-of-distribution samples come, the 
model requires to be updated without forgetting previously 
obtained knowledge. Retraining or fine-tuning the model in 
this way is still an ongoing research topic. In contrast, using 
the ROCKET with the distance-based metric retriever, new 
samples can be encoded in nearly real-time to query existing 
vector databases to get the results. Thus, it shows the 
potential of on-the-fly data processing capability in industrial 
applications.   

One way to further improve the classification accuracy is the 
incorporation of the ridge or logistic classifiers which can 
reach a better prediction outcome. As shown in Table 1, the 
ROCKET feature with the ridge classifier can even surpass 
InceptionTime in terms of prediction accuracy under the load 
of 40kg. In addition, an alternative approach is to use a top-5 
retriever. By doing this, when one of the retrieved samples 
indicates the correct label, the prediction can be treated as 
correct. It can obviously boost the prediction accuracy (up to 
85%) compared to any other top-1 classifiers, while with the 
cost of bringing the noise and uncertainty by considering 

more historical samples. Some types of faults may have 
highly similar patterns in the time series data, resulting in 
their simultaneous extraction as targets in the retrieval 
process. For instance, the ‘spalling2’ sequence can 
potentially retrieve ‘spalling1’ or ‘normal’ records from the 
vector database because their shapelets share great 
similarities. More importantly, this kind of uncertainty is 
usually unknown when deploying the system into the real 
production environment and delivering imprecise 
information to the users.  

This problem can be addressed by refining the fault in a 
prompt in the brief fault diagnosis statement generation using 
the LLM. This is meaningful, as in real-life scenarios, system 
degradation occurs gradually and may not have a clear 
boundary or change in different malfunctions from a macro 
perspective. Therefore, two similar types of faults such as 
‘spalling1’ and ‘spalling2’ may have nearly identical effects 
to the system and appear to have the same level of 
degradation. Thus, they can be regarded as the same fault 
type when proposing maintenance suggestions in practice. By 
reassigning these faults with a shared label in the prompt for 
the LLM, we can shrink the noise introduced by the top-5 
retriever and take practical considerations into account while 
generating maintenance suggestions, which will make them 
more useful and accurate in real-life situations. This is the 
first step towards integrating realistic contextual information 
into the fault diagnosis process, making it more reliable and 
practical. 

After getting the refined fault labels, the LLM (in this case, 
the GPT-4) can be instructed for multiple query generation, 
database retrieval, and the final summarization with 
handcrafting prompts step-by-step as illustrated in Figure 2 
(The completed prompt can be found in the project repository 
listed in the Appendix). This can compile the final diagnostic 
report for converting the classification result to an actionable 
plan. Also, the Google Chrome web browser is selected as a 
general knowledge base used for query searching in this 
proof-of-concept verification. As a result, Figure 5 shows a 
part of the generated document indicating that the GPT-4 can 
give context-aware suggestions to a detected fault. 

5. DISCUSSIONS AND FUTURE WORK 

The use case successfully demonstrates the feasibility of 
applying the LLM to convert the single prediction to the 

Method 20kg 40kg -40kg Average 

InceptionTime (with 100 epochs) 83.8462% 86.0465% 79.2308% 83.0412% 
ROCKET + top-1 retriever 63.0769% 75.1938% 46.1538% 61.4748% 
ROCKET + ridge classifier 80.7692% 82.1705% 83.0769% 82.0055% 
ROCKET + top-5 retriever 83.0769% 91.4729% 81.5385% 85.3628% 

 

Table 1. Fault classification accuracy under 20kgf, 40kgf, and -40kgf loading situations with different methods. 
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prescription of repairing and reconditioning strategies for 
maintenance decision support. Without any extra training or 
fine-tuning, and no requirement on manual feature 
engineering, dataset construction, and rule-based system 
definition, the LLM can automatically link different (public 
or private) knowledge sources to compile a reasonable 
solution after the fault diagnosis based on humans’ intention. 
Therefore, it improves the functionality of current machine 
learning as a more proactive and user-friendly production for 
industrial applications. In addition to the work presented in 
this paper, there are a few interesting directions that can be 
explored in the future.  

From Univariant to Multivariant: In this study, only 
univariant time series (the current signal) is considered for 
the ROCKET feature construction, while the data related to 

position error has been ignored due to the similar shape 
patterns in the time domain. This raises the question of how 
to incorporate multiple time series patterns into the vector 
store section for fault diagnosis. The ROCKET can be 
extended to process multivariant time series, and it is a 
candidate update to the proposed agent system with this 
capability. In addition, all the introduced methods are in the 
time domain, how to integrate information from the 
frequency domain into the proposed framework is another 
question. By doing this, the time series can be analyzed from 
different points of view and construct more distinguishable 
features for retrieval with less amount of data.     

From Suggestion to Automation: The report generated after 
the workflow is expected to offer assistance to people in 
maintenance planning. A further idea is to explore how to 

Retrieval results: ['spalling7_40_1_5', 'spalling7_40_9_3', 'spalling7_40_10_4', 'spalling7_40_7_3', 'spalling7_40_10_2']  
Diagnosis results: Refined fault type1: Obvious fault in spalling 
Inference evidence: [spalling7_40_1_5 with 3.1987850822921007, spalling7_40_9_3 with 3.772884271423856, spalling7_40_10_4 with 
3.989529120390713, spalling7_40_7_3 with 4.239072661571159, spalling7_40_10_2 with 4.822921558144848] 
Description of the Fault: This state indicates that the ball-screw mechanism within the actuator has significant surface damage. This level of spalling 
affects the actuator's smoothness and efficiency severely. The presence of such a fault suggests that the actuator's performance and longevity are 
compromised, necessitating immediate attention and likely repair or replacement to restore normal operation. 
 
Searching for: 
how to repair spalling damage in ball-screw actuators 
best practices for preventing spalling in linear actuators. 
replacement options for ball-screw actuators with spalling damage 
diagnosing spalling in linear actuators for effective maintenance 
cost-effective solutions for spalling damage in actuator mechanisms 
 
Searching results: 
Reconditioning the Actuator's Ball Screw: This involves repairing and/or replacing worn or damaged internal components of the actuator. 
Replacing Cover Bands: When necessary, the cover bands should be replaced to ensure the proper functioning of the actuator. 
Addressing Premature Flaking or Abnormal Damage: This may include looking for the cause of the problem, such as careless handling, excessive 
misalignment, or insufficient lubrication, and taking measures to prevent machine failure. 
Checking for Damage: It is crucial to check for metal fragments that can indicate broken parts and could cause further damage. Also, inspect ball nut 
threads for damage and replace them if necessary. 
Troubleshooting and Countermeasures: Check for specific damage conditions like the raceways of the screw shaft and ball nut and/or the surface of 
the ball peeling off like scales. Implement countermeasures based on identified causes, such as misalignment or lack of lubrication. 
Seeking Professional Help: For severe damage or complex repairs, consulting with or hiring a professional service that specializes in actuator repair 
might be beneficial. Emergency repair teams can restore damaged ball screws and actuators when time is critical. 
Observing Safety and Proper Procedures: Always follow safe handling practices and the manufacturer's instructions to minimize the risk of further 
damage during the repair process. 
… 
 
Repair and Reconditioning Strategies 
To address immediate damage and restore functionality, the following steps are vital: 
Ball Screw Reconditioning: Essential for repairing or replacing the internal parts of the actuator to improve functionality. 
Cover Bands Replacement: Required when these components are damaged to maintain efficiency. 
Addressing Underlying Causes: Investigating and rectifying root causes like misalignment or insufficient lubrication to prevent recurrence. 
Damage Inspection: Identifying broken parts through inspection is crucial for preventing further damage. 
Implementing Countermeasures: Specific damage conditions should be examined and addressed accordingly, emphasizing the correction of 
misalignment and proper lubrication. 
Professional Consultation: Seeking expert advice is recommended for complex or severe damages. 
Safe Handling and Procedure Adherence: Following manufacturer guidelines and safe practices is imperative throughout the repair process. 
… 
 
In summary, the effective management of spalling in balls crew actuators involves a balanced approach of timely and appropriate repairs, adherence to 
best practices for prevention, and the consideration of replacement when necessary. The combination of condition-based maintenance and leveraging 
cost-effective technological solutions plays a crucial role in enhancing the longevity and reliability of these actuators, ultimately ensuring their optimal 
performance in various applications. 
 

Figure 5. A partial piece of an example document for the randomly selected ‘spalling7’ fault. 
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connect the decision with the action to automate the entire 
maintenance process from fault detection and identification 
to system recovery and reconfiguration. A quick idea is to 
extend the sequentialization of prompts till to execution stage 
by incorporating external application programming 
interfaces (APIs) to directly link to actuators for the system 
maintenance. Recent relevant research is conducted for this 
purpose such as code-as-policy (Liang et al., 2023). In this 
way, it is exciting to develop an automated agent that can be 
self-awareness, self-decision, and self-action to the system 
health management without too much human intervention. 
However, it is also important to note that the verification and 
evaluation from the human side are critical to ensure the final 
action satisfies all practical and aesthetic requirements in 
production environment. How the agent can learn from 
human feedback to further align their performance with our 
expectations and values is a critical consideration for this 
direction. 

From Ad-hoc Prompting to Long-Term Memory: The 
prompts used in this paper are yet fully automatically 
generated. Handcrafting is still needed during the prompting 
process. For every generation, the GPT-4 should reload all 
information from scratch and provide suggestions merely 
limited to the information written in the prompt. Hence, the 
agent cannot view and refer to any of previous diagnostic 
reports to improve its performance and keep accumulating 
experience for future analysis. Some studies show that if an 
agent can learn from the contents generated by itself, after 
self-learning on these contents, the performance may 
improve and even exceed the human level. AlphaGo, for 
instance, can self-play with enormous virtual games by itself 
and eventually defeat top-ranked human players (Silver et al., 
2017). A further question is whether this similar idea can be 
applied to the agent. If the prompting and previous diagnosis 
reports can be stored in long-term memory and retrieved for 
new situations by the agent itself. It is possible to let the agent 
itself to prompt itself automatically with lower human 
supervision. This can cut down the requirement of human 
knowledge and computation time. Also, it can increase the 
likelihood of producing more optimal solutions that people 
have yet to conceive. 

From the Given Knowledge Base to Self-Exploration: It is 
noticeable that automation is built upon a human-defined 
logic written in prompts. Thus, the basis of automation still 
relies much on human labor and insight. More importantly, 
the knowledge base for agent retrieval is also created and 
mainly maintained by human beings, thus, heavily restricting 
the potential of machine knowledge discovery. It is then 
followed by a question of how to allow the machine to 
acquire knowledge with the self-exploring capability to 
discover new methods to alleviate human bias and errors in 
maintenance tasks. Furthermore, it is fascinating to 
investigate how to enable the agent to contribute to the 
existing knowledge with human beings together for 

knowledge acquisition in the system health management 
domain. 

6. CONCLUSION 

This paper presents an LLMs agent-based method for 
elaborating predictions from machine learning to actionable 
strategy descriptions for maintenance decision support. A use 
case of linear actuator fault diagnosis is studied with an agent 
built upon ROCKET time series representation, the concept 
of RAG, and the prompts chaining technique. By prompting 
engineering, the LLM agent can recognize the fault and parse 
highly relevant queries to the database using a search tool, (in 
this case, the Google Chrome web browser), and summarize 
the retrieval results to report to human operators. The study 
demonstrates the possibility of constructing autonomous 
agents for proactive decision assistance without much human 
supervision and training and shows how current LLMs can 
be integrated into the industrial workflow. 
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APPENDIX 

The code for this project can be found on the link: 
https://github.com/BlueAsuka/Rocket-RAG 
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ABSTRACT 

Due to their location and related complexities, the offshore 
wind farms (OWF) have higher downtimes and operation and 
maintenance (O&M) costs compared to their onshore 
counterparts. Condition monitoring could help in bringing 
down the O&M costs of OWFs. The pitch system is one of 
the components most prone to failure. This paper details an 
approach for enhanced diagnosis of the electric pitch systems 
especially focusing on the induction motor drives (IMD) in 
wind turbines. The proposed method uses an extended Park 
vector approach (EPVA) in conjunction with a convolutional 
neural network (CNN) to accurately classify the condition of 
an IMD and localize the faults. The method is validated on 
data collected from a laboratory setup. The advantage of the 
proposed approach is that the condition of the IMD can 
accurately be classified, and faults localized in operating 
conditions with varying load and frequency without any 
additional information on the instantaneous operating speed, 
frequency, or load on the motor drives. This results in a non-
invasive diagnostic approach incurring least additional 
expenses to implement. 

1. INTRODUCTION 

Offshore wind farms (OWF) have significant potential to 
contribute towards global energy sustainability. However, 
they face unique operational challenges, mainly because of 
their remote locations and harsh marine environments in 
which they operate. To put this in perspective, while onshore 
wind farms are attaining a 95% to 97% availability for 
modern systems Pfaffel, Faulstich and Rohrig (2017), the 
availability of OWFs is relatively lower and highly variable. 

The data from earlier offshore wind farms suggest an 
availability of 67% to 85% (Feng, Tavner, & Long, 2010) 
with more latest estimates of 80% to 84% (Cevasco, 
Koukoura, & Kolios, 2021). The limited weather windows 
for performing necessary maintenance leads to longer 
downtimes, which explains the gap in operational availability 
between onshore and offshore wind farms. Furthermore, the 
operational and maintenance (O&M) costs constitute a 
significant proportion of the lifetime costs associated with 
OWFs with estimates ranging from roughly 23% on the lower 
end (Ren, Verma, Li, Teuwen, & Jiang, 2021) to 30% at the 
higher end of the spectrum (Hammond, & Cooperman, 2022). 
This represents a stark contrast to onshore wind farms, where 
the lifetime O&M costs typically account for approximately 
5% (Ren et al., 2021). Thus, implementing condition-based 
maintenance (CBM) strategies, and hence condition 
monitoring (CM) become vital in reducing the costs 
associated with O&M and helps in reducing the downtimes 
in maintenance activities.  

The pitch system of wind turbines is among the components 
most prone to failures and one that contributes significantly 
to a non-trivial amount of downtime. The results from 
ReliaWind project (Wilkinson et al., 2010) indicate the pitch 
system was responsible for nearly 15% of failures per turbine 
per year and close to 20% of total downtime hours per year 
across different manufacturers in their database. A more 
recent study (Walgern, Fischer, Hentschel, & Kolios, 2023) 
suggests a pitch system failure rate of 0.54 (hydraulic) and 
0.56 (electrical) per turbine per year. Pitch systems are also 
found to be the most critical subcomponent in the premature 
failure period (Santelo, De Oliveira, Maciel, & De A. 
Monteiro, 2022). This makes the pitch system an ideal 
candidate for enabling CM systems, particularly in OWFs 
because of the additional costs and downtimes associated 
with their reactive maintenance.  

Manuel S Mathew et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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Although there have been some efforts to develop CM 
solutions for wind turbine pitch systems, the extent of these 
attempts has not been commensurate with their critical 
impact on downtime and failure rates. Cho, Gao and Moan 
(2016) developed a Kalman filter based method for 
diagnosing pitch sensor and actuator faults in floating wind 
turbines based on the NREL 5MW wind turbine model. 
However, the focus here was not on the incipient fault 
detection. Several machine learning-based techniques for 
fault diagnostics in pitch systems are also found in the 
literature. supervisory control and data acquisition (SCADA) 
data has been used to detect anomalies in the pitch system in 
tandem with Isolation Forest based anomaly detection 
models (Mckinnon, Carroll, Mcdonald, Koukoura, & 
Plumley, 2021). In this work, the authors developed different 
models of varying amounts of training data to detect 
anomalous patterns. Further, they experimented with varying 
lengths of post-processing window to see how it affects their 
model. Their results show that their method could notice 
signs of turbine failure 12 to 18 months ahead. Park, Kim, 
Dinh and Park (2022) used neural networks to find abnormal 
operations in the pitch system of a wind turbine. The authors 
define the abnormal operation for the pitch system using the 
deviation in the blade pitch angle, where a deviation of more 
than 4.95° in blade pitch angle was considered abnormal. 
Wei, Qian and Zareipour (2019) developed a condition 
monitoring and fault detection system for the wind turbine 
pitch system using optimized relevance vector machine 
regression. Their work leverages the SCADA data to detect 
faults in the pitch system particularly focusing on encoder 
failures, pitch controller failures, electric motor failures, and 
slip ring failures. Similarly Chen, Matthews and Tavner 
(2013) used SCADA data to develop an a-priori knowledge-
based ANFIS (APK-ANFIS) model to detect faults in the 
wind turbine pitch system. The authors identified four critical 
characteristics features (CF) of pitch faults after analyzing 
data in the developmental stage of a fault and that 
immediately after the maintenance has been carried out. 
These CFs have been used to develop the corresponding 
APK-ANFIS models, the results from which where 
aggregated to detect the fault in the pitch systems. Most of 
the studies in the literature reviewed are effective in detecting 
faults in the pitch systems, however, they fall short of 
delineating the fault diagnosis to a subcomponent level. 

A subcomponent level diagnosis of faults is essential as it 
contributes to efficient planning and implementation of 
maintenance activities, especially in OWFs, where precise 
planning is paramount. While SCADA data can be effectively 
used for preliminary fault diagnosis, it is less effective in the 
subcomponent level fault diagnosis. In this paper, we focus 
on fault diagnostics for the induction motor drive (IMD) of 
an electrical pitch system. Subcomponent level fault 
diagnosis for pitch motor drives using current signature 
analysis have been previously addressed by the authors 
(Kandukuri, Karimi, & Robbersmyr, 2016; Kandukuri, 

Senanayaka, Huynh, Karimi, & Robbersmyr, 2017) , and also 
proposed a two-stage fault classification scheme based on 
support vector machine (SVM), for large-scale deployment 
in OWFs (Kandukuri, Senanyaka, & Robbersmyr, 2019). 

The issue with classical current signature-based methods in 
fault detection is that there is an assumption of steady state 
operations in terms of speed and load. The wind turbine pitch 
systems on the other hand are operated intermittently and are 
exposed to varying speed and load profiles. This means that, 
either regions of steady state operations must be carefully 
detected for data acquisition or advanced signal processing 
techniques are to be employed (Benbouzid, M El Hachemi, 
2000; Bhole, & Ghodke, 2021; Liu, & Bazzi, 2017).  

Thus, in this paper, a novel solution is proposed by 
calculating the extended Park vector (EPV) current from the 
three-phase motor line currents and then extracting the time-
frequency representation using Short-Term Fourier 
Transform (STFT). The three-phase motor line currents for 
this purpose are observed at varying operating conditions: 
speed, and load. For detecting the condition of the IMD, these 
representations are subsequently converted into 
spectrograms, which are then used to train a convolutional 
neural network (CNN) for classification of the IMD’s 
condition. CNNs have earlier been reported focusing on 
diagnostics of gearboxes (Amin, Bibo, Panyam, & 
Tallapragada, 2023; Gecgel, Ekwaro-Osire, Gulbulak, & 
Morais, 2021; Jiang, Han, & Xu, 2020), bearings 
(Choudhary, Mian, & Fatima, 2021; Lu et al., 2023; Ruan, 
Wang, Yan, & Gühmann, 2023; Wang, Mao, & Li, 2021; 
Yuan, Lian, Kang, Chen, & Zhai, 2020), and IMDs (Junior et 
al., 2022; Khanjani, & Ezoji, 2021; Kumar, & Hati, 2022; 
Lee, Pack, & Lee, 2019; Skowron, Orlowska-Kowalska, 
Wolkiewicz, & Kowalski, 2020). However, most of these 
works depend on vibration sensors, or are specific to one type 
of fault. Further, most of them assume constant supply 
frequency and load. Skowron et al. (2020) warrants a special 
mention as they use motor line currents to detect faults in an 
IMD. They normalize these currents to create a vector that is 
then reshaped to form an RGB matrix corresponding to each 
of the three phases. While they were able to detect and 
differentiate between various kinds of stator faults including 
insipient faults, their work still deals with one kind of fault 
within the induction motor. 

Thus, what differentiates this work from other works are as 
follows: 

1. Fault diagnostics of IMDs operating under varying 
speed, frequency, and load conditions without 
needing any additional data on these parameters. 

2. Beyond identifying a single type of fault, the 
proposed approach is capable of fault localization 
using extended Park vector approach (EPVA) in 
conjunction with a CNN classifier. 
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3. The proposed approach, through EPVA, negates the 
need for additional sensors to be deployed. This 
makes it an economically viable option for wind 
turbines without vibration sensors, especially those 
that are nearing their end of designed life. Because 
while vibration sensor-based diagnostics are more 
widely applicable, they are expensive (Trajin, 
Regnier, & Faucher, 2010) compared to motor 
current signature analysis (MCSA). 

4. Since continuous monitoring of the WT pitch 
system is not required in this method, intermittent 
snapshots of the three-phase currents are sufficient 
for reliable diagnosis. Thus, reducing the data 
transmission load from each turbine. 

5. The proposed algorithm need not be implemented at 
each turbine, the proposed approach can contribute 
towards farm-level health management. 

While EPVA and similar MCSA methods have earlier been 
used for IM diagnosis and prognosis (Erik Leandro, Levy Ely 
De Lacerda De, Jonas Guedes Borges Da, Germano, & Luiz 
Eduardo Borges Da, 2012), to the best of authors’ knowledge 
this is the first time the diagnostics of the induction motor has 
been fully automated while using spectrogram of the EPVA 
in conjunction with a deep learning based classifier. The rest 
of the paper is organized as follows. In section 2, the 
induction motor faults under consideration and the reason for 
selecting these are discussed. This is followed by a brief 
explanation of theories of EPVA and CNNs in section 3. 
Section 4 details the laboratory setup used to collect the 
necessary data and Section 5 discusses the methodology of 
research and details about the CNN based classifier. Results 
from the classification scheme are discussed in section 6. The 
paper is concluded, and possible future directions are briefly 
highlighted in section 7. 

2. IMD FAULTS CONSIDERED 

Despite being robust, induction motors are not immune to 
failures. Stator faults and bearing faults are among the most 
reported components contributing to the total failures in an 
IMD (Benbouzid, M., 1999; Benbouzid, M. E. H., & Kliman, 
2003; Singh, & Ahmed Saleh Al Kazzaz, 2003; Thorsen, & 
Dalva, 1995) as shown in Figure 1. Nearly half of the total 
failures are the result of stator faults, making it one of the 
most important types of faults to be detected. This is followed 
by bearing faults which account for almost one-third of the 
total failures. Compared to those, a menial 10% of the failures 
are accounted for by rotor faults. These faults occur generally 
because of drive-generated harmonics, poor ventilation at 
low-speed operation, and abrupt load variations. 

Thus, in this study, we have considered the two components 
contributing the most to the total IMD failures: stator fault 
and bearing fault. A future study may be done including rotor  

 

 
Figure 1. Distribution of IMD faults 

bar faults such as different severities of broken rotor bar 
(BRB) faults. 

3. THEORY 

3.1. Extended Park Vector (EPV) Analysis 

The theory behind using MCSA for IMDs revolves around 
the concept that an induction motor, while operating in 
healthy state, is symmetrical across the three phases. A fault 
in the motor disrupts this symmetry causing a periodically 
recurring asymmetry in the motor’s operational 
characteristics. This periodic recurrence manifests as a 
particular frequency in the current known as “fault 
frequencies” or “signature frequencies.” 

These fault frequencies arise due to the interaction between 
the motor’s electrical and mechanical components influenced 
by the fault. For example, a stator fault, such as insulation 
failure, due to short circuits between the stator windings, or 
phase imbalance, causes an asymmetric distribution of 
electromagnetic fields (EMF) within the motor. This 
asymmetry causes variations in the magnetic effect on the 
rotor resulting in irregular rotor motion. The interaction 
between the EMF and the rotor’s motion produces specific 
frequency components in the motor’s currents called “stator 
fault frequencies”. These stator fault frequencies are then 
reflected in the MCSA as harmonics of the fundamental 
frequency, or appearance of specific sidebands around the 
fundamental frequency and its sidebands. In the case of a 
bearing fault, which can occur because of physical damage, 
wear and tear, inadequate lubrication, or external factors, 
leads to mechanical vibrations which modulate the EMF 
within the motor affecting the air gap flux density. This 
introduces specific frequencies in the motor’s current 
signature called “bearing fault frequencies”. The specific 
frequency of the bearing fault depends on several factors like 
bearing design, motor speed, and the nature of the fault. 
These signature frequencies are then used to diagnose the 
faults in MCSA. 

EPV analysis builds upon the foundational principles of 
MCSA and has been used for a while now in diagnosing 
motor electrical faults (Cardoso, Cruz, & Fonseca, 1997). 
The direct (id) and quadrature (iq) axis currents are initially 
calculated as a function of three phase motor currents (ia, ib, 
ic) as follows: 
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Figure 2. Schematic diagram of (a) an outer race fault, and 

(b) an inner race fault in a rolling element bearing. 
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⁄ ) 𝑖𝑐  (1) 

 𝑖𝑞 = (1
√2
⁄ ) 𝑖𝑏 − (1

√2
⁄ ) 𝑖𝑐  (2) 

The extended Park vector (ip) is then calculated as follows: 

 𝑖𝑝 = |(𝑖𝑑 + 𝑗𝑖𝑞)| (3) 

Where, j is the imaginary unit defined as 𝑗2 = −1. 

When a stator turn fault (STF) occurs due to shorting between 
the phase windings, the three phase currents become 
imbalanced and the ideal values for direct and quadrature axis 
currents mentioned in Cardoso et al. (1997) doesn’t hold 
anymore. The result is that the stator turn fault can be 
identified only using the spectral component at twice the 
supply frequency, fs (Sahraoui, Zouzou, Ghoggal, & Guedidi, 
2010) in the spectrum of ip: 

 𝑓𝑆𝑇𝐹 = 2𝑓𝑠 (4) 

Figure 2 shows the schematics of an outer race fault (a), and 
an inner race fault (b) in a rolling element bearing. A bearing 
fault, as discussed earlier, causes spectral components at 
different frequencies as determined by bearing design, motor 
speed, and the nature of the fault (e.g., faults on the inner race, 
outer race, ball spin, or cage defects). This results in three 
additional spectral components in the spectrum of ip along 
with the fundamental component of the power supply (Zarei, 
& Poshtan, 2009) as: 

 𝑓𝐵𝑅𝐺 ∈ {𝑓𝑣, 2𝑓𝑣 , |2𝑓𝑣 − 𝑓𝑠|} (5) 

For an outer race fault, as shown in Figure 2 (a), the 
characteristic vibration frequency, fv, can be estimated using 
the following equation (Zarei, & Poshtan, 2009): 

 
 𝑓𝑣 ≈ 0.4𝑁𝑏𝑓𝑟 (6) 

 
where Nb is the number of rolling elements in the bearing, and 
fr is the shaft rotational frequency. 

Even though these frequencies (fSTF, and fBRG) can reliably be 
used for fault diagnosis in short time windows of constant 

operation, this fails in the case of a variable load and 
frequency because of the changes in the shaft rotational 
frequency, fr, and supply frequency, fs. 

Characterizing the time-frequency response of the extended 
Park vector, ip is critical in EPVA. The short-term Fourier 
transformations (STFT) is used to decompose the Park vector 
into its time-frequency components, which offers an in-depth 
view of how these frequency components evolve over time. 
This level of detail is more suitable for diagnosing the faults 
within motors operating under non-stationary conditions. 

STFT is a special case of Fourier transforms where the 
Fourier transform is applied in series to smaller slices of the 
signal. The assumption here is that for a shorter time window, 
the original non-stationary signal becomes stationary. The 
STFT of a non-stationary signal y(t) can be estimated by 
discretizing the continuous-time signal to a discrete-time 
signal, y(n), where n is the discrete time indices. Then the 
discrete STFT is calculated for the discrete-time signal as: 

 𝑌(𝜔, 𝑏) =∑𝑦(𝑛)𝑤(𝑛 − 𝑏)𝑒−𝑗𝜔𝑛 (7) 

where 𝑤(. ) is the windowing function and b is the window-
shifting time constant. The calculation of STFT is done using 
a fixed-size window, which means that if the window is 
longer, frequency resolution is better at the expense of time 
resolution and vice versa for shorter windows. Thus, deciding 
a window length for the STFT operation is crucial in 
accurately extracting the desired time-frequency information 
(Oppenheim, 1999) and thereby diagnosing the motor 
condition. 

3.2. Convolutional Neural Networks (CNN) 

Though there has been some precedents in computer vision 
research inspired by natural vision, CNNs developed by 
Lecun et al. (1989) were instrumental in the development of 
computer vision at scale. CNNs are similar to artificial neural 
networks or “vanilla neural networks” in that they are made 
up of neurons. However, CNNs generally consists of three 
types of layers, namely convolutional layer, pooling layer, 
fully connected layers, and an output layer. 

The convolutional layers are used to learn a feature 
representation from the inputs provided to create feature 
maps. In this layer, a learned kernel convolves with the input 
producing a feature map, the result of which is then passed 
on to an elementwise non-linear activation function to get the 
activation maps. Each element of the feature map is 
connected to a local subset of neurons in the previous layer 
or the input. The feature map element at (i, j) in the kth feature 
map of the lth layer can be calculated as: 

 𝑧𝑖,𝑗,𝑘
𝑙 = 𝒘𝑘

𝑙 𝒙𝑖,𝑗
𝑙 + 𝑏𝑘

𝑙  (8) 

where 𝒘𝑘
𝑙  and 𝑏𝑘𝑙  are the weight vector and bias term of the 

kth filter of the lth layer, respectively. 𝒙𝑖,𝑗𝑙  is the local subset of  
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Figure 3. Laboratory setup for motor diagnostics 

 

input to the convolutional layer centered at (i, j). An 
activation function such as rectified linear unit (ReLU) later 
introduces non-linearities helping the network to learn non-
linear features. 

The pooling layer, often placed between two convolutional 
layers, introduces shift-invariance to the feature maps. This 
is achieved by reducing the resolution of the feature maps. 
Usually, average pooling and max pooling layers are used 
depending on the task at hand. Higher-level feature 
representations are extracted eventually by stacking several 
convolutional and pooling layers. 

One or more fully-connected layers usually succeed in CNNs 
aiming to achieve high level reasoning (Simonyan, & 
Zisserman, 2014). The last layer of CNNs is an output layer, 
which uses a task appropriate activation function such as 
sigmoid function for classification or ReLU for regression 
problems. 

4. LABORATORY SETUP 

Figure 3 shows the laboratory setup built to study the 
common faults in the pitch motor drives and planetary gear 
boxes of a wind turbine. A 1.1 kW, three-phase induction 
motor served as the test motor. Another 2.2 kW three-phase 
induction motor was used to supply the loads in the setup 
through a bevel-planetary-helical gearbox. Both the motors 
were driven by commercial field-oriented control (FOC) 
drives. Further details of the setup can be found in Table 1. 
The selection of the current sensor for this setup has been 
influenced by the desire for a common industrial sensor 
which is economical for installation on multiple units. 
Further, the overall frequency content of the signal has been 
tested over ideal power source and showed excellent signal-
to-noise ratio. The speed and torque references for both test 
and load motors are provided to their respective FOC drives 
through a PC.  

 

Table 1. Details of the test setup 
Test Motor 
IM Rated Power  1.1 kW 
IM Rated Speed 1420 rpm 
IM Rated Torque 7.2 Nm 
  
Current Sensor 
Model LEM LTS-6NP 
Primary nominal RMS current, IPN 6 A 
Accuracy @ IPN, 25° C ±0.2 
  
Data Acquisition NI USB DAQ 
Acquisition rate 15 kHz 

  
Figure 4. Seeded motor faults: stator turns fault (left), 

bearing fault (right). 
 
The STF, and BRG faults were artificially seeded as shown 
in Figure 4. The STF was seeded by shorting 10% of a phase 
winding, while BRG was seeded as an outer race fault with a 
diameter of a ≈ 2mm through hole. 

5. METHODOLOGY 

Initially, the test motor was run in healthy condition, across a 
range of speeds varying between 850 rpm and 1420 rpm. At 
the same time, the loads were varied between no-load and 
full-load conditions at random to simulate the random 
loading on the wind turbine’s pitch system. The speed 
interval was used after consulting the motor loadability 
curves to ensure that the motor reaches neither an overload 
condition nor stall condition because of the random loading. 
The randomness of operational conditions was ensured using 
different random number generators with seeds refreshed 
every thirty second interval. The three-phase currents were 
recorded as snapshots of 30 seconds each. Similarly, records 
were made for the motor operating in faulty conditions as 
mentioned in Section 4. A total of nearly a thousand minutes 
of data was collected from the test setup for this purpose. 

Further, the Park vector, ip and its STFT has been calculated 
for each of the recorded snapshots using equations (1), (2), 
(3), and (7). Examples of the STFT results from each of the 
three conditions: healthy, STF, and BRG is shown in Figure 
5–7. Classical signal processing methods to detect faults from 
the STFT of the Park vector may fail here, however, from the 
figure, it can be noted that there is an increase in frequency 
content around 100 Hz in the STF condition, which is around 
2fs (Figure 6). A similar increase in frequency content can  
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Figure 8. CNN architecture 
 

also be observed in the case of BRG faults at around 500 – 
600 Hz (Figure 7), which is distinct from the healthy case 
(Figure 5). 

Around 2100 STFT images containing the time-frequency 
information associated with the operation of the motor in the 
three different states mentioned in the previous paragraph 
were then used to develop a CNN model. The entire dataset 
of images was split at random and 70% of the data was used 
in training while 15% each was used for validation and 
testing purposes. The STFT spectrum of the current, ip, is 
obtained as an RGB image, which was then resized to 360 x 
360. The architecture of the CNN that was developed for fault 
classification is shown in the Figure 8. The architecture 
consists of a convolutional layer followed by a max pooling 
layer, the output from which is flattened and forwarded to a 
fully connected layer. This fully connected layer learns high-
level features from the flattened inputs. The final layer serves 
as the classifier, which takes the output from the fully 
connected layer to classify the image into one of the three 
conditions previously mentioned. 

The CNN was trained on a system equipped with an Intel 
Xeon processor, NVIDIA Tesla V100-SXM3-32GB GPU on 
Python 3.10 using PyTorch 2.2. The model was trained over 
hundred epochs with a batch size of 256 and a learning rate 
of 10-3. The learning rate was arrived at after narrowing down 
the value by using a learning decay scheduler. Early stopping 
and L2 regularization were employed to mitigate the 
possibility of model overfitting to the training dataset. The 
early stopping algorithm checks for any improvements in the 
validation loss and stops training if no improvement is  

 
Figure 5. STFT of a Park vector, ip, of motor working in 

healthy condition. 
 

 
Figure 6. STFT of a Park vector, ip, of motor with STF fault. 
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Figure 7. STFT of a Park vector, ip, of motor with BRG 

fault. 
observed for 25 epochs. Since this is a multi-class 
classification problem, the cross entropy loss was used as the 
loss function and the Adam optimizer (Kingma, & Ba, 2014) 
was selected for optimizing the loss function. At the end of 
each epoch the model was validated with the validation 
dataset and results recorded, which is detailed in the 
following section. 

6. RESULTS AND DISCUSSIONS 

Figure 9 and Figure 10 illustrates the feature maps generated 
after the convolutional layer and max pooling layers of the 
trained CNN model in BRG and STF fault conditions, 
respectively. It is clear from the figures that the convolutional 
layer followed by the max pooling layer effectively identifies 
the specific locations within the spectrum associated with 
each fault condition. 

After training, the model was tested on a previously unseen 
test dataset. Inference on GPU takes slightly higher than 17 
seconds and that on CPU takes approximately 36 seconds to 
classify the 320 snapshots. Table 2 shows the confusion 
matrix of the model’s performance on this dataset. The STF 
fault was the most accurately classified among the three  

 
Figure 9. One of the feature maps after convolutional layer 

(left) and max pool layer (right) in BRG fault condition. 
 

 
Figure 10. One of the feature maps after convolutional layer 

(left) and max pool layer (right) in STF fault condition. 
 

Table 2. Confusion matrix of the model performance on test 
data. 

 Healthy STF BRG Percentage 

Healthy 94 0 3 96.9% 

STF 0 109 0 100% 

BRG 4 0 110 96.5% 

 
conditions with 100% of the cases being correctly identified 
as such. On the other hand, the model makes some mistakes 
while classifying the healthy and BRG fault conditions. 

Table 3 shows the performance of the developed model in 
classifying the three motor conditions. The model has an 
overall accuracy of 97.8%. Similarly high values of precision, 
recall, and F1-score are observed when the model encounters 
the test dataset. Such high numbers might raise the suspicion 
of overfitting or data leakage, which is the case where the test 
dataset was inadvertently used in training the model. Early 
stopping and L2 Regularization help in preventing overfitting 
of the model on the training dataset while the entire data 
pipeline has been verified manually to ensure that there is no 
data leakage. Thus, the performance as shown in Table 3 
highlights that the model has effectively learned the 
underlying pattern and can classify the three motor conditions 
effectively. Further, these high values in performance also 
indicate that the model is sufficiently complex to match the 
problem’s complexity.  

Table 3. Performance of the CNN model on test dataset. 

Metric Healthy STF BRG Overall 
Accuracy - - - 97.8% 

Precision 95.9% 100% 97.3% 97.7% 

Recall 96.9% 100% 96.5% 97.8% 

F1-Score 96.4% 100% 96.9% 97.78% 
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Figure 11. Histogram of predicted probabilities for each 

motor condition in test dataset. 
 

To further explore the inference pattern, a histogram of the 
predicted probabilities was drawn across different classes as 
shown in Figure 11. Histogram of predicted probabilities 
illustrates the confidence of the model in classification to 
different classes. The pronounced skewness towards the 
extremities of the probabilities indicates a high level of 
certainty in classification. This is especially true for the STF 
fault where the model has a hundred percent confidence if a 
given snapshot is indicative of an STF fault (probability = 
1.0) or not (probability = 0.0). On the other hand, the model 
is slightly less confident in identifying the healthy condition 
or the bearing fault as evidenced by relatively higher variance 
in the model’s predicted probabilities. 

7. CONCLUSION 

In this paper, we have successfully developed and 
demonstrated a method for enhanced diagnostics for IMDs 
used in wind turbine pitch system. In addition to detecting the 
operational state of the motor (healthy/faulty), this approach 

also helps in localizing the fault to the stator or the bearing of 
the IMD. The presented approach uses the extended Park 
vector approach (EPVA) and short-term Fourier transforms 
(STFT) to extract the time-frequency information from the 
three-phase induction motor currents taken as 30-second 
snapshots. These snapshots are then classified using a 
convolutional neural network. The high accuracy in 
classification of the conditions indicates that the model can 
accurately diagnose the state of the IMD in question. 

The advantage of the proposed method is that CNN requires 
only snapshots of 30 seconds each to determine the state of 
operation. Other than the sampling frequency, no additional 
information is required about the loading conditions or the 
frequency of operation, making it a suitable candidate for 
farm-level implementation. Further, as continuous 
monitoring is not required in this approach, it is ideal for WT 
pitch systems that operate intermittently. Since only 30-
second snapshots of motor currents are the requirement, the 
data transferred from the WTs will be minimal. 

The results presented here are tested on different motors of 
the same type, further validation of the methodology over 
different test motors could help strengthen the study in future. 
Additionally, at present two different fault conditions have 
been studied, more faults like broken rotor bar (BRB) faults 
or different stages of the STF could also be included in future 
works. 

While the CNN classifier can be used to determine the motor 
condition accurately, the bottleneck in this methodology is 
the STFT calculations, which are computationally intensive. 
Thus, as a next step, the authors intend to test different ML 
paradigms to bypass the STFT calculations and directly 
detect these conditions from the Park vector current, ip. 
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ABSTRACT

Pumped-storage hydropower plants (PSH) actively partici-
pate in grid power-frequency control and therefore often op-
erate under dynamic conditions, which results in rapidly vary-
ing system states. Predicting these dynamically changing states
is essential for comprehending the underlying sensor and ma-
chine conditions. This understanding aids in detecting anoma-
lies and faults, ensuring the reliable operation of the con-
nected power grid, and in identifying faulty and miscalibrated
sensors. PSH are complex, highly interconnected systems en-
compassing electrical and hydraulic subsystems, each char-
acterized by their respective underlying networks that can
individually be represented as graph. To take advantage of
this relational inductive bias, graph neural networks (GNNs)
have been separately applied to state forecasting tasks in the
individual subsystems, but without considering their interde-
pendencies. In PSH, however, these subsystems depend on
the same control input, making their operations highly inter-
dependent and interconnected. Consequently, hydraulic and
electrical sensor data should be fused across PSH subsys-
tems to improve state forecasting accuracy. This approach
has not been explored in GNN literature yet because many
available PSH graphs are limited to their respective subsys-
tem boundaries, which makes the method unsuitable to be
applied directly. In this work, we introduce the application
of spectral-temporal graph neural networks, which leverage
self-attention mechanisms to concurrently capture and learn
meaningful subsystem interdependencies and the dynamic pat-
terns observed in electric and hydraulic sensors. Our method
effectively fuses data from the PSH’s subsystems by operat-
ing on a unified, system-wide graph, learned directly from
the data, This approach leads to demonstrably improved state
forecasting performance and enhanced generalizability.

Raffael Theiler et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

In power grids, pumped-storage hydropower plants (PSH) are
well-established for large-scale energy storage due to their ef-
ficiency, scalablilty and flexibility. In this role, these plants
dynamically respond to potentially large fluctuations in grid
demand. In the transition towards smart grids, PSH sensor
data is collected via wide area measurement systems (WAMS)
(Pagnier & Chertkov, 2021a) and is stored in centralized en-
ergy management systems (EMS). By processing the aggre-
gated WAMS data, modern EMS provide crucial function-
alities for PSH operators such as load forecasting, real-time
monitoring, distribution and demand-side management, and
various decision support tools aimed at increasing efficiency
and sustainability. To enhance system reliability, EMS imple-
ment anomaly and sensor fault detection based on short-term
forecasting and state estimation, playing a pivotal role in pre-
venting failures that could lead to widespread power grid out-
ages and significant economic losses. However, the dynamic
operation of the PSH and the vast amounts of data transmit-
ted by the WAMS significantly complicate the task. In the
PSH environment, conventional state estimation is often in-
effective because the computation can take several minutes
(Li, Pandey, Hooi, Faloutsos, & Pileggi, 2022). This delay
leads to a rapid divergence between the most recent and the
previously used system state for the estimation, resulting in
numerous false-positives when applied to anomaly detection.
Consequently, it becomes challenging to maintain a compre-
hensive overview of the system’s health and performance. As
a solution, deep-learning-based short-term state forecasting
has recently been applied, which offers significantly faster
processing times and holds the potential to benefit from the
additional data increasingly collected at a high sampling rate
(Kundacina, Cosovic, & Vukobratovic, 2022).

Developing deep-learning-based state forecasting for PSH is
particularly challenging. These challenges stem from the ne-
cessity to accurately represent two distinct physical domains
within the PSH: the hydraulic and electrical systems. Al-
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though these domains are mechanically interconnected by elec-
tromagnetic generators, they are traditionally modeled inde-
pendently in mechanical engineering. This division mainly
stems from the distinct dynamics governing each subsystem.
It is, therefore, challenging to model hydraulic and electrical
domains simultaneously. Nonetheless, considering the direct
causal relationship between the systems – wherein kinetic en-
ergy is transformed to electric energy – we hypothesize that
fusing data from both subsystems, which operate under a uni-
fied control input, can significantly enhance state forecasting.

To address the challenge of fusing electric and hydraulic data,
we posit that both subsystems of the PSH consist of extensive
networks, which are coarsely monitored with sensors that can
be represented in the non-Euclidean graph domain. By oper-
ating on this more effective graph representation, which can
capture biases given by the PSH system architecture and ho-
mophily biases, addressing the phenomenon that sensor mea-
surements tend to be connected with “similar” or “alike” oth-
ers (Ma, Liu, Shah, & Tang, 2023), graph neural networks
(GNNs) have recently gained significant attention. When a
graph is available, GNNs have been effectively applied in key
applications to (hydro) power plants (Liao, Bak-Jensen, Rad-
hakrishna Pillai, Wang, & Wang, 2022) and in the broader
power grid environment. However, these methods depend on
the availability of apriori graphs, derived from PSH’s elec-
trical and hydraulic network diagrams. Therefore, their ap-
plicability is limited by the fact that, although the underly-
ing network structure of both electric and hydraulic subsys-
tems of a PSH can be modeled as a graph, network diagrams
for PSH exist typically only separately for each subsystem.
Consequently, most graph-based methods are confined within
the boundaries of their respective systems. To overcome this
limitation, we propose learning a PSH sensor graph from la-
tent dependencies in the data. While it has previously been
demonstrated that graph structures can be efficiently learned
from data, this approach remains unexplored in the context
of hydropower plants. In light of this, inspired by (Cao, Li,
Ma, & Tomizuka, 2021), we propose using spectral-temporal
graph neural networks (STGNN) to learn a latent correla-
tion graph structure across the entire PSH asset for the fusion
of electric and hydraulic data, leveraging the self-attention
mechanism.

Compared to numerical simulation, our data-driven GNN-
based methodology is computationally inexpensive and does
not require expert knowledge while maintaining interpretabil-
ity, due to the accessibility of the learned graph. Our pro-
posed approach can be easily transferred to different PSH as-
sets without any calibration. To the best of our knowledge,
there is no other work on data-driven electric and hydraulic
data fusion for PSH using graph neural networks.

To summarize, in this work, we introduce the application
of attention-based graph neural networks to effectively learn

intra- and interdependencies between the subsystems’ sensors
to enhance the short-term state forecast in the pumped storage
power plant (PSH) environment. We tackle several challenges
when applying state forecasting to PSH:

• In line with the dynamic operation of the PSH, the dy-
namic behavior of sensors adds complexity to the fore-
casting. We propose a spectral-temporal graph neural
network (STGNN) that effectively captures these patterns
by incorporating the PSH’ underlying structural and ho-
mophily biases, such as load patterns that are reflected
across sensor measurement sites.

• State forecasting in the PSH environment depends strongly
on environmental parameters, such as temperature, daily
load profiles, and power grid customer-related factors,
which cannot be modeled in numerical simulations (Lin,
Wu, & Boulet, 2021). In contrast, our STGNN is able to
learn these factors from data.

• The PSH is a spatially distributed complex system that
spans across the hydraulic and electric domains. We pro-
pose a graph learning module that learns a unified graph
representation across the hydraulic and electrical subsys-
tems from latent dependencies in the data.

• We assess the performance of our method on a multivari-
ate PSH dataset containing 58 signals, showcasing the
dynamic operation of the asset.

The reminder of this paper is organized as follows: Sec. 2
reviews relevant literature that focuses on graph-based deep
learning and data fusion. Sec. 3 introduces our STGNN ap-
proach. In Sec. 4, we discuss the case study conducted on
a Swiss PSH plant, including the experimental and training
setups. In Sec. 5, we present our results. Finally, Sec. 6 con-
cludes this work and outlines future steps.

2. BACKGROUND AND RELATED WORK

Conventional machine learning applied to power systems have
primarily focussed on linear regression models and recurrent
neural networks (Zheng, Xu, Zhang, & Li, 2017). These
methodologies continue to be effective and provide compet-
itive results, particularly in areas like short-term load fore-
casting (Guo, Che, Shahidehpour, & Wan, 2021) and daily
peak-energy demand forecasting (Kim, Jeong, & Kim, 2022).
Since their introduction, GNNs (Bronstein, Bruna, LeCun,
Szlam, & Vandergheynst, 2017) have been applied to many
tasks in power systems. By now, graph-based deep learning
has become a well-established method for analyzing power
system data, thanks to its ability to include structural and ho-
mophily biases that cannot be modeled conventionally. Mes-
sage-passing GNNs have been successfully applied to state
estimation (Kundacina et al., 2022), and power flow estima-
tions (Ringsquandl et al., 2021). The same tasks have also
been addressed using graph convolutional neural networks
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(GCN) (Fatah, Claessens, & Schoukens, 2021). In the broader
power-grid environment, GNNs are also used for wind speed
forecasting in renewable energy (Liao, Yang, Wang, & Ren,
2021). Additionally, GNN-based state forecasting was used
in a range of downstream tasks in several previous research
studies, including graph-based early fault detection for IIoT
systems (Zhao & Fink, 2024), anomaly detection in the elec-
trical grid (Li et al., 2022), fault diagnosis for three-phase
flow facility (Chen, Liu, Hu, & Ding, 2021), predicting dy-
namical grid stability (Nauck et al., 2022), and physics-informed
parameter and state estimations (Pagnier & Chertkov, 2021b,
2021a).

Other works have used spatial-temporal extensions of GNNs
in the electrical domain for residential load-forecasting (Lin
et al., 2021), fault diagnostics in power distribution systems
(Nguyen, Vu, Nguyen, Panwar, & Hovsapian, 2022), and with
complex-value extensions (T. Wu, Scaglione, & Arnold, 2022)
for state forecasting. In another lie of research, (Wang et
al., 2022) propose spatial-temporal graph learning for power
flow analysis, where the graph is dynamically created from
thresholded normalized mutual information. At the compo-
nent feature level, attention-based graph learning (GAT) has
been applied to power flow analysis (Jeddi & Shafieezadeh,
2021) and in a different work for probabilistic power flow to
quantify uncertainties of distribution power systems (H. Wu,
Wang, Xu, & Jia, 2022). To the best of our knowledge, the ap-
proach of employing a self-attention mechanism at the graph
level to learn a graph structure that integrates electrical and
hydraulic data using graph neural networks has not yet been
addressed in previous research.

In the context of power systems, data fusion represents a cru-
cial technique for enhancing the accuracy and reliability of
forecasting algorithms by integrating diverse data sources.
In the electrical domain, the fusion of diverse electrical sys-
tem information was utilized to estimate the voltage in dis-
tribution networks (Y. Zhu, Gu, & Li, 2020), using cross-
correlations between individual transformers. Another re-
search study achieved state-of-the-art multi-site photovoltaic
(PV) power forecasting (Simeunović, Schubnel, Alet, & Car-
rillo, 2022), fusing spatially distributed PV data by exploit-
ing the intuition that PV systems provide a dense network
of virtual weather stations. Integrating weather station data
was also explored for anomaly detection for the industrial
internet of things (Y. Wu, Dai, & Tang, 2022). Given its
importance, modeling the interaction between the PSH sub-
systems has previously been explored using higher-order nu-
merical simulation (SIMSEN) (Simond, Allenbach, Nicolet,
& Avellan, 2006). However, operating numerical simulators
in practice requires precise calibration and, consequently, ex-
tensive documentation of the components, which is typically
not readily available. This calibration step is indispensable
due to the components exhibiting highly non-linear charac-
teristics (Nicolet et al., 2007). Given the significant varia-

tions in designs across different PSH assets, and the necessity
for expert knowledge (which is often unavailable), applying
this simulator-based methodology is often infeasible in real-
world applications. For PSH, these limitations shift the fo-
cus to data-driven interaction modelling with GNNs, which
is computationally affordable and does not necessitate expert
knowledge, yet remains unexplored.

3. METHODOLOGY

This section introduces the Spectral-Temporal Graph Neural
Network (STGNN) that we propose for the fusion of elec-
tric and hydraulic data in PSH state forecasting. In Section
3.1, we define the forecasting problem. From Section 3.3 on-
wards, we decompose the forecasting problem into learning
the underlying latent graph structure from time series data
(Sec. 3.4). Subsequently, on the learned graph, we intro-
duce graph-spectral and time-spectral filtering (Sec. 3.6). An
overview of the methodology is provided in Figure 1.

Notation: In this work, we use slicing notation denoted by the colon
(:) symbol. Given a matrix A ∈ Rm×n, where m and n represent
the number of rows and columns respectively, slicing is expressed
as A[i : j, k : l] or Ai:j,k:l. This notation represents the selection
of rows i through j − 1 and columns k through l − 1 of matrix A.
If i or k is omitted, it implies starting from the first row or column,
respectively. Similarly, if j or l is omitted, it implies selection until
the last row or column, respectively. We use ⊗ to denote element
wise multiplication and ⊕ for concatenation. The Frobenius norm is
denoted as ∥ • ∥F .

3.1. Problem Formulation

The specific objective of this work is to provide accurate state
forecasting for the electrical subsystem of the PSH. Our ap-
proach utilizes learnable graph-spectral and time-spectral fil-
tering to compute state predictions (the forecast). Let X̄ ∈
RT×H+E represent the smoothed time series data X̄ = S(X)
computed from unsmoothed time series X using the smooth-
ing function S for E sensors in the electric and H sensors in
the hydraulic subsystem, respectively, over a time period T .
We define our forecasting model as a functionM : Rw×H+E →
Rh×E for a specific point in time w < t < T , that op-
erates on input windows of the data of length w sliced as
X̄[t − w : t]. The goal is to forecast the subset of electri-
cal sensors X̄[t : t + h, : E] for a horizon of size h. Model
M operates on a graph G that is either inferred from the input
data by a parameterized function Gϕ(X̄[t − w : t]), which
is trained alongside M , or may be provided apriori. We in-
troduce two sets of learnable parameters: θ for the filtering
Mθ and ϕ for the graph learning Gϕ. Thus, state forecasting
and state reconstruction estimates denoted by •̃ at a selected
timepoint t, are computed by the model M as follows:

X̃t:t+h
elec , X̃t−w:t

elec =Mθ(X̄
t−w:t | Gϕ) (1)
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Figure 1. An overview of the two processing steps of our spectral-temporal graph neural network to fuse data from the electrical
and hydraulic subsystems of a PSH. Utilizing attention-based graph learning, our method dynamically constructs a graph based
on an input window X̄t−w:t. Subsequently, by operating on this graph, the graph- and time-spectral filtering module efficiently
extracts information from the hydraulic and electrical sensor data to forecast the subset of electrical sensors X̃t:t+h

elec .

3.2. Training Objective

By employing a sliding window approach, we construct a
training dataset X Train of length Ntrain, where Ntrain depends
on the training data split. We also construct analogous vali-
dation and test datasets XVal and X Test , respectively:

X Train = {X̄t:t+h
elec , X̄t−w:t

elec , X̄t−w:t}Ntrain
t=w

We optimize the parameters of the model by minimizing the
forecasting error Et

f = X̃t:t+h
elec −X̄t:t+h

elec . To learn meaningful
and compact representations, we introduce an optional recon-
struction error Et

r = X̃t−w:t
elec −X̄t−w:t

elec for regularization. The
final training objective is expressed as:

L(X̃, X̄) =

Ntrain∑

t=w

(
λf∥Et

f∥2F + λr∥Et
r∥2F
)

During the model’s training process, we identify the optimal
parameters:

θ∗, ϕ∗ = argmin
θ,ϕ
L(X̃, X̄;ϕ, θ) (2)

3.3. Node Features and Graph Representation

For the forecasting problem, we consider spatially distributed
sensor sites modeled as nodes (vertices) v ∈ V of a graph
that spans the pumped storage hydropower plant. Due to dif-
ferences in raw sensor sampling rates, we use resampled time
series based on simple moving averages, taking into account
the true sensor sampling rate of the j-th sensor Sj . This step
smooths the time series:

X̄[i, j] = S(X[i, j]) =
1

Sj

Sj∑

τ=1

sjτ (3)

We model each measurement site, containing one or more
sensors as an individual node. Each node is associated with a
feature vector xt−w:t

v ∈ Rw×d, ∀v ∈ V , containing a win-
dow w of the smoothed sensor data and additional d − 1 co-
variate dimensions such as a temporal encoding. This strategy

is uniformly applied to both the electrical and hydraulic com-
ponents within the pumped-storage power plant environment.
Nodes are exclusively assigned to one of the sets: 1el(v) = 1
for electrical components or 1hyd(v) = 1 for hydraulic com-
ponents, ensuring 1hyd(v) + 1el(v) = 1. As input for the
subsequent model M , we consider the joint graph:

Gϕ =
(
Vel ∪ Vhyd, Eϕ(X̄[t− w : t])

)

where the edges may be learned by a parameterized function
Eϕ.

3.4. Attention-based Graph Learning

We define a trainable function that implements self-attention
among the sensor nodes to infer the edgesEϕ(X) of the graph
G. To compute the self-attention, we first map the time series
to an embedding space E = GRU(X̄) using a gated recurrent
unit (GRU). We then proceed by computing the self-attention
of the embedded time series. For this purpose, we define a
query sequence Q and a key sequence K to compute the at-
tention scores W :

Q = EWQ,K = EWK ,W = Softmax
(
QKT

√
d

)
(4)

by linear projection with the trainable matrices ϕ = (WQ,WK).
Unlike in graph attention networks (GAT) (H. Wu et al., 2022),
which define attention over features of a pre-existing graph,
we directly compute the symmetrically normalized graph Lapla-
cian L from the attention scores W , which we convert into a
symmetrical adjacency matrix A = 1

2 (W +WT ). We com-
pute the Laplacian as L = I − D− 1

2AD− 1
2 , where L is the

Laplacian matrix, I is the identity matrix, D is the diagonal
degree matrix of A, the adjacency matrix. L is then used for
the graph spectral filtering in Section 3.6.

4
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3.5. Spectral-temporal Graph Neural Network

To predict the sensor dynamics, the model processes the input
data X̄t−w:t on the learned graph G (obtained as introduced
in Section 3.4) by mapping the input data from the spatial-
temporal vertex domain of the sensor signals to a spectral la-
tent representation. This mapping is achieved through the se-
quential application of graph-spectral and time-spectral trans-
formations, as introduced in Sec. 3.6. The corresponding
inverse transformations are utilized to reconstruct the sensor
signal in the spatial-temporal domain. To address the prob-
lem of vanishing gradients and performance degradation with
increasing network depth, we introduce skip connections to
compute the final forecast. We denote the output of the resid-
ual blocks as sk. Thus, modelM can be expressed with spec-
tral filtering (F ), and a bypass layer fb as follows in the re-
cursive equation:

(sfk , s
b
k) =

{
F
(
X̄) | Gϕ(X̄)

)
, sb0 = X̄ k = 0

F
(
σ(sbk−1 − fs(sbk−1)) | Gϕ(X̄)

)
, k > 0

(5)
where the final forecast is computed as X̃t:t+h

elec = Ωf

(∑k
i=1 s

f
i

)

with an application-specific feedforward head function (Ω),
and the backcast as X̃t−w:t

elec =
∑k

i=1 s
b
i .

3.6. Graph- and Time-spectral Filtering

For the spectral filtering module F , we use graph convolu-
tional filtering and the trainable Spe-Seq Cell Sθ introduced
in (Cao, Wang, et al., 2021). We denote the graph Fourier
transform as GF , and its inverse as IGF . The j-th channel
yj in the graph-spectral domain is therefore computed as fol-
lows:

yj = IGF
(∑

i

gθij (Λi)Sθ(GF(Xi))

)
. (6)

In the graph-spectral domain, we implement the parameter-
ized filtering gθ(Λi) on the eigenvalues Λ. Instead of com-
puting yj directly, we compute the Chebyshev polynomials
of L to efficiently approximate the graph Fourier transform
without performing the costly eigenvalue decomposition of
the Laplacian matrix L = UΛUT , where U is the graph’s
eigenvector matrix. We obtain the i-th Chebyshev polynomial
Ti(•) with the recurrence relation: T0(x) = 1, T1(x) =
x, Tk+1(x) = 2xTk(x) − Tk−1(x). Thus, we implement
graph-spectral filtering with the graph spectral operator g(L)
as follows:

g(L̃)Xj ≈
N∑

n=0

cnSθ(Tn(L̃)Xj) (7)

where cn are the learnable parameters and L̃ = 2L/λmax−IN
is the normalized Laplacian matrix. The Spe-Seq Cell en-
hances the output of GF , treating it as a multivariate time-

series in the graph-spectral domain. It then elevates this out-
put into the time-spectral domain to learn feature represen-
tations. To achieve this, the Spe-Seq Cell uses the Discrete
Fourier Transform (DFT) and gated linear units (GLU) for
element-wise modulation of the signal in time-spectral do-
main as follows:

GLU(x) = x⊗ σ(Wgx+ bg) (8)

This approach effectively implements convolution on the mul-
tivariate time-series in the graph-spectral domain.

4. CASE STUDY AND EXPERIMENTAL SETUP

The dataset in this case study was obtained in collaboration
with the Swiss Federal Railways (SBB). SBB maintains a
separate railway traction current network (RTN) that oper-
ates at a frequency of 16.66 Hz to power rolling stock across
Switzerland. The power plant operators of SBB use supervi-
sory control and data acquisition (SCADA) protocols to trans-
mit sensor data to a centralized energy management system
(EMS). This setup allows for real-time monitoring of assets,
ensuring timeliness and synchronicity between sensor sig-
nals, making it a technically sound environment to evaluate
the proposed methodology.

Objective: For this case study, our aim is to forecast the cur-
rents measured by the electrical sensor network of the PSH.
From an operator’s perspective, forecasting currents is par-
ticularly compelling when dealing with rolling stock, given
their highly dynamic current profile that is vastly different
to residential power grids. While the residential sub-grid of
Zurich, the largest City of Switzerland, is subject to transient
load changes within 15 minutes intervals of up to 35MW,
the RTN of SBB experiences load changes up to 250 MW
whithin the same time interval due to the orchestrated and pe-
riodic timetable of the Swiss railway network (Halder, 2018).
The importance of accurate current forecasts is additionally
heightened because electrical components in power systems,
like transformers and conductors, have thermal limitations
that depend on the amount of current flowing through them.
Unlike voltage levels, current levels in the PSH dynamically
react to transient loads changes. Anomalies such as sud-
den increases or decreases in power demand, or failures in
equipment, are therefore more immediately reflected in cur-
rent fluctuations. We therefore focus on phasor current fore-
casting in this study.

Dataset & Data Preparation: We collected data spanning
four months from a PSH in Switzerland, consisting of read-
ings from 58 sensors that monitor pressures, flow rates, and
lake levels of the hydraulic subsystem, as well as electri-
cal currents from seven generating units, including connected
substations in the electrical subsystem. The time series are
averaged to a 1-minute resolution and were collected from
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January to March in 2021. We maintained the temporal or-
dering of training (70% of the data), validation (15%) and test
(15%) datasets to ensure that the validation and test indices
are sequentially higher than the training indices. We normal-
ize the data using feature-wise min-max scaling. To provide
a comprehensive understanding of the dataset, we show a de-
tailed segment of the sensor data in Figure 2.
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Figure 2. Segment of the dataset, displaying all 21 normal-
ized phasor current sensors (the forecasting target of our case
study), indicating the dynamic nature of the sensor measure-
ments. We show the same day of the week (i and i + 7) for
two consecutive weeks.

Model & Training: The experiments were conducted on an
NVIDIA RTX3060 using PyTorch 2.0 and CUDA 11.8 for
the development and training of the models. The proposed
model utilizes a window size (w) of 24 and a horizon size of
1, meaning that it predicts the currents for the next minute.
This configuration is tailored to the synchronized operation
of the Swiss railway network, which organizes its periodic
timetable in half-hourly intervals. Our selected model’s input
window takes this operational profile into account, thereby
reducing the influence of the previous interval. During model

fine-tuning, we truncate the Chebychev polynomial expan-
sion to k = 4 for both the graph- and time-spectral filtering.
We set the number of residual blocks to two and configure the
Spe-Seq Cells to five layers. We adjust the negative slope of
LeakyReLU α to 0.2, and dropout to 0.5 for regularization.
We use Adam for optimization.

Table 1. Overview of trainable parameters in the neural net-
work models.

Model Parameter
MLP (4-layer, el+hy) 2.8 M
STF (el+hy) 366 K
Ours (el) 481k
Ours (el+hy) 481k

4.1. Baseline Approaches for Comparison

We compare our approach with relevant baselines for time
series forecasting in the power grid domain, such as a lin-
ear model with trend decomposition, a fully connected neural
network (FNN) and a recurrent neural network, specifically
the LSTM. Given the recent increase in attention towards
transformer-based energy forecasting, we also consider the
time series transformer model (Spacetimeformer, (Grigsby,
Wang, & Qi, 2022), denoted as STF) Additionally, we include
an Attention-based GNN (A3-GCN, (J. Zhu, Song, Zhao, &
Li, 2020)) that has been demonstrated to outperform the clas-
sical GCN on similar forecasting tasks. All baseline models
were trained and validated on the same dataset and with the
same input window size. Each model was trained to reach
convergence on the validation dataset.

5. RESULTS

In this section, we summarize the numerical results to evalu-
ate the proposed method and compare it to the baselines. Ad-
ditionally, we study the output from the graph learning and
compare it to the connectivity of the PSH asset. Furthermore,
we ablate the hydraulic information from the model input to
assess its benefits. All results are based on the dataset intro-
duced in Section 4.

In the initial step, we compare the performance of the adopted
spectral-temporal graph neural network to the baseline mod-
els introduced in Section 4.1 based on normalized mean squa-
red error (NMSE). We summarize model performances in Ta-
ble 2. Our model surpasses all conventional baselines, includ-
ing LSTM (by 28%) and the, in terms of parameters, much
larger FNN (by 14%), as evaluated by the NMSE. A3-GCN
is unable to integrate hydraulic information due to the lack
of a graph. Spacetimeformer (STF) can learn from hydraulic
signals but does not outperform our method.

For the evaluation of A3-GCN, we translate the PSH’s electri-
cal network diagram into a processable graph, as having apri-
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Table 2. Average (normalized) model performance across nodes, comparing six different methods. We indicate whether the
PSH network diagrams were translated into a processable graph for the computation (Network Diagram) and epmhasize if
hydraulic (Hyd.) or electric (El.) information was used for training.

Method El. Hyd. Network Diagram Type NMSE
Linear ✓ ✓ ✗ - 1.11e-1
A3-GCN ✓ ✗ ✓ GCN 8.74e-3
LSTM ✓ ✓ ✗ RNN 7.51e-3
MLP (3-layer) ✓ ✓ ✗ FNN 6.84e-3
MLP (4-layer) ✓ ✓ ✗ FNN 6.21e-3

STF ✓ ✗ ✗ Transformer 5.84e-3
STF ✓ ✓ ✗ Transformer 5.83e-3

Ours ✓ ✗ ✗ Att. GCN 5.71e-3
Ours ✓ ✓ ✗ Att. GCN 5.34e-3

ori graph is a computational requirement for the method. Sur-
prisingly, we found that the A3-GCN is outperformed by the
much simpler LSTM by 14% in terms of NMSE. This find-
ing highlights that the intuitive approach of applying GNN
directly to a graph derived from schematic diagrams, does
not always yield acceptable results. In this context, since our
proposed STGNN is also based on GCN, the 34.7% improve-
ment in NMSE illustrates that, beyond choosing the right
model, finding a suitable computational graph is crucial for
processing PSH data. Our results provide further support for
the observation in (Ringsquandl et al., 2021) that statistical
properties of graphs derived from network diagrams of power
grids may be unsuitable for direct graph processing. Graphs
derived from such network diagrams significantly differ from
those typically discussed in the graph-theoretical literature,
with statistical properties like lower clustering-coefficients,
lower node degrees, and higher graph diameters, which could
explain the subpar performance of A3-GCN in the state fore-
casting task. From a message-passing perspective, the spe-
cific properties of these graphs hinder effective message prop-
agation unless the GNN comprises many layers. Unfortunal-
tely, this model choice, in turn, significantly boosts oversmooth-
ing, which is already a prevalent challenge in the power grid
environment due to the high similarity of the electrical sensor
data.

We assess the performance of time-series transformers (Space-
timeformer), which are structurally similar to our attention-
based GNN approach, because they incorporate a self-attention
layer across the one-dimensional timeseries. However, the
experiment with Spacetimeformer displays a 9.2% reduction
in performance in terms of NMSE compared to the STGNN.
Additionally, we found it difficult to scale Spacetimeformer
to the problem without overfitting. Altrough showcasting re-
spectable performance, compared to the STGNN, STF did not
benefit from the additional information from hydraulic sys-
tems (resulting in a 0.1% improvement).

An advantage of our STGNN, compared to conventional me-
thodology suited for multivariate time series analysis such as

LSTM, is that we have access to the learned graph topology.
To derive insights from the inferred graph, we calculate the
mean attention aij = 1

N

∑N
i=1 aij over the test data set. We

expect our method to converge to the same graph for random-
ized training initialization when learning physical relation-
ships between the sensors. To verify our expectation, we vi-
sually compare the average attention across random seeds in
Figure 4. Additionally, our analysis reveals that the inferred
attention graph’s minimal parameterization yields temporally
stable graphs, accurately reflecting the situation in the PSH,
which usually has stable topology across time.

Interestingly, the attention graph recovers casual relations given
by the functioning of the hydropower plant and therefore shows
similarity to the underlying physical network of the hydropower
plant. In Figure 6, we depict the relationships between the
water inflow (flow-rates, pressures), the generator units (groups
and transformers, indicated by TRF), and the PSH outlets
(substations, denoted by SP), overall making the model’s pre-
dictions more interpretable. Leveraging this interpretability,
we compare Figures 5 and 6. Surprisingly, our model fo-
cuses on the PSH outlets to predict the power plant input’s
phasor currents in the absence of hydraulic information from
the forecast, which could explain the more severe outliers in
the forecast (Figure 3). When adding hydraulic information
to the forecast, we observe that the model makes additional
use of penstock flow-rate and pressure sensor data, thereby
improving the prediction quality.

5.1. Ablation Study

In an ablation study, we exclude the hydraulic sensor data
from the forecast to validate the effectiveness of fusing elec-
tric and hydraulic sensor data for improving the electrical
state forecasting. We find that incorporating the hydraulic
subsystem leads to an 6.5% reduction in NMSE. The NMSE
absolute forecasting performance from the ablation experi-
ment is included in Table 2. Figure 7 and 8 evaluate the rela-
tive improvement on a per-node basis, demonstrating that the
benefits of our methodology are distributed across most sen-
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Figure 3. Comparison of normalized phasor current forecasts with (EL+HYD) and without the hydraulic information (EL)
for our proposed STGNN model. We show the forecast for single node Ni (i = 1) across a randomly selected day including
ground truth. In the upper Figure, we display the dynamic range of the forecast. In the lower Figure, we display the normalized
MSE of both approaches with respect to the ground truth. Removing hydraulic information results in heightened discrepancies
and more pronounced outliers in the predictions. First, we select the data based on the above criteria. Then, we normalize the
selected data using min-max scaling.

Figure 4. The averaged learned attention across the test set of
the attention-based graph learning module over all 58 signals
from the electrical and hydraulic subsystems. We show three
random seeds. The learned attention is stable for different
random initializations.
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Figure 5. The heatmap represents the averaged learned at-
tention by the attention-based graph learning module across
the test set as for the model processing only electrial informa-
tion (EL). Counterintuitively, the model focuses on the PSH
output (SP) when forecasting the phasor currents of the elec-
tromagnetic generators, which represent the PSH input.

sor forecasts (nodes), thereby ensuring that no sensor forecast
experiences a major decline in performance from including
hydraulic sensor information.

6. CONCLUSIONS

In this paper, we demonstrate that integrating information
across the electrical and hydraulic subsystems is beneficial
for state forecasting in pumped-storage hydropower plants
(PSH). Our proposed spectral-temporal graph neural network
is the first approach to integrate information across the PSH’s
subsystems by applying attention-based graph learning, which
effectively represents PSH states for short-term phasor cur-
rent forecasting. Compared to numerical simulation, our me-
thod requires neither knowledge of the underlying network
and sensor connectivity graph nor a tedious calibration step.
Through a real world case study, we demonstrate that rely-
ing exclusively on graphs derived from network diagrams for
state forecasting does not always yield the best performance.
We highlight the advantages of learning a PSH-wide graph,
complementing the critical perspective on network-diagram-
derived graphs introduced in (Ringsquandl et al., 2021). More-
over, we show that our method remains interpretable, unlike
other deep-learning methods that process electrical and hy-
draulic data simultaneously. Future work looks to reintegrate
the underlying network diagram while maintaining the flex-
ibility of attention-based graph learning, thereby harnessing
the strengths of both approaches. This could also allow for
the incorporation of physics-informed losses, such as elec-
tromagnetic generator efficiency or power flow, which may
reduce the volume of training data required.
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Figure 6. The heatmap visualizes the averaged learned attention of the attention-based graph learning module across the test
set visualized for the model that processes both electrial and hydraulic information (EL+HYD). Notably, the model focuses on
the hydraulic subsystem (the PSH input) when forecasting the phasor currents of the electromagnetic generators.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phasor Current Sensor Ni

0.2

0.0

0.2

0.4

0.6

N
M

SE
el

N
M

SE
el

+
hy

d
1

Figure 7. Relative improvements across the test set (nor-
malized MSE, averaged) for our STGNN models with
(EL+HYD) and without hydraulic information (EL). for each
of the 21 phasor currents sensors of the electric subsystem.
19 out of 21 phasor current forecasts are improved by the ad-
ditional hydraulic information.
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ABSTRACT

In response to the urgent need to combat climate change and
reduce greenhouse gas emissions, the transition towards re-
newable energy sources such as solar and wind power is indis-
pensable. However, the intermittent nature of these sources
poses significant challenges to the stability of power grids.
Battery Energy Storage Systems (BESS) offer a viable solu-
tion, and there is potential for Electric Vehicles (EVs) to serve
as energy reservoirs, thereby bolstering grid stability through
Vehicle-to-Grid (V2G) technology. While V2G holds promise,
concerns persist regarding the longevity of batteries, particu-
larly with the additional demand from charging and discharg-
ing cycles. To address these concerns, this study introduces a
health-aware control strategy for V2G service scenarios. By
employing feedback control mechanisms to adjust degrada-
tion rates, the strategy aims to effectively manage battery
aging. Simulation outcomes of a V2G scenario with ran-
dom input sources illustrate the efficacy of this proposed ap-
proach, demonstrating its potential applicability in practical
settings where battery health needs to be managed. In sum-
mary, this research contributes to the advancement of health-
aware strategies for an interconnected grid where electric ve-
hicles participate as energy sources, with a primary focus on
optimizing battery health management while fulfilling grid
demands. Future efforts will concentrate on refining opti-
mization strategies and integrating control methodologies with
state estimators to ensure the performance of the approach on
embedded battery health management systems.

1. INTRODUCTION

In the face of climate change and the urgent need to reduce
global greenhouse gas (GHG) emissions, the transition to non-

fossil fuels and renewable energy sources is crucial. While
photovoltaics and wind power energy are promising solutions,
their intermittent nature poses a challenge to the stability of
the power grid. In solving this problem, Battery Energy Stor-
age Systems (BESS) are proving to be a crucial component
in ensuring a consistent energy supply. In parallel, the pro-
liferation of Electric Vehicles (EVs) offers the opportunity to
use their batteries as energy storage units, which can act as an
energy buffer during the day reinforcing the stability of the
power grid.

The concept of using EV as energy storage known as Vehicle-
to-Grid (V2G) offers advantages, but also pose some chal-
lenges. According to (Didier et al., 2021) a fleet of 15% elec-
trified cars in France in 2030 would mean an energy stock of
25GWh throughout the day, equivalent to 20% of the daily
average production of the French renewable energy grid in
2020. Another notable benefit is the potential for users to re-
coup their investment by participating in grid-level demand
response programs. However, the use of batteries, particu-
larly EV batteries, raises concerns about their longevity as
these batteries are more often used in a ”two-shifts” opera-
tion. The impact on battery life has direct financial and en-
vironmental implications and therefore justify efforts to find
V2G strategies that take battery health into account.

A well- known solution is to use the grid operator as an in-
telligent conductor, requesting energy from multiple energy
sources to ensure the effectiveness of grid distribution while
reducing the cost of multiple sources, including the cost of
battery aging. An overview of such an approach that uses
optimized scheduling methods to control the power grid in-
cluding V2G application is discussed in (Collath, Tepe, En-
glberger, Jossen, & Hesse, 2022). However, it is important to
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note some limitations of this solution, such as a generalized
modeling of battery degradation and the non-consideration of
aging-related changes in electrical behavior. An additional
challenge lies in the prediction of degradation behavior, a
task that remains difficult even with the improved accuracy
of data-driven methods.

With recent advancements in online estimation methods for
determining the state of health in individual battery packs, the
feasibility of health management has expanded to the battery
management system (BMS) level. The overall objective is to
ensure optimal discharge using adaptive control algorithms to
alleviate stress factors and manage the aging process through-
out the operational lifespan of electric vehicles, accounting
for varying conditions. Recent studies have shown the bene-
fits of implementing a health management controller in wind
turbines (Kipchirchir, Do, Njiri, & Söffker, 2023). Using a
feedback controller framework can effectively mitigate the
degradation process and regulate the end-of-life of these sys-
tems using control laws and dynamic models to adapt or re-
configure operational processes. It is expected that incor-
porating this approach into battery-powered applications can
also bring benefits as the aging process in can be efficiently
managed.

In this sense, this article presents a health-aware control (HAC)
strategy to address battery aging by considering the dynami-
cal interaction between operational and stress variables (e.g.
state of charge and temperature). The approach is based on
the modulation of the degradation-rate using a feedback con-
troller, as proposed in (Félix, Martinez, & Bérenguer, 2023),
in a V2G scenario. For this purpose, a novel dynamic model
is first proposed that models the degradation-rate as a func-
tion of identified stress factors in response to operational de-
mands. As presented in (Pelletier, Jabali, Laporte, & Ven-
eroni, 2017), the stress factors and effects in battery aging are
closely interrelated and an optimal control behavior is not ob-
vious. In addition, the discharge process does not behave lin-
early and suffers from the fluctuations of aging mechanisms.
Therefore, based on the proposed model, a control design is
also presented that incorporates robust techniques to handle
uncertainties inherent in the degradation modeling and ran-
domness induced by the system operation.

The effectiveness of the approach is evaluated through simu-
lations with a degraded battery model that simulates electrical
and thermal dynamics, taking into account variations in crit-
ical factors such as increments on the internal resistance and
reduction on the battery capacity induced by the ageing pro-
cess and affecting battery autonomy. To demonstrate practi-
cal applicability, the article includes a case study of a simula-
tion of in V2G scenario, integrating uncertainties and random
elements to highlight the advantages of the approach in real-
life. The results initiate a discussion on the benefits of the
approach and its limitations of implementing HAC to V2G

and further applications.

Accordingly, Section 2 presents the electrical circuit model
of a battery subject to degradation and the proposed model of
aging behavior. Section 3 describes the design of a feedback
control approach to regulate the degradation-rate. Section 4
shows the results obtained by implementing such a health-
aware controller at the BMS level of a V2G application. Con-
clusions and future perspectives are discussed in Section 5.

2. SYSTEM MODEL OF A DEGRADED BATTERY

2.1. Equivalent circuit model

Figure 1. A simplified equivalent circuit model of the battery.

Figure 1 illustrates an equivalent circuit model of a lithium
battery simplifies the complex electrochemical processes within
the battery into a basic electrical behavior (Pelletier et al.,
2017). It includes a voltage source Voc(k) representing the
open-circuit voltage, internal resistanceR to account for losses
within the battery, both dependent of the State-of-Charge (SoC)
usually expressed by a parameter SoC(k) to track the avail-
able capacity of the battery. This model also incorporates a
capacity element C modeling the battery’s charge storage ca-
pability, and the flow of current i(t) through the battery dur-
ing charge-discharge cycles. Let us represent such equivalent
circuit model as follows:

SoC(k + 1) = SoC(k)− Ts
I(k)

(3600 · Cn)
100 · γ(k) , (1)

Vt(k + 1) = aVt(k) + (1− a)E(k) , (2)
with E(k) = Voc(SoC(k))−Rn(SoC(k)) · I(k) · γ(k) .

(3)

In such model the dynamics of SoC is modeled using Coulomb
counting of Eq.1, a function of the charge-discharge current
rate I(k) and counting sampling Ts, whereas the behavior of
terminal voltage Vt(k) follows Eq. 2 that is driven by a filter
parameter a, and Voc and Rn that are functions of the current
SoC(k).

2.2. Aging mechanism

In the equivalent circuit model, the state-of-charge and ter-
minal voltage fluctuate in response to the current rate I(k)
(I(k) < 0 during discharging). Moreover, the charge-discharge
behavior is intricately linked to the battery’s aging process.
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While aging stems from physical-chemical factors, its effects
are reflected in electrical characteristics such as capacity fad-
ing and increasing internal resistance (Barré et al., 2013).
This relationship suggests that these characteristics are influ-
enced by an aging parameter, denoted here as γ. Specifically,
the capacity C(k) decrease and resistance R(k) increase can
be expressed as functions of γ:

C(k) =
Cn

γ(k)
(4)

R(k) = Rn(SoC(k)) · γ(k) , (5)

where Cn and Rn are the nominal value for capacity and in-
ternal resistance.

For simplicity, let us consider γ to be equivalent in both ef-
fects, as they pertain to the same aging process. This frame-
work sets the stage for developing a degraded battery model,
just as introduced in (Martinez, Félix, Kulkarni, Orchard, &
Bérenguer, 2024), where γ = 1 represents a new battery.
During each discharging and charging mission, γ tends to in-
crease until it reaches a maximum value of γ = 2, indicating
that the battery can no longer operate.

2.3. Degradation extended model

As an electrochemical process, charge-discharge behavior in-
curs energy losses and generates thermal effects. This behav-
ior is externally influenced by ambient temperature Tamb(k)
and the Joule effect, which produces heat (TJoule(k)) when the
current rate is non-zero. The thermal model can be described
by Eq. 6, where c0 is the inertial parameter of the thermal be-
havior, and TJoule(k) is defined by Eq. 7, incorporating factors
such as c1, Rn(SoC(k)), I(k), and γ(k).

T (k + 1) = c0T (k) + (1− c0) (TJoule(k) + Tamb(k)) ,
(6)

TJoule(k) = c1Rn(SoC(k))I(k)
2γ(k) (7)

How γ increases is an important research topic. In this matter,
it is known that the increased current generates heat and ac-
celerate degradation by promoting the dissolution of the elec-
trode material and the breakdown of the electrolyte, thus we
propose a model for the increase in γ based on the same in-
fluences as heating:

γ(k + 1) = c3Rn(SoC(k))I(k)
2γ(k) (8)

While this model remains an assumption and approximation,
it is crucial for simulating the aging process responsible for
increased resistance and decreased capacity. A similar ap-

proach to finding a degradation growth model is presented
in (Brown et al., 2009) for electro-mechanical actuator ap-
plications. Also, this sheds light on which variables of the
charging-discharging process could be considered as relevant
factors for making decisions regarding aging acceleration.

Note that as the model is posed, an increase in γ increases
the acceleration of the aging process itself, similar to how in-
creased temperatures in degraded batteries increase the degra-
dation of the batteries themselves. In addition, a significant
increase in γ can lead to instability of T .

3. PROBLEM FORMULATION

This work focus on the application of health-aware discharg-
ing for power sale to the grid, known as V2G or V2Market.
In this application, there are three main concerns:

1. Supplying the grid with enough energy stored in the bat-
tery in order to stabilize it.

2. Monetizing the time the car spends parked in the parking
lot without charging.

3. Yet, taking into account the cost of battery degradation
since discharging counts as a cycle in the battery’s lifes-
pan.

As explained in (Reniers, Mulder, Ober-Blöbaum, & Howey,
2018), when purchasing stored energy, the grid offers a value
per kWh correlated with intermittent sources (e.g., solar and
wind) availability. Energy prices fluctuate stochastically due
to the stochastic behavior of these resources. A grid opera-
tor manages participation percentages and demand for each
source to optimize production, considering costs, including
batteries degradation. This optimization is reviewed in (Collath
et al., 2022). While grid demand is generated, users aim to
monetize their parked time without charging. Such profitabil-
ity can be determined by:

R =

tf∑

k=0

P (k)× Price(k) (9)

Here, P (k) represents the power sold at discrete time step k,
which can be measured by:

P (k) = Vt(k)× I(k) (10)

With power demand and price previously established, maxi-
mizing profitability becomes a matter of ensuring that P (k)
closely matches the power demand and maximizing the dis-
charging interval tf .

Despite the potential for monetizing a parked car, it is im-
portant to acknowledge that there is a cost associated with
battery degradation when discharging. This degradation ul-
timately shortens the battery’s lifespan, leading to decreased

3
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performance and necessitating eventual battery replacement.
Let us consider this cost as the accumulated degradation over
the discharging mission:

D = γ(tf )− γ(0) (11)

To proceed with a solution, let us consider the following:

• The power demand profile (i.e., Pgrid(k)) is pre-defined
on an hourly basis, and the power sold never exceeds the
power demand (P (k) ≤ Pgrid(k)).

• The battery experiences degradation during discharge, as
described by Eq. 8. The initial degradation index γ is es-
timated online using algorithms such as the one proposed
in (Didier et al., 2021) or (Martinez et al., 2024).

• The initial State of Charge (SoC) is known and may be
lower than the maximum capacity, while a minimum bat-
tery SoC is specified and consistently lower than the ini-
tial SoC, as represented by:

SoCmin ≤ SoC(k) < SoC(0) ≤ 100%

• The maximum duration for which the vehicle remains
parked, selling energy, is predefined as follows:

k ≤ tmax ∼ U(t1, t2)

• The terminal voltage remains consistently above a safe
minimum (Vt(k) > Vmin).

Figure 2 illustrates the proposed V2G service scenario with
battery health management control acting as a discharging
auxiliary system. It is assumed that SoH and SoC estimations
are available and provided by a BMS.

Figure 2. Illustration of Power-sale discharging mission.

3.1. Discharging strategies

The sale of vehicle energy can have numerous strategies. The
first and simplest strategy is to manage the delivery of energy

to exactly match the grid demand, only stopping the discharge
when any of the restrictions (i.e. SoCmin, tmax, or Vmin) are
triggered. However, this strategy is not optimized, as it does
not prioritize maximizing profitability or minimizing degra-
dation costs. Therefore, we can assume other strategies that
act on the current rate to maintain power close to demand,
while at the same time, avoiding excessive degradation or de-
liberately degrading to manage battery lifespan. Here we are
assuming that the grid is supplied by several other vehicles,
and that its stability will not be affected if P (k) < Pgrid.

In the scope of this study, we consider two control strategies:

1. Find the appropriate current I(k) at time k that facilitates
discharge in a manner that SoC achieves its minimum
by time tf = tmax, i.e. SoC(tmax) = SoCmin. This
strategy optimizes the utilization of parked time and the
current, a key factor influencing degradation.

2. Find the optimal current I(k) at time k that allows the
degradation rate to follow a predefined reference ∆γref ,
ensuring a desired growth rate by time tf = tmax, i.e.
γ(tmax)− γ(0) = ∆γref .

The first strategy emphasizes managing the discharge dura-
tion. If the discharge time is shorter than the parking dura-
tion, the current is adjusted to meet the objective. This ap-
proach ultimately influences degradation growth through ef-
fective time management.

On the other hand, the second strategy prioritizes degradation
effects. It involves tracking a desired γ growth rate either to
meet a predefined lifespan or to meet a optimize a value γd

derived from an optimization problem involving power sold
and γ growth rate.

As discussed in (Collath et al., 2022), BESS technology that
addresses only issues 1 and 2 of the previously formulated
problem does not account for degradation costs over time, re-
ducing the profitability of V2G usage. The two strategies pro-
posed here aim to address the third issue. The first strategy
involves mitigating the impact of current on aging increase
during discharge, while the second strategy focuses on regu-
lating the degradation-rate by reconfiguring discharge across
multiple cycles. Both strategies will inevitably affects the per-
formance of energy delivery to the grid, reducing the profit
per discharge. However, this reduction can lead to a signif-
icant improvement in battery life. By designing an optimal
controller for both strategies, we try to find the best compro-
mise for this trade-off.

3.2. Control framework

For the design of the controller, we consider the system to
be controlled written in a discrete-time state-space represen-
tation:

xk+1 = A(ρk)xk +B(ρk)uk + E(ρk)dk , (12)

4
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with respect to the state vector defined as xk ∈ ℜn, the con-
trol input variable uk ∈ ℜm and the disturbance input of
dk ∈ ℜp. The variability of the system is determined by a
varying parameter vector ρk. When the varying parameter ρk
is bounded and it belongs to a convex polytopic region Ωρ

limited by N vertices of the polytopic set θ ∈ Ωρ ⊂ ℜL de-
fined by ρk boundaries. Then, we can write ρk as a convex
combination of vertices θ(i) as follows:

ρk =
N∑

i=1

α
(i)
k θ(i) , (13)

where α(i)
k ≥ 0 and

∑N
i=1 α

(i)
k = 1.

Such a modeling approach is known as polytopic modeling,
which enables the construction of robust control designs by
guaranteeing stability within the boundaries of the convex set.
Since the system is subject to variations due to stochastic dis-
turbances in discharge conditions or changes over time in γ
due to aging, this approach will ensure stability for all vari-
able conditions that the discharging process and its dynamics
face.

3.2.1. SoC rate control design

According to Eq. 1, SoC decreases dynamically as follows:

SoC(k + 1) = SoC(k) + SoC ′(w(k)) (14)

Here, w(k) represents the decision variable that can be ad-
justed to solve a control problem, specifically a tracking ref-
erence problem. To address this problem, we introduce an
integrator error tracking z(k) to be minimized. The system to
be stabilized is thus defined as:

w(k + 1) = u(k) (15)

z(k + 1) = z(k) + Ts · (ŜoC ′(w(k))− SoC ′
ref (k)) (16)

where u(k) represents the control decisions at each sample
k, with Ts as the decision rate. SoC ′

ref (k) is the desired de-
crease rate of SoC. The linear decrease behavior of SoC(k)
imposes a desired rate given by:

SoC ′
ref (k) =

SoCmin − ŜoC(k)
tmax − k

(17)

where tmax and SoCmin are the maximum discharging time
and the minimum SoC chosen by the user. ŜoC(k) can be es-
timated through online algorithms such as presented in (Didier
et al., 2021) with a higher sampling rate.

By choosing the current rate adjustments as the decision vari-
able w(k), we obtain

SoC ′(w(k)) =
−Ts · 100
(3600 · Cn)

γ(k)(Igrid(k) + w(k)).

Now we can define the system matrix as follows:

Ak =

[
0 0

Ts · ρ(k) 1

]
and Bk =

[
1
0

]
, (18)

where x(k) := [w(k) z(k)] and ρ(k) = −Ts·100
(3600·Cn)

γ(k), with
ρ(k) ∈ [ρmin, ρmax] imposed by minimum and maximum val-
ues of γ and nominal capacity.

Finally, we propose to calculate the decisions here using a
feedback control law such as:

u(k) = −Kx(k). (19)

To find the optimal control gain K that minimizes the er-
ror z, the system matrices are used to solve a robust Linear-
Quadratic Regulator (LQR) problem (see Appendix A) with
a Linear Matrix Inequality (LMI) solution.

3.2.2. Aging rate control design

According to Eq. 8, the increase of γ can be expressed as:

γ(k + 1) = β(w(k))γ(k)

In line with the SoC rate control, w(k) denotes the decision
variable adjusted to solve a control problem, particularly a
tracking reference problem, and an integrator error tracking
z(k) is also employed for minimization. The system to be
stabilized is thus defined as:

w(k + 1) = u(k) (20)

z(k + 1) = z(k) + Ts · (β̂(w(k))− βref (k)), (21)

where β̂(w(k)) represents the estimated increase rate of γ, Ts
is the control decision rate. βref denotes the current desired
increase rate. The exponential growth behavior of γ imposes
a desired rate given by:

βref (k) =
1

(tmax − k)
ln(

∆γ
(n)
ref + γ̂(0)

γ̂(k)
) (22)

where γ̂(0) is the estimated γ at the beginning of the cycle
and γ̂(k) at each control calculation, tmax is the imposed
maximum discharging interval, and ∆γref is the chosen in-
crease increment of the current cycle, which can be calculated
in different ways; we propose calculating it based on the value
desired of γ for a chosen number of cycles N as follows:

∆γ
(n)
ref =

1

2 ∗ (N − (n− 1))
ln(

γmax
ref

γ̂(0)
) (23)

n represents the current discharge cycle, while γmax denotes
the desired level of γ in cycle N . In this scenario, the vehi-
cle is expected to operate in two shifts: during the day in the
parking lot and the remainder of the day on regular routes,
which counts as an additional full discharge. Although real-
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world usage may introduce random degradation during the
vehicle’s operational shift, we assume that the cumulative
effect of these fluctuations does not surpass the degradation
equivalent to two full discharges of the vehicle.

According to Eq. 8, the dynamic of β is defined by β(w(k)) =
c3Rn(SoC(k))(Igrid(k) + w(k))2. Now, the matrix of the
system can be defined as:

Ak =

[
0 0

Ts · ρ(k) 1

]
and Bk =

[
1
0

]
, (24)

where x(k) := [w(k) z(k)] and

ρ(k) = 2 ∗ c3Rn(SoC(k))Igrid(k),

with ρ(k) ∈ [ρmin, ρmax] imposed by minimum and max-
imum values of internal resistance and current rate imposed
by the grid, and variations on c3. For this strategy, we also
propose utilizing a feedback control law

u(k) = −Kx(k),

where the control gain K is determined through a robust con-
trol LQR problem.

4. RESULTS: V2G SCENARIOS

The degradation battery model presented is used here to sim-
ulate an aging battery. The control framework is employed
to achieve the objectives of the two different discharge strate-
gies. Firstly, let us describe the simulation scenario used to
obtain the results, and then analyze the outcomes of such ap-
proaches for battery health management.

4.1. System Description

In real-life scenarios, uncertainties are inherent in the aging
process of systems. Various sources of randomness contribute
to these uncertainties, stemming from factors such as inter-
nal resistance, open circuit voltage, and ambient temperature
fluctuations. The interplay of these factors leads to diverse
aging acceleration rates, ultimately resulting in varying the
battery’s lifespan.

The introduced degraded battery model is utilized to simulate
the controlled system. The model’s parameters, including in-
ternal resistance and open-circuit voltage as functions of SoC,
are detailed in Appendix B.

The simulated scenario considers the stochastic nature of bat-
tery parameters and discharging conditions. The simulation
parameters treated as stochastic sources are listed in Table 1.

These conditions vary randomly, as detailed in Table 1, and
are subject to change with each simulation of the 20 consec-
utive days of V2G discharge. For example, Figure 3 outlines
the user-defined parameters for each discharge event, includ-
ing the minimum desired SoC (SoCmin) and the maximum

Table 1. Simulation parameters

Parameter Value Unit
Tamb N (23, 3) ◦C
C1 N (2.5, 10−2) Ah
Rmin N (0.02, 10−2) Ω
Eo N (4.2, 10−2) V

SoC(0) N (90, 10) %
ϵγ U(2e− 4, 12e− 4) -
tmax N (4, 1) h

SoCmin N (10, 1) %
Pgrid N (175, 300) W

discharge duration (tmax). These settings collectively deter-
mine when the discharge should halt, in conjunction with the
minimum voltage, as elaborated in the preceding problem for-
mulation.
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Figure 3. User settings for 20 days in consecutive discharge
scenarios.

It is assumed that the battery operates in two shifts: during
the day in the parking lot and the rest of the day on regular
routes, which contributes to additional aging. Thus, at the
start of each new day n ∈ [1, N ], the initial value of γn(0) is
defined as:

γ(n)(0) = γ(n−1)(tf ) + ϵγ , (25)

where γ(n−1)(tf ) represents the level at the end of the last
discharging day, and ϵγ denotes a random positive additional
increase.

Figure 4 displays, then, the initial SoC, SoC(0), representing
the battery’s starting level upon arrival at the discharge station
for the current shift. Additionally, it depicts the additional
degradation factor since the last discharge, denoted as ϵγ .

Finally, the resulting discharge will depend on the discharg-
ing conditions, which will vary with each discharge event.
The discharge halts once one of the stop conditions is met.
Figure 5 showcases the outcomes of simulations of discharge
scenarios without a discharge control. It illustrates diverse
discharge histories observed over 20 consecutive days, em-
phasizing the system’s variability influenced by the stochastic
nature of battery parameters and discharging conditions.
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Figure 4. Initial conditions for 20 days in consecutive dis-
charge scenarios.

Figure 5. Simulated energy discharge for 20 days in consec-
utive discharge scenarios for a battery pack of 10 cells.

4.2. Control implementation

In this work, two control strategies are employed to mitigate
battery aging, utilizing a feedback control u(k) for the current
rate, expressed as I(k) = Igrid + w(k).

SoC Rate Control: For the implementation of the first strat-
egy’s control, Eq. (15) is utilized. Employing robust LQR
techniques with the previously defined system matrices and
simulation parameters, the resulting control gain K is deter-
mined as follows:

K = [0.011726, −70.399]. (26)

The initial value for the integral action is calculated according
to Eq. (15) as:

z0 =
w0 +K(1)w0

−K(2)
. (27)

where the initial decision parameter is chosen to be w0 = 0.
Note that, in practice, w(k) is equivalent u(k − 1).

Aging rate control: For aging control, Eq. (20) is em-
ployed to minimize the reference tracking error. The rate

adjustment is accomplished through a feedback control u =
−Kx(k), whereK is also computed by solving a robust LQR
problem with the provided model parameters, yielding the
following values:

K = [0.9987, 5444.5]. (28)

It is expected an aging rate reference to be determined ac-
cording to Eq. (23) using the following parameters:

n ∈ [1, N ], N = 20, γmax
ref = 1.025.

Here, γmax
ref is the desired aging parameter value at the conclu-

sion of 20 days, which is set to be lower than the expected
value of standard discharging, but could be chosen to respect
a prognostic and health management constraint.

4.3. Simulation results

When implementing the control of the SoC decrease rate or
the aging control (increase of γ) for the 20 consecutive days
scenario, we obtain the respective aging curves of both strate-
gies as shown in Figure (6a). Each day of discharging service
resulted in an increase in the rate of γ and energy sold to the
grid, as shown in Figure (6b) and Figure (6c), respectively.

The total energy sold through the SoC rate control strategy
surpasses that of the γ rate control. This is because the latter
prioritizes tracking the desired γ growth rate over maximizing
energy discharged. In particular, SoC rate control surpasses
standard discharge in total energy when it focuses utilizing
the entire available discharge time. Moreover, when exam-
ining the aging rate, standard discharge emerges as the least
favorable option. SoC rate control effectively mitigates aging
by regulating the current rate, although it remains suscepti-
ble to random fluctuations determined by the discharge con-
ditions. Conversely, aging rate control continuously adjusts
the aging rate to achieve the required γ value by the end of
the 20 cycles.

By considering 1.025 as the maximum γ rate (instead of γ =
2), the total energy sold by the battery in 20 days would be
comparable to that of other strategies, as it undergoes more
cycles below the maximum γ threshold. Additionally, aging
rate control provides the advantage of effectively managing
capacity fading. By considering the 20-day rate as a reference
and considering the total aging interval (γ = 2), the battery
can reach half of its maximum capacity in about 800 days
with aging rate control, a level of certainty not achievable
with the other strategies.

5. CONCLUSION

This work introduces two health-aware strategies for grid en-
ergy sales in a V2G service. The first strategy focuses on
managing discharge to maintain the SoC above a specified
minimum within the discharge interval, optimizing usage and
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Figure 6. Results of 20 days (N = 20) of discharging for
power selling using different strategies.

mitigating stress factors like discharge current. This strat-
egy embodies a basic approach, based on stress factor miti-
gation, offering a V2G service that considers aging process.
The second strategy aims to regulate the aging increase rate
during the discharge event to maintain the SoH below a spec-
ified maximum within the interval discharging days. Both
strategies employ adaptive control of grid demand, designed
with robust techniques and error minimization. Results show
the first strategy reduces the final aging, represented by the
stress factors index, while increasing total energy sold at the
discharging end. Conversely, the second strategy prioritizes
desired degradation increase rates, potentially compromising
energy sold, but it succeeds in managing the aging process.
Specifically, the degradation rate regulation strategy ensures
that the aging factor reaches the desired level within the spec-
ified timeframe, which proves beneficial for lifetime control.
Furthermore, it still ensures the sale of energy close to the
standard discharge behavior. In summary, this paper’s contri-
butions include:

• Incorporating aging effects such as capacity decrease and
resistance increase into the discharge behavior of a bat-
tery model.

• Health-aware discharging approaches using degradation-
rate regulation and discharge-rate regulation.

Certainly, there is significant potential in incorporating SoH
and SoC estimations integrated with closed-loop HAC frame-
works to effectively manage battery health. Future work in-
volves integrating control approaches with SoC an SoH es-
timation approaches to validate performance when used in
conjunction, particularly in embedded applications. Further-
more, the utilization of other control optimization techniques,
such as Model Predictive Control (MPC), to align with differ-
ent objectives, such as charging process, is encouraged. An
extension of this work could involve comparing it with al-
ternative approaches addressing the same issue. Finally, this
study lays the groundwork for a charging-discharging park-
ing service with energy selling that integrates strategies for
the management of battery lifetime.
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APPENDIX A - LQR PROBLEM

Consider a linear system represented in state-space form as:

ẋ = Ax+Bu

where x is the state vector, and u is the control input.

The Linear Quadratic Regulator (LQR) problem is a control
strategy designed to create an optimal feedback controller for
such linear systems while minimizing a quadratic cost func-
tion and stabilizing the system. The objective of the LQR
problem is to minimize a quadratic cost function, defined as:

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt (29)

Here, Q is a positive semidefinite weighting matrix that pe-
nalizes deviations of the state from its desired trajectory, and
R is a positive definite weighting matrix that penalizes con-
trol effort or deviations of the control input from its desired
values.

The optimal control law u is then determined to minimize Eq.
29 and stabilize the system. When the control law is defined
as

u = −Kx
K is the optimal gain matrix found through a stability guar-
antee function equivalent to the Riccati Equation, which de-
pends on the existence of a positive definite matrix P .

APPENDIX B - MODEL PARAMETERS

In battery discharging, the values of Rn and Voc, as depicted
in the equivalent model, vary as functions of SoC(k). These
variations can be expressed by the following equations:

Rn(SoC(k)) =M ∗
(
Rmin +

K3

SoC(k)
+

K4

100− SoC(k)

)

(30)

Voc(SoC(k)) =M ∗
(
Eo −K1 ln (100− SoC(k))−

K2

SoC(k)

)

(31)

Cn =M ∗ C1 (32)

Table 2 presents the parameters of the model used for simula-
tion. These parameters are obtained using data from (Fricke,
Nascimento, Corbetta, Kulkarni, & Viana, 2023).

Table 2. Battery model parameters

Parameter Value
M 10
Ts 0.02 s
a exp

(−Ts
50

)

c3 10−8

K1 0.27
K2 0.45
K3 0.25
K4 0.02

M is the number of cell in the battery pack. ObtainedRn and
Voc are illustrated in Figure 7.
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Figure 7. Nominal values of Rn(SoC) and Voc(SoC) re-
sulted from the considered model with mean mean parame-
ters.
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ABSTRACT 

The maintenance industry is undergoing a major 
transformation as it embraces the shift towards Industry 5.0. 
The focus of Industry 5.0 is on the integration of human 
intelligence with advanced technologies. It emphasizes 
interaction and collaboration between humans and machines 
and aims to combine the strengths of both. The efficiency of 
prognostics and health management (PHM) for maintenance 
in industrial contexts can be enhanced by improving this 
human-machine interaction and collaboration. This paper 
investigates the human-centric aspects, with a focus on PHM 
systems for facilitating the enablement of Industry 5.0 in 
maintenance. Acknowledging human as an active participant, 
this study explores their integral role in designing and 
developing PHM systems. The data collection for this study 
has been based on available literature, active and passive 
observations, and unstructured interviews and discussions 
with experienced industry professionals. As a result of the 
analysis of collected data, this study identifies and highlights 
potential areas for research and exploration. The research in 
these areas can advance the understanding and application of 
human-centric PHM strategies within Industry 5.0 in 
maintenance contexts. This is expected to improve the 
resilience and sustainability aspects of the industrial 
ecosystem and facilitate the shift towards Industry 5.0. 

Keywords— Maintenance, Prognostics and Health 
Management, Industry 5.0, Human-centric 

1. INTRODUCTION 

The industrial revolution over the years has led to systematic 
developments and advancements in all sectors of society. 
Industries have grown dramatically, starting with the 
mechanical revolution of the "steam engine" era (Industry 
1.0), progressing towards electrical breakthroughs (Industry 
2.0), developing further into the computerization and 
automation era (Industry 3.0), and now towards cyber-

physical systems (Industry 4.0) (Leng et al., 2022). Even 
though Industry 4.0 is still under constant research and 
development, the concept of Industry 5.0 is being actively 
defined, discussed, and explored by academia, industry, and 
policymakers. It aims to extend, complement, and build on 
the technological advancements of its predecessor, Industry 
4.0 (Raja Santhi & Muthuswamy, 2023).    

The concept of Industry 5.0 is based on integrating human-
centric aspects with advanced technologies for enhanced 
productivity and operations (Nahavandi, 2019). It 
emphasizes on human-centric aspects like human-machine 
collaboration, worker well-being, empowering workers with 
enhanced decision-making, and personalized/customized 
systems that can enhance the industry’s sustainability and 
resilience aspects (Adel, 2022; Industry 5.0: Towards More 
Sustainable, Resilient and Human-Centric Industry - 
European Commission, n.d.). Unlike its predecessors, where 
the key factors were automation and technology which gave 
the idea of the technologies as a partial replacement for 
humans, Industry 5.0 seeks to integrate the strengths of both 
humans and machines to optimize industrial processes. In this 
context, it involves the integration of human intelligence, 
creativity, and experience, with the capabilities of advanced 
technologies such as AI, data analytics, IoT, etc. 
(Ghobakhloo et al., 2023) 

PHM leverages data analytics, condition monitoring systems, 
digital twins, and other advanced technologies to forecast 
potential failures and issues before they occur, allowing 
proactive maintenance actions to be taken. This shift towards 
predictive maintenance, facilitated by PHM, helps minimize 
unplanned downtime, optimize maintenance costs, and 
improve overall asset effectiveness (Zio, 2022).  

Industry 5.0 will further facilitate PHM in maintenance by 
focusing on human-centric aspects, which will enable 
maintenance workers to leverage PHM data and insights to 
make more informed, adaptive, and resilient maintenance 
decisions.  

The purpose of this study is to advance the understanding and 
application of human-centric PHM strategies within Industry 

Parul Khanna et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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5.0 maintenance contexts and make the industrial ecosystem 
more resilient and sustainable. 

The objectives of this study are: 

1. To investigate the human-centric aspects of Industry 
5.0 in maintenance, focusing on PHM systems. 

2. To identify the potential areas for research and 
exploration for advancing the understanding and 
application of human-centric maintenance strategies 
within the context of Industry 5.0. 

2. METHODOLOGY 

This study was conducted using a mixed-method research 
approach to investigate the human-centric aspects, with a 
specific focus on PHM systems for facilitating the 
enablement of Industry 5.0 in maintenance. The methodology 
followed consisted of the following components: 

• Literature Review: A review of existing literature 
was conducted on Industry 4.0 and 5.0, human-
centric aspects, PHM systems, and maintenance 
efficiency to establish a theoretical foundation for 
the study.  

• Observations: To understand the practical 
implementations and dynamics of human-machine 
interactions in industrial maintenance, active and 
passive observations were made. This included 
observing industrial professionals utilizing PHM 
systems in real-world settings to see how they 
interact with these systems during their daily 
operations. Observing demonstrations of 
maintenance systems in laboratory settings during 
lab visits, which included a diverse audience 
ranging from students to industry professionals.  

• Unstructured Interviews and discussions: 
Conducted unstructured interviews and discussions 
with asset managers from companies serving as 
knowledge partners for rail vehicles and public 
transport agencies in Sweden. These 
interviews/discussions were conducted during 
workshops, seminars, and regular meetings. They 
provided strategic insights into the adoption and 
challenges of PHM systems. They additionally 
provided us with valuable insights from 
maintenance worker’s perspective enabling us to 
gather firsthand information on their experiences, 
challenges, and perspectives regarding the 
integration of human aspects into PHM systems. 

• Data Analysis: Qualitative analysis of data collected 
from literature surveys, observations, and 
interviews to identify key themes, patterns, and 
challenges associated with human-centric PHM 
strategies in Industry 5.0 maintenance contexts. 

 

3. LITERATURE REVIEW 

A review of existing literature was conducted on Industry 4.0, 
and Industry 5.0 in connection with maintenance and PHM 
systems to establish a theoretical foundation for the study. 
Since human-centricity is a key factor in moving towards 
Industry 5.0, we conducted a literature review on human-
centric aspects in maintenance and PHM. These considered 
reviews were from the period 2014 - 2024. To help 
understand the Industrial Revolution journey, works focusing 
on the revolutions thus far were also considered. These works 
dates from 1956 till the present. Key search terms included 
“Industry 4.0 AND PHM”, “Industry 4.0 AND 
maintenance”, “Industry 5.0 AND PHM”, “Industry 5.0 
AND maintenance”, “Human-centric AND PHM”, and 
“Human-centric AND maintenance”.  In total, the study was 
conducted with 26 relevant works of literature. 

3.1. Industrial Revolutions Leading to Industry 5.0 

The Industrial Revolutions, over the years, have helped in 
shaping the current industrial landscape. Starting in the late 
18th century, the first industrial revolution was enabled by the 
mechanical revolution and the usage of steam power resulting 
in faster production processes (Martinelli et al., 2021). 
Subsequently came the 2nd Industrial Revolution, which 
focused on the electrical revolution for mass production 
techniques and implementing assembly lines. Industry 3.0 
brought the digital revolution with IT and automation 
transformations which resulted in significant technological 
advancements and societal changes. 

The current Industrial Revolution i.e. Industry 4.0 saw an 
increase in Cyber-Physical Systems, IoT and AI which 
focused on the integration of technology with physical assets. 
The focus has been primarily on the technological aspects, 
with limited attention paid to the human and social factors 
within organizations (Moraes et al., 2023). Extending this is 
the concept of Industrial 5.0, which works alongside the 
technological advancements till Industry 4.0 but puts humans 
in the centre of it.  Figure 1 shows an advancement of 
industrial processes from an abstract level. 

The revolutionary journey from the first industrial revolution 
to Industry 4.0, which focused on a technology-driven 
approach emphasizing digitalization and advanced 
technologies like digital twins, AI and cybersecurity, laid the 
foundation for Industry 5.0 (Nagano, 2019). Industry 5.0, as 
introduced by the European Commission, (Industry 5.0 - 
European Commission, n.d.) represents a shift towards a 
user-centric and value-driven approach, emphasizing the 
crucial role of humans in the industrial process and promoting 
principles of social well-being, sustainability, and human-
machine collaboration (Beaudreau, 2018; Verma et al., 
2022).  
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Figure 1: Advancing of Industrial Processes 

 

Industrial revolutions have had significant impacts on 
maintenance practices, influencing how industries manage 
and upkeep their machinery and equipment. Table 1 (adapted 
by (Poór et al., 2019) shows the relationship between 
industrial revolutions, their enablers and key maintenance 
facilitators(Coleman, 1956). It is important to note that the 
mentioned enablers and maintenance facilitators extend and 
complement their predecessor’s enablers and maintenance 
facilitators respectively.  

Table 1: Industrial Revolutions- enablers and key 
maintenance facilitators 

 
Industrial 
Revolution 

Enablers Key maintenance 
facilitators 

Industry 1.0 Mechanical 
Revolution, Steam 
Power 

Visual Inspection  

Industry 2.0 Electrical 
Revolution, Mass 
production 

Instrumental/Tool 
Inspection, 
Preventive 
Maintenance  

Industry 3.0 Digital 
Revolution, 
Automation 

Sensors, CMMS, 
Predictive 
Maintenance 

Industry 4.0 Cyber-Physical 
Systems, IoT, AI, 
ML 

Data Analytics 
(Predictive 
Analytics), Digital 
Twins, Condition-
Based Maintenance 

Industry 5.0 Human-Machine 
Collaboration, AI, 
ML 

HSI, Advanced 
Predictive 
Analytics, AR/VR, 
Blockchain 

 

3.2. Industry 5.0 and its implications for the 
maintenance industry 

According to the European Commission (Industry 5.0 - 
European Commission, n.d.; Industry 5.0: Towards More 

Sustainable, Resilient and Human-Centric Industry - 
European Commission, n.d.), implementing Industry 5.0 
means placing the well-being of humans at the centre of the 
industrial processes. It encourages the usage of advanced 
technologies to focus beyond productivity and efficiency and 
emphasizes the well-being of the human workforce while 
considering the planet’s resource constraints. It builds on the 
existing industrial revolution i.e. Industry 4.0 and 
compliments it while focusing on three key factors, Human-
centricity, Sustainability and Resilience (Figure 2). 

 
Industry 5.0 emphasizes the collaboration between humans 
and machines, focusing on enhancing human creativity and 
well-being while leveraging advanced technologies like big 
data analytics, IoT, collaborative robots (cobots), 
Blockchain, digital twins, and future 6G systems (Adel, 
2022; Industry 5.0 - European Commission, n.d.). 

The impact of Industry 5.0 on the maintenance industry is 
profound. It implies the usage of modern advanced 
technologies with a human-centric approach to sustainable 
and resilient maintenance processes. It involves data-driven 
decision-making that addresses potential maintenance faults 
before they lead to breakdowns, optimising operational 
efficiency, reducing downtime, keeping customers satisfied, 
and contributing to sustainability efforts by focusing on 
repair and recycling rather than replacement (Psarommatis et 
al., 2023). 

 
Figure 2: 3 pillars of industry 5.0 

3.3. Prognostics and Health Management (PHM) 
Systems and Industry 5.0 

PHM systems are designed to monitor the health of industrial 
assets. In the context of Industry 5.0, PHM systems can be 
seen as a cornerstone for the integration of modern advanced 
technologies like big data analytics, IoT, and A) with human-
centric approaches within industrial maintenance practices. It 
enhances the efficiency and effectiveness of maintenance 
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practices, operational efficiency, and sustainability of 
industrial operations. (Biggio & Kastanis, 2020) (Adel, 
2022). 

Industry 5.0 places human well-being at the centre of 
industrial processes. PHM systems support this approach by 
empowering maintenance workers with real-time insights 
and decision-support tools. By providing workers with data-
driven insights about equipment health and performance, 
PHM systems help integrate human intelligence with these 
insights to make informed decisions, optimize maintenance 
activities, and ensure the safety and well-being of workers in 
industrial environments (Kumar et al., 2023). 

PHM systems also play an important role in ensuring the 
sustainability and resilience of industrial maintenance 
processes. By forecasting asset failures and scheduling 
maintenance actions at optimum times, these systems help to 
minimize waste and reduce the environmental impact of 
manufacturing operations contributing to the sustainability 
factor(Ghobakhloo et al., 2024). Additionally, PHM systems 
contribute to the implementation of smart factories, which are 
a key aspect of Industry 4.0 and Industry 5.0, by providing 
real-time insights into the health of industrial assets and 
enabling more efficient and effective maintenance strategies 
which contribute to enhancing the resilience of the industrial 
assets (Kumar et al., 2023). 

Predictive maintenance (PdM) which is facilitated by PHM 
systems monitors the health of industrial assets, predicts 
potential failures, and optimizes maintenance schedules 
based on the predicted future state of equipment components. 
By adopting a human-centric approach to PdM within the 
Industry 5.0 framework, organizations can enhance decision-
making processes, increase trust between decision-makers 
and predictive models, allocate resources effectively, and 
improve overall maintenance effectiveness(van Oudenhoven 
et al., 2023). 

Therefore, the integration of human-centric maintenance 
practices within the principles of Industry 5.0 enables 
proactive management of maintenance needs, reduces costs, 
enhances operational efficiency, ensures equipment 
reliability, and contributes to sustainable maintenance 
practices by focusing on repair and recycling rather than 
replacement. This connection highlights the importance of 
predictive maintenance which is facilitated by PHM systems 
as a key enabler of Industry 5.0's vision for smarter, more 
efficient, effective, and human-centred maintenance 
processes. 

3.4. Human involvement in designing and developing 
PHM systems 

In the era of advanced technologies, a human-centric 
approach to developing PHM systems for industrial 
maintenance is not just desirable but essential. A human-
centric PHM system empowers users with intuitive 

interfaces, actionable insights, and decision support tools to 
optimize maintenance strategies ultimately leading to more 
efficient and effective maintenance activities. 

Involving domain experts and their insights into industrial 
processes, especially maintenance activities, aids in focusing 
on critical aspects that are prone to failure. Domain experts 
collaborate with developers early on to define system 
requirements tailored to operational contexts, and technician 
knowledge levels (Toothman et al., 2023). Humans can also 
consider factors like production load, environmental 
conditions, and other maintenance activities that may 
influence asset health, which algorithms might overlook 
(McDonnell et al., 2018).  

Humans also play a critical role in selecting the relevant data 
points for training and monitoring equipment health, ensuring 
the quality of data used in PHM systems and interpreting 
system outputs (Siew et al., 2020). Additionally, Usability 
Engineering and Usability Requirement Analysis are critical 
areas where specialists ensure that PHM systems meet the 
maintenance personnel's needs and requirements in a user-
friendly manner.  

Usability Engineering aspects emphasize visually presenting 
clear explanations, minimizing cognitive load to enhance 
usability and ensure effective decision-making for 
maintenance personnel (McDonnell et al., 2014). This 
human-centred approach is essential to optimize the 
functionality and user-friendliness of PHM systems, making 
them more accessible and efficient for operators.  

Usability Requirement Analysis, on the other hand, focuses 
on identifying and documenting the usability needs and 
objectives of the system. This involves gathering and 
analysing user requirements related to usability, accessibility, 
and user experience, providing a framework for designing 
and evaluating the user interface.   

Customized PHM dashboards can prioritize relevant data 
points for specific tasks and assets, aiding in quicker issue 
identification and efficient maintenance actions. Alerts and 
notifications can also be tailored according to their criticality 
reducing information overload and ensuring timely response 
to critical issues(McDonnell et al., 2014).  

Another interesting area is to investigate the legitimacy 
aspect of PHM systems for a necessary understanding of why 
such predictions were made, fostering trust in the system and 
the recommendations made by it. It will encourage confident 
decision-making by the technicians. This comes under the 
umbrella of Explainable AI for trust and continuous 
improvement. It enables debugging in case of incorrect 
recommendations, and human-in-the-loop learning for 
continuous improvement of algorithms. By understanding the 
reasoning behind predictions, humans can detect and address 
these issues, leading to improved accuracy and reliability of 
the PHM system (Amin et al., 2022; Nor et al., 2021).  
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4. RESULTS  

This research highlights some key insights while integrating 
human-centric aspects with PHM systems within the context 
of Industry 5.0 and industrial maintenance.  

Following are the findings for the objectives of this study:  

Objective 1: To investigate the human-centric aspects of 
Industry 5.0 in maintenance, focusing on PHM systems. 

Industry 5.0 places the well-being of humans at the centre of 
industrial processes. It emphasizes the collaboration between 
humans and machines. PHM systems play an important role 
in this approach, empowering maintenance workers with 
valuable insights and decision-support tools. These systems 
when integrated with human intelligence and data-driven 
insights can optimize maintenance activities and ensure 
worker safety and well-being. 

Integrating human aspects into PHM systems involves real-
time collaboration between human operators and machines 
and the incorporation of human-in-the-loop mechanisms. 
These possibilities aim to enhance the usability, acceptance, 
and integration of PHM systems within industrial work 
environments. 

Objective 2: To identify potential areas for research and 
exploration for advancing the understanding and application 
of human-centric maintenance strategies within the context 
of Industry 5.0. 

The identified areas for further exploration within the context 
of Industry 5.0 and industrial maintenance especially PHM 
systems include human-system interaction, Explainable AI, 
Usability Requirement Analysis and Usability Engineering. 
These areas highlight the need for exploring the dynamics of 
human-machine collaboration and identifying strategies to 
optimize human-system interactions for improved 
maintenance activities and enhanced decision-making. 
Observations and discussions with maintenance 
professionals have highlighted the critical role of seamless 
human-system interaction in enhancing operational 
efficiency. Additionally, future research will delve into 
Explainable AI, to enable maintenance personnel to 
understand the reasoning behind AI-generated predictions 
and recommendations, fostering trust in the system and 
facilitating human-in-the-loop processes for continuous 
improvement. Insights from unstructured interviews and 
discussions emphasized the importance of transparency in AI 
systems for maintenance workers. Furthermore, Usability 
Requirement Analysis will play a pivotal role in identifying 
and prioritizing user needs and preferences in the context of 
PHM systems. This area benefits significantly from feedback 
gathered through interviews and discussions with asset 
managers. Usability Engineering will play a crucial role in 
designing user-centric interfaces and interactions for PHM 
systems in the Industry 5.0 context to enhance the usability 
and user experience for maintenance personnel. Laboratory 

observations and real-world use cases have provided valuable 
insights into the need for creating more effective and user-
friendly maintenance systems. Figure 3 shows the key 
insights of Industry 5.0 within the industrial maintenance 
context. 

The transition to Industry 5.0 introduces several innovative 
challenges as compared to conventional maintenance 
activities. These include the integration of advanced 
technologies which require new skills and training for the 
users/workers. The focus shifts towards creating more 
responsive, robust, and resilient maintenance systems. 

 
Figure 3: Key insights of Industry 5.0 within the industrial 
maintenance context 
 

5. CONCLUSION 

The maintenance industry is constantly developing and with 
the latest industrial revolution i.e. Industry 5.0, the shift is 
towards a human-centric maintenance approach. The 
research on industrial maintenance especially the PHM 
systems within the context of Industry 5.0 is important. It 
emphasizes the significance of the role of human 
involvement in optimising maintenance practices. The 
integration of human-centric aspects with PHM systems also 
enables industries to improve asset reliability and enhance 
operational efficiency. Furthermore, the findings emphasize 
the importance of human-machine collaboration, and data-
driven decision-making in realizing the full benefits of 
Industry 5.0 in maintenance operations. While interviews 
primarily focused on railway experts, the findings can be 
extended to various industrial settings, indicating broader 
applicability. This research highlights the need to focus on 
collaborative design processes and user-centred approaches 
to ensure effective human-machine interactions, which are 
essential for the successful implementation of maintenance 
practices within the context of Industry 5.0. 
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The future research will be built on the findings and insights 
from this research. Future work will focus on achieving a 
more seamless and efficient human-machine interface, 
considering human-centric aspects during system design and 
implementation. As a result, maintenance activities will 
eventually be more effective and efficient. An important area 
of research is quantifying the effectiveness and efficiency of 
such human-centric PHM systems. 
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AI Artificial Intelligence 
IoT Internet of Things 
PHM Prognostics and Health Management 
XAI Explainable Artificial Intelligence 
CMMS Computerized Maintenance Management System 
HSI Human-System Interaction 
AR Augmented Reality 
VR Virtual Reality 
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ABSTRACT 

Reliability of oil distribution transformers is paramount, 
ensuring a stable flow of electricity and shielding from 
potential fire hazards. The internal insulation system of these 
transformers utilizes a combination of oil and paper. As the 
oil circulates through the active part of the system, it collects 
gaseous and physical traces of existing or past defects or 
degradations, providing a holistic view of the transformer's 
health, and allowing for early detection of problems and 
predictive maintenance. While various and mainly data-
driven methods have been developed to calculate a 
transformer health index from oil samples, they lack accuracy 
due to limited data. This paper proposes a novel hybrid 
approach that leverages both Artificial Intelligence and 
Subject Matter Expertise to enhance the health estimation of 
oil distribution transformers. Our methodology utilizes a 
substantial dataset exceeding 65,600 analyzed oil samples, 
coupled with the valuable knowledge of domain experts. This 
combined approach achieves an accuracy exceeding 95%, 
suitable for real-world industrial applications. Furthermore, 
we introduce a risk management feature that strengthens the 
ability to identify transformers at high risk of failure. 
Notably, the health index estimation is implemented as a 
semi-automatic process, retaining the "expert in the loop" 
principle for managing critical and ambiguous cases. 

1. INTRODUCTION AND PROBLEM STATEMENT 

Distribution transformers convert high-voltage electricity 
from transmission lines into usable power for homes, 
businesses, and industries. Their reliability is paramount, 
ensuring a stable and continuous flow of electricity, shielding 
us from power outages, and potential fire hazards. Regular 
inspections, advanced fault detection systems, condition 

monitoring, and proper maintenance are crucial for those 
transformers. The internal insulation system of a transformer 
is provided by both oil and paper. As the oil circulates 
through the active part of the system, it collects gaseous and 
physical traces of existing or past defects or degradations. 
Therefore, it provides a holistic view of the transformer's 
health, allowing for early detection of problems and enabling 
predictive maintenance. In such a process, oil samples are 
extracted and analyzed in the laboratory regarding their 
physical and chemical properties (dielectric strength, acidity, 
humidity, color, and dissolved gas concentration). Sample 
extraction and analysis are done on a regular basis that can 
range from a several months to year periodicity. The results 
are interpreted by experienced subject matter experts who 
attribute a Health Index (HI) to the transformer and guide 
maintenance actions that could be required. The huge number 
of oil distribution transformers currently in operation and the 
limited number of experienced subject matter experts 
available to estimate the HI of these devices, motivates to 
support them. Several methods were developed to 
automatically compute the HI. A review of HI automatic 
assessment techniques for distribution and power 
transformers was proposed by Quynh T. Tran, Kevin Davies, 
Leon Roose, Puthawat Wiriyakitikun, Jaktupong Janjampop, 
Eleonora Riva Sanseverino and Gaetano Zizzo (2020). Some 
of the techniques rely on on-line data, which is not the scope 
of this study. Most of the techniques that rely on off-line data 
are fully data driven. The HI estimations done by experts not 
only rely on standardized combinatory calculations, but also 
reflect the human expertise in interpreting results. 
Consequently, it is difficult to translate them into 
mathematical formulas and several studies implemented 
fuzzy logic approaches, as proposed by Ahmed E. B. Abu-
Elanien M.M.A. Salama, and M. Ibrahim (2012). Whatever 
the data-driven algorithm used, these methods are poorly 
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explainable, which reduces their capacity to be adopted in 
real operations. Only some of them rely on hybrid approach 
combining expert knowledge, either for feature selection, as 
proposed by Khalil Ibrahim, R.M. Sharkawy, H.K. Temraz 
and M.M.A. Salama (2016), or for uncertainty management, 
using Bayesian modeling, as proposed by P. Sarajcev, D. 
Jakus, J. Vasilj, M. Nikolic (2018). Finally, while these 
approaches offer intriguing avenues, they rely on very limited 
data set, with fewer than 100 samples (Ahmed E. B. et al. 
(2012), P. Sarajcev et al (2018), Atefeh Dehghani Ashkezari 
et al. (2012), Jahanzaib Javid et al. (2021), Ahmed E. B. Abu-
Elanien et al. (2011)). These restricted datasets are unlikely 
to encompass the exhaustive spectrum of parameter 
combinations, rendering them poorly fit for real-world 
implementation, especially considering the safety concerns. 

Now, the motivation of this work is precisely to build a 
prognostics and health management solution that is suitable 
for industrial usage, meaning performant enough, resilient 
enough, and preserving safety in any case. The core of this 
work is an original hybrid approach relying on both Artificial 
Intelligence (AI) and Subject Matter Expertise (SME), 
making the most of AI and human expertise. Practically, this 
approach is supported by more than 60 000 oil samples that 
were analyzed and from which experts provided Health Index 
estimations. Indeed, the idea is to train a Machine Learning 
(ML) algorithm to estimate HI from oil samples analyses 
results (Figure 1). The performance criterion that is pursued 
is the global accuracy of the health estimation, with a special 
focus on the ability of detecting transformers at risk, for 
obvious security reasons. The solution is also expected to be 
explainable and to be suitable with an “keeping expert in the 
loop” approach. Indeed, the target solution is not a fully 
automated solution, but rather a mostly automated solution 
that will keep experts in the loop for managing the most 
ambiguous and critical cases. 

The paper describes the health estimation global solution, 
starting with the data science steps, from data collection, data 
cleaning, outliers’ detection, imputation for managing 
missing data, up to the model selection and validation. It also 
emphasizes the way subject matter expertise was combined 
with AI techniques. It describes the risk management method 
that was introduced to minimize the risk of failing to detect 
at risk transformers. Finally, it practically describes the 
global health evaluation process in an industrial context with 
a “keeping expert in the loop” approach that was mentioned 
above. 

2. HYBRID HEALTH ESTIMATION METHOD 

2.1. Introduction 

The method that is used is said hybrid approach as it is based 
on both machine learning and subject matter expertise. The 
machine learning pillar is a standard approach from a data 

science point of view, supported by subject matter expertise 
at all stages (feature engineering, outliers’ detection, missing 
value management, result validation). The expertise is also 
explicitly integrated in a rules-based approach that 
complements the machine learning approach to refine health 
estimation. The current section covers the following technical 
data science steps: data collection, data cleaning, outliers’ 
detection and validation, missing values management, 
models benchmarking, including oversampling and/or 
subsampling methods, and rule-based classification. 

 
Figure 1: Current and target practice. 

2.2. Data collection 

This study focuses on distribution transformers which power 
is less than 3150 kVA and using mineral oil. Data from oil 
analyses over the past 10 years were used, representing 
approximately 65,600 analyses for 40,000 distinct 
transformers (as some of them have been analyzed several 
times all along their lifecycle). The predictive variables 
identified in the data are the levels of dissolved gases, color, 
acidity and humidity, as the dielectric strength. The target of 
our study is the Health Index (HI), which was estimated by 
experienced subject matter experts, based on the oil analysis 
result. Predictive variables and target are given in Figure 2.  

 
Figure 2: Predictive variables and target. 
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The distribution of the Health Index is intrinsically highly 
unbalanced: for most of the analyses the Health Index is 
evaluated by experts at 1 (around 90%), followed by a smaller 
number of analyses with a Health Index of 2 (around 9%), 
and finally an even smaller number of analyses with a Health 
Index of 3 (around 1%). A Health Index equal to 1 means that 
the transformer is perfectly healthy, a Health Index of 2 is an 
intermediate status showing some anomalies, non-serious at 
this stage but requiring some surveillance, and a Health Index 
of 3 means critical anomalies that require immediate 
maintenance actions. 

2.3. Outliers’ detection 

The data cover more than 10 years of oil analyses carried out 
by technical experts. As the analysis process is manual, it 
may be possible to have some errors in the data. In this study 
potential errors were tracked using an anomaly detection 
approach. Then, each anomaly was reviewed, confirmed or 
not to be an error, by technical experts. The anomaly 
detection used in this study relies on a statistical test: the 
Hotelling's T-squared test. Hotelling’s test is a multivariate 
statistical test used to determine if there are significant 
differences between the means of two groups in a 
multivariate space.  In anomaly detection, it allows us to 
compare the mean vector and covariance matrix of a single 
data point (or a small group of data points) to those of a 
reference group. If the data point falls outside a certain 
threshold based on the T-squared statistic, it's flagged as an 
anomaly. When using Hotelling's T-squared test, it's 
important to ensure that the data follow a multivariate normal 
distribution, as it is an assumption it relies on. In the present 
case, dissolved gas concentrations follow an exponential 
distribution, so a logarithmic transformation was needed 
before running the test. Using a 99% confidence level for 
setting the T-squared threshold, 125 analyses (out of a total 
of 65,600 analyses, meaning 0.2%) were identified with 
potential errors. As atypical does not mean error, it was 
necessary to have those analyses reviewed by technical 
experts to confirm whether or not the presence of errors. In 
the end only 17 analyses were confirmed with errors and 
removed from the dataset. For the other analyses initially 
flagged the level of some dissolved gases was exceptionally 
high but perfectly credible. 

2.4. Models benchmarking 

To choose the machine learning algorithm that will be the 
basis of our hybrid approach, we perform a model screening, 
by doing a classification test with nine different algorithms, 
on all analyses for which no data are missing. The imputation 
method for managing missing data is studied later, after 
finetuning the hyperparameters of each algorithm. According 
to the results shown in Table 1 and obtained with a 12,000 
analyses validation dataset, it appears that the most 
performant algorithm is the Random Forest Classifier. 

Accuracy is not the only performance criterion that we want 
to meet. Indeed, interpreting the model and validating, to 
some level, its consistency with the subject matter expert’s 
way of working is another relevant criterion. A Random 
Forest algorithm doesn’t allow to clearly identify the reasons 
behind a given prediction, as the final output is a combination 
of many decision trees, making it difficult to pinpoint the 
logic for each prediction. However, Random Forest 
algorithms usually embed feature importance techniques that 
show how much a specific feature contributes to the overall 
mode. Such a technique was used, and it could be verified 
that the top 3 most influencing features, Hydrogen (H2), 
dielectric strength and acetylene (C2H2), are consistent with 
the subject matter expertise, which historically allows to 
estimate the HI. Indeed, Hydrogen (H2) is the gas produced 
by most technical faults, so an analysis of oil sample done by 
experts always starts with this gas. The dielectric strength 
(also called rigidity) provide experts with a good indication 
of the water present in the transformer oil and therefore of the 
risk during operation: a too low dielectric strength induces a 
risk of flashover. Even in the field, this parameter is checked 
after certain maintenance operations, before restarting the 
equipment. Finally, acetylene (C2H2) is synonymous for 
experts with an electric arc, and therefore a major electrical 
fault. This consistency between algorithm feature importance 
and subject matter expertise gives trust in health estimation 
algorithm.  

Table 1: Classifiers’ performances obtained on the 
validation dataset. 

Classifier Accuracy AUC Recall Precision 

Random Forest 0.96 0.93 0.96 0.95 

Extreme Gradient 
Boosting 

0.96 0.92 0.96 0.95 

Light Gradient 
Boosting 

0.96 0.93 0.96 0.95 

Gradient Boosting 0.96 0.93 0.96 0.95 

Extra Tree 0.95 0.92 0.95 0.95 

Ada Boost 0.95 0.85 0.95 0.95 

Logistic Regression 0.94 0.82 0.94 0.93 

Decision Tree 0.94 0.79 0.94 0.94 

K Neighbors 0.93 0.67 0.93 0.90 

2.5. Imputation of missing values 

In the dataset used for the study (representing 65,600 
analyses), the data corresponding to the dissolved gas 
concentrations are complete for all analyses (no missing 
value for any of the dissolved gases). Concerning the other 
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data, a value is missing for less than 10% of the analyses. 
Different approaches to impute missing values were tested. 
The goal of this step is to make the most of all analyses, even 
those for which a value is missing. First, the simplest 
imputation method was chosen as a reference: imputation by 
the mean. This method consists in replacing the missing 
values for a given feature by the average value of the feature 
itself. Then, the data imputation was tested using two other 
methods that follow a similar approach: iterative imputation. 
Rather than simply replacing missing values with point 
estimates, iterative imputation makes multiple passes over 
the data, using the observed values to estimate and fill in the 
missing values, and then repeating this process several times 
to improve the estimates. This allows for data variability and 
relationships between variables, providing more robust 
estimates. Iterative imputation methods may include 
statistical models or machine learning techniques to estimate 
missing values. wo variants were tested. The first one is a 
standard version of iterative imputation, that includes a linear 
regression to estimate missing values. This first variant is 
promising as there are significant correlations between some 
of the variables, as can be seen in Figure 3. Indeed, for each 
analysis, each input parameter can be quite well estimated 
thanks to the others. The second variant, also called Miss 
Forest, uses Random Forest models to predict and fill in 
missing data. It builds separate models for variables with 
missing data, using the available data to make accurate 
predictions. This method is effective for handling both 
continuous and categorical variables. 

 
Figure 3: Correlation between parameters. Each row and 

each column are input variables (features). 
 
Here we compare the output results of the Random Forest 
classifier using the three different imputers, on the analyses 
for which at least one value is missing. They all lead to the 
same accuracy, and according to the results shown in Table 
2, it appears that the iterative imputation using a linear 
regression shows the best results in terms of precision for 
HI=1 class, recall for HI=3 class and proportion the falsely 
predicted HI 1 instead of 3. Therefore, the classic iterative 
imputer was chosen as imputation method. 

Table 2: Imputation using iterative imputer, simple (mean) 
imputation, and Miss Forest. 

 

2.6. Subject matter expert – Rule based Classification 

2.6.1. Compliance with normative values 

After having apply technical rules that must be respected to 
remain in compliance with the normative values, the expert 
predicted a Health Index. Concretely, these rules allow to 
frame the result. It is thus impossible in our context to 
highlight for a given analysis whose values would have 
exceeded the thresholds set by the normative standards. 

2.6.2. Rules based on evolution through time 

In most cases, a single analysis allows to set the HI of a 
transformer, but in some ambiguous cases, experts do use the 
past analyses of the same transformer (up to two additional 
past analyses) to refine their diagnostic. By combining last 
analysis results with the evolution in the dissolved gas 
concentrations between successive analyses, experts set the 
final HI. Such an approach was mimicked in the study to even 
improve the classification accuracy obtained from the last 
analyses, as shown in previous section. It led to a one-point 
increase in global accuracy. 

2.7. Global scheme of the health estimation process  

The global health estimation process, presented in Figure 4, 
is semi-automatic as the expert remains present in the 
process, to analyze and recommend maintenance actions for 
transformers whose Health Index is evaluated at 3, the most 
critical level. It is also hybrid because it relies on a machine 
learning core and on rules provided by the experts in the field. 

It consists of three blocks: 

• The machine learning prediction, based on the last 
analysis. 

• The legal rules that ensure the compliance of any 
parameter of this last analysis. 

• The expert rules that consider the evolution in dissolved 
gas concentration evolution through time, based on 
previous analyses.  

The details of the process that includes those three main 
blocks are provided in Figure 4. In this figure, note that 
details about the cost matrix are provided in section 3. 
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Finally, once HI has been estimated, if it appears to be equal 
or superior to 2, an expert is asked to review the analyses and 
to provide recommendations in terms of maintenance and/or 
additional analyses to perform. It can also trigger a 
reclassification to class 1 (healthy transformer) if the expert 
concludes that a HI of 2 or 3 is not justified (Figure 5). 

 
Figure 4: HI estimation synoptic. Inputs are on the left; 

computation are in the middle, and output is on the right. 
 

 
Figure 5: Health Index usage with “expert in the loop” 

3. RISK MANAGEMENT FEATURE IN HEALTH ESTIMATION 

3.1. Methodology 

As described in the introduction, not detecting an at-risk 
transformer would lead to a risky situation that could have 
catastrophic consequences. On the other hand, wrongly 
categorizing a transformer as at-risk whereas it is healthy has 

minor consequences, as any at-risk transformer will be 
manually expertised. Indeed, the expert who would analyze 
such a transformer would set it back in the correct healthy 
category, with minor consequences, except the time spent for 
such analysis and action. This means that there is a different 
cost associated to false positive (healthy transformers 
wrongly detected as at-risk ones) and false negative (at risk 
transformers wrongly detected as healthy ones), with false 
negative being more penalizing than false positive. Also, 
such asymmetry depends on the context of usage. Indeed, 
having an at-risk transformer into the wild is always a 
situation to be avoided, but in some cases, it could be even 
more damaging than in other cases, considering the criticality 
of the systems that are supplied by the transformer (hospitals 
for instance) and considering the environment of the 
transformer and the risks in case of fire. In this context the 
goal is now to optimize the classification algorithm not 
regarding global accuracy, but to a cost function that 
considers various levels of false positive and false negative 
costs. Practically, we proceeded with the following steps: 

• A cost matrix is defined, attributing some arbitrary 
weight to each of the errors, reflecting the higher cost of 
errors for false positive vs. false negative. 

• From the classifier, the likelihood that the HI is 1, 2, or 
3 is extracted thanks to the Random Forest that easily 
outputs a calibrated likelihood for each class. 

• Considering the likelihood for each class and the cost of 
each possible choice for prediction, the HI is chosen so 
that it maximizes the total cost. 

Figure 6 shows an example with three different settings (low, 
medium and high costs), with higher and higher cost for false 
negative. The goal of higher cost is to better detect at-risk 
transformers. Technically speaking, the goal is to increase the 
recall of at-risk transformers (HI=2 and, even more, HI=3). 
In this example, the likelihood of prediction of each HI is 
provided. Using a neutral cost matrix, the more likely HI 
would be selected. In this case HI is predicted as a 1. Using a 
medium cost matrix, because of the costs, HI is predicted as 
a 2 as it maximizes the global cost. Similarly, using a stronger 
cost matrix, named high, HI=3 is selected. The approach was 
generalized to 15 settings with increasing weights and tested 
on a 12,000 analyses validation dataset. This led to the results 
presented in Figure 7 and Figure 8, showing the expected 
effect on precision and recall: recall for HI=3 class increases 
as the setting gets more conservative (higher costs) and 
parallelly its precision decreases. Regarding HI=1 class, its 
precision increases and its recall decreases as the setting gets 
more conservative. As an intermediate class, HI=2 sees its 
precision decrease as the setting gets more conservative. Its 
recall first increases (as more analyses are correctly classified 
in HI=2 class, instead of HI=1 class) and then decreases: this 
because when the setting gets highly conservative the 
classification tends to incorrectly class HI=2 in the HI=3 
class, as it can be seen in the confusion matrix (Figure 9). 
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Figure 6: Illustration of cost matrix impact on prediction. 

 

 
Figure 7: Recall obtained for HI equal to 1, 2 and with using 

increasingly settings, from 0 to 14. 

 
Figure 8: Precision obtained for HI equal to 1, 2 and 3 with 

using increasingly conservative settings, from 0 to 14. 

In order to choose the best setting from the experts’ point of 
view, we randomly selected 200 samples and provided the 
classification results for all the 15 settings, highlighting the 
correct results and the wrong ones (correct result means 
predicted HI equal to the HI estimated by the subject matter 
expert). This way, subject matter experts could easily see the 
conservatism level of each setting and choose the three 
settings that were the most pertinent to them, for covering the 
global range of criticality of the transformers’ context. Those 
three settings, named weakly conservative, conservative and 
highly conservative cost matrices, are shown in Figure 7 and 
Figure 8. 

 
Figure 9: Confusion matrix normalized by rows and by 

columns for highly conservative cost matrix (respectively 
(a) and (b)). Results obtained on a 6k analyses dataset. 

3.2. Results validation 

The global algorithm (described in Figure 4) was tested on a 
new dataset of 6,000 analyses (called test dataset), using the 
three settings chosen by the subject matter experts. The 
results are shown in Table 3. They are consistent with the 
results obtained on the validation dataset. Particularly, 
precision for HI=1 class and recall for HI=3 class are very 
close. For instance, using the conservative cost matrix, 
precision for HI=1 class is 99% on the test dataset and 99% 
on the validation dataset, recall for HI=3 class is 95% on the 
validation dataset and 94% on the test dataset. Those 
performances and the risk management settings allow for 
industrial usage.  

Table 3: Results obtained on the test dataset for weakly 
conservative, conservative, and highly conservative settings, 

focusing on precision for HI=1and recall for HI=3. 
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4. CONCLUSION AND DISCUSSION 

A semi-automatic, hybrid machine learning and expert-based 
approach for transformer maintenance has been developed. 
This approach is based on a very large number of analyses 
(65,600) carried out over more than 10 years and the technical 
experts who carried them out. It is called semi-automatic 
because the expert remains present in the process, especially 
to analyze and recommend maintenance actions for 
transformers whose Health Index is evaluated at 3, the most 
critical level. It is called hybrid because it relies on a machine 
learning core and on rules provided by the domain experts. 
The machine learning part goes beyond the application of 
combinatorial rules: it has captured the experience and 
practices of experts exposed to many analyses and their 
practical experience on many transformers, throughout their 
lifecycle, who are familiar with the signatures of faults and 
their probability of leading to more serious problems later. 
Like any machine learning algorithm, the performance of this 
solution relies on a big amount of data for training. Knowing 
that this solution is a hybrid solution that also relies on 
expertise, any industry with advanced expertise necessarily 
also possesses a large volume of data. Therefore, it is suitable 
to any industrial player in the field. As in most classification 
problems, it is not possible to simultaneously improve 
precision and recall, or in other words, minimize false alarms 
and minimize non-detections. This is why we have 
introduced a setting that allows us to prioritize one or the 
other, depending on the context of use.  

Our overall health estimation system relies on: 

• This machine learning-based estimation core. 
• Legal and safety rules that need to be verified. 
Calculations commonly used by experts based on the 
evolution of dissolved gas concentrations trough time to 
discriminate the most ambiguous cases. 
• The expert who will confirm the critical cases (2 or 3) 

and provide an appropriate maintenance or further 
analyses recommendations. 

This transformers health estimation enabling predictive 
maintenance is now deployed on the cloud as an API that is 
exposed to users whose use can also be done directly through 
a web application. Today, this process relies on discrete oil 
analyses; tomorrow, with more and more embedded 
monitoring in transformers, it is possible to perform real-time 
analyses. The hybrid approach can be preserved, but this time 
the machine learning core can rely on the time series and be 
even more sensitive to any degradation and more accurate in 
failure prediction.  

Finally, it should be noted that this methodology is 
transferable to many other application domains beyond 
transformers. 
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ABSTRACT 

The copious volumes of data collected incessantly from 
diverse systems present challenges in interpreting the data to 
predict system failures. The majority of large organizations 
employ highly trained experts who specialize in using 
advanced maintenance equipment and have specific 
certification in predictive maintenance (PdM). Prognostics 
and health management (PHM) connects research on 
deterioration models to strategies for PdM. Prognostics refer 
to the process of estimating the time until failure and the 
associated risk for one or more current and potential failure 
modes. Prognostics aim to provide guidance by alerting to 
imminent failures and predicting the remaining useful life 
(RUL). This eventually leads to improved availability, 
dependability, and safety, while also reducing maintenance 
costs. This research work diverges from existing established 
prognostic methodologies by emphasising the use of hybrid 
prognostics to predict the future performance of an aircraft 
system, especially the point in which the system will cease to 
operate as intended, often referred to as its time to failure. We 
have developed a new method that combines a physics-based 
model with the physics of failure (PoF) and a multiple-
layered hyper-tangent-infused data-driven approach. The 
results are useful. The authors retrieved datasets for analysis 
using a laboratory aircraft fuel system and simulation model. 
Consequently, the comparative results demonstrate that the 
proposed hybrid prognostic approach properly estimates the 
RUL and demonstrates strong application, availability, and 
precision. 

Keywords: health management; physics of failure; hybrid 
prognostics; aircraft fuel system; remaining useful life. 

1. INTRODUCTION 

The goal of prognostics is to accurately detect and report 
impending system failures—that is, to forecast the 
progression of failure. Prognostic methodologies used in 
prognostic and health management (PHM) achieve this 
objective through three distinct classifications: condition-
based, usage-based, and traditional. Traditional prognostic 
approaches can be further classified as model-based, data-
driven, or hybrid models (Gu & Pecht, 2008; Liao & Köttig, 
2014). 

Using failure physics (PoF), likelihood, and reliability 
models to come up with and use expressions is what model-
based prognostic methods do. These models utilise the 
relationships between materials, manufacturing processes, 
and the dependability, robustness, and strength of a 
subsystem. This is typically achieved through controlled, 
structured experiments and life evaluations. Although 
modelling offers the potential for high accuracy, its 
implementation and utilisation in complex operational 
systems are difficult. The models comprise acceleration 
factor-incorporated reliability testing models, probability 
models, distributions, and reliability theory principles. Figure 
1 shows the comparison between physics-based and 
traditional condition-based data (CBD) approaches to PHM. 

Data-driven prognostic approaches, such as statistical and 
machine learning methods, are easier to use than model-based 
approaches but may result in less precise and accurate 
prognostic projections (Galar et al., 2021). As shown in Fu et 
al. (2023), statistical approaches include both parametric and 
nonparametric models. They also include K-nearest 
neighbour (KNN), a nonparametric method for classifying or 
regressing an item based on its nearby data points. Linear 
discriminant analysis (LDA) sorts many objects into groups, 
hidden Markov modelling (HMM) deals with systems that 
have hidden states, and principal component analysis (PCA) 
changes variables in a straight line. Hybrid approaches 
combine model-based and data-driven methods to enhance 

Shuai Fu and Nicolas P. Avdelidis. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
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accuracy and gain a deeper understanding of the interactions 
between parameters and objects. The complexity of 
computational processing is one of the limitations. 

 
Figure 1. Diagram comparison of model-based and CBD-
signature approaches to PHM (Hofmeister et al., 2017). 

Figure 2 illustrates an alternative representation of a fault tree 
for aircraft fuel error-identified systems. Failure Mode and 
Effects Analysis (FMEA) and Failure Mode, Effects, and 
Criticality Analysis (FMECA) are used in this study to 
investigate a fuel-error defect and find the most likely failure 
mode. This could be air flow, pressure, temperature, or the 
fuel pump. 

 
Figure 2. Example of fuel error leading to the application of 

prognostic model (Douglas Goodman et al., 2019) 

In this instance, we conclude that a temperature inaccuracy is 
the probable factor responsible for the fuel error. The fault 
tree indicates that three failure modes, namely the power 

supply, resistive temperature detector (RTD), or an air-data 
unit, are likely to cause the temperature error. We use an 
appropriate analytical model to generate prognostic data in 
the event of an RTD failure.  

1.1. Hybrid prognostic mechanisms 

A hybrid technique combines physics-based and data-driven 
prognostics in two phases: offline and online. The initial 
phase involves creating the nominal and deterioration 
models, as well as establishing the faults and performance 
criteria required to predict the remaining useful life (RUL) of 
the system. The second phase entails using models and 
thresholds to identify fault initiation, assess the state of 
system health (SoH), and forecast future SoH and RUL. Data 
from experiments and synthetic datasets from simulations 
that replicate real-world settings often validate and optimise 
the models. We create and utilise sensors to gather data from 
operational systems, with the aim of monitoring and 
maintaining the systems' health. The hybrid model offers a 
higher level of precision compared to employing solely a 
physics-based or data-driven approach. A physics-based 
model generates particularly accurate prognostic information 
when adjusted to sensor data. One drawback is the increased 
complexity involved in adapting the model to sensor data. 

Hybrid models utilise a blend of multiple models to enhance 
accuracy. Many academics have overlooked hybrid 
modelling for fault diagnostics and maintenance decision-
making. Ahmadzadeh & Lundberg (2014) examined three 
advanced models for predicting RUL: knowledge-based 
models, data-driven models, physics-based models, and 
hybrid prognostic models. Jardine et al. (2006) conducted an 
examination of machinery diagnostics and prognostics, 
showcasing the application of statistical, artificial 
intelligence, and physics-based prognostic methods in 
condition-based maintenance (CBM) to improve the 
precision of equipment RUL estimation. A few studies have 
especially concentrated on hybrid prognostic approaches to 
capitalise on the benefits of several prognostic models. 

Hybrid prognostic methodologies have limitations because 
they rely on both model-based and data-driven methods. 
Inaccurate models, noisy data, or both may result in an 
incorrect RUL forecast. As a result, if not managed correctly, 
there is a significant likelihood of increased variance in 
mistakes. A hybrid strategy combines elements of physics-
based and data-driven methodologies to leverage their 
advantages while mitigating their limitations, but it still 
retains some disadvantages of both. Elattar et al. (2016) 
developed a flowchart to assist in choosing a prognostic 
method, as shown in Figure 3. 
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Figure 3. Workflow to select prognostic approaches (Elattar 

et al., 2016). 

A hybrid strategy can effectively integrate data-driven and 
physics-based methods to optimise their respective strengths 
when managed appropriately. A physics-based method can 
address data deficiencies, while a data-driven model can 
address gaps in understanding the system's mechanics. 
Performing this fusion before estimating the RUL is known 
as pre-estimation. Fusion is a process that combines the 
results of various methods to determine the final RUL after 
predicting it. Li et al. (2019); Nieto et al. (2016); and Orsagh 
et al. (2003) used a fusion strategy for aircraft engine bearings 
to show that this method gives more accurate and long-lasting 
results than just using data-driven or physics-based 
approaches alone. 

1.2. Prognostic application 

In the aircraft sector, there are several instances of prognostic 
applications that are now in the developmental stage. The 
current aim of prognostic society is to create a PHM system 
capable of detecting and isolating problems in both the 
primary and subsystems of the aircraft. Additionally, this 
system will offer prognostic information for specific 
components (Losik, 2012; McCollom & Brown, 2011; 
Vohnout et al., 2012). PHM, which is critical to improving 
safety and lowering maintenance costs, has a significant 
impact on the choice of aircraft. The proposed architecture 
incorporates an external PHM system that will employ data 
mining techniques. Figure 4 depicts the forecasting 
applications.  

There has been a notable surge in interest in prognostics due 
to their ability to improve the health management of intricate 
engineering systems. Prognostics are important because they 
allow us to predict future illness progression and treatment 
outcomes. Daily weather forecasting also employs this 
technology. Whether they are located on board or off board, 

prognostic software solutions have the potential to function 
in real-time or nearly real-time. 

 

 
Figure 4. Forecasting applications. 

Prognostics can be used offline, regardless of how long the 
monitored system has been in operation. Real-time 
prognostics uses the online data collected from the data 
collection system to accurately estimate the RUL and warn 
about an imminent breakdown. This allows the system to be 
reconfigured and the mission re-planned. The offline 
prognostics system utilises extensive system data from the 
whole fleet and applies intricate data analysis techniques that 
are not feasible to conduct in real-time on board due to 
resource and time constraints. An offline prognostic system 
in logistical support management can provide useful 
information for maintenance planning and decision-making. 

2. AIRCRAFT FUEL DELIVERY SYSTEM 

An aircraft fuel delivery system with three tanks usually 
consists of a central tank and two wing tanks. The central tank 
supplies fuel to the engine, and the wing tanks supply fuel to 
the central tank via pumping stations. Two centrifugal 
pumps, complete with check valves to prevent backflow, 
equip each station. Prime movers, operating at a constant 
angular velocity, power these pumps. Engineers designed the 
system with varying elevations between the tanks and the 
engine intake to facilitate fuel flow. This flow is regulated by 
two-way bidirectional valves that respond to the fuel levels 
in each tank. Figure 5 illustrates the design of the simulation 
model, which is based on the MathWorks library. 
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Figure 5. Aircraft fuel delivery simulation system. 

The process of simulating this system involves modulating 
the fluid dynamics associated with the fuel flow, the 
mechanical design of the pumps and valves, and the control 
systems responsible for overseeing fuel distribution. The 
operation will examine the effects of aircraft manoeuvres, 
specifically changes in bank angle, on the reduction in 
pressure across the fuel lines. Figure 6 depicts the structure 
of the central tank in the simulation model. 

 
Figure 6. Central tank structure. 

There is a storage tank in a thermal liquid network that 
maintains a constant pressure and allows for a variable 
number of inlets. The pressure at the liquid surface is 
considered to be equivalent to the pressurisation. It represents 
the hydrostatic pressure differential between the fuel surface 
and the inlets. When the liquid level drops below the inlet 
height, the port is exposed. It is connected to a partially filled 
pipe to simulate the ongoing decrease in liquid level within 
the pipe. In the simulation model, ports A, B, C, D, E, and F 
are thermal liquid conservation ports connected to the tank 
inlets. The thermal-conserving port H is associated with the 
liquid's temperature in the tank. The physical signals V, L, 
and T represent the liquid volume, liquid level, and liquid 
temperature, respectively. Bidirectional valves are also 

depicted within a thermal fuel network. The voltage input S 
determines the location of the spool. Positive spool 
displacement facilitates fuel flow by opening the connection 
between ports A and B. The disconnection is caused by 
reverse spool movement. We regard the aforementioned 
component as adiabatic. The system does not transfer thermal 
energy to its surroundings. Figure 7 illustrates the engine 
pump and its various subcomponents. 

 
Figure 7. Engine pump and its subcomponents. 

The simulation model also includes a centrifugal pump 
operating within the fuel supply system. We employ affinity 
laws to establish the relationship between the reference pump 
characteristics and the actual flow rate and pressure gain. We 
connect the thermal fuel conservation ports, identified as 
ports A and B, to the pump's input and outflow, respectively. 
The drive shaft and casing respectively connect to the 
mechanical rotational conserving ports, denoted as ports R 
and C. Mechanical orientation determines the shaft rotation 
for proper pump functioning, where the flow moves from port 
A to port B and the pressure increases. The pump's 
performance in the other direction is indeterminate and 
perhaps imprecise. Figure 8 shows the engine pump's various 
characteristics. 

 
Figure 8. Engine pump characteristics. 

It is also possible to get an ideal source of angular velocity 
from the system, which produces a velocity difference at its 
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ends that is proportional to the physical input signal. The 
source is considered ideal since it is thought to have sufficient 
power to sustain a defined velocity regardless of the torque 
applied to the system. The relative velocity is calculated by 
subtracting the absolute angular velocity of the terminal 

from the absolute angular velocity of the terminal 
, denoted as .  

3. HYBRID PROGNOSTIC MODELLING AND RESULTS 

3.1. Physical principles 

The simulation model suggests a generic simulation of an 
aircraft's fuel supply system rather than directly replicating a 
specific real-world aircraft's fuel system. The model 
encompasses common components of an aviation fuel 
system, including: 

 Multiple fuel tanks: commercial and military 
aircraft typically have wing tanks and a centre tank 
to evenly distribute weight and improve fuel 
economy. The model provides certain starting 
pressurisation and volume capacities for the tanks, 
essential for maintaining fuel flow under different 
flying conditions. 

 The specifications for centrifugal pumps and valves, 
such as bidirectional valves and check valves, 
demonstrate the intricate systems used to control 
fuel supply from the tanks to the engines. 

 It contains essential information regarding the fuel 
line's length, diameter, and resistance properties, 
crucial for accurately modelling fuel flow within the 
system. 

The simulation provides a valuable resource that can be 
customised or expanded to accurately replicate the fuel 
system of a particular aircraft. Factors such as tank sizes, 
pump capacity, and system layout may be able to be adjusted 
in accordance with the aircraft's technical requirements. 
Table 1 presents the initial circumstances and parameters of 
the model. 

The physics-based model often involves the monitoring of 
many parameters, including pressures, temperatures, fuel 
levels, flow rates, and valve functioning. These parameters 
are determined by the components involved, as well as their 
established failure modes. While conducting an analysis of a 
simulated aircraft fuel system, researchers strive to identify 
consistent patterns in: 

 Fuel consumption rates during comparable 
operating conditions. Substantial variances could 
indicate inefficiencies or deterioration, such as 
pressure or temperature fluctuations in tanks or fuel 
lines that differ from the usual values, signalling 
possible problems. 

 Valves and pumps have operational behaviour, 
including unforeseen operations or alterations in 
performance measurements. 

Table 1. The initial circumstances and parameters of the 
simulated aircraft fuel delivery model 

Components Parameters Specs 
Initial 
Conditions 

Temperature 333.15 K 
Pressure 0.1 MPa 

Fuel Tanks 
Pressurisation  0.1 MPa 

Minimum fuel volume 0.09463525 
m³ 

Wing Tanks 
Initial volume 10 m3 
Maximum capacity 12 m3 

Centre Tank 
Pressurisation 0.1 MPa 
Initial volume 5 m3 
Maximum capacity 284 m3 

Pumps 

Reference density 920.027 kg/m³ 
Reference angular 
velocity 120 rev/s 

Angular velocity 
threshold 10 rad/s 

Operational ranges for 
angular velocity 0 to 200 rev/s 

Mover time constant 0.2 s 

Valves 

Maximum opening area π/4× 
(0.03048)2 m² 

Leakage area 1e – 10 m² 
Cutoff time constant 0.1 s 
Maximum valve opening 
(2-Way directional 
valves) 

5.1e-3 m 

Fuel line piping 

Length 5m 
Hydraulic diameter 3.05e-2 m 
Aggregate equivalent 
length for local 
resistances 

2.56 m 

 

To develop a physics-based model for an aviation fuel 
system, one needs to understand the basic concepts of fluid 
dynamics and the mechanical operations of these systems. 
Common mathematical formulas and concepts are 
summarised to reflect the physics of aviation fuel systems, 
establishing a solid foundation for developing a physics-
based model. 

The principle of mass conservation is applicable to the 
process of fuel transfer between tanks and its subsequent use 
by an airplane's engines. The generic equation provided can 
be used to analyse each tank: 

                         (1) 

Where:  
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  is the volume of fuel in the tank. 

  is time. 

  is the inflow of fuel into the tank, and  

  is the outflow rate of fuel from the tank to the 
engines or to other tanks. 

The application of Bernoulli's equation, which establishes a 
relationship between the pressure, velocity, and height head 
of the fluid, can aid in the analysis of fluid flow between 
tanks. This is especially beneficial when the tanks are located 
at varying heights or when calculating the necessary pressure 
for fuel transfer between them. 

                (2) 

Where: 

  is the pressure within the fluids. 

  is the density of the fluid (fuel). 

  is the velocity of the fluid. 

  is the acceleration due to gravity, and  

  is the height of the fluid column (which could 
represent the fuel level in the tank). 

PID (proportional-integral-derivative) control effectively 
manages pump speeds or valve positions to maintain 
predetermined fuel levels in individual tanks. Fuel level 
sensors provide the input for this control mechanism. The 
conventional arrangement of a PID controller is as follows: 

      (3) 

Where denotes the control signal (e.g., pump speed), 
 denotes the error signal (difference between desired 

and actual fuel level), and , , and  denote the 
proportional, integral, and derivative gains, respectively.  

In aircraft fuel systems, where turbulent flow is common, we 
can use the Darcy-Weisbach equation to calculate the 
pressure drops (∆𝑃) along a pipe length: 

∆𝑃 = 𝑓
𝐿

𝐷

𝜌𝜐2

2
                                     (4) 

The variables are defined as follows: 𝑓 is the friction factor, 
𝐿 is the length of the pipe, 𝐷 is the diameter of the pipe, 𝜌 is 
the density of the fuel, and 𝜐 is the velocity of the fuel.  

3.2. Hybrid prognostic integration methodology 

According to Chao et al. (2021), provided 

are multivariate time-series 
data from condition monitoring sensors and their 

accompanying RUL  for a fleet of N 
units . Each observation  

consists of a vector of ρ raw measurements taken at operating 
conditions 𝜔𝑖

(𝑡)
∈ 𝑅𝑠. The length of the sensory signal for the 

𝑖th unit is determined by , and may vary between units.  

The overall cumulative length of the available data collection 
is . We designate the provided dataset more 
compactly as . The objective is to 

develop a predictive model 𝒢 that can accurately estimate the 
RUL  on a test dataset  consisting of 

𝑀  units, which  are multivariate 
time series of sensor measurements. The overall cumulative 
length of the test data set is . 

The subsequent subsections provide a comprehensive 
analysis of each of these phases. Eker et al. (2019) proposed 
the following input and output processes for physical-based 
approaches, as depicted in Figure 9.  

 
Figure 9. Input and output of the physics-based model. 

The flowchart depicted in Figure 10 illustrates the operational 
mechanism of a hybrid predictive strategy employed in 
aeroplane fuel distribution systems. This approach combines 
physics-based and data-driven models. The commencement 
of the process occurs subsequent to the identification of the 
components and modes of aircraft failure, the process 
commences. The aviation fuel system is analysed using 
physics-based techniques and domain expert knowledge to 
estimate the short-term RUL. We conduct the analysis using 
either a real-world or synthetic dataset. 
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Figure 10. Illustration of fusion mechanism of a hybrid 

prognostic methodology for an aircraft fuel system 

The prediction results will be assessed using several 
prognostic metrics, as demonstrated in the studies conducted 
by Chao et al. (2021) and Fu & Avdelidis (2023). The 
optimisation process will be carried out by comparing the 
accuracy results with the actual RUL. Once the desired 
outcome is attained, a hybrid prognostic technique will be 
included. As long as the engineering systems adhere to 
specific physical deterioration, the methodology flowchart 
can be used for other complicated systems.  

Random holdback is the chosen approach for validation. The 
neural network consists of two layers in total. In the initial 
layer, three radial Gaussian activations are employed, 
whereas the subsequent layer utilises two times Sigmoid 
TanH and a linear activation function, which bears a striking 
resemblance to the activations used in two-layer models. We 
set the learning rate at 0.1, allowing for robust fitting. A 
single round of a tour is subject to a penalty approach. The 
authors of this paper used a variety of neural networks with 
different activation functions, including Sigmoid TanH, 
identity linear, and radial Gaussian. There are variations in 
the outcomes observed among the different models. Various 
characteristics were obtained, and the highest-ranked 
attributes that have the most impact on achieving the best 

result were selected. Figure 11 depicts the simplified neural 
network that yields the best results. 

 
Figure 11. Simplified boosted neural network model 

NGaussian(3) NTanH(2)NLinear(1) 

In its fitting routine, the boosted neural network employs a 
validation mechanism. Validation methods include holdback, 
K-fold, or the use of a validation column that performs the 
following actions to fit the model: 

 The model parameters are subject to a penalty. 

 The validation set adjusts the penalties applied to the 
parameters. 

The actual-by-predicted plot calculates the comparison 
between the training's actual and expected values. The 
suggested methodology reveals the correlation between the 
observed value and the projected value on the training 
dataset. The ideal situation involves aligning all data points 
along a straight path where the anticipated values accurately 
match the observed values. The data points in this graph 
display a mostly linear trend that is primarily located close to 
the actual RUL value. This observation suggests that the 
projected values exhibit a degree of resemblance to the 
observed values. As a result, the model exhibits higher levels 
of predicted accuracy for positive values in comparison to 
negative values. Table 2 presents the results for both training 
and validation methods. 

Table 2 suggests multiple measuring and evaluation 
measures to compare prognostic outcomes. Fu et al. (2023) 
provide comprehensive explanations for each rating metric. 
Table 2 demonstrates that the R2 value is 0.9998 for both the 
training and validation stages, indicating a substantially 
identical outcome in both phases. The training procedure 
yielded a higher RASE value of 14.56 compared to the 
validation process value of 21.26, indicating that the 
prognostic algorithm exhibits superior performance during 
the training phase as opposed to the validation phase. We may 
attribute the tiny difference to the inadequate amount of 
training data, which led to less accurate predictions. Future 
optimisation and updates have significant potential to 
improve accuracy. MathWorks extracts the simulation data 
from the simulated fuel distribution systems, which you can 
view at https://zenodo.org/doi/10.5281/zenodo.10888497. 
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Table 2. Optimal variation in terms of evaluation 
performance. 

 Measures Value 

Training 

RSquare 0.9997863103 
RASE 14.563087252 
Mean Abs Dev 8.6751876436 
-LogLikelihood 2308.3148678 
SSE 127038.02268 
Sum Freq 599 

Validation 

RSquare 0.9997561214 
RASE 21.260680304 
Mean Abs Dev 9.1951405963 
-LogLikelihood 1173.5466987 
SSE 135604.9581 
Sum Freq 300 

 

4. CONCLUSION 

Prognostics are essential in PHM, comprising several 
elements like system monitoring, fault detection and 
diagnostics, failure prognostics, and operating management. 
Prognostic models in both industry and research commonly 
utilise physics-based and data-driven methodologies. Every 
strategy has unique benefits and drawbacks. The current work 
presents a hybrid prognostic model that efficiently 
incorporates the benefits of both approaches while reducing 
their limits whenever possible. 

Hybrid prognostics were modified in order to incorporate the 
short-term forecast from physics-based prognostics. This 
concept has been used in aviation fuel distribution systems. 
The present research compares the RUL estimations achieved 
by the hybrid method with those acquired through several 
physics-based and data-driven methodologies. In real-world 
scenarios with insufficient data on long-term failures, the 
hybrid strategy significantly outperforms any of its 
component techniques. 
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ABSTRACT 
A methodology for replacing finite element simulations with 
a fast-calculating surrogate model for fault tolerance in 
operating systems is presented. The study focuses on the 
TO220 rectifier system and explores methods to detect 
impending failures and calculate the resulting necessary load 
reduction. The finite element simulation model is described, 
highlighting the die attach as the relevant connection for 
failure. A surrogate model is developed using long-short-
term-memory models to predict temperature and in-elastic 
strain. The surrogate model significantly reduces simulation 
time, allowing for the adjustment of load based on the 
system's current state of health. The rainflow counting 
algorithm is applied to calculate the number of cycles to 
failure, and the Palmgren-Miner linear damage accumulation 
relation is used to determine the damage and state-of-health. 
The dependency of the change in lifetime due to variations in 
scaling factor is evaluated and the results show that load 
reduction increases the lifetime of the system. 

1. INTRODUCTION 

The increased requirements for fault tolerance (e. g. for SAE 
level L3 and onward, defined by the Society of Automotive 
Engineers (SAE) in SAE International (2021)) requires, the 
operating system must continue to operate with reduced 
power until other measures are initiated. Therefore, the 
system must be able to detect the impending failure and start 
the fault handling. Furthermore, the result of the intervention 
must be predicted in order to apply right failure rectification. 
These requirements can be met by various methods, as 
mentioned by Moeller, Inamdar, van Driel, Bredberg, Hille, 
Knoll and Vandevelde (2024). For example, a system that 

regularly undergoes rest phases can run self-diagnoses 
processes by using standard load cycles during these rest 
phases. From the deviation of the resulting response to the 
response in the undamaged state, the damage and the 
resulting necessary reduction in load can be calculated (as 
shown in e.g. Chacko, Moeller, Kolas, Albrecht, and Rzepka 
(2024)). However, the disadvantage of this method is that the 
fault can be detected at the earliest in the first rest phase after 
the first measurable deviations have occurred.  On the other 
hand, the advantage is that the calculation must not be carried 
out in the system itself, but can also be performed in the 
cloud, for example. 
Alternatively, a digital twin of the system can be created and 
this representation can be digitally loaded in parallel with the 
real system. The digital twin then calculates the damage to 
the real system based on the real load.  In order to achieve 
this, the digital twin must be capable of mapping the failure 
mechanism that occurs and calculating the damage from this. 
In addition, the calculation of the damage due to the load in 
the digital twin must be performed faster than the load is 
applied in reality (this depends on the available calculation 
resources). Only if both of these conditions are met the 
current state of health of the system can be mapped correctly 
and an appropriate regulation can be calculated. 
In this work, the chosen system is a TO220 rectifier. The 
TO220 is a Silicon Carbide Schottky diode for ultra-high 
performance, low loss, high efficiency power conversion 
applications.  For example, it can be used as a switched-mode 
power supply, AC-DC and DC-DC converter, in battery 
charging infrastructure, server and telecommunications 
power supply, uninterruptible power supply and as a 
photovoltaic inverter (Nexperia 2023). As already shown by 
Albrecht, Horn, Habenicht and Rzepka (2023), it is possible 
to generate a validated digital representation of this rectifier 
in the form of a combined multi-field FE simulation, from 
which the damage under real loads can be calculated. 
However, the calculation time of these FE simulations is 
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much too long. This paper shows how the FE simulation 
model can be replaced by a fast-calculating surrogate model. 
After a brief introduction of the TO220 rectifier and the 
corresponding FE simulation in section 2, the training and 
setup of the surrogate model and the calculation of the state 
of health are presented. Subsequently, this surrogate model is 
used to calculate the change in lifetime due to the reduction 
of the load. 

2. FINITE ELEMENT SIMULATION 

The structure of the TO220 rectifier can be seen in the FE 
simulation model in Figure 1 and Figure 2. The die attach is 
the relevant connection regarding the failure (as shown in 
Albrecht et al. (2023)), representing the connection between 
the chip and the lead frame. The current flows from the 
contact via the bond wire to the die and is then transferred to 
the lead frame via the die attach. The materials heat up due to 
the current flow (Joule heating). The temperature is 
dissipated via the heatsink.  

 
Figure 1: Finite Element model of the TO220 rectifier 

(cut view). 

The FE simulation is based on a sequential approach, where 
the electric-thermal behavior is simulated first, followed by 
the thermal-mechanical behavior of the component. A current 
load profile is used as input for the electric-thermal 
simulation. The computed temperature field is then used as 
input for the thermal-mechanical simulation. From the 
thermal-mechanical simulation the in-elastic strain in the 
region of the die-attach corners (the relevant area for the 
failure) is extracted using an averaging approach.  

 
Figure 2: Finite Element model showing the die attach 

and the bond foot. 

In order to calculate the state-of-health from the simulation 
result, the Coffin-Manson lifetime model 

𝑁𝑓 = 𝐶1Δ𝜀𝑝𝑙
𝐶2   (1) 

is used. With this model the number of cycles to failure 𝑁𝑓 is 
calculated by using the in-elastic amplitude allocated to the 
cycle Δ𝜀𝑝𝑙 as well as two model parameters 𝐶1 and 𝐶2. In this 
calculation, the parameters identified by Darveaux and 
Banerji (1991) for Pb95Sn5 were used. Since real loads are 
used in this calculation rather than standard cycles, rainflow 
counting is carried out based on the temperature profile. The 
rainflow counting extracts cycles from the real load, and the 
corresponding change in the in-elastic strain is assigned to 
these cycles. From the number of cycles to failure 𝑁𝑓  the 
state-of-health can be calculated (as shown in section 4). The 
methodology of calculating the state-of-health by using FE 
simulations is also shown in Figure 3. 

 
Figure 3: Applied methodology for the calculation of the 

state-of-health. 

A crucial aspect of the FE simulation is the accurate 
description of the materials used in the component. Most of 
the materials exhibit strong temperature dependence, the 
bond wire and bond foot (both aluminum) as well as the lead 
frame (copper) are modeled by using linear elastic and 
bilinear kinematic hardening plasticity behavior and the 
solder in the die attach is modeled by using the Anand law. 
Especially the solder is highly non-linear and the material 
behavior depends strongly on the strain experienced in the 
past. Further details on the materials and the FE simulation in 
general are shown in Albrecht et al. (2023).  

Using the calibrated model, a complete Worldwide 
harmonized Light vehicles Test Procedure (WLTP) mission 
profile was simulated by varying the electrical load over time. 
In order to obtain the current from the WLTP profile, an 
inverter module was added before the simulation. The 
temperature field from the electric-thermal simulation was 
used as input for the thermal-mechanical simulation and the 
stress as well as the strain in the die-attach corners is 
calculated and averaged. The results are shown in Figure 4. 
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3.  SURROGATE MODEL 

As mentioned before, the WLTP cycle can be simulated by 
using FE simulation and the results fit to experimental 
measurements. So, the FE simulation model is a digital 
representation of the TO220 rectifier. However, the 
simulation time for calculation the WLTP cycle of 1800s is 
round about two days. In order to reduce the simulation time, 
the finite element simulation must be replaced by a surrogate 
model.  

Therefore, the restrictions are: The surrogate model must take 
the current as input and the temperature as well as the in-
elastic strain as outputs. Additionally, the surrogate model 
must be able to store all information of the reality – and 
because the FE simulation fits to the reality also all 
information of the FE simulation model. Due to this, the type 
of the surrogate model cannot be chosen randomly.  

As described before, the materials of the TO220 rectifier are 
highly non-linear and also strongly dependent to the history. 
Due to this, as model type the long-short-term-memory 
(LSTM) model is used (Hochreiter & Schmidhuber (1997)). 
LSTMs are effective in capturing long-range dependencies in 
sequential data and have the ability to remember information 
over long periods of time, as for example shown in Zheng, 
Ristovski, Farahat and Gupta (2017). Analogous to the FE 
simulation, two different LSTM models were trained: one 
model to predict the temperature and one model to predict the 
in-elastic strain. The training data were produced by the FE 
simulation model and as the LSTM model is to be applied to 
real loads, the simulation data from the WLTP cycle is used 
for training. The training/validation split is 80/20 % and the 
Adam optimizer (Kingma & Ba 2014) is used. In order to 
generate additional data that the model had not seen in 

training, the mission profile was varied using different 
methods and a total of six variations were calculated using 
FE simulation. The shown mean absolute error / mean 
absolute percentage error (MAE/MAPE) is calculated on all 
seven mission profiles. The models are trained without 
considering the time. So, for the data a constant time step of 
10 Hz is used. 

 
Figure 5: MAPE for variation of the sequence length and 

the units for the LSTM predicting the temperature. 

For the LSTM there are many parameters, such as sequence 
length, number of unit layers, number of units per layer, 
features, predictions, learning rate etc. These parameters are 
optimized by a combination of a variation study and a 
hyperparameter variation. Exemplarily for the LSTM 
predicting the temperature, which only uses one unit layer, in 
Figure 5 the MAPE for the variation of the sequence length 
and the number of units in the unit layer is shown. The 
increase of the sequence length (the history taken into 

 
Figure 4: WLTP (current) mission profile (green) as well as some of the calculated results from the FE simulation: 

temperature (blue), von Mises stress (red) and the averaged total in-elastic strain (black). 
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account) significantly increases the prediction quality. 
Simultaneously, increasing the sequence length reduces the 
difference between the models with different units. 

For predicting the temperature, the LSTM model with the 
current as feature, a sequence length of 240, one unit layer 
with 14 units is chosen. The prediction quality (also for all 
seven mission profiles) is shown in Figure 6. 

 
Figure 6: Prediction quality of the LSTM for temperature 

prediction. The green line indicates the optimal 
prediction. 

As mentioned before, for the prediction of the in-elastic strain 
a second LSTM model is trained. Therefore, the features are 
the current together with its first and second derivative and 
also the temperature (predicted by the other LSTM) together 
with its first derivative. The result of the parameter variation 
and hyperparameter variation gives a model with two unit 
layers with 16 units and 10 units respectively. The sequence 
length is identified to 200. 

The in-elastic strain is a continuously increasing quantity 
where the changes are constantly added up. Therefore, not the 
in-elastic strain itself was predicted, but the incremental in-
elastic strain. In post-processing after the prediction itself, the 
in-elastic strain is calculated from the incremental in-elastic 
strain via integration. Due to this in Figure 7, where the 
predictions quality for the (total) in-elastic strain is shown for 
the seven mission profiles, seven connected lines of 
prediction points are visible. 

The application of integration also means the integration of 
errors. This has both advantages and disadvantages.  Assume 
that only one error occurs at a specific point in time. Then, 
from this data point onwards, a deviation can be seen in all 
subsequent data points in Figure 7. This deviation will also 
be included in the MAPE calculation. On the other hand, a 
further, opposing error can cancel out the original error. 

Nevertheless, the prediction is sufficiently accurate, as also 
can be seen in Figure 8.  

 
Figure 7: Prediction quality of the LSTM for in-elastic 

strain prediction. The yellow points indicate the 
prediction quality for the incremental strain, the blue for 

total strain. 

 
Figure 8: Comparison of the result of the FE simulation 

(blue) and the LSTM model prediction (red) for the 
WLTP cycle. The strain is scaled to (-1, 1). 

So, with this surrogate model a reduction of the calculation 
time from two days to 19 seconds (7 seconds for the 
prediction of the temperature and 12 seconds for the 
prediction of the strain) for the WLTP cycle of 1800 seconds 
is achieved.  

4. STATE-OF-HEALTH AND REMAINING USEFUL LIFE 

As mentioned before for the FE simulations, the rainflow 
counting algorithm is applied in order to transfer the load 
profile and the resulting continuously increasing in-elastic 
strain into separate cycles. By using Coffin-Manson lifetime 
model (equation (1)), which describes the shape of the strain 
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Wöhler curve in the low cycle fatigue range, the number of 
cycles to failure 𝑁𝑓,𝑖  for each cycle 𝑖 is calculated. The in-
elastic strain Δ𝜀𝑐𝑟,𝑖  for each sub-cycle per cycle (closed 
cycles within a larger cycle) is subtracted. From the number 
of cycles to failure the damage per cycle 

𝐷𝑖 = 1/𝑁𝑓,𝑖  (2) 

is calculated. Then Palmgren-Miner linear damage 
accumulation relation (proposed by Palmgren (1924) and 
further developed by Miner (1945)), is used to sum up all 
damage contributions 

𝐷 =  ∑ 𝐷𝑖
𝑖

= ∑
1

𝑁𝑓,𝑖𝑖
  (3) 

From this, the damage can be transferred into the state-of-
health  

𝑆𝑜𝐻 = 1 − 𝐷  (4) 

Subsequently, the state of health was calculated for a series 
of WLTP cycles, whereby initially the WLTP cycles were not 
changed for the entire period. With this a lifetime of 143 days 
is calculated. In addition, when a health status of 50% was 
reached, the load level of the WLTP cycle was reduced. This 
is used to simulate a reduction in power in response to the 
damage reached. As shown in Figure 9, this reduction in 
power significantly increases the lifetime. 

Consequently, this model can be used to adjust the load of the 
TO220 rectifier to the current state of health. Due to the short 
calculation time of the surrogate model, the influence of the 
load reduction on the lifetime can be predicted. This allows 
to adjust the load in a targeted manner, which is necessary for 
a control. 

 
Figure 9: Change of the lifetime due to the reduction of 

the load level of the WLTP cycle. 

5. CONCLUSION 

In this work the methodology of replacing the FE simulation 
model by a surrogate model is shown. The amount of 
calculation time is massively reduced and due to this the 
surrogate model will be implemented on a micro controller in 
order to finalize the digital twin. 

For the prediction of the temperature the final trained model 
is a LSTM model with just one unit layer and six units 
therein. Due to this low complexity, in future work a change 
to a less complicated model type will be taken under 
consideration.  

Additionally, the surrogate model is currently being trained 
with a complete WLTP cycle. This has the disadvantage that 
the generation of the training data requires a relatively large 
amount of resources. However, it can be assumed that it 
contains multiple pieces of information that are not 
necessarily required for training the surrogate model. For this 
reason, the training of the surrogate model is to be simplified 
in future work. The WLTP cycle and other realistic load 
profiles will be analyzed using methods from time series 
analysis (e.g., the matrix profile, what is presented in Imani, 
Madrid, Ding, Crouter, and Keogh (2018) or Mercer, Alaee, 
Abdoli, Singh, Murillo, and Keogh (2021)), the relevant 
patterns and anomalies will be determined and calculated as 
separate profiles, weighted and specified in the training. This 
reduces the effort required to generate the training data. 
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ABSTRACT 

The prediction of Remaining Useful Life (RUL) in aerospace 
engines is a challenge due to the complexity of these systems 
and the often-opaque nature of machine learning models. 
This opaqueness complicates the usability of predictions in 
scenarios where transparency is crucial for safety and 
operational decision-making. Our research introduces the 
machine learning framework that significantly improves both 
the interpretability and accuracy of RUL predictions. This 
framework incorporates SHapley Additive exPlanations 
(SHAP) with a surrogate model and Network Theory to 
clarify the decision-making processes in complex predictive 
models and enhance the understanding of the hidden pattern 
of features interaction. We developed a Feature Interaction 
Network (FIN) that uses SHAP values for node sizing and 
SHAP interaction values for edge weighting, offering 
detailed insights into the interdependencies among features 
that affect RUL predictions. Our approach was tested across 
44 engines, showing RMSE values between 2 and 17 and 
NASA Scores from 0.2 to 1.5, indicating an increase in 
prediction accuracy. Furthermore, regarding interpretability 
the application of our FIN, revealed significant interactions 
among corrective speed and critical temperature points key 
factors in engine efficiency and performance.  

1. INTRODUCTION 

In the interdisciplinary domain of Prognostics and Health 
Management (PHM), the accurate prediction of Remaining 
Useful Life (RUL) for industrial assets has become 
paramount (Ren et al., 2023). As aerospace, automotive, and 
manufacturing sectors increasingly depend on the reliability 
of their machinery, accurately predicting maintenance needs 
has become essential for ensuring safety, maximizing 

efficiency, and reducing costs. This necessity has driven the 
shift from traditional prognostic methods to advanced 
machine learning techniques (Calabrese et al., 2020; Deutsch 
& He, 2018). These modern methods utilize large datasets to 
effectively identify complex patterns and trends in machinery 
wear and tear, significantly enhancing our ability to predict 
equipment failures (Duc Nguyen et al., 2019). 

However, the application of ML in PHM is limited by 
significant challenges, such as models interpretability. The 
"black box" nature of many ML algorithms, particularly those 
based on deep learning, obscures the decision-making 
processes underlying their predictions. This opacity is a 
considerable concern in fields when understanding the 'why' 
behind a prediction is as critical as the prediction itself, 
necessitating models that stakeholders can trust and interpret 
(Baptista et al., 2022; Kononov et al., 2023; Vollert et al., 
2021).  

Historical reliance on reliability and physics based models for 
RUL estimation, though effective, often staggers upon the 
complexities inherent in real-world operational scenarios. 
These traditional methods necessitate detailed domain 
knowledge and often lack the flexibility to adapt to different 
types of machinery (X. Li et al., 2018; Si et al., 2011; Yan et 
al., 2021). The integration of machine learning into PHM, 
especially with the advent of sophisticated algorithms and the 
increased availability of sensor data opens a new 
opportunities in RUL prediction. This new technologies is 
characterized by learning from historical performance data, 
detecting subtle patterns, and predicting future outcomes with 
increased accuracy (A. Li et al., 2018; Yang et al., 2020). 

The diversity and complexity of data in PHM, combined with 
the unique operational characteristics of different machinery, 
pose additional obstacles. These factors complicate the task 
of creating generalized models that are both accurate and 
interpretable across varied contexts (Lakkaraju et al., (2016). 
The need for models that can adapt to such diversity while 
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providing clear insights into their predictions is pressing 
(Rudin et al., 2022). 

In response to these challenges, our research presents a 
framework that integrates Network Theory with SHapley 
Additive exPlanations (SHAP) to enhance the accuracy and 
the interpretability of ML-based RUL predictions. Our 
contributions are manifold and aim to bridge the gap between 
complexity and explainability: 

I. Application of a SHAP Theory: We use a surrogate 
Model to translate complex interactions from deep 
learning models into SHAP interaction values. 

II. Application of Network Theory and FIN: The SHAP 
interaction values are mapped onto the Feature 
Interaction Network. This mapping provides a detailed 
analysis of feature interdependencies to improve our 
understanding of the factors that affect the reliability of 
machinery. 

III. Integration of SHAP and Network Theory: The 
proposed method combines SHAP values with Network 
Theory to develop an “augmented” Feature Interaction 
Network (FIN). This network helps clarify and quantify 
how different features interact and influence RUL 
predictions. 

The novelty of this research lies in the fusion of network 
theory with feature importance methodologies to decode the 
nuanced interplay of operational parameters. By applying a 
Feature Interaction Network (FIN), a structural map of 
feature interdependencies further enriched by the integration 
of SHAP values, we were quantifying and explain feature 
contributions. Central to this approach was the novel 
application of surrogate models, facilitating the distillation of 
SHAP interaction effects into discernible edge strengths 
within the FIN. Concurrently, the combination of mean 
absolute SHAP values with network centrality metrics allows 
positioning a more comprehensive description of feature 
significance and influence. This research aims to envelope an 
innovative yet pragmatic set of tools, that can enhance 
Explainability and interpretability of predictive maintenance 
practices.  

The paper is organized as follows: Section II surveys related 
literature, establishing the context for our contributions. 
Section III details our methodology, highlighting the 
synergistic use of SHAP analysis and Network Theory to 
decode ML model decisions. Section IV discusses the 
empirical findings, focusing on the insights gleaned from the 
FIN and its practical implications for PHM. Section V 
concludes, reflecting on the impact of our work and 
suggesting directions for future research in enhancing model 
transparency and reliability. 

2. BACKGROUND AND LITERATURE REVIEW 

In the field of prognostics and health management (PHM), 
the ability to accurately predict the Remaining Useful Life 
(RUL) of machinery is gaining traction (Lei et al., 2018; 
Ramezani et al., 2019; Zhao & Addepalli, 2020). This 
increased popularity is largely driven by advancements in 
machine learning and deep learning technologies. (Berghout 
& Benbouzid, 2022; Chen, Wu, Zhao, Guretno, Yan, 
Member, et al., 2021; Ferreira & Gonçalves, 2022). This 
review aims to summarize recent developments in RUL 
prediction, highlighting the evolution of methodologies and 
techniques across various industrial sectors. 

The significant improvements in RUL prediction began with 
the innovative preprocessing of sensor data. For instance, 
Ensarioğlu et al., (2023) introduced a method that combined 
difference-based feature construction with a hybrid 1D-
CNN-LSTM model, enhancing prediction accuracy 
significantly. Among the more notable preprocessing 
techniques is the sliding time window method, which 
organizes time-series signals into segments of equal length 
for more consistent input data (Guo et al., 2022). While 
effective, this method can be labor-intensive and somewhat 
dependent on the operator’s expertise. Another valuable 
technique is the short-time Fourier transform (STFT), which 
considers the time correlation of signal sequences, providing 
a robust basis for subsequent analyses (Liu et al., 2022; 
Zhang et al., 2023). Also, the integration of long and short-
term memory networks (LSTMs) with convolutional block 
attention modules has improved our understanding of neural 
decision-making processes (Remadna et al., 2023). The 
application of deep convolutional variational autoencoders 
equipped with attention mechanisms has improved the spatial 
distribution of features, thereby enhancing the interpretability 
of predictive models (Cheng et al., 2022).  

The interpretability of machine learning techniques in RUL 
prediction has seen significant advancements, particularly 
through the integration of attention mechanisms and feature 
fusion frameworks. An attention-based deep learning 
framework was developed to effectively combine 
handcrafted and automated features for accurate RUL 
prediction, demonstrating high efficiency performance on 
real datasets (Chen, Wu, Zhao, Guretno, Yan, & Li, 2021). 
Remadna et al., (2023) proposed a fusion of an attention-
based convolutional variational autoencoder with an 
ensemble learning classifier, achieving high accuracy and 
improved interpretability. Watson (2020) highlighted the 
conceptual challenges in interpretable machine learning 
(IML), emphasizing the need for clarity in target definitions 
and the importance of error rate considerations and testing for 
IML algorithms. Additionally, Xu et al., (2022) introduced an 
approaches combined deep learning with other techniques 
such as particle filters and knowledge distillation to enhance 
feature extraction, interpretability, and model compression 
for efficient RUL prediction. 
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Ye & Yu, (2023) introduced the Selective Adversarial 
Adaptation Network (SAAN), an approach to domain 
adaptation employing selective feature interaction for 
effective knowledge transfer in machine RUL prediction 
under variable conditions. Kobayashi et al., (2023), also 
highlighted the critical need for transparency and 
interpretability in AI models, emphasizing the significance of 
Explainable AI (XAI) and Interpretable Machine Learning 
(IML) in RUL prediction in digital twin systems. Zou et al., 
(2021) proposed an approach for RUL prediction in small 
data scenarios using a fully convolutional variational auto-
encoding network, effectively addressing underfitting issues 
and demonstrating superior performance in degradation 
feature extraction and failure threshold determination 
compared to traditional models. 

LIME was proposed by(Ribeiro et al., 2016) as a local model-
agnostic approach to interpretability. It has been since then 
used extensively in prognostics and health management. 
LIME is a local-model because it approximates the learning 
model with an interpretable simplified surrogate around a 
single prediction. As a model0agnostic approach, LIME is a 
generic and works with any underlying predictive model.  

This method has been particularly useful for RUL prediction, 
as it allows engineers to understand the impact of different 
features on the predicted outcomes. For instance, Khan et al., 
(2022); Serradilla Oscar et al., (2020) demonstrated the 
efficacy of LIME in explaining RUL predictions, enabling a 
deeper understanding of the degradation patterns and 
contributing factors, thus facilitating more informed 
maintenance decisions.  

In a recent study, Alomari et al., (2023)developed a 
comprehensive method for predicting the Remaining Useful 
Life (RUL) of aircraft engines. Our approach integrates 
advanced feature engineering, dimensionality reduction 
through principal component analysis, and a range of feature 
selection techniques, including Genetic Algorithms, 
Recursive Feature Elimination, Least Absolute Shrinkage 
and Selection Operator Regression, and Feature Importances 
from Random Forest models. A significant innovation in this 
research is the introduction of the Aggregated Feature 
Importances with Cross-validation (AFICv) technique. This 
method enhances the selection process by prioritizing 
features based on their mean importance also establishes a 
selection criterion that retains features contributing up to 70% 
of the cumulative mean sum which is effectively simplifies 
the model complexity. Another finding in our research is 
introducing a novel PCA-based interpretability framework to 
provide actionable insights and enhance the practical utility 
of our findings for domain experts in the aerospace industry. 

2.1. Data Description 

The N-CMAPSS dataset (Chao et al., 2021) is a dataset that 
uses real flight conditions from a commercial jet to simulate 
the operative conditions (w) within its model. This dataset 

provides synthetic degradation trajectories for a fleet of 
turbofan engines, effectively replicating various unknown 
initial health states under authentic flight conditions. It 
includes eight distinct datasets derived from 128 engines, 
each illustrating seven unique failure modes. These modes 
predominantly affect the flow (F) and efficiency (E) of key 
engine components such as the fan, low-pressure compressor 
(LPC), high-pressure compressor (HPC), high-pressure 
turbine (HPT), and low-pressure turbine (LPT). 

Flight conditions within the N-CMAPSS model are 
categorized into three distinct classes based on the length of 
the flight. The details of these flight classes, along with the 
specific failure modes for each dataset, are meticulously 
documented in Table 1 (4 datasets were used only from the 
entire original dataset). Additionally, the dataset provides 
extensive information on the  scenario descriptors as in Table 
1, and measurements and virtual sensors, which are 
thoroughly described in the turbofan Jet engine schematic 
representation Figure 1 and Table 2. This structured approach 
in modeling the failure modes and operational conditions 
forms the backbone of the current model development, 
offering a realistic and detailed perspective of engine 
degradation under varied flight scenarios. 

Table 1 N-CMAPSS Datasets overview 
Name # Units Flight 

Classes 
Failure Modes 

DS01 10 [1 - 2 - 3] 1 
DS02 9 [1 - 2 - 3] 2 
DS03 15 [1 - 2 - 3] 1 
DS05 10 [1 - 2 - 3] 1 

Figure 1 Turbofan Jet Engine Schematic Representation 

2.2. Data preprocessing and feature selection 

Standardization was applied to the dataset, as detailed in 
equations 1-3, normalizing each feature to have zero mean 
and unit variance. This step was essential for ensuring 
consistency across different data scales and enhancing the 
efficacy of the subsequent feature selection and machine 
learning models: 
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𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
𝑍 =  

𝑥 −  𝜇

𝜎
(1) 

𝑀𝑒𝑎𝑛 𝜇 =  
1

𝑛
∑ (𝑥𝑖)

𝑛

𝑖=1

(2) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝜎 =  √
1

𝑛
∑ (𝑥𝑖 −  𝜇)2

𝑛

𝑖=1

(3) 

Feature selection is critical in prognostics and health 
management, offering substantial benefits for applications 
such as RUL prediction and fault detection. By eliminating 

redundant features, this process effectively reduces the input 
dimensions for machine learning models, thereby enhancing 
their performance by focusing on the most informative 
attributes (Alomari et al., 2023; Aremu et al., 2020). 

In this study, features are selected based on their statistical 
variability. Sensors that exhibit zero standard deviation, 
indicating no variation and thus no predictive value, have 
been excluded. An example of this selection process can be 
seen in Figure 2, which illustrates how sensors are chosen 
based on their variability over time. In Figure 2, features such 
as 'T2', 'W50', and 'Nc' exhibit fluctuating values, whereas 
other features remain constant, indicating they provide 
limited informational value to the mode. 

Figure 2 Variability Analysis of Sensor Data for Feature Selection

This selection was specifically tailored to exclude sensors 
with negligible fluctuations or redundant information, 
focusing instead on those providing significant insights into 
engine performance and wear. The final selected features are 
listed in Table 2. 

Table 2 list of the selected features 
alt Mach TRA T2 T24 
P24 Ps30 P40 P50 Nf 
T30 T48 T50 P15 P2 
Nc Wf T40 P30 P21 

3. METHODOLOGY

The methodology, illustrated in Figure 3, is based on a 
composite model integrating Deep Gated Recurrent Units 
(GRU), Convolutional Neural Networks (CNN), a 
customized Time Distributed Attention mechanism, and an 
innovative Feature Interaction Network (FIN). The goals are 

to improved the precision and interpretability of RUL 
predictions for aircraft engines.  

The GRU layers illustrated in Figure 4 capture the temporal 
correlations within the sequential engine data, while the CNN 
layers distill critical spatial features, thereby enhancing the 
model's capability to identify salient patterns indicative of 
engine failure. The custom attention layer defined in Figure 
5 allows to selectively simplify temporal events within the 
engine's operational history, further refining the model’s 
predictive accuracy.  

To enhance interpretability, the FIN, constructed using 
SHAP (SHapley Additive exPlanations) values shown in 
Figure 10, quantifies the impact and interactions of individual 
features. The node’s size within the FIN is representative of 
the mean absolute SHAP values. This allows better 
demonstration the feature importance visually. Edge weights 
are defined by SHAP interaction values, illustrating the 
strength of the interaction between each pair of features.   
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The methodological combination of GRU, CNN, attention 
mechanisms, and SHAP-driven FIN proffers a 
multidimensional interpretable approach, in the field of 
aerospace prognostics and health management. 

Figure 3 proposed model for RUL prediction and FIN 

Figure 4 Gated recurrent unit (GRU) neural network 
structure 

The GRU, presented in Figure 4, introduced by (Cho et al., 
2014), is a type of recurrent neural network designed to 
model temporal sequences and long-range dependencies 
more effectively than standard RNNs. They simplify the 
recurrent module while retaining the ability to capture 
dependencies in time-series data, making them 
computationally efficient and powerful for tasks such as 
speech recognition, language modeling, and sequential 
prediction, which are crucial in PHM contexts (Cao et al., 
2021; Zhou et al., 2022, Zhou et al., 2023). The core 
functionality of GRUs relies on the modulation of 
information flow across sequence steps, controlled by the 
update and reset gates. 
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Figure 5 time-distributed attention mechanism 

After the GRU layers, a customized Time Distributed 
Attention mechanism (see Figure 5) was used to improve the 
model's ability to focus on the most critical features within 
the sequential data. It applies an attention mechanism to each 
time step independently. This is achieved by computing an 
attention score for each feature using a learned weight matrix 
and bias vector. The scores are then normalized via a softmax 
function to create attention weights, which are subsequently 
used to scale the input features. This process allows the model 
to dynamically prioritize significant information, thereby 
improving the interpretability and accuracy of RUL 
predictions. 

3.1. SHapley Additive exPlanations (SHAP) 

In the field of explainable artificial intelligence (XAI), 
Shapley Additive exPlanations (SHAP) (Lundberg et al., 
2017) values  are a central tool for quantifying the 
contributions of individual features to a model's prediction. 
Rooted in cooperative game theory, SHAP values, formally 
described in Equation (4), enable the measurement of each 
feature's influence by comparing the model's output with and 
without the presence of the feature. This approach not only 
fosters transparency but also imbues the analysis with a 
rigorous mathematical foundation. 

SHAP is crucial to PHM (Alomari & Andó, 2024) where 
understanding the impact of various features on the 
prediction of system failures or maintenance needs is 
paramount. SHAP values facilitate this by attributing precise, 
quantifiable contributions of individual features to the overall 
prediction of system health, thereby enabling more accurate 
and timely decision-making. 

SHAP(𝑗) = ∑
|𝑆|! (|𝑁| − |𝑆| − 1)!

|𝑁|!𝑆⊆𝑁∖{𝑗}

[𝑓(𝑆 ∪ {𝑗}) − 𝑓(𝑆)] 
(4) 

𝑆 - is a subset of features
𝑁 - is the set of all features
|𝑆| - denotes the cardinality (size) of set 𝑺
𝑓(𝑆 ∪ {𝑗}) - is the prediction with both the features in set 

𝑺 and feature 𝒋 
𝑓(𝑆) - is the prediction with just the features in set 

𝑺

Equation (4) computes the contribution of feature j by 
iterating over all possible subsets S of the remaining features 
in N and comparing the difference in the prediction when 
feature j is included versus when it is excluded. 

3.2. Network Theory 

Network Theory (Borgatti & Halgin, 2011) provides a 
framework for understanding the structure and dynamics of 
complex systems by visualizing them as networks of nodes 
(features) and edges (interactions). This approach is 
especially useful in PHM, to reveal the complex 
interdependencies between system components. By applying 
Network Theory to create a Feature Interaction Network 
(FIN), we can perform both visual and quantitative analyses 
of how individual system features interact and collectively 
impact overall system behavior (see Figure 6). The decision 
to use a FIN was deliberate; it helps in mapping out the 
relationships and dependencies among features effectively 
and also simplifies the understanding of complex data 
structures for engineers and domain experts. 

To accurately model the interactions within a FIN, the 
Graphical Lasso (GLasso) algorithm (Friedman et al., 2008) 
was utilized. GLasso effectively determines the conditional 
independence structure between variables (features), offering 
a sparse representation of the feature interaction network. The 
mathematical formulation of Glasso (Equation 5) is centered 
on optimizing the following objective function: 

𝑚𝑖𝑛
Θ

− 𝑙𝑜𝑔 det(Θ) + 𝑡𝑟(𝒮Θ) + 𝜆‖Θ‖1
(5) 

Here, Θ represents the precision matrix (inverse covariance 
matrix) to be estimated, 𝒮 is the empirical covariance matrix 
of the data, 𝑙𝑜𝑔 det(Θ) ensures the positive definiteness of Θ, 
𝑡𝑟(𝒮Θ) is the trace term encouraging fidelity to the observed 
data, ‖Θ‖1 denotes the L1 norm imposing sparsity, and 𝜆 is a
regularization parameter controlling the degree of sparsity. 
By solving this optimization problem, GLasso identifies 
significant interactions while discarding the insignificant, 
resulting in a FIN that highlights the most crucial feature 
relationships. 
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Figure 6 Basic FIN graph with interaction strength 

Within the framework of Network Theory, centrality 
measures serve as tools to compute the prominence of 
individual nodes. The centrality measures, namely degree 
centrality for direct linkages, betweenness centrality for 
intermediary influence, and closeness centrality for overall 
accessibility are presented in equations (6-8), are 
instrumental in discerning the structural backbone of the 
Feature Interaction Network.  

Degree centrality (𝑪𝑫) of a node 𝑣 is defined as the fraction
of nodes it is connected to. It reflects the immediate influence 
of a node within the network. 

𝐶𝐷(𝑣) =
deg(𝑣)

𝑁 − 1

(6) 

Where deg(𝑣) is the degree of node 𝑣 (i.e., the number of 
edges incident to 𝑣 and 𝑁 is the total number of nodes in the 
network. Degree centrality helps us pinpoint features that 
exert considerable control over the system's behavior, thereby 
identifying potential points of proactive maintenance and 
intervention. 

Betweenness centrality (𝑪𝑩)  of a node 𝑣  quantifies the
number of times a node acts as a bridge along the shortest 
path between two other nodes. 

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝒮≠𝑣≠𝑡

(7) 

Where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝒮
to node 𝑡 and 𝜎𝑠𝑡(𝑣) is the number of those paths that pass
through 𝑣 , it highlights the node's role in facilitating 
interactions between other nodes. Identifying such nodes 
helps in strategizing interventions that can prevent cascading 
failures in engine operations. 

Closeness centrality 𝑪𝒄(𝒗) measures how close a node is to
all other nodes in the network, indicating how easily 
information can flow from the given node to others. 

𝐶𝑐(𝑣) =  
𝑁−1

∑ 𝑑(𝑣,𝑢)𝑢≠𝑣

(8) 

Where 𝑑(𝑣, 𝑢) is the shortest path distance between nodes 𝑣 
and 𝑢, and 𝑁 is the total number of nodes in the network. 
Features with high closeness centrality are likely to affect the 
system more rapidly, making them critical targets for 
monitoring and early preventive maintenance. 

Community detection algorithms, such as the Louvain 
method (De Meo et al., 2011) given by equation (9), partition 
the network into communities or clusters of nodes that are 
more densely connected with each other than with the rest of 
the network. This segmentation can reveal modular structures 
within the feature set, suggesting subsystems within the 
engine that have distinct behaviors. 

𝑄 =
1

2𝑀
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]𝑖𝑗 𝛿(𝑐𝑖  , 𝑐𝑗) (9) 

The following definitions characterize the parameters of the 
algorithms 

- 𝐴𝑖𝑗  represents the weight of the edge between nodes 𝑖
and 𝑗. For unweighted networks, 𝐴𝑖𝑗  is 1 if there is an
edge between 𝑖 and 𝑗, and 0 otherwise.

- 𝑘𝑖  𝑎𝑛𝑑 𝑘𝑗  are the sum of the weights of the edges
attached to nodes 𝑖 and 𝑗, respectively.

- 𝑚 is the sum of all the edge weights in the network.

- 𝑐𝑖  𝑎𝑛𝑑 𝑐𝑗 are the communities of nodes 𝑖 and 𝑗

- 𝛿 is the Kronecker delta function, which is 1 if 𝑐𝑖 = 𝑐𝑗

(i.e., nodes 𝑖  and 𝑗 are in the same community) and 0
otherwise.

The goal of the Louvain method is to maximize 𝑄 through a 
heuristic approach that iteratively groups nodes into 
communities. 

3.3. Evaluation metrics 

The proposed model evaluation was conducted using the N-
CMAPSS datasets (DS01, DS02, DS03 and DS05), focusing 
on the accuracy of Remaining Useful Life (RUL) predictions. 
The performance of our proposed model was primarily 
assessed by measuring the discrepancy between the predicted 
and actual RUL values. For this purpose, we employed two 
key metrics: Root Mean Square Error (RMSE) and NASA 
Score (Saxena et al., 2008), as defined in equations (10 - 13). 
These metrics, calculated over the number of data points (n), 
provided a comprehensive understanding of the model's 
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predictive accuracy and reliability in various operational 
scenarios presented within the N-CMAPSS datasets. 

𝑅𝑀𝑆𝐸 (𝑃𝑅𝑈𝐿 , 𝑇𝑅𝑈𝐿) =  √
1

𝑛
∑(𝑃𝑅𝑈𝐿 − 𝑇𝑅𝑈𝐿)2

𝑛

𝑖=1

(10) 

NASA Score𝑖  =  {
𝑒𝑥𝑝 (−

∆𝑖

10
) − 𝑖𝑓 ∆𝑖  < 0

𝑒𝑥𝑝 (−
∆𝑖

13
) − 𝑖𝑓 ∆𝑖 ≥ 0

Where: 

∆𝑖= 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖
− 𝑅𝑈𝐿𝑡𝑟𝑢𝑒𝑖

(11) 

(12) 

𝑁𝐴𝑆𝐴 𝑆𝑐𝑜𝑟𝑒 =  
1

𝑛
∑ 𝑁𝐴𝑆𝐴 𝑆𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖=1

(13) 

4. RESULTS AND DISCUSSION

Our enhanced approach to predicting Remaining Useful Life 
(RUL) uses an integration of Deep Gated Recurrent Units 
(GRU), Convolutional Neural Networks (CNN), and a 
custom Time Distributed Attention mechanism. This tailored 
combination has advanced the accuracy of RUL predictions 
by effectively capturing complex temporal and spatial 
patterns within engine operational data, crucial for early and 
accurate fault detection. The inclusion of the Custom 
Attention Layer allows for identifying critical features and 
time steps, significantly refining the interpretability of our 
predictive models. The effectiveness of these innovations is 
substantiated by our empirical results presented in Tables 3 
and 4. Table 3 includes a comparison of some of our results 
with three methods from the literature, while Table 4 presents 
the results for the remaining engines, for which no direct 
comparisons to existing studies could be made.  

Across the different datasets, the model demonstrates 
proficiency in RUL prediction, as evidenced by the calculated 
Root Mean Square Error (RMSE) and the NASA prognostics 
score, with a significant performance in the critical RUL 
phase. This is important since the latter half of life where 
accurate prediction is most vital. Particularly significant are 
the outcomes on DS02 and DS03, where the model achieves 
RMSE values as low as 2 cycles for the critical RUL, 
alongside correspondingly low NASA-scores, highlighting 
the model's precision in the most consequential phase of the 
engine's lifecycle. 

The visualization of the RUL prediction and critical RUL of 
two engines, 9 and 12, from DS01 and DS03, respectively, 
along with their SHAP values, is presented in Figures 7 and 
8. These figures illustrate the model's ability to track the
Remaining Useful Life (RUL) over engine cycles accurately,
with a particular focus on the critical RUL phase. The SHAP
interpretation plots highlight the influence of various sensors
on the model's predictions.

For Engine 12, significant features include 'Nc' (corrective 
speed), 'P50' (pressure at the fan outlet), and 'T2' (temperature 
at the fan inlet). The high SHAP values for these features 
indicate their substantial impact on the RUL predictions. 
Specifically, 'Nc' demonstrates a strong correlation with the 
engine's operational efficiency, reflecting its role in adaptive 
speed control. Similarly, 'P50' and 'T2' provide crucial 
insights into the pressure and temperature dynamics, essential 
for accurate prognostics. 

In Engine 9, the SHAP values reveal 'Nc', 'T50' (temperature 
at the engine outlet), and 'P2' (pressure at the fan inlet) as key 
contributors. The interactions between 'Nc' and 'T50' (as they 
have opposite influence) suggest that the corrective speed 
adjustments are heavily influenced by thermal conditions at 
critical engine points. The significant SHAP values for 'P2' 
underscore the importance of pressure measurements in 
anticipating engine failures. 

Table 3 Prognostics performance assessment comparison with different methods 
Dataset Engine RMSE Proposed RMSE Literature 

(Koutroulis et al., 2022) 
RMSE Literature LR+ 
(Maulana et al., 2023) 

RMSE Literature MLP+ 
(Maulana et al., 2023) 

DS02 11 4.7 5.1 11.4 11.5 
14 6.1 11.9 10.9 11.1 
15 4 5.8 8.9 18.2 

DS03 13 3.9 6.8 -- -- 
14 3.2 5.1 -- -- 
15 2.1 3.04 -- -- 
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Table 4 Comparative assessment of RMSE and NASA-Score metrics for RUL prediction across engine units 

Figure 3 RUL prediction of engine 9 of DS01 with SHAP summary 

Dataset Engine RMSE RMSE Critical RUL NASA-Score NASA-Score Critical RUL 
DS01 7 8.4 7 1.1 0.9 

8 6 4 0.6 0.5 
9 14 12 2.1 1.5 

10 5 3.5 0.5 0.37 
DS03 10 8 2.9 0.8 0.22 

11 8 3 0.8 0.25 
12 17 7.3 6.4 1 

DS05 7 10 3.8 1.9 0.37 
8 6 2.4 0.7 0.2 
9 7 3.6 0.8 0.27 

10 9 3.8 1.2 0.28 
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Figure 4 RUL prediction of engine 12 of DS03 with SHAP summary 

The Feature Interaction Network (FIN) in Figure 8 provides 
an overview of the complex relationships inherent in the 
proposed predictive model for Remaining Useful Life (RUL). 
Through community detection algorithms, it has discerned 
distinct clusters within the network, indicative of underlying 
structures where subsets of features exhibit tightly knit 
interactions, potentially alluding to functional modules 
within the engine's operational parameters. The community 

color-coding allows to observe the modular nature of feature 
interdependencies, which may correspond to different 
physical or operational aspects of engine performance. 
Additionally, the betweenness centrality analysis reveals key 
nodes such as 'TRA,' 'P24,' and 'P15' that act as critical 
conduits in the flow of information through the network, 
signifying their roles in the model's inference processes. 

Figure 5 FIN with betweenness centrality and community detection 
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In Figure 10, we illustrate an innovative Feature Interaction 
Network (FIN) that leverages SHAP values to illuminate the 
complex dynamics within our predictive model for 
Remaining Useful Life (RUL) of aerospace engines. This 
network diagram, empowered by a surrogate model, not only 
visualizes the relative influence of various engine features but 
also clarifies their interrelationships. Each node, scaled 
according to mean absolute SHAP values, reflects the 
magnitude of influence each feature holds over the RUL 
predictions, with larger nodes marking more influential 
features. 

These nodes are distinctly color-coded to represent different 
communities or clusters of features that share similar 
behavior patterns within the predictive framework, 
highlighting how groups of related features collectively 
impact engine performance. The edges between nodes, 
whose thickness is determined by the SHAP interaction 
values, illustrate the strength of the interactions between 
feature pairs, revealing critical dependencies and synergies. 

Key interactions such as those between 'NC' (corrective 
speed) and temperatures at critical engine locations ('T50' and 
'T48') suggest a profound connection between engine speed 
adjustments and thermal conditions. This relationship is 
crucial for maintaining optimal engine performance, 
particularly under varying operational stresses. The 

interaction between 'NC' and 'T50' highlights how 
adjustments in engine speed can be crucial in managing the 
engine's thermal output to avoid overheating while 
maintaining efficiency. 

Further, the interaction between 'T50' and 'Mach' (aircraft 
velocity relative to the speed of sound) underscores the 
significant impact of aerodynamic performance on engine 
thermal management. The relationship between engine 
thermal outputs and flight speed suggests that higher speeds 
may require adjustments in thermal management strategies to 
maintain engine integrity and performance. 

Additionally, the 'NC - Mach' interaction points to a dynamic 
balancing act required between engine speed and aircraft 
velocity, indicating that engine control systems need to be 
highly adaptive to changes in flight dynamics. This 
adaptiveness is crucial for optimizing fuel consumption and 
minimizing wear and tear under different flight conditions. 

Lastly, the interaction between 'T50' and 'P40' (pressure at the 
fan outlet) sheds light on how temperature and pressure 
management are interlinked, playing a pivotal role in 
ensuring the engine's thrust efficiency and overall stability. 
This insight is particularly valuable for developing more 
effective predictive maintenance strategies, aiming to reduce 
unexpected downtimes and extend the engine's useful life.

Figure 6 Feature Interaction Network (FIN) Visualizing Key Dependencies and Community Structures: This network map 
illustrates the Feature Interaction Network (FIN) with nodes sized according to their mean absolute SHAP values, which reflect 
the impact magnitude on the model's output. The nodes are color-coded by community, identifying clusters of tightly 
interconnected features that influence system behavior in distinct ways. Thicker lines between nodes indicate stronger SHAP 
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feature interactions, highlighting critical dependencies such as NC-T50 and T50-Mach, which are pivotal for understanding 
complex dynamics within the aerospace engine's operations 

5. CONCLUSION

 In conclusion, our research aims to advance the predictive 
maintenance field by developing a prognostic framework that 
combines cutting-edge machine learning techniques with 
innovative interpretative methodologies to predict the 
Remaining Useful Life (RUL) of aerospace engines. 
Utilizing a Surrogate Model, we have successfully mapped 
complex SHAP feature interactions into a well-defined 
Feature Interaction Network (FIN). This network, structured 
with nodes proportionally scaled by mean absolute SHAP 
values and connections defined by the strength of SHAP 
interactions, vividly represents the intricate relationships 
between operational parameters. 

Our detailed analysis highlighted crucial feature interactions, 
notably between corrective speed and critical engine 
temperature, which are point factors essential for optimizing 
engine efficiency and performance. Furthermore, the 
application of community detection in the FIN has 
significantly deepened our understanding of these features, 
grouping related variables to illuminate how they collectively 
impact RUL predictions. This clustering clarifies the 
predictive model's structure and enhances the interpretability 
of the data, providing clear pathways for intervention. 

The visual representation of the FIN is not merely an 
analytical tool; it acts as a vital conduit translating complex, 
data-driven insights into tangible, operational strategies. This 
visualization underscores the transformative potential of 
interpretative machine learning to convert abstract data into 
actionable intelligence, a resource of value in the high-stakes 
field of aerospace prognostics where the accuracy of 
predictions can directly influence operational safety and 
maintenance efficiency. 
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ABSTRACT

The approach of prognostics and health management (PHM)
focuses on the real-time health assessment of a system un-
der its actual operating condition and even extending this by
the prediction of the future state based on up-to-date system
information. This pursues the aim to derive more advanced
maintenance or asset deployment strategies in order to keep
the operation of the system safe and reliable. In this context,
the outcome of a PHM system is often used as a decision
support. For a high fidelity system where the actual state is
considered at every timestep and a decision is executed imme-
diately based up on this information, Reinforcement Learning
(RL) becomes a tool to find an optimized solution. Therefore
the paper presents a methodology that integrates health and
operational data into a RL approach in order to derive imme-
diate operational strategies for lower degradation and higher
safety and reliability. The approach is evaluated on the ba-
sis of a swarm of unmanned aerial vehicles (UAVs) that per-
forms a complete-area path-coverage (CAPC) mission. It can
be shown that the integration of health information as well as
environmental data describing dynamic operating conditions
lead to lower degradation and result in more reliable oper-
ations of the swarm while achieving a more flexible mission
performance compared to pre-divided swarm-missions. Vary-
ing states are also taken into account, which emphasises this
approach to be a highly dynamic PHM system application.

1. INTRODUCTION

To avoid fatal incidents, safety and reliability are two major
objectives for developments in the aviation industry (Tumer,
2011). While safety refers to system operations without caus-
ing harm or damage to people, property or the environment,
reliability focuses on the ability of a system to perform its
intended functions without failure or degradation over time
(Stapelberg, 2009). The latter is the motivation to develop
PHM functionalities where system states are predicted in or-

Lorenz Dingeldein. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

der to derive decisions for maintenance strategies to increase
reliability, availability and save costs. It is evident that usage
leads to some level of degradation. Implementing a specific
usage strategy can mitigate this degradation, resulting in ex-
tended system functionality and improved operational relia-
bility, even in systems that have already experienced degrada-
tion. This approach is called prescriptive maintenance which
complements PHM approaches by utilising their outputs, namely
state detections and remaining useful life (RUL) predictions.
While traditional PHM approaches try to extend system us-
age through a more precise calculation of the RUL, prescrip-
tive maintenance guarantees for a reliable usage of systems
that already show remarkable degradation (Marques & Gi-
acotto, 2019). Combining usage specific degradation with
a PHM based condition assessment is subject of this paper,
which provides a prescriptive maintenance strategy using re-
inforcement learning.

The system used in this paper to implement the condition-
based operational optimisation is a UAV swarm. The high-
level mission goal of the swarm is the CAPC which applies to
time-critical reconnaissance missions and also covers a com-
mon problem definition in the field of multi-agent (MA) robotics.
The following reasons emphasize the suitability of this sys-
tem and use-case for the developed approach:

• Mission reliability: System functionality of every swarm
member needs to be guaranteed in order to be able to ful-
fill high level mission goals of a complete area coverage.
While operational capabilities of a single UAV are lim-
ited, a swarm has the advantage of achieving more chal-
lenging mission goals in shorter time. The time-factor
is crucial, for example, in search and rescue missions or
forest fire observations.

• Autonomy: UAVs do not have a pilot on board. This
means that various functionalities have to be automated.
System state detection, as part of a PHM approach, is
a decisive one in order to guarantee for reliable system
functionality.

• Redundancy: Every individual swarm member repre-
sents a redundancy in the swarm structure. Individual
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tasks can be distributed reasonable within the whole swarm
in order to define a specific usage based upon environ-
mental conditions. This guarantees a flexible task assign-
ment that allows for optimization strategies.

In current research literature, the aspects of the integrated ap-
proach developed in this paper are considered separately. The
basic idea of using PHM for a dynamic reliability assessment
is described by the authors from (Heier, Mehringskötter, &
Preusche, 2018). The paper emphasises the connection of
PHM and reliability topics to develop decision support tools.
The authors in (Bougacha & Varnier, 2020) use PHM as a
driver for decision support. They pursue the primary goal
of achieving higher reliability, availability and operational
safety. Especially health and RUL indicators are utilized from
the PHM approach in order to establish a decision-making
process. Early approaches of in-mission decision making based
on system states are discussed in (Andersson et al., 2015) and
(Alighanbari, 2004). The latter even includes changes within
the environment where the UAVs need to react to. In addi-
tion not only one UAV is part of the mission but a swarm
of UAVs is considered. Data-driven approaches and machine
learning techniques were not as easy accessible and devel-
oped as they are nowadays, leaving potential for the problems
presented in these papers. A more recent consideration can
be found in (Darrah, Quiñones-Grueiro, Biswas, & Kulkarni,
2021) where they use an online state observation to update
parameters that optimize the prognosis for specific mission
profiles. The better prognostic performance can than be used
to derive more precise decisions but the focus of this paper is
on a single UAV.

While the previously mentioned literature deals with link-
ing PHM approaches with reliability, the following literature
analysis focuses on deploying multi-agent swarm operations
in a digitized environment. A baseline for multi-agent path-
coverage is shown in (Cho, Park, Park, & Kim, 2021) where
different grid-based map representations are compared. Even
though hexagonal grids show certain advantages, such as in-
creased navigation capabilities, the use of a cubic grid based
map representation seems to be a suitable choice for the CAPC
mission. Another approach for efficient swarm applications
is described in (Mahmoud Zadeh, Yazdani, Elmi, Abbasi, &
Ghanooni, 2022) and focuses on data acquisition. This ap-
proach could be interesting when deploying the swarm man-
agement approach from this paper in the real world and a
good concept for data acquisition is needed. Nevertheless
it describes the possibilities of UAV swarms. No CAPC is
performed, but the distance between UAVs for better sensor
measeruments is taken into account and considered as a use-
ful approach. In (Radzki et al., 2021) travel uncertainties for a
complete UAV fleet get determined. The result is used to opti-
mize the usage of a UAV fleet but no in-mission decisions are
made. This approach rather solves a scheduling problem than
dealing with in-mission decisions to react on environmental

conditions and system changes.

In order to make dynamic in-mission decisions, the approach
of this paper uses reinforcement learning. This allows a large
amount of heterogeneous data to be taken into account, which
can change spontaneously in a sequential simulation. The
successful application of reinforcement learning to a simi-
lar problem statement can be seen in the following litera-
ture. Using RL to control a swarm of buoys is described in
(Kouzehgar, Meghjani, & Bouffanais, 2020). The goal is also
the CAPC mission but input data differs in contrast to the
deployment of UAVs. More comparable is the approach in
(Puente-Castro, Rivero, Pazos, & Fernandez-Blanco, 2022)
where a CAPC mission is performed with UAVs. The focus
lies on the high level mission goal and enables the identifica-
tion of relevant parameters for the coverage task. In addition
(Xiao, Wang, Zhang, & Cheng, 2020) propose an approach
to solve a CAPC task as well. No considerations of external
factors or systems states are integrated into the approach but
it helps to get an overview to solve the high level mission goal
of CAPC. The closest approach is presented in (Theile, Bay-
erlein, Nai, Gesbert, & Caccamo, 2020) where power limita-
tions of UAVs are integrated into a RL approach. The CAPC
mission is specified as the target, but in fact more of a path-
finding algorithm is implemented, which appears to be too
permeable for reconnaissance missions and power limitations
do not reflect the link between usage and degradation.

This paper uses the individual results from the literature stated
above to develop an integrated solution for the condition-
based organisation of a UAV swarm for the CAPC task using
reinforcement learning. The general approach, including the
experimental setup, is presented in Section 2. The results of
the approach, applied to the described use case, are presented
in Section 3 and analysed in Section 4. The paper concludes
with a summary and an outlook on future work in section 5.

2. METHODOLOGY

To solve the task of a CAPC mission performed by multi-
ple UAVs with respect to their health condition, a reinforce-
ment learning method is implemented in python using RLlib
(Liang et al., 2018). RLlib is only one of many possibilities to
implement RL, whereby the following aspects are favourable
for this paper:

• It is open-source

• It allows the integration of own simulation-environments

• It contains the option of implementing multi-agent reinforcement-
learning (MARL) approaches

For the learning algorithm the Proximal Policy Optimization
(PPO) is chosen. To date, this is the only MARL-capable
algorithm in RLlib, so the implementation in comparable li-
braries should also be considered.

2
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Environment
Properties:
- gridbased
- static obstacle
- wind

Agent - 1
Observations:
- map representation
- distances to agents
- distance to closest field
- neighbour cell values
- past-trajectory
- own condition 
- others condition 
- wind-direction

Agent - 2
Observations:
…

Agent - n
Observations:
…

Reward
new field
known field
cooperation
usage

Actions:
north
west

south
east

Swarm

… 

State
agent-specific

Figure 1. Framework for the multi-agent reinforcement-learning algorithm with consideration of system condition and envi-
ronmental influences

The MARL method is similar to the standard RL framework
where an agent is interacting with an environment through
choosing actions and consequently receiving a reward. The
basic principle of the MARL method with respect to the given
task is shown in Figure 1. The methodology is based on the
single-agent RL approach described in (Wiering & Van Ot-
terlo, 2012) and extended with specifications to implement a
MARL specific model. As it is the task to cover a certain
area through creating a trajectory based on the movement de-
cisions into the four main directions, a squared grid based en-
vironment is beneficial. This presupposes that a search is car-
ried out along the search path with a certain radius, whereby
simplified squares are assumed for coverage of a certain area
that has been observed through a fly-over. While a third di-
mension could be used for deconfliction, it is neglected in this
case to simplify the complexity of the system. The focus is
on optimising a UAV swarm so that not only one agent in-
teracts with the environment, but the actions of several UAVs
are orchestrated and used as input for the environment. The
action space thus becomes a vector that represents the four
main directions of possible movements into north, east, south
and west direction for every agent that takes part in the mis-
sion. The observation for every agent is derived from the
state of the environment and takes agent-specific information
into consideration. The reward rates the agents behavior and
thereby helps the RL-algorithm to learn and successively im-
prove the accumulative reward that is gathered in one mis-
sion. Every component of the MARL model is described in
more detail in the following sections.

2.1. Environment Design

The MARL approach assumes multiple agents that cooperate
together and interact with an environment through the exe-
cution of actions. The action of an individual agent changes
the environment and in reverse calculates a reward that is fed
back to the agent. In order to be aware about the actions to
take the agent receives a state representation from the agent’s
point of view in form of observations. An environment model
is necessary to provide a realistic and dynamic interaction be-
tween the environment and the agent, allowing the MARL
model to learn and improve its decision-making through trial
and error for a lot of training runs, which is ultimately under-
stood as training process.

The use-case specified environment design is based on a grid
based representation of a search field, that needs to be cov-
ered by a swarm of agents, the UAVs. The visualization of
the environment used in this paper is shown in Figure 2 and
subsequently described in detail.

The cell shape is square. This leads to four primary directions
of movement, where the distance from the center of one cell
to the center of its neighboring cells remains consistent. Cells
that have been discoverd are displayed in beige, not visited
cells are colored in green. Cells that are obstacles are colored
as bricks and the wind direction is indicated as yellow arrows
left and on top of the searchfield-cells. Assuming that the
UAV proceed with a constant speed, the travelling distance of
one timestep within the environment model is constant, which
is also fits to the square shaped cells. When an UAV moves
from one cell to another, it increments the value assigned to
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Figure 2. Environment design for a UAV-Swarm CAPC-
Mission with external factors and varying system conditions

the cell by one, representing the number of visits to that cell.
The highest value within the map is ten, which is utilized both
for static obstacles and as a termination condition if an UAV
visits a single cell too often. As an observation, which is de-
scribed in detail in subsection 2.1.2, the UAV draws the map
information and fortifies it to a potential map. In addition
to the search field representation, the environment also incor-
porates a wind simulation. The wind simulation is used to
specify the main influence on the system usage. A detailed
description of the influence of wind on UAVs can be found in
(Wang, Wang, Ali, Ting Ting, & Wang, 2019). It is assumed
that the UAV is able to fly at constant speed under any wind
condition. This results in a different power demand, depend-
ing on the direction of movement of the UAV and the prevail-
ing wind direction. Higher power consumption means greater
stress on the components and therefore increased degrada-
tion. The swarm configuration enables a system management
where degraded UAVs take over the coverage of the search
field crosswind and are thus exposed to lower degradation,
while intact UAVs can take over more demanding trajecto-
ries against the wind and can absorb higher degradation with-
out noticeable increasing the risk. The risk mitigation can
be derived from the general assumption of degradation taken
from (Kim, An, & Choi, 2017). While at the beginning of
a system life the degradation is mainly characterised through
wear represented through a linear progression, the degrada-
tion grows exponentially at the end of a system life, which
results in higher chances for unexpected system failures.

Within the environment design wind is considered as constant

while the direction of wind can change between the missions.
Generally missions are treated individually so that the condi-
tion of one UAV gets defined at the beginning of a mission as
well. The condition is chosen arbitrarily between 0.1 and 1,
representing UAVs with high degradation when a low value is
chosen and UAVs with a good condition if a value is chosen
that is close to one.

The upcoming sections explain the design of the remaining
parts of the MARL approach: the action space, the obser-
vation space, and the reward function. Additionally, it cov-
ers how missions are initialized and outlines the experiments
conducted to assess RL-algorithm performance.

2.1.1. Action Space

The grid-based representation of the search field enables move-
ments along the four main directions, from cell center to cell
center, ensuring an equal traveling distance. The actions are
defined as a single value from zero to three, representing the
four main directions. The movement than is executed on a
global scale, which means that based on the chosen value
from the movement vector, the UAV moves to the north, west,
south or east. In contrast, an UAV-centred approach could be
chosen, which changes the direction of flight depending on
the chosen action previously. In this case, four actions would
also be conceivable, one value for continuing to fly straight
ahead, one value each for a left or right turn and one value
for reversing the direction of flight. In the remainder of the
paper, however, the global approach is pursued further.

2.1.2. Observation Space

The UAVs draw an self-centered observation from the envi-
ronment after changing it with their action. The observation
space contains the following:

• Map representation: The UAV gets a matrix that counts
the visits of the fields. In addition other UAVs as well as
obstacles are highlighted with a value of the maximum
allowed visits for one run. The latter is used for the ter-
mination condition and is described in more detail in sec-
tion 2.1.4.

• Own position: The UAV gets its current position after it
moved. Because of the two dimensional characteristics
of the environment the position is represented globally as
a xy-position within the environment grid.

• Distances to UAVs: The UAV gets the distances in num-
ber of cells in xy-direction to all other UAVs that are op-
erating for one mission.

• Field distances: The UAVs gets the distances in number
of cells in xy-direction to the closest field that does not
count any visit from any UAV.

• Surrounding: With the surrounding data the UAVs get a
representation of the environment based upon their cur-
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rent position. With a size of four by one the surrounding
matrix contains the values of the local map representa-
tion based on the UAVs position into the four main di-
rection. If the UAV operates close to the border of the
search field, values that exceed the search field are repre-
sented with a value of ten which is equal to the value of
obstacles or other UAVs which should not be visited and
lead to a mission termination.

• Movement history: The movement history is a vector of
the length of five which contains the direction decisions
of the UAV in a chronological sequence. For every step
of the UAV within the environment the last value of the
sequence is deleted, the sequences and a the direction
that the UAV moved during this step is added as the first
entry to the vector.

• Own condition: The UAV needs to know its own condi-
tion to compare it with the condition of the other UAVs.
It is a normalized value between zero and one and saved
as a scalar in the observation space.

• Others condition: Due to the same reason as before the
observation space of a single UAV also contains all the
conditions of the other UAVs that are participating in the
swarm mission.

• Wind information: As the wind information mainly is
responsible for the usage and degradation of the UAV
it is also integrated into the observation space as a two
dimensional, directional vector.

Based on the observations of the environment and the UAVs
behavior the RL-algorithm is able to coordinate the UAVs
movements with respect to dynamic environmental states. The
goal is to reduce intensive usage for UAVs with bad condition,
which gets then compensated by the UAVs that are in good
condition. This results in an overall lower degradation ac-
cording to (Kim et al., 2017) where it is stated that the degra-
dation of a system increases over usage time in two steps,
firstly linear and afterwards exponentially. Further more it
reduces the risk of sudden system failures which occur with
a higher chance to the end of life of a system and therefore
decreases mission risk and increases mission reliability. To
allow the UAV to optimize its decisions it receives a reward
after every step according to section 2.1.3. The UAVs also
exchange and communicate information about their position
and condition, enhancing their decisions even further, estab-
lishing swarm intelligence.

2.1.3. Reward Function

In order to get the UAV to perform as desired, it receives a
reward based upon its decision and the changes that occur
within the environment at every step and at the end of the
mission. The major goal in the mentioned use-case is to com-
pletely cover a designated area. The sub task consists of the

efficient coverage of this area with respect to the systems us-
age that in combination with the degradation state has an im-
pact on mission reliability. Therefore the reward can be di-
vided into two types. The step-wise reward that is applied at
every step on every UAV and a sparse reward (Hare, 2019)
that is applied at the end of a mission.

The step-wise reward consists out of a positive reward for
visiting unseen cells of the environment. For every new cell
the UAV receives a reward of Rnew visit = 1. That causes
the reward to increase linear for the exploration of new fields.
This motivates the UAV to search for isolated cells. The UAV
receives a reward of Ralready visited = −1 if the cell was
already visited. This encourages to discover new cells as fast
as possible.

To support cooperative search the UAVs get an additional
positive reward Rcoop every step if there is more than one
UAV active to complete the mission. This means that the
swarm has to organize itself based on the environment repre-
sentation and without crashing into an obstacle, another UAV
or the boundary of the searchfield in order to achieve this re-
ward. The formula for Rcoop is as follows:

Rcoop =

{
1 nUAV s active > 1

0 else
(1)

The reward function incorporates both the UAVs’ conditions
(AC) and usage conditions by comparing the direction of move-
ment with the wind direction. It is assumed that flying against
the wind (headwind) is more energy consuming than flying
crosswind or with the wind (tailwind). Therefore an angu-
lar comparison of wind direction and movement direction is
made and energy cost (EC) for the manoeuvre gets calculated
as following:

EC =





0 Tailwind

0.5 Crosswind

1 Headwind

(2)

It is only possible to use this energy cost if a constant speed
is assumed. This is also helpful for integrating the system
behaviour into a reinforcement learning environment. This
simplification is made in order to focus on and analyse the in-
teractions of degraded systems and environmental conditions
within the multi UAV environment. To link environmental
conditions and degradation, the reward is conditionally cal-
culated as follows:
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Rusage =





1 AC > 0.5 and EC = [0, 1]

−5 AC > 0.5 and EC = 0.5

−1 AC < 0.5 and EC = [0, 1]

5 AC < 0.5 and EC = 0.5

(3)

It shows that Rusage is dependent on the wind direction and
the UAV condition. An UAV in good condition is meant to
fly against the wind. This means that the UAV has to fly with
the wind after a certain amount of steps in wind direction in
order to not leave the search field (which leads to a mission
termination). For this reason, it is not possible to differentiate
between flying with and against the wind. Accordingly the
flight movements of the UAV in bad condition must inevitably
take place increasingly in crosswinds to reduce the proportion
of movement directions against the wind.

The cumulative reward values calculated for each UAV at
every step are aggregated over an episode which stands for
a mission until a termination criteria is met. Initially, re-
wards are determined individually for each UAV, and at the
episode’s end, the total rewards across all UAVs are summed
up. The end of an episode is initiated by predefined termina-
tion conditions. An additional reward known as the sparse re-
ward is introduced alongside the termination condition, both
of which will be further detailed in the following subsection.

2.1.4. Termination Conditions

Termination conditions are necessary to end an episode which
is equivalent to a mission. They can be triggered if the mis-
sion task is fulfilled, the UAV’s behavior leaves specified bound-
aries or to prevent inefficiency where the episode is trapped
in an infinite loop. With the problem at hand, the termination
conditions are chosen as follows:

• Completely covered: The UAVs were able to visit every
cell of the designated search field at least once. For com-
pleting the task the UAVs do not get a negative reward.
This can also be interpreted as a sparse reward that moti-
vates the UAV to perform the task as efficient as possible
with regard to the coverage performance. If an UAV is
not active at the end of an episode, it gets a negative re-
ward as described in the crash termination condition.

• Inefficient search: The episode gets cancelled if one of
the cells within the search field gets visited more than
ten times. In that case the sparse reward is -100 minus
the number of unexplored fields of the search field. This
reward applies for every UAV of the swarm that is still
active at that time. Otherwise the crash termination. Oth-
erwise, crash termination has already been applied.

• Crashes: It is classified as a crash if an UAV shares the
same cell with another UAV, an obstacle or if it leaves the
search field. In that case the sparse reward is calculated

the same way as it is calculated for the inefficient search
and the crashed UAV stops exploring the search field.

The primary objective of the MARL approach is to maximize
the accumulation of rewards within a single episode such that
the reward function significantly determines the behaviour of
the UAVs. Within section 4 the effects of changing the reward
function will be discussed in detail.

2.1.5. Initialization

Certain initial conditions must be defined to start the simula-
tion. This includes:

• Number of UAVs: The primary focus of the RL-algorithm
pertains to the optimization of the concurrent operation
of multiple UAVs. The parameter dictating the swarm
size can be specified during the initialization phase.

• Starting location of UAV: The UAVs are meant to fly to
the designated search field, therefore their starting posi-
tion is always at the boarder of the search field. To main-
tain a certain distance to each other, every UAV starts
from another side of the search field, representing differ-
ent UAV bases and approaching directions.

• UAV condition: The condition of the UAV is determined
through a random selection process within the interval of
0.1 to 1, with precision of two decimal places.

• Map representation: A map in form of an array, repre-
senting the search field coverage, that counts the visits of
each cell. The map is adjusted during the course of the
mission as described in section 2.1.

• Wind direction: An initial wind direction is defined in
form of a two dimensional vector.

• Obstacle position: While the UAVs can be understood
as moving obstacles, fixed obstacles are also defined within
the initialization phase as high values in the map repre-
sentation.

The parameters during initialization are adaptable to specific
requirements, facilitating the experimentation and evaluation
of the RL-algorithm across diverse scenarios. The next sec-
tion provides detailed explanations on how the parameters are
set up for the experiments conducted in this paper.

2.2. Design of Experiments

A Monte Carlo simulation was run to assess the capability of
reinforcement learning in optimizing specific relationships,
particularly focusing on the dynamic management of UAV
degradation in response to varying environmental conditions
during the execution of a CAPC mission. The experiments
are set up almost with the same parameters but are random-
ized with the regard to the following parameters:

• UAV starting position
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• Obstacle location

• Wind direction

• UAV condition

The training parameters such as number of episodes, batch
size and RL-algorithm are chosen as it is proposed by the
documentation of the Python library of RLlib. For the eval-
uation, the trained RL-algorithm that achieved the best result
is used, which can be determined by analysing the average
reward of the learning curve (3.1). The experiment consists
out of 100 runs. The metrics used for the evaluation of the
experiment is described in the following section.

2.3. Evaluation metrics

Two metrics are used for the evaluation of the experiments.
The first metric counts the cells with an equal number of visits
using the following pythonic algorithm:

Algorithm 1 Evaluation of Coverage Performance

cell visits = [0 for visits in range(0, max(visits))]
for cell in searchfield do

if cell is not obstacle then:
cell visits[cell in searchfield(visits)] += 1

The list of cell visits is then visually represented and should
give evidence about the coverage performance of the trained
RL-algorithm. The visualization can be seen in Figure 4 for
the coverage performance of a completely trained RL-algorithm
where the results for 100 missions are summarized with the
help of errorbars. The goal is to avoid multiple visits of cells
which shortens the mission time for complete area coverage.

The second metric compares the movement decisions made
by the trained RL-algorithm based on the UAVs condition.
The evaluation is performed using the following formula:

UAV Wind Load =





Headwind WD ̸ MD = 180◦

Crosswind WD ̸ MD = ±90◦
Tailwind WD ̸ MD = 0◦

(4)

The case differentiation of loads the UAV experiences based
on the wind is determined by calculating the angle between
the wind direction (WD) and the direction of movement (MD).
The UAV wind load can be linked to the UAV state and can
thus be visualised in a bar chart (see Figure 5). By comparing
the frequency of movement decisions in connection with the
UAV state, it is possible to assess whether the RL learner has
learnt to use the UAV swarm as efficiently as possible with a
focus on the system-state.

3. RESULTS

The following section presents the results from the experi-
ment described in 2.2. First, the overall training process is
pictured. This is followed by the results of the coverage per-
formance, which enable the evaluation of the first sub-task of
the RL approach. The results of the second sub-task are pre-
sented in the last subsection, showing an evaluation that fo-
cuses on the cooperation and degradation of the UAVs within
the RL approach.

3.1. Learning performance

The goal of the reinforcement learning process is to increase
the average reward successively over the number of training
iterations. While a supervised learning approach compares
the produced output of a network with labeled data and back-
propagates the error, RL does not need labeled data and it is
producing training data within the learning process. The re-
ward function helps to choose the actions that lead to the best
reward. This is not only considered at every single step within
one training episode, but also at the end of one episode to in-
crease the cumulative reward. The reward function used in
this paper (described in subsection 2.1.3) should establish a
multi-UAV cooperation to perform a complete area path cov-
erage with respect to degradation that results from the indi-
vidual system usage. The average reward achieved by the RL
approach over the training process can be seen in Figure 3.
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Figure 3. Cumulative training reward achieved by the RL
approach over the training process

The training process starts with a high negative reward, which
is comprehendable because the movement of the UAV is ar-
bitrary and due to the starting position at the boarder of the
search field, the UAV leaves the search field quite often at the
very beginning of an episode, resulting in a high penalty and
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low gathered reward for covering new fields and moving with
usage considerations. The UAV then learns to not directly
leave the search field but rather fly in a straight line until it
reaches the opposite boarder. The average reward per mis-
sion increases slightly, which can be seen at the beginning of
the reward curve. Subsequently the UAV learns to move in
the right wind direction, paying respect to its own condition.
It also learns to change direction at the boarder of the search
field, resulting in a much higher average reward. This can be
seen from the exponential increase in the reward curve. Af-
terwards it is harder for the UAV to consider the movement
of the other UAVs, still it is able to optimize its movement
pattern with respect to wind, information about the rest of the
swarm and surrounding map data. The increase in the average
rewards achieved per episode decreases again, whereby the
reward curve reaches a saturation point. The convergence be-
havior at the end of the training does show instability, which
can be explained by varying coverage and cooperation perfor-
mance. Nevertheless, it can be concluded from the amount of
the reward at the end of the learning process and the consid-
eration of the reward function that the UAVs can achieve the
first sub-goal in co-operation, namely searching the search
field with slightly varying performance. Using the metrics
that are described in 2.3 the coverage performance is dis-
cussed in more detail in the next section, as well as the level
of cooperation where the developed metrics give more insight
about the RL-algorithm performance.

3.2. Coverage performance

The primary goal is the CAPC. Only if the UAV is able to ful-
fill this kind of mission the cooperation performance with re-
spect to the swarm condition can be compared and evaluated.
To evaluate the coverage performance not only the complete
coverage is considered but also the effectiveness of the cover-
age through counting the number of visits per cell. However,
because this ideal solution conflicts with a search that takes
environmental and systems conditions into account, coverage
performance varies slightly at the end of the mission and cells
of the search-field are visited more than once. Nevertheless
the MARL approach is able to complete cover the search field
area 92% of the time. This is not ideal but enough to evalu-
ate the RL-algorithm performance. The result of the cell visit
counts in order to evaluate the coverage performance can be
seen in Figure 4.

The figure shows the number of cell visits on the x-axis and
the frequency of occurrence of cells with the number of vis-
its (from the x-axis) for a completed mission on the y-axis.
The RL-algorithm was completely trained according to Fig-
ure 3. To get a representative behavior of the trained RL-
algorithm 100 missions were performed for evaluation. The
display with error bars clearly shows that the coverage per-
formance is in a very good range. This is illustrated by the
very low number of missions in which fields with zero visits
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Figure 4. Evaluation of coverage performance by counting
the number of fields with the same number of visits

remain at the end of a mission. The fields with zero visits
are also categorised exclusively as outliers. A lot of outliers
are also visible at fields with a high number of visits, which
is also beneficial, because it means that the UAV learns that
it should visit a single field as little as possible. This state-
ment is confirmed by the highest value for single field vis-
its. Overall, the distribution of field visits takes the form of
a Weibull distribution that is used to describe the frequency
of wind speed. Weibull distributions are also often used to
describe the lifetime of technical components. Both aspects,
namely wind and system lifetime are present within the pre-
sented framework and it is remarkable to see that the trained
UAV shows such a behavior. Further analyses of the relation-
ship between UAV behaviour and the Weibull distribution are
pending.

3.3. Cooperation and degradation evaluation

The secondary goal of the trained RL approach is to coor-
dinate multiple UAVs such that they are utilized according
to their condition. This should encourage a usage suitable
deployment of the swarm members in order to avoid sudden
system breakdowns and increase reliability for the whole mis-
sion. To evaluate system usage with respect to environmental
conditions, the number of movement decisions depending on
the wind direction where the UAV conditions differ at least
about 0.5 is counted. The result can be seen in Figure 5.

The barchart shows the decision of the UAVs with bad con-
dition in blue and the decisions of the UAVs with good con-
dition in orange. Only the values for which both UAVs were
active are used, as otherwise cooperation is not possible. Fur-
thermore, the values are normalised so that they can be easily
compared with each other. It can be seen that the weaker UAV
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Figure 5. UAV decisions within a cooperative environment

chooses to move more into the direction in which it experi-
ences crosswind. This part equally escapes the movement de-
cisions against and with the wind. On one hand this suits the
reward function. On the other hand this leads to less degra-
dation for the weak UAV where it avoids moving against the
wind. Choosing the major moving direction crosswind also
avoids the UAV to fly against the wind after travelling a long
distance with tailwind. Defining the right reward function is
sometimes contradicting which gets discussed in the next sec-
tion.

4. DISCUSSION

During the implementation of the MARL approach, challenges
arose with regard to the reward design and the superimposed
objectives within the MA mission, which will be discussed
below.

4.1. Reward Design

The reward design is very sensitive to minor changes. Also
the weighting of the reward significantly changes the behav-
ior of the UAVs. Not all intuitive rules for the reward achieve
the desired effect, as the RL-algorithm incorporates the nu-
merical values directly into its learning process. This is also
partly dependent on the environment design. As shown in
Section 3.3, no reduced degradation can be achieved by fly-
ing with the wind, as this inevitably requires flying against the
wind from the search field boundary onwards. Another exam-
ple is a weighted negative reward for multiple cell visits. It
could be assumed that if not only a constant negative reward
is used for cells visited several times, but the negative reward
is multiplied by a factor derived from the number of visits per
cell, better UAV behaviour is achieved. However, this is not
the case, as the UAV is restricted in its free movement across

the search field. Reaching an unvisited field directly would
be associated with an increased negative reward. In order to
find the right reward policy, the paper used a trial and error
approach, so that there is further potential for optimisation at
this point. This can also be realised through a different envi-
ronment design that is connected with the reward assignment.

4.2. Superimposed Objectives

The MARL approach in this paper combines two goals, which
creates a conflict between objectives. Both goals can only be
achieved if compromises are made with regard to the indi-
vidual goals. On the one hand, this complicates the reward
design that comes into play at the end of a step. On the other
hand, it makes evaluation methods more difficult. As this pa-
per is a proof of concept and the assessment of performance
is not the main focus, the topic of detailed evaluation should
be the subject of further work.

5. CONCLUSION

This paper presents a MARL approach to solve a CAPC mis-
sion under the consideration of dynamic system states and
other external factors which places a stress on the deployed
systems. The topic dealt with is motivated by the reference to
current research topics and specified by analysing the relevant
research literature. A generalised methodology is derived
that allows state and environment data to be integrated into
a MARL approach. This approach allows individual UAVs
to communicate with each other and perceive their surround-
ings as they navigate through the environment. The emphasis
lies on designing the reward function, as it serves as the pri-
mary driver influencing the behavior of the UAVs, which is
intended to utilize the swarm members in a resource-saving
manner as an approach for optimisation.

A drone reconnaissance mission is used as a practical exam-
ple to apply all components of the generalized methodology.
The RL-algorithms performance is then evaluated regarding
the learning process and the RL-algorithm performance. It
can be stated that the completely trained RL-algorithm is able
to solve the superimposed objectives of covering the com-
plete area under consideration of the varying system state of
the UAVs and a varying wind direction as an external fac-
tor. Through the integration of system condition and external
loads through wind, the system usage is the main parameter
that gets optimized. It turns out that due to the conflicting
goals and the associated reward function, the behaviour of
the UAVs follows a compromise. While the coverage perfor-
mance decreases slightly, a more energy-efficient use of the
drone swarm can be observed. With that, the methodology
is able to recover from sudden system failures and guarantee
a more reliable mission fulfilment. This extends existing ap-
proaches from current research literature through a highly dy-
namic in-mission decision process. In addition, a much freer
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mission design is made possible by dispensing with segmen-
tation of the search field.

With the promising results of this paper, an in-depth analysis
of RL-algorithm performance based on relevant parameters is
pending. Such an analysis can provide further insight about
the design of the reward function and thus help to design the
MA system for a desired behaviour.

NOMENCLATURE

AC agent condition
CAPC complete-area path-coverage
EC energy consumption
MA multi-agent
MARL multi-agent reinforcement-learning
PHM prognostics and health management
PPO Proximal Policy Optimization
RL reinforcment learning
RUL remaining useful lifetime
UAV unmanned aerial vehicle
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ABSTRACT 

Rolling element bearings are essential components for the 
proper functioning of many types of rotating equipment. 
Diagnosing faults in bearings has traditionally been done 
using signal processing techniques inspired by physics, 
wherein acceleration signals are analyzed using time-
frequency analysis methods. To study the effect of bearing 
damage on acceleration signals, experiments are typically 
performed aiming for a natural propagation of a spall. 
However, the extent of spall severity during the test remains 
uncertain. It is possible to disassemble and reassemble the 
bearing for visual inspection. Nevertheless, previous studies 
observed that the vibration signal would drastically change if 
this operation was conducted repeatedly, impacting the 
identification of trends in the acceleration signal. The 
objective of this study is to provide a method which can assist 
with labeling the spall size in endurance tests without the 
necessity of disassembling and reassembling the test rig. To 
address this issue, a new algorithm, based on the load cell 
signal was developed to assess the spall size using low-speed 
measurements. This algorithm enables the identification of 
the circumferential angle at which the rolling element 
interacts with the spall and is only carrying a partial load. The 
algorithm has been validated through visual inspections 
conducted during the experiment. This algorithm makes it 
possible to estimate the spall size without the need for visual 
inspection in subsequent experiments. A labeled endurance 
test contributes to a better understanding of spall propagation, 

such as the effect of speed, load, and material properties on 
the propagation speed. This study demonstrates how the load 
signal can be used for fault labeling with relatively simple 
and common techniques. This approach will enable the 
tackling of advanced and more complex problems in future 
endeavors, such as fault severity estimation and even 
prognosis. 

1. INTRODUCTION 

Bearings play a crucial role in nearly all rotating machinery 
(Malla & Panigrahi, 2019), and monitoring their condition 
typically involves four stages: detection, identification, 
severity estimation, and prognosis (Bechhoefer & 
Schlanbusch, 2018). A substantial amount of research has 
been conducted on the subject, with a focus on the detection 
and identification stages, which have shown promising 
results. Bearing damage severity is typically defined as a 
function of overall vibration levels ((ISO), 2016). 
Unfortunately, these thresholds are very application 
dependent and difficult to generalize. A robust and objective 
method for severity estimation in bearings remains 
challenging. 

One common approach to define severity is based on raceway 
spall size in the circumferential direction. Among the studies 
engaging spall size estimation, various types of sensor 
measurements are utilized. Common methods include 
accelerometers, some employing oil debris monitoring 
(ODM), and others utilizing optic fibers (Gazizulin et al., 
2019; Madar et al., 2022; Medvedovsky et al., 2022). A 
review of different approaches is given in Zhang et al., 2022. 
Accelerometers are relatively common components in 
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machinery due to their ease of installation. Methods based on 
accelerometers typically try  to identify the entry and exit 
points of rolling elements from the spall within the time 
domain (Epps I K, 1991; Moazen-ahmadi & Howard, 2016; 
Sawalhi & Randall, 2011). Some of these studies employ 
low-pass filters to detect entry and exit events (Moazen 
Ahmadi et al., 2016), a practice that may pose challenges due 
to its reliance on a rule of thumb. Additionally, these methods 
are often detecting very small defects, whereas numerous 
applications involve significant spall sizes. There are also 
severity estimation methods which utilize condition 
indicators, which are then employed to calculate a health 
indicator (Gebraeel et al., 2004; Ma et al., 2012). These 
methods offer increased robustness in noisy conditions 
compared to the aforementioned methods since they consider 
trends based on multiple sensor recordings over time. 
However, establishing a direct link between health indicators 
and spall size in rotating machinery poses challenges, 
primarily due to missing ground truth values of its spall size 
during operation. 

Studies that use ODM can estimate the spall size by 
calculating the total mass of debris particles originating from 
the bearing (Madar et al., 2022; Portal et al., 2022). However, 
to use this method, certain geometric assumptions are made 
which might be invalid. Optic fibers are used to measure the 
strain on the housing bearing, and by tracking the changes in 
the signal, it is possible to calculate the length of the spall 
(Medvedovsky et al., 2022). Nevertheless, both of these 
methods require expensive equipment and are not suitable for 
every test rig or machinery. 

Emulating the topography of a spall is a challenging task. 
Consequently, studies that have explored severity estimation 
in bearings often rely on artificial spalls with less realistic 
rectangular shapes. However, the interaction between the 
rolling element (RE) in the bearing and the artificial spall 
could be significantly different from the interaction with a 
real spall, which may result in higher impulses in the 
acceleration signal than those observed in natural spalls 
(Zhang et al., 2021). 

One approach to achieve naturally growing spalls is through 
endurance tests. Nevertheless, for measuring the spall size in 
acceleration algorithm validation, it is necessary to 
disassemble and reassemble the test rig, which can 
significantly alter the vibration signal (Smith & Randall, 
2015).   Recent studies have shown, that for specific test rig 
setups a load cell can act as a proximity measurement for 
displacement containing a distinctive pattern related to the 
spall geometry (Zhang et al., 2022). Moreover, an 
observation is made that the load-cell signal is less sensitive 
to the re-assembly of a bearing compared to acceleration.  

In this study we propose a unique algorithm to estimate spall 
sizes in endurance tests using load signals, which can be 
obtained without visually inspecting the spall. The algorithm 

is implemented at low speeds, enabling validation of spall 
dimensions during endurance experiments. 

2. EXPERIMENTAL SETUP 

The endurance test was conducted in SKF Research and 
Technology Development (RTD). The test was performed on 
the R2 test rig (Harris, 2006), as shown in Figure 1, with the 
positions of the accelerometer and the load cell indicated. For 
measuring the rotational speed, a tachometer measuring two 
pulses per shaft rotation was used. In the experiment, two 
bearings were measured: the tested bearing, located on the 
left side of the test rig, and a reference intact bearing 
positioned on the right side of the test rig. Both bearings were 
monitored throughout the experiment. The algorithm 
developed in this study was primarily validated using the 
load-cell data acquired from the tested bearing on the left 
side. Throughout the experiment, sensor snapshots were 
recorded, defined as synchronized recordings of all sensors at 
a sample rate of 49152 Hz for 36 seconds. 

To validate the load-based algorithm, a visual inspection was 
required. To simplify the process of disassembling and 
reassembling the test rig, a bearing with a design that allows 
easy access to the outer race was chosen. The selected bearing 
is a cylindrical roller bearing of the N209 ECP type. During 
the experiment, only a pure radial load is applied because this 
bearing type cannot sustain axial loads.  

 
Figure 1: SKF R2 test rig; The accelerometer marked in red, 

load cell marked in blue. 

2.1. Test Procedures 

The test consists of two stages: (1) a damage initiation phase 
and (2) a spall growth phase. Both phases will be further 
explained in the following sections. 

2.1.1. Damage Initiation Phase 

In this phase, the purpose is to initiate a spall on the outer race 
of the bearing. To expedite this process, an initial small 

accelerometer

load -cell
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damage was introduced to the outer race before the test. The 
damage was created using an electrical discharge machine 
(EDM) on the race surface. The EDM created a rectangular-
shaped damage with circumferential and axial dimensions of 
0.2mm and 2mm, respectively. In this phase, the bearing was 
subjected to high loads and speeds to induce growth. The 
decision to stop this phase was made based on an 
acceleration-based condition indicator (Harris, 2006), where 
an abnormal increase determined the stopping criteria. 

2.1.2. Spall Growth Phase 

The objective of this phase is to capture snapshots of the data 
measured by the sensors while growing the spall at a 
controlled pace. The protocol of this phase contains three 
stages that repeat each other until the end of the experiment. 
Figure 2  illustrates one cycle of this protocol, which includes 
three stages: the growth stage in blue, the monitoring stage in 
orange, and the collection stage in green. The black and 
purple vertical lines at the bottom of the graph indicate the 
load in each stage (black for 16 kN and purple for 6 kN). The 
vertical axis represents the normalized duration, which is the 
time duration normalized by the combined time of the 
monitoring and collection stages. The vertical line represents 
the shaft speed. 

 
Figure 2: Example of one protocol cycle for spall growth. 
One cycle consists of three stages: 1: growth in blue, 2: 

monitor in orange, 3: collect in green. 
 
In the growth stage, the aim is to accelerate spall growth; 
therefore, the bearing is subjected to a radial load of 16 kN, 
and the shaft rotational speed is set to 6000 RPM. One cycle 
of this stage lasts approximately 50 minutes.  

In the monitor stage, two measurements are conducted at a 
high load with a speed of 300 RPM, one at the beginning of 
the collection stage and one at the end. In these 
measurements, the changes in the load cell are clearer and 
therefore will be used in this study for the load-based 
algorithm. 

In the collection stage, measurements are taken from the 
sensors. In this phase, the load is reduced, and the speed 
changes to 10 different speeds spaced between 300 and 3000 

RPM. The measurements at this stage will be used for future 
research. This stage takes around 20 minutes. 

The experiment was halted approximately every 5 million 
revolutions for visual inspections. The test is stopped when a 
critical spall size, exceeding two times the distance between 
rolling elements, is reached. Beyond this size, two rolling 
elements no longer bear any load, which can lead to 
accelerated spall growth and, consequently, a high risk of 
critical failure. 

3. ANALYSIS OF LOAD CELL SIGNAL 

In a faulted bearing, with a spall not larger than the distance 
between two rolling elements in the outer race, the interaction 
of the rolling element and the spall can be roughly divided 
into two stages. In one stage, none of the rolling elements 
interacts with the spall. The other stage is when one of the 
rolling elements is interacting with the spall; both stages are 
illustrated in Figure 3. 

 
Figure 3: Illustration of REB interaction with outer race 

spall; (A) none of the RE interact with the spall (B) One RE 
enters the spall. 

 
In stage one, the force applied to the bearing is divided among 
all the rolling elements in the bearing. In stage two, one of 
the rolling elements is inside the spall and, therefore, does not 
carry any load. This results in a different distribution of the 
load which appears to be observable on the load cell. By 
detecting these changes in the load cell, one can estimate the 
duration of the interaction with the spall, which can then be 
easily calculated to determine the spall length. At higher 
speeds, the transition between stages occurs more rapidly, 
meaning the system doesn’t have enough time to stabilize, 
making it more challenging to detect in the time domain. 

A B
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Figure 4: Raw load signal at 300 RPM with zoom on one 
cycle, equivalent to one shaft rotation: the area of interest 

marked by the red dashed rectangle indicate the area rolling 
element over the defect. 

When examining the load signals acquired from the 
experiment at low speeds, it is possible to detect the 
interaction of the rolling element with the spall. Figure 4 
shows an example of a signal with the visible interaction 
marked. To automate the process of identifying load 
distribution changes in the signal, a seven-step algorithm is 
proposed. The steps are described in Figure 6, with each step 
designed to emphasize and isolate the interaction of the 
rolling element with the spall. Each one of the steps is 
explained: 

1. The load signal is detrended, by subtracting the 
“smoothed” signal from the original signal, making 
the signal centered around zero. 

2. The interaction with the spall that occurs during the 
rotation of the shaft is periodic in the time domain 
when the speed is constant. However, even when 
setting the test rig to a constant speed, the speed is 
never truly constant. Therefore, angular resampling 
of the detrended load signal is conducted, 
converting the signal to the cycle domain. 

3. Bearings are asynchronous components due to 
slippage (Sol et al., 2022). When employing 
Modified SA, as further explained in point 5, one 
can obtain a signal with isolated synchronous 
elements to the shaft's frequencies. By subtracting 
the SA signals from the original signal, the discrete 
shaft synchronous frequencies are removed, 
mitigating the interferences of other rotating 
components. This yields a signal containing only the 
asynchronous components. This algorithm is known 
as de-phase (Klein, 2017). 

4. The cycle of interest is the interaction between the 
rolling element and the spall. Therefore, angular 
resampling is performed again based on the BPFO. 

Unlike the angular resampling based on the shaft’s 
speed in step 2, the angular resampling in this step 
ensures a consistent number of samples in each 
cycle of the BPFO.  

5. Modified Spectrum Analysis (MSA) (Koren, 2017) 
is utilized in this scenario. In MSA, the signal is 
segmented into N parts. The amplitudes of the 
Fourier Transforms (FT) for these segments are then 
averaged, resulting in an MSA signal with the 
averaged amplitude and phase information from a 
single segment. The fundamental steps of the MSA 
algorithm are outlined in Equations 1 and 2. Where 
N is the number of segments into which the signal is 
divided, and 𝑥𝑛 represents a single segment of the 
signal. This technique is employed to isolate signal 
components asynchronous to the BPFO, including 
noise. 

 |�̅�| =
1

𝑁
∑|𝑓𝑓𝑡(𝑥𝑛)|

𝑁

𝑛=1

 (1) 

 𝑀𝑆𝐴 = 𝑖𝑓𝑓𝑡{|�̅�| ∙ 𝑒𝑥𝑝(𝑗 ∙ ∠𝑓𝑓𝑡(𝑥1))} (2) 

6. A dynamic threshold is established by computing a 
percentage of the difference between the signal's 
highest and lowest points. Initially, a lower 
threshold is implemented for smaller spalls, which 
are more susceptible to noise interference. Once the 
estimated spall length reaches a predetermined 
value, a higher threshold is activated. This 
adjustment is intended to enhance accuracy. Figure 
5 shows a processed signal with a set threshold 
indicated by a yellow dashed line. 

 
Figure 5: Processed signal with threshold indicated by a 
yellow dashed line; 𝑻𝒔𝒑𝒂𝒍𝒍 denotes the number of points 

below the threshold, and 𝑻𝑩𝑷𝑭𝑶 represents the total number 
of points in the MSA signal. 

 
7. The determination of the pulse length involves 

calculating the percentage of values below the 
dynamic threshold. With the utilization of Equation 
3, estimation of the spall size becomes feasible. 
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Here, RE represents the distance between two 
rolling elements, 𝑇𝑠𝑝𝑎𝑙𝑙  denotes the number of 
points in the synchronous average below the 
threshold, and 𝑇𝐵𝑃𝐹𝑂  represents the total number of 
points in the MSA signal. 

 𝑆 = 𝑅𝐸 ∙
𝑇𝑠𝑝𝑎𝑙𝑙

𝑇𝐵𝑃𝐹𝑂
 (3) 

   

 
Figure 6: Block diagram of the load-based algorithm. 

4. RESULTS 

To validate the load algorithm, visual inspections were 
conducted during the endurance experiment. The tested 
bearing is a SKF N209 ECP cylindrical roller bearing. During 
each visual inspection, only the outer ring was disassembled, 
examined, and photographed. The spall size was measured by 
counting the number of pixels the spall occupies in each 
photo. An example from two visual inspections is shown in 
Figure 7. The spall lengths calculated from the proposed 
algorithm and the visual inspections were plotted for 
comparison and presented in Figure 8. 

 
Figure 7: Visual inspections during endurance test: (A) at 

189.09 million revolutions and (B) at 199.01 million 
revolutions. direction of the RE is from right to left.  

 
It is evident that the estimated spall size by the load algorithm 
follows the trend of the measured sizes. However, in some 
cases, the estimated spall size deviates from that trend. These 
deviations sometimes occur after the visual inspections. The 
process of disassembling and reassembling could 
significantly alter the measured signals, as noted in a previous 
study (Heng et al., 2009). However, in the load signals, the 
impact is relatively small compared to acceleration and can 
be mitigated by using smoothing techniques. In other cases, 
the changes could be related to machinery malfunction, 
which contaminated the measurements. Despite these 
deviations, the suggested algorithm has shown good results 
and, in most cases, has been able to estimate the spall length 
accurately. 

 
Figure 8: Comparison between the results of the load-based 

algorithm and the visual inspection. 
 
In this work we present an algorithm to track spall size 
continuously in a robust manner in a lab environment by 
using existing load cells. Our proposed method can be used 
to validate spall size estimation algorithms. Moreover, it can 
be used to further study the physics of spall propagation, e.g., 
understanding the effects of speed and load. 
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5. CONCLUSION 

In conclusion, bearings play a vital role in nearly all rotating 
machinery, highlighting the necessity of accurately 
estimating the severity of defects within them. As of today, 
there is no robust method for severity estimation in bearings, 
which can be used in all machinery. Endurance tests are 
crucial in bearing research, providing valuable insights into 
spall growth, and accurately labeling the data is essential for 
understanding this process. 

Traditionally, labeling has relied on visual inspections during 
endurance tests, which can significantly alter vibration 
analysis results. This study introduces a load-based algorithm 
that eliminates the need for visual inspection, thus providing 
a more extensive dataset for labeling the severity of spalls. 
Although load cells are not typical components in machinery, 
they are common in experimental test rigs and can greatly 
assist with future research. The load-based algorithm was 
validated via visual inspection, demonstrating good 
agreement between the two methods. Not only does this 
algorithm streamline the testing process, but it also serves as 
a valuable tool for future studies, enabling researchers to 
track spall propagation and establish ground truth for 
developing acceleration-based algorithms. Overall, the 
implementation of this load-based algorithm represents a 
significant advancement in bearing defect analysis, offering 
improved labeling accuracy and opening up new avenues for 
further research in the field. 
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NOMENCLATURE 

𝑥𝑛 single segment of the signal 
|�̅�| average of the segment amplitudes 
N numbers of segments 
MSA MSA signal 
𝑅𝐸 distance between two rolling elements 
𝑇𝑠𝑝𝑎𝑙𝑙  number of points representing the spall 
𝑇𝐵𝑃𝐹𝑂  total number of points in the MSA signal 
S spall length  
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ABSTRACT 
This study addresses a critical shortfall in aircraft landing 
gear (LG) maintenance: the challenge of detecting 
degradation that necessitates intervention between scheduled 
maintenance intervals, particularly in the absence of hard 
landings. To address this issue, we introduce a Performance 
Degradation Metric (PDM) utilising Flight Data Recorder 
(FDR) output during the touchdown and initial roll phases of 
landing. This metric correlates time-series accelerometer data 
from a Saab 340B aircraft’s onboard sensors with non-linear 
response dynamic models that predict expected LG travel and 
reaction profiles across a set of ground contact cycles within 
a single landing. This facilitates the early detection of 
deviations from standard LG response behaviour, pinpointing 
potential performance abnormalities. The initiator of this 
approach is the Landing Sequence Typology, which 
systematically decomposes each aircraft landing into 
successive dynamic periods defined by their representative 
boundary conditions. What follows is the setting of initial 
parameters for the ordinary differential equations (ODE)s of 
motion that determine the orientation and impact responses 
of the most critical components of the LG assembly. Solving 
these ODEs with the integration of a non-linear 
representation of an oleo-pneumatic shock absorber model 
compliant with CS25 aircraft standards produces anticipated 
profiles of LG travel based on factors such as aircraft weight 
and speed at touchdown, which are subsequently cross-
referenced with real accelerometer data, enhanced by video 
footage analysis. This footage is crucial for verifying the 
sequence of LG touchdowns and corresponding 
accelerometer outputs, thereby bolstering the precision of our 
analysis. Upon the conclusion of this study, by facilitating the 
early identification of LG performance deviations in specific 
landing scenarios, this diagnostic tool shall enable timely 

maintenance interventions. This proactive approach not only 
mitigates the risk of damage escalation to other components 
but also transitions main LG maintenance practices from 
reactive to proactive. 

1. INTRODUCTION 

Landing gear (LG) operational health is of paramount 
importance in ensuring aviation safety and optimising 
maintenance practices. Accurate assessment of LG 
component health can prevent catastrophic failures and 
reduce unscheduled downtime. Given the unique challenges 
posed by LG structural health monitoring (SHM)—arising 
from the use of high-strength, low-toughness materials in 
primary LG components, with relatively smaller critical 
crack propagation thresholds compared to the airframe—
there is a compelling need for tailored monitoring 
approaches. A crucial constituent of LG SHM involves the 
monitoring of load, usage, and/or signs of crack initiation to 
estimate the remaining fatigue life of its monitored 
component/s. As a consequence, a prominent number of 
proposed LG health monitoring techniques rely on direct 
sensor placements, which can be intrusive, add weight, and 
increase the risk of error and maintenance requirements due 
to the introduction of said sensors. This study thereby 
addresses a prominent issue in the current LG integrity 
assessment approach followed by operators and MROs: the 
inability to detect LG degradation that requires intervention 
between scheduled maintenance intervals without the 
presence of hard landings. By inspecting touchdown and 
follow-up roll data at each landing cycle of the aircraft being 
monitored, we aim to remove the need for additional sensors. 
A Performance Degradation Metric (PDM) is being 
formulated, wherein the correlation of accelerometer time-
series outputs with outputs from dynamic Ordinary 
Differential Equations (ODE)s of motion solved by Simulink 
models provides an indication of whether the LG’s reaction 
profile was typical or deviant. This approach shifts the focus 
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terms of the Creative Commons Attribution 3.0 United States License, 
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from identifying issues like structural cracks and bearing 
wear to detecting abnormalities through deviations in 
dynamic performance from the models derived from a 
distinct set of conditions under which the aircraft interacts 
with the ground, incorporating shock absorber behaviour, 
aircraft mass, and impact speed. Awaiting identical 
conditions for comparison would necessitate an impractical 
volume of test data and landings. Therefore, this strategy 
focuses on assessing how and to what extent each of these 
variables impacts each of the main LG’s performance during 
each landing.  

Data for this study were collected using the Cranfield 
University Saab 340B aircraft, operated by the National 
Flying Laboratory Centre. This twin-engine turboprop, 
known as the National Flying Laboratory, has been 
customised to include specific experimental and teaching 
equipment to enhance its utility as a flying laboratory. The 
key modification vital for this study is the installation of an 
Ekinox-D: An INS sensor that offers orientation, heave, and 
centimeter-level position accuracy.  

The rest of the paper is organized as follows: Section 2 delves 
into the traditional and contemporary methods of LG 
maintenance, discussing the shift from time-based strategies 
to real-time health monitoring, illustrated through various 
studies and the integration of progressive monitoring systems 
like fiber-optic sensors. In Section 3, we outline our 
methodology, emphasizing the integration of video footage, 
on-board sensor data, and dynamic modelling to analyse 
aircraft landing dynamics. Data collection techniques and the 
specific analytics used to extract and process this data are also 
detailed. Section 4 projects the future direction of our 
research, outlining the subsequent phases including sensor 
data analysis, structural dynamic response assessment, and 
the continuous development of our Performance Degradation 
Metric (PDM).  

2. BACKGROUND 

2.1. Traditional LG Maintenance Approaches 

Traditionally, LG maintenance has leaned on time-based 
preventive strategies and Non-Destructive Testing (NDT) 
methods, including magnetic particle inspection, ultrasonic 
testing, and eddy current testing, as Schmidt (2008) notes. 
These conventional methods, applied during fixed 
maintenance intervals, often necessitate the disassembly of 
LG components for thorough inspection. In this context, the 
introduction of progressive monitoring marks a significant 
shift in maintenance paradigms. For instance, Kaplan et al. 
(1997) demonstrated the application of damage tolerance 
methods to extend the life of LG assembly subcomponents of 
a CASA 212 aircraft beyond their initial Safe-life design 
limits. By conducting loads, stress, and crack-growth 
analyses, they determined tailored inspection intervals. This 
approach underscores the potential of integrating damage 

tolerance principles to refine LG maintenance practices, 
paving the way for the adoption of landing profile-specific 
and load-adaptive health monitoring. Despite their intuitive 
approach and its success in extending the gear’s service life, 
their methodology does not support real-time nor near-real-
time assessment of LG health—a capability our current study 
seeks to develop. Importantly, while their approach 
contributes to extending the safe operational life of LG 
components, our project does not address direct estimations 
of life extension beyond set service limits, focusing instead 
on identifying and addressing immediate health concerns in 
operational conditions. 

2.2. Advancements in Real-Time LG Health Monitoring 

Building on these developments, recent advancements have 
shifted focus towards real-time LG health monitoring 
systems. These often involve the placement of sensors on 
critical LG components to monitor their condition during 
operation, such as that proposed by Zhang et al. (2018), who 
studied the placement of fiber-optic sensors on the outer tube 
weld of a LG assembly to capture weld crack signals. Further 
illustrating this trend, the EU-funded E-LISA project aims to 
develop an intelligent test facility for electro-mechanical LG, 
which will include PHM functionalities for the electrical 
brake system (De Martin et al., 2022). This project focuses 
on integrating sensors and monitoring systems into a novel 
LG design to enable condition-based maintenance. Similarly, 
Delebarre et al. (2017) contribute to the expanding landscape 
of sensor-based health monitoring with their development of 
a wireless monitoring system for lightweight aircraft LG, 
which uses pressure sensors and accelerometers to measure 
the mass distribution on each LG and monitor the shock 
during the landing phase. The system aims to provide real-
time information to the pilot and maintenance personnel to 
improve safety and ease maintenance operations. 

2.3. Data Analytics and Physics-Based Modelling in LG 
Health Monitoring 

Integrating health monitoring systems into the LG 
architecture presents numerous challenges, such as coping 
with the harsh operational environment, managing the 
constraints on sensor placement, and ensuring the reliability 
of data transmission and analysis. These hurdles 
notwithstanding, the advancements in sensor technology and 
data analysis techniques offer promising pathways to 
surmount these obstacles, thereby enhancing the efficacy of 
aircraft LG health monitoring. In this vein, the work by 
(Bakunowicz & Rzucidło, 2020) presents an approach to 
detecting aircraft touchdowns using virtual sensing 
techniques by employing data from accelerometers mounted 
on structural parts of the airframe, utilising continuous 
wavelet transformation (CWT) to identify unique frequency 
signatures characteristic of LG touchdown. The CWT 
method, focusing on the detection of aircraft touchdowns 
with a high degree of precision, aligns closely with the 
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present paper’s emphasis on optimising aircraft sensor output 
for LG health assessment. By extracting critical frequencies 
from accelerometers on-board during touchdown, our 
approach seeks to isolate and analyse pre-impact signatures, 
enhancing the precision of our health assessment metrics. 
Another pertinent reference in the context of virtual sensing 
is the work of Hsu et al. (2022) and its continuation by Chang 
et al. (2023), where they harness Flight Data Recorder (FDR) 
accelerometer outputs from a fleet of aircraft to detect early 
signs of exacerbated LG shimmy, thus indicating potential 
degradation that could require maintenance beyond 
scheduled intervals. Their study covers the taxiing phase 
before take-off and following landing, employing machine 
learning (ML) to link accelerometer readings with 
maintenance records across various LG components. They 
subsequently predict potential faults with almost 100% 
accuracy on almost all LG subcomponents used in training 
their ML model based on expert input and extensive data 
from landing cycle-based maintenance actions recorded on 
those specific LG components. Our study, while also utilising 
accelerometer data, extends the analysis to include 
longitudinal accelerations and converges specifically on the 
dynamics of landing impact and the subsequent short roll 
period, used in this case to include jumps and consequentially 
the Landing Sequence Typology approach which thereby 
defines non-linear response models representing their 
corresponding periods, for a CS25 aircraft.  
 
The development of physics-based models for LG dynamics 
and health prediction has garnered significant attention in the 
field of LG SHM. These models aim to capture the 
interactions between various LG components and the forces 
they experience during operation (Schmidt, 2021). Recent 
studies have furthered this endeavour, focusing on high-
fidelity dynamic modelling, synthetic dataset generation, and 
the advancement of prognostic algorithms for enhanced 
predictive accuracy. Wu, Gu, and Liu (2007) have notably 
developed a Nonlinear Model Predictive Control (NMPC) 
algorithm for semi-active LGs, utilizing Genetic Algorithms 

(GA). This method demonstrates an enhancement in LG 
performance by optimising the damping characteristics at 
touchdown, validated through drop tests that confirm the 
simulation model's accuracy. The GA-based NMPC 
approach effectively addresses the complex nonlinear 
dynamics of semi-active LGs, ensuring optimal performance 
despite constraints like the control valve's rate and magnitude 
limitations. In our approach, unlike the empirical validation 
possible through drop tests as utilised by Wu et al. (2007), we 
navigate the absence of a drop-test rig by emphasizing the 
integration of real-world operational data and physics-based 
models to refine our simulation accuracy further. This is in 
line with Krüger and Morandini's (2011) emphasis on the 
critical role of numerical simulation in LG dynamics 
assessment. Their research highlights the significance of 
modelling LG's dynamic response to various load excitations, 
underscoring the importance of a comprehensive 
understanding of LG dynamics for safety and performance. 
Finally, De Martin et al. (2022) present the development of 
the E-LISA iron bird, an innovative test facility for LG 
systems that includes PHM functionalities for the electrical 
brake system. The E-LISA project aims to reproduce the 
dynamic loads on the LG during landing, taxiing, and take-
off, as well as the real contact between the LG wheel and 
runway. This approach aligns with our research objective of 
integrating real-world operational data and physics-based 
models to refine simulation accuracy and develop a hybrid 
approach for LG health assessment. De Martin. et al. (2022) 
present a high-fidelity dynamic model of the test rig, which 
incorporates the effects of runway-irregularities. This model 
serves as a foundation for generating synthetic datasets 
representative of various operating conditions and 
degradation levels, facilitating the development of prognostic 
algorithms. Their approach is similar to our use of physics-
based models to predict the degradation of LG performance 
over time, and it highlights the importance of incorporating 
realistic operational conditions and representative component 
interactions in the set dynamic equations used to represent the 
conditions of a landing. 

Figure 1. Integrated Framework for Aircraft Touchdown Analysis 
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3. METHODOLOGY 

The methodology of this research is designed to analyse 
aircraft landing dynamics by integrating aircraft touchdown 
video footage, on-board sensor data, and bookcase non-linear 
response dynamic models, or ‘archetypes’, representative of 
the touchdown phases of each landing analysed. This multi-
faceted approach allows for a robust examination of the 
impact sequences and a connection to the oleo-pneumatic 
shock-absorber (OSA) behaviours of the LG associated with 
different landing types. The study focuses on the following 
key aspects: capturing precise landing dynamics through 
video and sensor data, categorising landing types, 
formulating and solving ODEs to simulate these events, and 
validating these simulations against real-world data as 
feasibly as possible. Details follow in the subsections below, 
with corresponding visualisations provided in Figure (1), 
where the actions and outputs are denoted in green and blue 
blocks, respectively. 

3.1. Data Collection 

3.1.1. Video Footage Acquisition 

A mirrorless APS-C video camera equipped with a telephoto 
lens is positioned on a fluid-head-equipped tripod by the 
runway border to record the final approach and touchdown. 
Operating at a frame rate of 29.97 fps and keeping the aircraft 
in-frame while extending the focal length to include only the 
undercarriage in the frame as soon as the aircraft is critically 
close to the airstrip, we ensure that each phase of the LG’s 
contact sequence with the runway is meticulously 
documented. To ensure clarity and precision in the footage, 
the camera's shutter speed is set to at least four times the 
frame rate. This serves two critical purposes: it counteracts 
the shutter roll effect noticeable during fast panning—
important for preventing  deformations in the objects in-
video, affecting important parameters such as adding 
distortions to tire deformation, which would be misleading—
and it minimises motion blur to capture crisp imagery (when 
inspecting each frame in the video) of exact moments of 
touchdown, spin-up, spring-back, and hop. Additionally, the 
ISO setting is carefully controlled to prevent excessive photo 
grain, which impairs the accurate identification of the wheel 
edges contacting the airstrip. This footage is crucial for 
visualizing the aircraft's attitude at approach and touchdown, 
and the temporal separation between all undercarriage units; 
the main right, main left, and nose gear contacting the 
runway. The video data serves two primary purposes: it 
provides a visual reference for validating sensor data 
(temporal OSA impact delivery to on-aircraft accelerometer 
response output) and helps in identifying any discrepancies 
between observed and simulated main LG assembly 
behaviours. In Figure (2), an example of the footage contents 
may be seen. 

 
Figure 2. touchdown footage frame 

3.1.2. On-board Data 

The aircraft is equipped with an IMU as part of a custom fit 
Inertial Navigation System (INS); the Ekinox-D, operating at 
sampling rates of 50Hz. The onboard data acquisition takes 
place by the use of the Curtiss-Wright/ ACRA Control KAM-
500 system, which collects analog data from the Saab 340B’s 
on-board sensors, including the Rockwell Collins AHS-3000 
Attitude Heading Reference System. This setup captures 
essential aircraft dynamics and engine metrics using the 
Commercial Standard Digital Bus (CSDB) protocol (Alam, 
Whidborne, and Westwood, 2024). The data from these 
sensors are filtered to focus specifically on the touchdown 
phase, where detailed information about acceleration spikes 
and other dynamic responses is crucial for later analysis and 
simulation. The parameters recorded by these instruments 
include data on: 

• Inertial Measurement Unit (IMU) and navigation: roll, 
pitch, heading, heave, surge, and sway from a MEMS 
(Micro-Electro-Mechanical Systems) sensor. 

• Aircraft dynamics and engine metrics: accelerations, 
aileron and elevator deflections, angle of attack, fuel 
flow rates, gas generator speeds, propeller speeds, and 
turbine pressures. 

• Environmental conditions: Airspeeds (indicated, true), 
Mach numbers, air temperatures, and radio altitudes. 

In this study of aircraft dynamics, particularly before the 
initiation of gas generators and propellers, it is essential to 
calculate the root mean square (RMS) of accelerometer 
readings under stationary conditions. RMS is a statistical 
measure used extensively in signal processing to quantify the 
magnitude of a varying quantity. It provides a concise metric 
of the vibrational and transient accelerations experienced by 
the aircraft when it is static, which serves as a baseline for 
understanding the alterations in mechanical vibrations once 
the aircraft's propulsion components are activated. This 
baseline is critical for isolating and analysing the effects of 
mechanical and aerodynamic forces on the aircraft's 
structural integrity and operational efficacy. By calculating 
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the RMS value of accelerometer data while the aircraft is 
stationary, we can establish a reference point against which 
deviations caused by the gas generators and propellers can be 
measured, thereby offering insights into the dynamic 
behaviour of the aircraft under different operational 
conditions. Below are the RMS values which show minimal 
deviations and reaffirm the trustworthiness of the 
accelerometers for our use case: 

INS MEMS Sensor: 
• Lateral Acceleration: 0.0199g 
• Longitudinal Acceleration: 0.0049g 
• Normal Acceleration: 1.026g (indicative of gravity's 

influence) 
Aircraft's on-board accelerometers: 

• Lateral Acceleration: 0.0046g 
• Longitudinal Acceleration: 0.0015g 
• Normal Acceleration: 1.026g 

3.1.3. Parameters Monitored for Data Pruning 

In this step, a subset of the original time-series data is created 
based on the critical time period for analysis. Here, the 
Gaussian kernel, synonymous with the Radial Basis Function 
(RBF), is pivotal in the field of kernel-based change point 
detection (KPD), offering a nuanced approach to analysing 
complex data patterns. Its efficacy proves useful as a part of 
our method when filtering the time-series accelerometer 
readings for point-of-touchdown. This algorithm was 
rigorously tested across numerous flights, to ensure 
consistent touchdown indications across all accelerometer 
axes. Seeking a universally applicable method across diverse 
flight profiles, the single-point RBF approach (dynamic 
programming) was used. This method, applied to the 
derivative of time-series accelerometer readings showed 
promising adaptability and accuracy.  Providing start and end 
points close to a chosen cut-off of radio-altitude also reduces 
its computing requirements and is currently the chosen 
approach. In Figure (3), you may see a plot of accelerometer 
measurements, their derivatives, and a red dashed line 
running vertically along the plot, indicating the KPD output 
corresponding to point of touchdown for the landing aircraft.  

 
Figure 3. Accelerometer values and their derivatives w.r.t 
time for a level touchdown. 

3.2. Landing Sequence Typology 

To facilitate a structured analysis where causes and effects 
are recognised between landing load and landing variables, 
be they environmental, kinematics based, and/or temporal, 
each landing event is decomposed into several periods based 
on the amount of ground contact cycles. Each period is 
subsequently fitted to a category of distinct profiles based on 
observed dynamics and impact characteristics. The profiles 
are developed by analysing both video footage and sensor 
data to characterise each sequential landing period. This 
involves examining footage frames for the tyre impact 
timing, impact sequence, and the incidence angle, in addition 
to KPD-dictated touchdown indicators which serve in 
conjunction with the footage to dictate when the first period 
(linked to a profile) ends and the next begins. Each profile 
represents a set of initial conditions that are subsequently 
used to tailor the non-linear response archetypes. The profiles 
are categorised to be represented by, at their simplest: 

• A smooth landing characterized by a negligible time 
difference between the touch-down of the rear right and 
left LG. 

• High impact landings with minimal temporal separation 
between the rear LGs. 

• Asymmetrical high impact landings affecting one side 
more than the other. 

• Landings involving bounces, skips, or jumps. 
By defining the characteristics of each period and linking it 
to a profile, the dynamic equations set for each profile can be 
adjusted to reflect the real-world dynamics observed during 
the data collection phase. This step ensures that they are 
representative of the variety of conditions the aircraft 
encounters in the duration of its single landing event. 
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3.2.1. Empirical Data Subsets Creation  

Following the detailed decomposition of landing sequences 
as outlined in Section 3.2, and the rigorous data pruning 
mechanisms discussed in Section 3.1.3, the next phase 
focuses on compiling targeted time-series databases. These 
databases commence from the precisely determined 
touchdown point, leveraging the Gaussian kernel's efficacy in 
pinpointing this instant with high accuracy. The newly 
formed databases are confined to the parameters that are most 
indicative of landing dynamics and are crucial for the 
subsequent analysis: 

• Accelerometer Outputs: Capturing the triaxial forces 
during the landing, these readings are pivotal for 
assessing the aircraft's response to touchdown dynamics. 

• Aircraft Attitude: This includes the pitch, roll, and yaw 
of the aircraft at the point of touchdown, offering insights 
into the angular orientations that influence landing 
impacts. 

• Speed: Ground speed and airspeed are included to 
correlate the velocity at touchdown with the landing 
impact severity. 

• Gross Weight: The total weight of the aircraft influences 
the impact force and is thus critical for understanding the 
stress distribution on landing gears. 

• Radio Altitude: For confirming the moment of 
touchdown and aids in synchronising other data streams. 

Each database subset is tailored to represent a single impact 
cycle, which is identified based on the landing sequence 
typology. This approach ensures that each dataset is 
representative of specific landing conditions, thereby 
allowing for a more granular analysis of landing dynamics. 

The speed, gross weight, and radio altitude are inserted into 
the completed landing condition archetypes for an output of 
the sequential response profiles that would allow for 
comparisons with the original subset databases containing the 
additional parameters representative of the period being 
inspected. 

3.3.  Landing Condition Archetypes 

The preceding step, landing sequence typology, carries us 
closer to accurately representing the dynamics of a landing 
event by segmenting it into distinct sequential periods. Each 
period is tailored with specific boundary conditions 
corresponding to a respectively identified landing profile, 
enhancing the ground truth of our simulations, herein referred 
to as ‘archetypes’ which consist of non-linear dynamic ODEs 
combined with a model of a CS25 aircraft’s shock absorber 
and its interaction with the tyre and aircraft mass at level 
landing, which are critical for characterising the physical 
response of the aircraft's landing gear system under load. 
Given the lack of physical drop test rigs for empirical 

validation, it is imperative to assess the fidelity and 
robustness of these models. 

Validation occurs in a bifurcated approach: Initially, the 
fidelity of the physics-based Simulink model is confirmed to 
ensure alignment between simulated performances with 
actual aircraft landing observations. This verification 
leverages detailed video stream analysis and FDR 
accelerometer data, which guide the establishment of 
stringent constraints and operational requirements specific to 
the landing gear system components in the simulation. These 
requirements are grounded in recognized benchmark 
methods, such as implementing damping strategies to 
mitigate resonance phenomena like shimmy and gear walk in 
the simulated landing gear assembly. A critical damping 
target, as stipulated by SAE International (2017) is reducing 
system oscillation to no more than a third of its original 
amplitude within three oscillation cycles post any 
perturbation. 

3.3.1. Sequential Period Differential Equations 

Using the data derived from the landing profiles, a set of 
ODEs is devised for each scenario. Free body diagrams 
(FBD) are utilised prior to forming these equations, ensuring 
that all relevant forces and interactions are accurately 
represented. The FBD of a level landing can be seen in Figure 
(4). These equations consider the mass, damping 
characteristics, and stiffness of the aircraft’s LG and 
structure. They include the non-linear characteristics of a CS-
25 aircraft shock absorber, the interaction between the LG 
and the runway surface, and the effects of tyre dynamics on 
the LG system performance.  

 
Figure 4. FBD for a level landing 

 
The Simulink model in Figure (5) is adapted from that 
provided by (Jan R. Wright & E. Cooper, 2014). Simulink's 
environment allows for the continuous adjustment and real-
time simulation of the equations, facilitating an iterative 
process of model refinement. The system is broken down into 
the aircraft rigid body mass and tyre mass, each with their 
own set of ODEs. The aircraft mass ODE includes terms for 
the spring and damper forces connecting the aircraft and tyre. 
The tyre mass ODE considers the forces from the OSA spring 
and damper, the tyre spring force, and runway height profile. 
A simple rigid aircraft landing system, assuming lift equals 
weight at touchdown, and ignoring spin-up and spring-back 
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and resulting LG motion due to them, is broken down as 
follows. Given: 

• 𝒉𝒂: Height of the aircraft mass from a reference point. 
• 𝒉𝒕: Height of the tyre mass from the same reference 

point. 
• 𝒉𝒈(𝒕): Runway height from the reference point, which 

is a function of time. 
• 𝒌𝒂: Spring constant connecting aircraft and tyre. 
• 𝒅𝒂: Damper constant connecting aircraft and tyre. 
• 𝒌𝒕: Spring constant connecting tyre and ground. 

The resulting ODEs for the aircraft and tyre mass, 
respectively, are in Eq. (1) and Eq. (2) below: 

𝑚ℎ̈𝑎 = −𝑘𝑎(ℎ𝑎 − ℎ𝑡) − 𝑑𝑎(ℎ̇𝑎 − ℎ̇𝑡)         (1) 

𝑚𝑡ℎ̈𝑡 = 𝑘𝑎(ℎ𝑎 − ℎ𝑡) + 𝑑𝑎(ℎ̇𝑎 − ℎ̇𝑡) − 𝑘𝑡(ℎ𝑡 − ℎ𝑔(𝑡))   (2) 

Additional ODEs are introduced for pitch and yaw 
dynamics depending on the period profile being modelled, 
considering the aircraft's moments of inertia, aerodynamic 
moments, and LG forces, and are a work-in-progress. 
 

 
Figure 5. Simulink representation for a rigid-body level 
aircraft landing on main landing gear. 
 

3.3.2. Non-linear Oleo-Pneumatic Shock Absorber 

The OSA modelled employs a gas spring mechanism (the 
integral part affecting its dynamics), where the dynamics are 
significantly influenced by changes in gas volume and 
pressure during landing impacts. Its functionality is governed 
by the Ideal Gas Law, expressed as  
𝑃𝑉𝛾 = 𝐶 , where P represents the absolute pressure, V the 
volume of the gas, γ the polytropic constant, and C a constant. 
The value of γ varies based on the OSA’s operational 
conditions: 

• Static Conditions (γ=1): This scenario represents steady, 
slow compressions such as during taxiing, where the 
temperature is maintained constant due to sufficient time 
for heat transfer. 

• Dynamic Conditions (γ=1.3−1.4): During rapid 
compressions, such as landings, the process is adiabatic 
with no heat transfer, reflecting a higher γ value. 

 
During the OSA’s operation, as the LG encounters forces 
from the runway, the piston compresses, altering the gas 
volume. For a given change in volume ΔV caused by the 
piston stroke z, the new volume 𝑉2 is given by 𝑉2 = 𝑉1 − 𝐴𝑧 
, where A is the piston area. The corresponding pressures 
before and after compression, from the fully extended state 
𝑉∞ to the compressed state 𝑉𝑐 are linked by Eq. (3): 

 
𝑃∞𝑉∞

𝛾 = 𝑃𝑐(𝑉∞ − 𝐴𝑧)𝛾         (3) 
 

The absolute pressure/displacement relationship can then be 
expressed in Eq. (4), where 𝑧∞ is the fully bottomed distance 
(Jan R. Wright & E. Cooper, 2014): 

(
𝑃

𝑃∞
) = (1 −

𝑧

𝑧∞
)

−𝛾

                (4) 

 
According to Currey (1988), the typical characteristics for 
these calculations are as follows: 

• Piston Area (A): Depends on the static pressure in the 
shock absorber, e.g., A=0.005m2 if 𝑃static = 100 bar. 

• Pressures: 𝑃𝑐 = 3𝑃static  and 𝑃∞ = 0.25𝑃static . 

• Volume Ratios: Assuming 𝑉∞/𝑉𝑐 = 12, then 𝑉∞ = 𝑉𝑐 +
𝐴 ⋅ 𝑧static . 

During landing, assuming that the lift equals the weight of the 
aircraft and neglecting tyre deformation to simplify the 
energy considerations, the kinetic energy of the aircraft 
equates to the work done by the OSA as in Eq. (5) (Jan R. 
Wright & E. Cooper, 2014): 

1

2
𝑚𝑣𝑦

2 = 𝜂SA𝐹LGmax𝑧𝑠 = 𝜂𝑠𝜂LG𝑊𝑧𝑠               (5) 

Where: 

• 𝑚 : Mass of half the aircraft plus part of the landing gear 
above the OSA. 

• 𝜂SA : Efficiency of the OSA, typically around 0.8. 
• 𝜂LG : LG load factor, ranging from 2 to 2.5 for CS-25 

aircraft, representing the ratio of (static + dynamic 
reaction load) to (static load). 

• 𝑊 : Weight of the aircraft, equal to 𝑚𝑔. 
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The force generated by the OSA, which is crucial for 
mitigating the impact during landing, is a function of the 
pressure differential across the piston. This force contributes 
to the overall dynamics of the aircraft's LG by opposing the 
landing load and dissipating kinetic energy. This is then 
translated into the Simulink environment through a series of 
blocks representing the aircraft's landing dynamics. The 
forces calculated from the OSA’s pressure and volume 
changes are fed into the model to simulate the periods within 
the real-time landing event. These blocks use look-up tables 
generated from the aforementioned theoretical calculations. 

3.3.3. Sequential Response Profiles 

Sequential response profiles are derived from the outputs of 
the Simulink model to assess the performance of the OSA  
and the travel behaviour of the main LG during each 
sequential period. These profiles are essential for evaluating 
what similarities can be inferred between the archetypes and 
the empirical subset time-series data.  The response profiles 
include the shock-absorber travel time-series, which tracks 
the displacement and normalised load absorbed over time, 
and the tyre reaction time-series, documenting the reaction 
forces of the tyre which reflect the dynamics of the unsprung 
mass. The analytical approach involves aligning the data 
starting at the moment of touchdown, identified by radio 
altitude and verified through accelerometer data, ensuring 
that the simulation phases are synchronized with the actual 
event timings. The Simulink solver continuously processes 
the differential equations representing the landing dynamics. 
The shock-absorber's travel and tyre reaction forces are 
methodically captured and plotted to provide an examination 
of the forces at play during the landing.  

3.4. Comparison with On-board Data 

In parallel, while video footage is used to validate the 
temporal and sequential accuracy of the archetypes in some 
capacity, the sequential response profiles (Simulink outputs) 
are compared to the time-series empirical accelerometer 
output corresponding to each of these periods. In our study, 
the primary objective of comparing Simulink model outputs 
to empirical accelerometer data is to establish a robust 
relationship in terms of observed trends and to correlate these 
observations with specific landing profiles, such as a hard 
level landing. This analysis involves comparisons of both 
Simulink outputs and accelerometer data collected from the 
aircraft during defined landing scenarios. The goal is to 
systematically expand this analysis across multiple flights 
and varying initial conditions, thereby compiling a 
comprehensive set of correlations between the model's 
predictions and the actual accelerometer responses recorded 
on the aircraft. For each period of each landing event 
analysed, the model outputs and accelerometer readings are 
compared to determine how closely the simulated responses 
(from the Simulink model) align with the real-world data 
under similar operational conditions. Key parameters 

considered during these comparisons include aircraft speed, 
gross weight, and radio altitude variation which would give 
us vertical speed at the point of touchdown. Through repeated 
evaluations across diverse flight conditions, this method 
allows us to refine our understanding of the dynamic 
interactions between the aircraft's LG and the runway 
surface.  

3.5. Performance Degradation Metric Definition  

As the dataset grows, encompassing a wider array of flight 
profiles, we progressively build a Performance Degradation 
Metric (PDM). This metric is designed to assess, using only 
the time-series output from the aircraft's accelerometers at 
touchdown, whether the observed accelerometer responses 
align with expectations derived from our simulations and 
previous correlations. This involves two critical analyses: 
first, evaluating the output of the Simulink model 
corresponding to the given profile (in the form of sequential 
response profiles for the specific period), and second, 
examining the established relationships between key 
accelerometer performance indicators, including peak-to-
peak time, temporal peak separation, and time interval 
analysis relative to specific thresholds, and their alignment 
with Simulink model outputs. Based on the discrepancies 
identified between the simulated results and the actual data, 
adjustments are made to the ODEs and their parameters in the 
Simulink model. These adjustments may include changes in 
the damping coefficients, stiffness parameters, and mass 
distribution within the landing gear system. Each iteration 
aims to reduce the error margin and enhance the fidelity of 
the model. This approach aims to ensure as much as possible 
that each phase of the investigation contributes to a 
systematic and scalable understanding of the landing 
dynamics, which is crucial for advancing the predictive 
capabilities of our models.  

Central to the separation in terms of model comparison of this 
analysis is the delineation of the minimal interval necessary 
for both main LGs to contact the runway simultaneously in a 
level touchdown—a scenario that equally distributes the 
landing load but remains exceedingly rare due to the 
imperative for pilots to adjust for crosswinds through 
controlled bank angles and the inherent inconsistencies 
present in airstrip surfaces. In recognising that aircraft 
landings may encompass a complex combination of the 
aforementioned scenarios, the PDM shall incorporate a 
nuanced measurement of the intensity and category of each 
phase encountered, leading to the point of analysing 
probability of performance degradation; assessing each LG 
unit’s potential for operational wear (be it the right or left LG 
assembly). By continuously refining the correlation between 
simulated outcomes and actual flight data, our study aims to 
provide reliable predictive tools that can effectively 
anticipate operational degradation of the aircraft’s landing 
systems under varied operational conditions. 
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This PDM is to output a relative operational health status of 
the main LG assemblies as shown in Figure (4). This plot 
displays the relative operational health status of the main LG 
assemblies over the course of successive landings. The initial 
operational health status is set at 100% at the commencement 
of operation (0 landings), with the Safe-life indicating the 
theorised lifespan, shown as a fixed endpoint in the plot at a 
landing life of 60k. The plot simplistically portrays the 
relative operational health as declining linearly; however, this 
does not reflect real-world conditions and is merely a 
simplification for illustrative purposes. The plot serves as a 
theoretical model, illustrating the projected outcomes we aim 
to achieve by the conclusion of the project. Key components 
include: 

• Safe Life Health Status: The dashed red line serves as 
a theoretical performance threshold. Should the 
operational health of any LG assembly drop below this 
line, as predicted by the hybrid model, this would 
suggest potential risks at which an inspection is required. 

• Left and Right LG Hybrid Approach Health Status: 
The blue and green lines show actual health status 
tracking for left and right LG, respectively, with 
maintenance actions represented by ‘x’ markers.  

• LG Failure at 5400 Landings: This trend exemplifies 
the characteristic decline preceding a failure event. 

• LG Health in Ideal Low Wear Conditions: A trend 
representing a LG assembly that has undergone 
extremely low-impact landing cycles. 

 
Figure 6. LG Operation Health Status 

 
The value of the relative operational health status represents 
the current operational condition of the system, rather than 
direct LG part degradation. Its value is relative to the 
corresponding value of the Safe Life Health Status at that no. 
of landings. In Figure (7), a closer examination of the initial 
segment of the plot in Figure (6) reveals inherent 
uncertainties in the model's operation, stemming from the 
requisite number of landing cycles needed to establish 
reliability. Currently, this figure is illustrative and subject to 

refinement as our project evolves towards more precise and 
realistic estimations. 

 
Figure 7. A close-up on no. of landings required for model 

validity 

4. PROJECT DIRECTION AND FUTURE WORK 

This paper marks the commencement of a structured 
approach for enhancing LG health assessments by means of 
virtual sensing combined with landing scenario-
representative empirical models. While this paper discusses 
the initial stages of the first study, subsequent planned 
investigations will further this exploration: 

Study 1 - Sensor Data Analysis and LG Dynamics: This 
segment focuses on extracting and analysing data from the 
FDR and IMU, comparing these to LG response profiles that 
are a result of landing condition archetypes to detect 
deviations in accelerometer oscillations and other critical 
parameters. Objectives include: 

• Operational Condition Analysis: Examining variations 
in LG dynamics across different operational conditions. 

• Performance Pattern Identification: Identifying 
desirable performance patterns and recognising 
limitations. 

Study 2 - Sensor Placement and Data Precision: This study 
aims to compare IMU and on-aircraft accelerometer outputs 
during the landing's touchdown and roll phases, to identify 
the most effective sensor placements for LG response 
evaluation. This assists in pinpointing LG performance 
patterns during crucial phases. The focus areas are: 

• Sensor Output Comparison: Crafting strategies for 
comparing sensor outputs to underline strategic 
placement. 

• Filtering Techniques: Applying filtering methods to 
sensor outputs for improved data accuracy. 

Study 3 - Structural Dynamic Response: Initiates a 
quantitative examination of modal frequencies and structural 
resonances before landing, employing high-fidelity spectral 
analysis to differentiate these from frequencies observed 
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post-touchdown. This study encompasses high-fidelity 
spectral analysis to separate pre-impact from post-impact 
frequencies. 

Results and Future Directions: Following these studies, we 
shall present: 

• PDM Development: A more detailed discussion on the 
development and validation of the PDM, including an 
assessment of operational degradation in the port and 
starboard LG relative to maintenance schedules. 

• Empirical and Theoretical Insights: A comparative 
analysis offering essential insights from our empirical 
data and theoretical models. 

• Case Studies: Application of our hybrid approach to 
real-world scenarios. 

Future initiatives will broaden these methodologies to 
encompass more aircraft components and scenarios, aiming 
to reduce aircraft downtime and enhance safety across 
various models.  
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ABSTRACT 

The recent advances on utilizing Generative Artificial 
Intelligence (GenAI) and Knowledge Graphs (KG) enforce a 
significant paradigm shift in data-driven maintenance 
management. GenAI and semantic technologies enable 
comprehensive analysis and exploitation of textual data sets, 
such as tabular data in maintenance databases, maintenance 
and inspection reports, and especially machine 
documentation. Traditional approaches to maintenance 
planning and execution rely primarily on static, non-adaptive 
simulation models. These models have inherent limitations in 
accounting for dynamic environmental changes and 
effectively responding to unanticipated, ad hoc events. 

This paper introduces a maintenance chatbot that enhances 
planning and operations, offering empathetic support to 
technicians and engineers, boosting efficiency, decision-
making, and on-the-job satisfaction. It optimizes shift 
scheduling and task allocation by considering technicians' 
skills, physical stress, and psychological state, thus reducing 
cognitive stress. The approach ultimately improves human 
performance and reliability, embodying a human-centricity 
in the domain of maintenance and health management. 

The practical impact of the maintenance chatbot is illustrated 
through its application in maintenance of railway cooling 
systems. The presented use case demonstrates the chatbot's 
potential as a transformative tool in maintenance 
management. Finally, the paper discusses the theoretical and 
practical considerations, in particular in the light of regulative 
frameworks such as EU AI ACT, highlighting the future 
pathways for complying with responsible AI requirements. 

1. INTRODUCTION 

The industrial landscape is currently facing a significant 
challenge due to the shortage of skilled labors, exacerbated 
by the increasing complexity of machinery and technological 

systems, as well as green transition, leading to limiting 
production by 28% in the European Union (EU) (European 
Commission 2023). This shortage poses a critical threat to the 
operational efficiency and sustainability of maintenance 
operations within various sectors. The complexity of modern 
machines requires a high level of expertise, yet industries 
often find themselves compelled to hire workers who may not 
fully meet these competency requirements (Shin et al. 2021). 
The European Union estimates the investment needed to 
reskill and upskill in manufacturing to 4.1 billion EUR up to 
2030 (European Commission 2023). This gap between the 
required and available skill sets leads to inefficiencies, 
increasing human failure, thus reducing reliability and 
increasing downtime, and a greater potential for errors in 
maintenance operations. 

Simultaneously, advancements in GenAI and semantic 
technologies have opened new avenues for capturing and 
leveraging the domain knowledge of experienced 
professionals (Abu-Rasheed et al. 2024), and at the same time 
assisting them on improving their problem-solving 
capabilities, e.g. through query-answers with chatbots (Kohl 
und Ansari 2023b). These technologies, particularly Large 
Language Models (LLMs), demonstrate an unparalleled 
capacity to analyze and interpret complex datasets, including 
technical documentation, maintenance logs, and operational 
reports (Birhane et al. 2023). Their ability to generate 
contextually relevant, accurate responses based on vast 
amounts of textual information marks a significant step 
forward in the development of cognitive assistants for 
maintenance tasks. 

The intersection of skilled labor shortages (as a problem 
space) and GenAI technologies (as a solution space) 
underscores a critical need for tools that can bridge the gap 
between the complexity of modern machinery and the 
competencies of the available workforce. Cognitive 
assistance in maintenance, facilitated by AI-driven solutions, 
offers a promising approach to address this challenge (Kohl 
und Ansari 2023a). By providing real-time, tailored 
information and support, such tools can enhance decision-
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making, reduce cognitive load, and improve the efficiency of 
maintenance technicians who may not possess the full 
spectrum of required competencies and experiences. 
Furthermore, the integration of GenAI and semantic 
technologies in maintenance operations enables the 
preservation and dissemination of expert knowledge, 
mitigating the risk of knowledge loss due to workforce 
turnover or the retirement of seasoned professionals (Alavi et 
al. 2024). This capability is particularly valuable in light of 
the increasing complexity and specificity of modern 
industrial systems, where the loss of domain-specific 
knowledge can have significant operational impacts (Ansari 
2019). 

The need for cognitive assistance in maintenance is not only 
a response to the skilled labor shortage but also a strategic 
investment in the quality and reliability of maintenance 
operations. By enhancing the capabilities of maintenance 
technicians, engineers and planners, AI-driven tools can 
contribute to more resilient, efficient, and effective 
maintenance practices. The development and implementation 
of such tools, as exemplified by the LLM-based maintenance 
chatbot presented in this paper, represent a forward-looking 
approach to addressing the challenges of the contemporary 
industrial maintenance landscape (Romero und Stahre 2021). 
The following paper addresses the challenge of improving the 
workflow of maintenance operations and planning by 
leveraging LLM and semantic information. 

The rest of the paper is structured as follows: In Section 2, 
the state-of-the-art is described, focusing on cognitive 
assistance system, Generative AI, especially Large Language 
Models. Thus, the research gap is identified. Section 3 
introduces the system architecture and modular chatbot 
design, and Section 4 elaborates on its use case. Finally, 
Section 5 discusses the key findings and identifies the 
pathways for future research. 

2. STATE OF THE ART 

This section explores the capabilities and applications of 
cognitive assistance systems within industrial manufacturing, 
emphasizing their role in augmenting human capabilities. It 
highlights how these systems utilize advanced technologies 
such as LLMs and KGs to optimize task execution. 
Additionally, it addresses the implications of the EU AI Act, 
which mandates transparency and safety in the deployment 
of such AI-driven systems, ensuring their responsible 
application in industrial environments. 

2.1. Cognitive assistance system 

Digital assistance systems (DAS) support workers in 
production, assembly and logistics to carry out their tasks 
efficiently in line with the situation and context (Ansari et al. 
2020). These systems facilitate tasks ranging from scheduling 
and information retrieval to more complex operations, 
leveraging user inputs to deliver relevant outcomes and 

insights (Pokorni und Constantinescu 2021). Cognitive 
assistance systems (CAS), particularly within the 
manufacturing sector, extend this concept by focusing on 
augmenting human capabilities in intricate tasks rather than 
substituting human efforts (Kernan Freire et al. 2023), which 
can draw conclusions from its experience on the basis of 
significant portions of suitably presented knowledge so that 
it provides more appropriate, accurate or up-to-date 
information in its next use. These systems are engineered to 
support complex activities, including lifelong learning 
(Freire et al. 2023), machine operation, and task execution, 
through advanced methods of human-machine interaction 
(Listl et al. 2021). Employing a broad spectrum of techniques 
such as natural language processing (NLP) (Ansari et al. 
2021), pose estimation for ergonomic risk identification 
(Kostolani et al. 2022), perception, and augmented reality 
(Zigart und Schlund 2020), CAS are designed to foster an 
intuitive and efficient interface for users. 

CAS, utilizing NLP for natural language understanding, 
generation, and dialogue management, represent the most 
widespread interaction modality within CAS (Kang et al. 
2020). These CAS are capable of engaging users in 
meaningful conversations, thereby facilitating labor-
intensive tasks across multiple sectors, including customer 
service, healthcare, education, and manufacturing, through 
efficient and reliable communication (Eloundou et al. 2023). 

In the industrial context, the application of CAS is an 
evolving research domain with significant potential benefits 
(Mark et al. 2021). These include providing centralized 
access to diverse information systems, decision making 
(Rožanec et al. 2022), delegating tasks (Burggräf et al. 2021), 
and enabling hands-free and gaze-free interactions (Romero 
und Stahre 2021), thereby enhancing operational efficiency 
and safety. Additionally, CAS in manufacturing can serve as 
valuable tools for on-the-job training (Wang et al. 2022) and 
real-time machine parameter adjustments, thereby 
contributing to the flexibility and adaptability of 
manufacturing processes (Zheng et al. 2022). Such 
applications highlight the transformative potential of 
cognitive assistants in augmenting human work, optimizing 
task execution, and facilitating continuous learning and 
adaptation in complex industrial environments. 

2.2. Generative AI and Large Language Models 

According to the OECD, GenAI “creates new content in 
response to prompts, offering transformative potential across 
multiple sectors such as education, entertainment, healthcare 
and scientific research”(OECD Artificial Intelligence Papers 
2024). It, therefore, significantly broadens AI's application 
spectrum (Gozalo-Brizuela und Garrido-Merchan 2023). At 
the heart of GenAI's advancements are LLMs like Generative 
Pre-trained Transformers (GPT), which have dramatically 
enhanced AI's language processing and generating 
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capabilities, offering applications from automating 
documentation to improving decision-making in industries. 

Retrieval-Augmented Generation (RAG) (Jing et al. 2024) 
extends LLMs by integrating them with information retrieval 
systems, enabling real-time access to extensive databases for 
more precise, context-specific causal outputs (Zhou et al. 
2024). This is particularly valuable in manufacturing and 
maintenance, where accessing up-to-date technical and 
diagnostic information is crucial (Kernan Freire et al. 2023). 

AI agents represent a further advancement, capable of 
autonomous decision-making based on environmental 
learning and adaptation (Zhao et al. 2023). In the context of 
manufacturing and maintenance, these agents can 
autonomously monitor system health (Han und Tao 2024), 
predict (Saboo und Shekhawat 2024) and automate 
maintenance tasks (Sun et al. 2024), thereby reducing 
downtime and maintenance costs. It can therefore be said that 
current approaches can achieve relevant results through their 
purely probabilistic transformer architecture by using 
attention with classical RAG, but cannot use factual, linked 
knowledge. 

2.3. Knowledge Graph 

Knowledge Graphs (KGs) structure knowledge in graphs, 
connecting entities and their relationships, thereby 
facilitating semantic searches and data integration (Fensel et 
al. 2020). In GenAI applications, KGs enhance RAG (Zhu et 
al. 2024) by providing structured, semantically linked 
domain information to improve response accuracy and 
contextual relevance (Agarwal et al. 2020), particularly 
valuable in domain-specific applications like manufacturing 
(Yu 2022). KG therefore enhance capabilities of chatbots by 
providing them with structured context information on 
specific user requests (Li et al. 2021). By leveraging the rich 
semantic relationships within KGs, chatbots are able to 
understand and process user queries more effectively, 
navigating through complex information networks to retrieve 
or infer accurate answers (Yu 2021). 

Within manufacturing, KGs encapsulate domain knowledge 
and causal relationships between failure modes and solutions, 
informed by Failure Modes and Effects Analysis (FMEA) 
(Razouk et al. 2023). This structured knowledge aids RAG 
systems in querying precise information for predictive 
maintenance and decision support, thereby streamlining 
maintenance protocols and diagnosing machinery issues 
through an understanding of causal links. 

The synergy between KGs and RAG significantly enhances 
manufacturing operations' efficiency by enabling access to 
detailed domain knowledge, reducing downtime, and guiding 
accurate maintenance decisions, thus enhancing operational 
reliability and performance (Ansari et al. 2023). 

2.4. EU AI Act 

In response to the rapid developments in the field of AI in 
recent years, the European Union has implemented a 
regulatory framework for development, market introduction 
and deployment of AI-driven products, services, and systems. 
The framework is designed to guarantee transparency, 
accountability, and safety for both current and forthcoming 
AI technologies within the EU. Especially in the area of 
manufacturing a responsible application of AI is essential to 
mitigate risks and deliver business benefits (Besinger et al. 
2024). 

Since current pre-trained LLMs like the GPT-models (Brown 
et al. 2020) or Metas Llama-Series (Touvron et al. 2023) are 
trained outside of the European Union, the EU AI Act 
addresses this issue by extending its scope to include 
providers operating within the EU as well as those in third 
countries, particularly when the output of their AI systems is 
utilized within the Union. The EU AI Act defines different 
categories from no risk to high-risk. The use of AI in human 
interaction, emotion recognition, and content generation is 
categorizes as low risk (second category). Article 52 
(European Commission 2024) addresses the regulatory 
requirements for providers and users (excluding end-users) of 
AI systems categorized as low risk. There are three critical 
areas pertinent to the case presented in this paper: 
Transparency in AI interactions, the Marking of synthetic 
content, and the Disclosure requirements for emotion 
recognition and biometric categorization. 

Firstly, concerning Transparency in AI interactions, the 
legislation mandates that AI systems engaging in human 
interaction must inform users of their non-human nature, 
except in contexts where such interaction is inherently 
apparent. Secondly, the requirement for marking synthetic 
content, such as audio, images, videos, or text, created or 
significantly altered by AI there must be machine-readable 
marks signifying its artificially generated or manipulated 
status, except for minor edits. Lastly, concerning emotion 
recognition and biometric categorization, users must be 
informed about these processes, with data handling needing 
to comply with EU regulations (European Commission 
2024). 

2.5. Research Gap 

In industrial maintenance, the accessibility and quality of 
critical data is a crucial issue. Despite the increasing 
availability of information from maintenance reports, 
personnel documents, and enterprise resource planning 
(ERP) systems, the effective use of this data remains largely 
untapped. Therefore, to the best of the authors' knowledge, 
current research has not sufficiently explored the use of LLM 
in chatbots in industrial applications, especially the use of 
linked data and documents in an agent network. This paper 
presents a novel way to combine LLM with RAG and KG in 
an intent-driven agent framework, providing a flexible, 
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generalizable and scalable approach for industrial 
maintenance.  

3. METHODOLOGY 

In the following the design of the system architecture, which 
enables an LLM-based maintenance chatbot is described. 
Further, we propose a modular agent layout for the chatbot. 
The architecture is based on by RAMI 4.0 (DIN 91345)      and 
inspired by (Margaria und Schieweck 2019). 

3.1. System Architecture 

The system architecture for the application of an LLM-based 
maintenance chatbot, see Figure 1. is structured into three 
distinct tiers, namely data tier, analytics tier and presentation 
tier, each with specific components, capabilities and 
information flows designed to interact seamlessly within the 
broader ecosystem of the industrial application.  

Data Tier: The Event Broker facilitates communication 
between the analytics components and the data sources. It 
manages the flow of real-time data to the Data Analytics 
(Stream) and routes information to and from the Prescriptive 
Analytics. The Database stores historical data, such as CAD-
models, maintenance reports or technical data, which is 
subsequently used for trend analysis and informing predictive 
models. It also serves as a repository for collected data over 
time and connects them through semantic similarities, which 
leverages the suitability of natural language interaction. 

Vectorized data schemas in the Data Tier allow for efficient 
data retrieval. Edge Devices are directly connected to the 
database and serve as intermediaries between the physical 
sensors and the system's core data infrastructure. They 
perform preliminary data processing, filtering, and 
aggregation tasks. 

Sensors, either attached to machines or environmental 
sensors, collect data about the operational status, health, and 
performance of the machinery and environmental status. This 
data is crucial for monitoring and maintenance purposes. It 
incorporates different database structures. For processing 
natural language, the core components are a vector database 
and a KG, which serve as the foundation for an efficient RAG 
pipeline. While vector databases enable efficient data 
retrieval through vectorized representation of domain 
specific data (Jing et al. 2024), KGs provide structured 
representation of the data (Pan et al. 2024). A combination of 
these components is leveraged to reduce hallucination and 
utilize information which is not inherent to the LLM. The 
KG, see Figure 1, enables the connection of ERP data with 
task and competence relevant information. This data model 
allows a holistic view on the maintenance process as well as 
the possibility for downstream agents for interconnected 
reasoning. Machines are the physical hardware being 
monitored and maintained. Connected to sensors, they are the 
source of the operational data fed into the system for analysis. 
Assistance Systems, such as smart tools and tablets, are 
connected to sensors. They serve as an interface for workers 

Figure 1: System Architecture Layout for empathetic assistance systems 
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on the ground, providing them with real-time guidance 
deri ed f ro  t he s s te ’s anal sis.  

 

Analytics Tier: The Prescriptive Analytics component is 
directly linked to the User Interaction Application. It 
processes the user's input, utilizing the Rasa conversational 
AI framework (Introduction to Rasa Open Source & Rasa Pro 
2024), to generate actionable advice or maintenance 
recommendations. It uses advanced algorithms such as 
anomaly detection to suggest specific actions based on the 
analyzed data. The System Definition , powered by the 
Llama-2-70b-model (Touvron et al. 2023), functions as a 
reasoning framework that defines and orchestrates data 
analytic processes. It incorporates a multi-agent layer 
structure to process user input and determine the most 
appropriate action to take (Jiang et al. 2023). Therefore, 
necessary parameters and fitting data sources are determined 
to resemble the scope for aspired data analytics. The Data 
Analytics (Historical Data) component uses batch processing 
to analyze historical data to identify trends, patterns and 
potential issues based on past events. In contrast to the 
historical data analytics, the Data Analytics (Stream) 
component processes simulated real-time sensor data to offer 
immediate insights and detect current or impending issues, 

which is essential for real-time decision-making and alerts. 
The Data Analytics component utilizes multiple regression to 
forecast outcomes and incorporates K-means clustering to 
discover trends in historical data, as well as an Isolation 
Forest algorithm for anomaly detection. The foundational 
understanding of the Data Analytics (Historical Data) 
additionally augments the predictive real-time models to 
ensure a maximum of information for analysis. 

Presentation Tier: The User Interaction Application 
component serves as the interface between the end-user and 
the chatbot system. It is where users interact with the chatbot, 
inputting queries and receiving responses. In this context, a 
simplistic User Interface featuring a Chatbot window was 
implemented, as illustrated in Figure 4.  

Each tier in this architecture is intricately connected, allowing 
data to flow from the machines up through the system to 
enable real-time and predictive maintenance decision-
making. The architecture is designed to maximize efficiency, 
reduce mean time to repair, and provide actionable insights 
through a user-friendly interface. 

3.2. Modular Chatbot Layout 

This chatbot layout is aligned with existing frameworks for 
developing multi-agent dialogue systems (Engelmann et al. 
2023; Xi et al. 2023). It is depicted in Figure 3 and features a 
central User Agent linked to three specialized agents 
(Scheduling, Competency, Analyzer), all interfacing with an 
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Figure 3: Interconnected Agent Layout for a modular 
maintenance chatbot architecture 

Figure 2: Data model of the KG based extended from 
(Kohl und Ansari 2023a) 
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LLM acting as a classification engine to determine which 
agent is triggered for a certain query. This User Agent 
represents the System Definition within the System 
Architecture, see Figure 1 and therefore determines which 
specialized agent is triggered subsequently. These 
specialized agents comprise of several tools and determine 
the correct tool usage for task-specific challenges. Moreover, 
the agents can interface with each other if the task requires 
agent collaboration. The proposed modular design allows for 
seamless integration of further agents and tools within agents 
to encounter novel challenges over time.  

• User Agent: Channels user inputs to the appropriate 
specialized agents and consolidates their outputs for user 
communication. It is the link between Presentation and 
Analytics Tier. 

• Scheduling Agent: Selects the production planning and 
shift planning tools based on user agent task instructions 
and operational needs. The optimization algorithm 
leverages provided data sources within the Data Tier and 
interacts with the Competency and Analyzer Agent to 
ensure fairness and efficiency while allocating shifts and 
schedule production.  

• Competency Agent: Decides whether to analyze skill 
factors or physical profiles, aligning workforce tasks 
with individual skills and physical capabilities for 
optimal job assignment. Through its empathetic 
capability it continuously checks for physical and ethical 
alignment of worker tasks. 

• Analyzer Agent: Chooses between MTTR calculation 
and KPI report analysis tools to assess maintenance 
effectiveness and identify areas for operational 
improvement. It provides recommendations such as 
prioritization or suggestions for automations. 

• Recommender Agent: Has access to both historical and 
real-time data. When an anomaly is detected, it becomes 
operational. It offers similar historical failures, spare 
parts, and can store documentation in the KG.  

Contrary to the User Agent the specialized agents interact 
with the Data Tier and leverage aforementioned RAG 

pipelines with KGs and vector databases to process dynamic 
and real-time information (Huang et al. 2024). This layout 
serves as an illustration of how agents can be utilized to allow 
dynamic maintenance strategies. The system architecture, see 
Figure 1, provides a high-level reference structure for the 
integration of new agents, such as a failure mode and effects 
analysis (FMEA) agent using the cause entity from the KG.  

The architecture of this modular system integrates prompts as 
follows: The overarching system prompt guides the Chatbot, 
setting its function within a maintenance environment. This 
structure includes more specific prompts at subordinate 
levels. The User-Agent prompt functions analogously to a 
supervisory agent, tasked with identifying the most 
appropriate agent response to a user query. Each specialized 
agent operates under its own prompt; for example, the 
Analyzer Agent is responsible for generating reports based 
on historical or real-time data. This necessitates determining 
whether to initiate tools such as MTTR or KPI reports. 
Subsequently, this agent classifies the tool required for the 
task, parsing input parameters – such as the specific machine 
and time span – from the LLM. These parameters, where 
descriptions are also provided, are then employed within 
Python functions, with the resulting outputs fed back to the 
LLM, which then crafts responses based on these function 
outputs. 

3.3. Regulative Considerations  

In the context of implementing a maintenance chatbot, 
aligning with the EU AI Act's transparency obligations is 
essential for fostering trust and ensuring responsible use. The 
EU AI Act mandates that users are explicitly informed when 
they are interacting with AI systems, like chatbots. This 
requirement is critical in maintenance environments, where 
decisions can impact operational safety and efficiency. By 
disclosing the chatbot's AI nature, users are empowered to 
make informed choices about their engagement, 
understanding that they are consulting a machine for 
assistance. This transparency not only builds trust in the 
technology's capabilities and limitations but also reinforces 
the importance of human oversight in decision-making 
processes. Ensuring users are aware they are interacting with 
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an AI helps maintain a balance between leveraging 
technological advancements and preserving human 
judgement and accountability in maintenance operations. 

4. USE-CASE  

The use case discusses a maintenance workflow in the 
railway industry, utilizing a chatbot for maintaining a cooling 
system., see Figure 4. The used cooling system provides 
sensor data about machine states as well as extensive 
manufacturer information. As it is one of the most frequently 
installed systems in Vienna's tramways and subways, 
extensive data on maintenance incidents in form of logs and 
spare parts is available. The data tier and the used 
maintenance data set consists of text-based, tabular industrial 
maintenance logs (Ansari 2020). The dataset was 
transformed in order to fit the structure of the Sequential QA 
(SQA) format by Microsoft (Iyyer et al. 2016) in order the be 
ideally processed by LLMs. In the use case scenario, the KG 
is constructed from maintenance logs exported from an ERP 
system, detailing machine failures and corrective actions, 
also integrates information on the equipment and spare parts 
used for repairs. The association of actions with required 
competence and the frequency of these actions by 
maintenance technicians serve to depict their competence 
levels (Ansari et al. 2023). Further, a vector database houses 
segments, specifically text excerpts, from work instructions 
and machinery documentation. For real-time data, the system 
monitors the current production schedule along with a 
simulated data stream of sensor readings from the machines. 
Additional stress levels of maintenance technicians are 
recorded for evaluation purpose. 

 
Figure 5: Maintenance of a railway cooling system using 
a chatbot 

4.1. Application of the Chatbot 

The chatbot's supportive capability is discussed based on the 
standard end-to-end maintenance process see Figure 4. It 
consists of equipment failure, search for maintainer, 
identification of fault cause, search for spare parts, repair 

action, documentation of the maintenance process, 
reintegration of the machine. The following shows points of 
human interaction as well as autonomous chatbot within this 
process. 

1. Equipment failure: The recommender agent is 
activated by an error notification, triggered by an 
anomaly in the real time data flow of the machine. Based 
on the error notification similar historical failures and 
corresponding actions are determined by semantic 
search of the task recommendation agent (Ansari et al. 
2021). 

2. Search for maintainer: The scheduling agent, 
competency agent and task recommendation agent 
exchange information about the production schedule, 
available maintenance personnel, their corresponding 
competencies, and the necessary tasks for failure 
resolution. According to that an allocation of the most 
fitting maintainer for the task is deducted. 

3. Identification of fault cause: This stage marks the 
initial interaction between the maintainer and the 
chatbot. Utilizing the chatbot's knowledge, sourced from 
documents within the vector database, it can pose 
inquiries related to specific domains or machinery. 
Throughout this process, the human evaluates the tasks 
recommended by the chatbot for accuracy and 
corroborates them based on personal experience and the 
information furnished by the chatbot.  

4. Search for spare parts: Once the tasks required for 
resolving the failure are identified, the task 
recommendation agent traverses through historical data 
in the KG to propose necessary spare parts.  

5. Repair action: During the physical repair, the chatbot 
acts as an accessible source of pertinent information, 
offering guidance through machine documents or other 
necessary data from the vector database. Additionally, it 
can process requests for more detailed machine 
information, which are then thoroughly examined by the 
analyzer agent, e.g. asking for the mean time of repair. 

6. Documentation of maintenance process: Building on 
prior interactions, the chatbot can autonomously create 
new connections within the KG and carry out the 
documentation process upon request from the 
maintenance personnel. 

7. Reintegration of the machine: Finally, the chatbot 
guides through standard tasks to reintegrate the machine 
levering information from diverse work instructions. 

The proposed integration of a chatbot within the standard 
end-to-end maintenance process, see Figure 4, represents a 
significant advancement in operational efficiency and 
precision. By embedding intelligent, autonomous capabilities 
at critical junctures of the maintenance workflow, from initial 
equipment failure detection to the reintegration of repaired 
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machinery, this model showcases a transformative shift 
towards more resilient and adaptive maintenance operations. 
The synergy between human expertise and artificial 
intelligence not only enhances the decision-making process 
but also optimizes resource allocation, reduces downtime, 
and enables empathic human-machine collaboration (Sorin et 
al. 2023). 

4.2. Example: Analyzer Agent 

To illustrate a potential maintenance workflow, we present 
an example of a chat where a user activates the Analyzer 
Agent. The dialogue demonstrates the triggered process 
chains, including the reasoning (highlighted in italics) and the 
tools employed. Due to space constraints, a detailed 
description of the various prompts is largely omitted. The 
chat ot is referred to as “AI.”  se rs can also follow the 
thought process through a collapsible dropdown segment in 
the interface, see Figure 6. 

 

This example highlights how the chatbot, in its current state, 
bases its decisions, extending to the collaboration of multiple 
agents to optimize outcomes, such as in production planning. 

4.3. Evaluation of the maintenance-chatbot 

The evaluation is based on two types of maintenance tasks 
performed in    Wien’s pilot factory: a simple task for 
changing and cleaning a filter and a more complex task for 
changing the rotor, where the root cause is not clear. The 
depicted tasks require different competence levels in 
different areas. In the test scenarios, the maintenance chatbot 
demonstrated promising results for guiding the maintenance 
technicians through the root cause identification and for 

offering more detailed answers when needed, thereby 
reducing MTTR by 25% in comparison to the control group. 
In the case of the more challenging problem setting, the 
possibility of creating KPIs in natural language for deeper 
analysis reduced the MTTR by approximately 30% leading 
to an even higher impact. Furthermore, the dialogues are 
tailored to the individual competence levels, which permit 
queries and elucidations of (partial) steps, diminish the stress 
level and cognitive load, and facilitate a more empathetic 
conversational style. In addition, a ground truth dataset was 
constructed. Based on the logs, the appropriate agent or tool 
was triggered, and that the response was satisfactory in 83% 
of all cases. Specific tools, such as LangSmith (Ito et al. 
2020), are currently under evaluation concerning integration 
for even better agent handling. Given the implementation of 
the LLaMA2 model within this chatbot, the Do-Not-Answer 
dataset (Wang et al. 2023) establishes a framework for 
safeguarding LLMs against potential risks. The efficacy of 
this dataset in mitigating harms will be further assessed in 
forthcoming studies through an adapted version tailored to 
evaluate the specific vulnerabilities and challenges posed by 
this chatbot. 

5. CONCLUSION AND OUTLOOK  

In summary, this investigation highlights a maintenance 
chatbot's significant efficiency over traditional systems in 
minimizing Mean Time to Repair (MTTR), thereby boosting 
operational efficiency and equipment effectiveness in 
manufacturing. Traditional NLP based systems show an 
improvement in MTTR of at least 20% in production 
environments, which is confirmed by preliminary 
investigations by (Ansari et al. 2023). Additionally 
independent studies on LLM based assistance systems (Noy 
und Zhang 2023) show even higher potentials in operational 
efficiency, well in line with the first tests of the detailed 
maintenance chatbot in the pilot factory use cases. 
Leveraging advanced NLP and machine learning, the chatbot 
surpasses conventional systems by integrating ERP data and 
identifying relationships for enhanced maintenance insights, 
significantly reducing cognitive load and stress. 

Looking ahead, the scalability and generalizability of the 
maintenance chatbot are poised for improvement with the 
multi-agent systems, and causal AI. AutoGen frameworks 
(Wu et al. 2023) are anticipated to refine the chatbot's content 
generation and adaptation capabilities, enabling reciprocal 
learning. Multi-agent systems promise to distribute problem-
solving tasks effectively, improving maintenance operations' 
efficiency. Meanwhile, causal AI could provide a deeper 
understanding of the complex causal relationships within 
maintenance data systems, offering more accurate step-by-
step solutions.  

Future directions indicate that maintenance chatbots could 
overcome current limitations and adapt across various 
manufacturing settings. This flexibility is key to meeting the 

                                      

                                     

       

                                      

         

                                       

                                            

                                         

                                          

                                          

                                         

                                         

                                  

                      

                                     

                                         

                                            

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6: Example prompt of the Analyzer Agent 
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sector's varied needs, marking a significant advancement in 
CAS for maintenance. Driven by improvements in data 
integration, natural language processing, and causality 
understanding, this represents a crucial step in 
manufacturing's digital transformation. 
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ABSTRACT

A critical task for system operators is the precise identifica-
tion of the root causes underlying an error situation. This
identification is fundamental in deciding optimal maintenance
actions, such as replacing a component versus calibrating it.
However, the actual causes of an error are often neither mea-
sured nor unique. The measured quantities are the result of
complex interactions between different error causes and sys-
tem variables. Root cause identification in this context be-
comes a matter of inferring hidden causes from their measur-
able effects. This challenge is notably pronounced in cyber-
physical systems comprising control loops. Control mecha-
nisms, integral to maintaining system performance, introduce
a layer of complexity in diagnostics and ultimately compli-
cate the isolation of the underlying causes of errors. To ad-
dress this challenge, we introduce a two-step approach to de-
rive the hidden causes as a statistical inference task. First,
we develop a generative model leveraging existing control
software and expert-based insights into the mechanisms of
errors, i.e., a simulator of synthetic data given some hidden
error causes. Then, we transform the generative model into
a probabilistic program on which statistical inference can be
executed within a probabilistic programming language frame-
work. This inference effectively estimates the hidden causes
given some measured data from the system. Being intrin-
sically a statistical approach, these inferences come with a
confidence interval. We applied this methodology to an in-
dustrial printer’s sheet transport belt, operating in a closed-
loop configuration. Our approach successfully discerned the
contributions of three distinct hidden causes to the belt’s de-
viation from its intended position. This paper highlights the
efficacy of generative modeling followed by a probabilistic
programming approach in unraveling complex interactions
within cyber-physical systems for optimal maintenance.

Alvaro Piedrafita et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

In order to match the increasing market demands on overall
equipment effectiveness, industrial manufacturers of cyber-
physical systems need efficient methods to diagnose system
malfunctions. In practice, finding the root cause of such mal-
functions is challenging for several reasons, ranging from tech-
nological to human and organizational ones.

On the technological side, the high demands on performance
lead to increasingly complex systems with many intertwined
control mechanisms that obscure the path from a root cause
to its measurable effects (Borth & Barbini, 2019). The lack of
direct observability for each cause of malfunctions forces the
diagnostic to infer the many root causes from their effects on
the few measured observables. Moreover, these observables
are often not measured for diagnostic purposes but rather for
control and performance ones, i.e. are indirect.

On the human and organizational side, the knowledge needed
to solve difficult diagnostic cases is within the design and
engineering departments, while the responsibility of offering
diagnostic support lies on the service department (van Ger-
wen, Barbini, & Nägele, 2022). The transfer of the necessary
knowledge is thus a difficult process that relies on expensive
escalation-based approaches, i.e. design and engineering de-
partments are called in by service to support the diagnostic
reasoning. Finally, the struggle to timely train the service
personnel capable of executing the needed diagnostic reason-
ing is a growing concern in the face of relentlessly increasing
system complexity.

To tackle the points above we propose a method that focuses
on two pillars. First, capture in models the knowledge of the
system behavior, e.g. control loops, together with its failures.
This should be done iteratively within the design and engi-
neering departments, by incrementally incorporating knowl-
edge on failures occurring in the field. Second, support the
diagnostic reasoning process by performing statistical infer-
ence on the above models together with data from an error
situation in the field, inferring the hidden causes of errors in
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a Bayesian way. This is the contribution of this methodology
to the service department.

The rationale behind the proposed approach is that humans
have the knowledge and the inclination to reason forward,
i.e. in a simulation-like manner from the causes of a failure
towards the resulting effects. Many such simulation models
are readily available in industrial companies. Conversely, it
is more challenging for humans to perform inverse diagnos-
tic reasoning from the effects towards the causes: they need
computational support to do so. In this paper we leverage
the available system expertise and modeling capabilities of
humans, with statistical inference tools to achieve diagnostic
reasoning support.

The remainder of the paper is organized as follows: below
we give an overview of the relevant literature. In Section 3
we introduce the details of our approach. In Section 4 we
first apply our methodology to synthetic data and then to real
data from an industrial system, finally we conclude our paper
and give directions for future research in Section 5.

2. LITERATURE REVIEW

The proposed method has its foundations in model-based di-
agnostics (De Kleer & Kurien, 2003) and specifically in its
probabilistic implementation with Bayesian networks (Lucas,
2001; Srinivas, 1995). In this context, Bayesian networks, a
type of probabilistic graphical model, are used to infer the
likelihood of causes based on observed data via Bayes’ theo-
rem. The quantity of interest for the diagnosis is the posterior
probability of cause C given observations O, computed as
P (C|O) = P (O|C) · P (C)/P (O).

The present paper extends the previous work in two direc-
tions. First, we model and reason with continuous random
variables, rather than discrete. This is fundamental when
tackling performance issues, i.e. scenarios where the sys-
tem’s components are not described by a neat dichotomy of
states, such as normal or abnormal, but rather sit in a con-
tinuous spectrum of states. Second, we model and reason on
dynamic processes rather than on static ones. This is needed
when diagnosing systems with feedback control loops and
when the cause of failures shows a time-dependent behav-
ior. In the literature, such systems are often modeled with
dynamic Bayesian networks (Bartram & Mahadevan, 2015),
but this is cumbersome and very quickly results in very large
models, so we propose a different approach.

In this paper, we perform statistical inference on dynamic
models with continuous random variables by using a prob-
abilistic programming paradigm (van de Meent, Paige, Yang,
& Wood, 2018). The proposed probabilistic programming
approach can be seen as a generalization of Bayesian filtering
and smoothing methods (Särkkä & Svensson, 2023) such as
Kalman filters and particle filters. Several methods have been

introduced in the probabilistic programming literature to per-
form such statistical inference, sampling-based methods like
Markov chain Monte Carlo (van de Meent et al., 2018), gradi-
ent based methods (Kucukelbir, Tran, Ranganath, Gelman, &
Blei, 2017) and analytic methods like message passing (Cox,
van de Laar, & de Vries, 2019), or combinations thereof (Cox
et al., 2019). In this paper we rely on Markov chain Monte
Carlo using the Python library Numpyro (Phan, Pradhan, &
Jankowiak, 2019). The proposed methodology makes use of
simulation models to generate synthetic data for validation
and fine-tuning of the inference models. The use of synthetic
data has been explored before in other fields, see (Tremblay
et al., 2018) on the use of synthetic data in deep learning, and
(Cranmer, Brehmer, & Louppe, 2020) for a discussion on the
use of simulation for inference.

3. METHODOLOGY

Our methodology is schematically represented in Figure 1. It
uses two models, simulation and inference, and develops in
three phases, creation, validation and usage phases. These
are represented with different colors in the figure; orange,
blue and green, respectively.

In the creation phase, we first compile a simulation model
using knowledge of the system, thus re-using already avail-
able control models, and augmenting these with (conjectured)
models of failure mechanisms. The latter heavily relies on ex-
pert knowledge based on historical failures. The simulation
model outputs synthetic data given a single or a combination
of failure mechanisms. The simulation model is then trans-
formed into an inference model. This transformation is not
computational, i.e. it requires additional modeling. For ex-
ample, some aspects of the simulation might be deemed irrel-
evant or negligible and dropped from the inference. Further,
one could decide to decompose a single simulation model into
multiple inference models. We will return to this in Section
4.2.

Figure 1. Schematic representation of the proposed method-
ology

In the validation phase, the goal is to verify that the con-
structed inference model indeed provides an inverse to the
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data generation process. We do so by testing whether the
model can correctly infer the hidden causes of failures in syn-
thetic data generated in simulation models. We repeat this for
different types and combinations of failures.

Finally, in the usage phase, we use the inference model on
the real data coming from a system in the field to infer the
hidden causes of failures. The optimal service action, e.g.
part replacement versus cleaning, is then decided based on
these inferred causes.

4. APPLICATION

We apply the proposed methodology to a subsystem of a Canon
Production Printing (CPP) industrial printer. This subsystem
contains a conveyor belt that rests horizontally on two cylin-
ders. The cylinders rotate at a variable speed and transmit
this movement to the belt. For this subsystem, it is required
that the belt is at the center of both cylinders, perpendicular
to the directions of its movement. To fulfill this requirement,
one of the cylinders can be tilted by raising or lowering it.
The mechanism responsible for this tilting is driven by a mo-
tor. In the remainder of this paper, we will refer to it as the
Z-position motor. This tilting causes the belt to slide up or
down the cylinder each revolution by an amount proportional
to the Z-motor position. Every few revolutions the position of
the belt is measured and a correction is computed by a Pro-
portional Integral (PI) controller, resulting in an adjustment
of the Z-motor position. This steering action is necessary to
counter the various causes that make the belt drift away from
its intended position.

Our goal here is to discern the unknown causes of this drift
and to infer their strength, given the available data on the belt
and motor positions over time. This is crucial from a main-
tenance perspective, to define the best service action in those
cases in which, despite the control mechanism, the belt goes
out of its intended position. Following our methodology, we
first make a model relating the known, i.e. measured, and the
unknown variables of this system. Then we conjecture the
functional form of the unknown variables to create a complete
simulation model. In the next Section, we use the equations
of the PI-controller for the former and expert knowledge for
the latter.

4.1. Simulation model

Every step of the PI-controller begins with a measurement
of the belt position. This belt position must be a function
of the previous belt position, the previous motor correction,
and the drift incurred between the current measurement and
the previous one. Based on the current positions of both the
belt and Z-motor, the position of the latter is updated by a PI
controller with the goal of returning the belt to its intended

position. The equations modeling this behavior are:




beltk = beltk−1 − α ·motork−1 + driftk

integralk = cint(beltk + beltk−1) + integralk−1

motork = cpropbeltk + integralk

(1)

Where α, cint, and cprop are known proportionality constants
and subscripts (·)k corresponds to the value at sample k. All
three quantities are measured. Notice that in Equation (1) the
last 2 equations are taken directly from the implementation of
the controller.

Not contained in these equations is the condition that the
steering motor stays within a bounded range. If the neces-
sary correction is outside these bounds, the motor will stay at
the limit of its range, causing the belt to drift outside of its
desired position. Throughout this paper, we assume that the
motor and the belt position sensor never fail. This assumption
can be relaxed, if necessary, and the proposed methodology
can still be applied.

In Equation (1) the drift can be computed at all times since it
is a function of the belt and motor positions, both measured.
What remains unknown are the different error mechanisms
and how they add up to the total drift. For this, we use expert
knowledge.

We conjecture that the drift results from the linear combina-
tion of five causes:

• Calibration: the belt might not be completely horizon-
tal when the Z-motor is at position 0. This results in a
constant calibration error c.

• Misalignment: the belt might not be well aligned with
the previous component of the printer, which results in
pages coming into the belt with a lateral velocity relative
to the direction of motion of the belt, causing drag to one
side. This results in a constant misalignment errorm that
is present only when the machine is printing.

• Degradation: the belt material might wear out and de-
form over time, resulting in a time-dependent drift Dk.
We conjecture this degradation to be exponential and with
an unknown deformation direction.

• Sheets: when the pages make contact with the belt, they
might cause a perturbation to its position, depending on
the properties of the pages. This would result in a train
of pulses Pk with varying amplitude and width, present
only when the machine is printing.

• Noise: we finally conjecture that all other sources of er-
ror add up to a Gaussian term εk ∼ N (0, σ) with un-
known variance and zero mean.

These causes are described by the following equations:

driftk = c+ printk(m+ Pk) +Dk + εk (2)
Dk = s(4δk − 1) (3)

3

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 607



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 2. Example synthetic data produced with the simulation model. Observe how the motor displacement follows the sum
of the three hidden contributors to the belt drift. See main text for a detailed explanation.

In equations (2,3) we can see the decomposition of the drift
into its different terms, with the conjectured form of the degra-
dation as being an exponential with exponent parameter δ ≥
0 and sign s ∈ {−1, 1}. printk is the variable that represents
whether the machine is printing and takes values in {0, 1}.
The variables c, m, Dk and Pk in Equation (2) are unknown,
while printk and driftk are known quantities. In the interest
of brevity, we have not included here the detailed equations
of the perturbation term Pk.

Considered together, equations (1,2,3) describe a model of
the system. The model has been implemented in Python, al-
lowing us to compute simulations such as the one shown in
Figure 2. The first author can provide the code if needed to
an interested reader.

In the top plot of the figure, we represent the observable time
series beltk and motork from Equation (1) in a double-axis,
left for the belt and right for the Z-motor. Observe the differ-
ent units for each time series. We can see that the (simulated)
PI-controller is capable of keeping the system controlled in
the presence of the Drift causes, shown in the plot below, as
evidenced by the belt position remaining stable around 0. It
does this by adjusting the Z-motor position. Eventually, the
Z-motor will hit its limit, after which the position of the belt
quickly drifts away from its intended position (not shown in
the plot). In the bottom plot, we show the different contribu-
tors to the drift of the belt, for simplicity of visualization we
have combined calibration and misalignment in a single one.

4.2. Inference model

The next step in our methodology is to translate the sim-
ulation model into a probabilistic model suitable for infer-
ence. In such a model, one describes the unknown variables

of the simulation as hidden, i.e. unobserved, random vari-
ables. Then one describes the known, i.e. observable, vari-
ables as functions of the unknown variables, therefore ran-
dom variables themselves, but which are observed. These
functions relating observable and hidden variables can be:
probabilistic (e.g. perturbation), or deterministic (e.g. degra-
dation as a function of s and δ), and need not be invertible.
The task of these models is to infer the probability distribu-
tions of the hidden random variables that best explain the
observations. We use the framework of probabilistic pro-
gramming to instantiate these models and perform inference.
Numpyro, see (Phan et al., 2019), is the probabilistic pro-
gramming language of choice for this work.

Considering the temporal nature of our data and the con-
trolled step-wise nature of the system, we propose a Bayesian
state-space model as the probabilistic description. A Bayesian
state-space model is a dynamical system of equations relating
random variables. The system is determined by the observ-
ability and update equations. The observability equation (4)
connects the vector of observed variables y⃗k at time k to the
vector of hidden variables θ⃗k, external observable variables
x⃗k and noise term ε⃗k. The update equation (5) connects the
vector of hidden variables at time k with the vector of hidden
variables at time k−1 and the update noise η⃗k. Together, they
define the system:

y⃗k = Akθ⃗k +Bk · x⃗k + ε⃗k. (4)
θ⃗k = Gk · θ⃗k−1 + η⃗k, (5)

Where Ak and Bk are matrices, ε⃗k is the observation noise
vector at time t, Gk is often called the innovation or transi-
tion matrix at time k and η⃗k is the update noise. For this sys-
tem to be fully Bayesian, we can treat the matrices Ak, Bk,
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and Gk, or their coefficients, as random variables themselves
and give them Bayesian priors. The equations of a Bayesian
state space model describe the evolution of the hidden and
observed variables, but not the evolution of their probability
distributions. That is the task that the probabilistic program
computes in the background.

The translation from a simulation model like that described
by equations (1,2,3) into a Bayesian state-space model is not
unique and need not be 1-to-1. For instance, the modeler is
free to leave elements of the simulation model out of the in-
ference model, implicitly leaving them as contributions to the
noise term. They are also free to choose which unknown vari-
ables in the simulation model should be mapped to hidden
variables in the Bayesian state space model and which should
be expressed as coefficients of the matrices Ak, Bk, and Gk,
which are treated as static random variables.

For our conveyor belt, we have only one observed variable,
yk := driftk. The parameters of the model are defined as

A := [1, 0], B := [c,m], (6)

Gk :=

[
4δ s · 4δ − 1
0 1

]
. (7)

The external variables are x⃗k = [1, printk], the hidden vari-
ables are θ⃗k = [Dk, 1] and the noise terms are εk ∼ N (0, σ)
and ηk := 0.

For simplicity, we choose not to model perturbation Pk ex-
plicitly and let it be absorbed by the noise term εk. To make
this model fully Bayesian, we assign prior distributions to the
random variables c, m, δ, s, and σ. We choose uninforma-
tive uniform distributions in the interval [−80, 80] for c, m
(the whole range of the belt), a wide uniform distributions in
[0, 0.5] for δ, uniform 50% prior for each value of s, and a
half-normal distribution with width 1 for σ. The ranges of
these priors are chosen by domain experts to encompass all
plausible failure configurations.

Once we have expressed the model in this form, the prob-
abilistic programming language performs inference by ap-
proximating the joint probability distribution of the hidden
and observable variables given a particular observation, and
applying Bayes rule. Table 1 shows the result of perform-
ing inference on the synthetic dataset from Figure 2. Observe
how the inferred values for degradation, calibration and mis-
alignment match their real values.

We conclude that the different causes of drift can be inferred
from the synthetic data. This gives us reason to believe that,
as long as the data from the real system is sufficiently ap-
proximated by the simulation model, the inference can also
be performed on the real data. This will be shown in the next
section.

Table 1. Inferred values for the different sources of drift con-
sidered. Errors express a 2-σ confidence interval.

Parameter Real value Inferred value

c 15.00 15.02± 0.18

m -20.00 −20.02± 0.20

δ 8.00 e−4 8.00e−4 ± 7e−6

s 1.00 1.00± 0.00

4.3. Results

Given the long service life of the belts, we adapted the infer-
ence procedure to better fit the diagnostic needs in the field
by inferring the state of the belt at regular intervals. This
allows us to track the state of the machine over time. Algo-
rithm 1 outlines the procedure for this periodic computation
of degradation, calibration and misalignment given a stream
of field data that is split into periods. For each period, the in-
ference engine takes as input the estimated degradation at the
beginning of the period, infers the calibration, misalignment
and decay exponent, then computes the additional degrada-
tion corresponding to that period, and passes the latter to the
next iteration.

Algorithm 1 Iterative belt drift inference

Data← [period1, . . . , periodn]
params← []
prev D ← 0
for period in Data do

(c,m, δ, s)← InferParams(period, prev D)
D ← CompDegradation(period, δ, s, prev D)
prev D ← D
params.append([c,m, δ, s,D])

end for
return params

The probabilistic programming comes into play in this al-
gorithm when params[i] = [c(i),m(i), δ(i), D(i)], the in-
ferred parameters for period i, are treated as probability dis-
tributions, rather than point estimates. Inferring these dis-
tributions is done through the use of Markov Chain Monte
Carlo methods for approximating a total probability distribu-
tion. The posterior probability conditioned on the observed
data is computed via the Bayes-Laplace rule, rather than a
standard parameter fitting technique like minimum square er-
ror. This is all handled in the background by the probabilis-
tic programming library and implemented via the function
InferParams in the algorithm.

To compute the additional degradation in a given period we
modify our hypothesis for the degradation (see eq. (3)) to
allow for varying decay exponents over the different periods.
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Figure 3. Example of measured data where miscalibration (a), and degradation (b) are the main causes of a belt position error.
The Belt and Z-motor positions are measured, while the causes of belt drift in the bottom plots are inferred. The sources of drift
are shown here in the units of the Z-position motor rather than the belt for comparison with the former.

We assume that degradation in period i follows the equations:

D
(i)
k = s · 4δ(i)k + C(i), (8)

C(i) = prevD − s · 4δ
(i)ki−1 , (9)

where prevD = D(i−1) = D
(i−1)
ki−1

is the computed degrada-
tion at the end of period i− 1, ki−1 is the step that marks the
end of period i− 1, and δ(i) is the computed decay exponent
in period i output by InferParams. This condition ensures
that degradation grows exponentially and that degradation at
the beginning of one period is equal to degradation at the end
of the previous period, i.e. it ensures continuity. The com-
puted degradation at the end of period i is then D(i) := D

(i)
ki

.

In Figure 3 we apply the procedure to two typical examples
from the field of belts where excessive degradation or miscal-
ibration are the cause of a service action by a service engineer.

Although Figure 3 shows the average degradation, misalign-
ment and miscalibration for each period, we also compute
posterior distributions for each parameter, alongside a noise
parameter for each period, not shown in the plot. Observe
how the three different causes of drift are correctly discrim-
inated and tracked over time. Equipped with these results, a
service engineer would perform a replacement of the belt in
Figure 3-(b) and a re-calibration of the belt in Figure 3-(a), a
much less material and time-consuming action.

5. CONCLUSIONS

In this paper, we proposed a methodology for model-based
diagnostics of cyber-physical systems leveraging generative
and inference models. The generative model is compiled us-

ing already available knowledge on failure mechanisms, to-
gether with control models, and serves a dual function. On
the one hand, it helps validate the expert knowledge on fail-
ures, by comparing the results of simulations to data from
incidents in the field. On the other hand, it is used to vali-
date the inference models by providing us with a controlled
test bench in which to test the ability of the inference model
to distinguish the different causes of errors. The inference
model is derived from the generative model and is used with
field data from real incidents to perform root-cause diagnosis.

We then applied our methodology to the case of an industrial
conveyor belt in a closed control loop configuration, with sev-
eral hidden mechanisms driving the belt out of its desired po-
sition. With the proposed methodology we correctly identify
the different causes of drift of the belt, thus offering valuable
advice for the optimal maintenance action.

To the authors’ knowledge, this is the first time probabilistic
programming has been used for diagnostics of cyber-physical
systems. We believe the present paper proves its utility as
a tool for probabilistic modeling and inference in the prog-
nostic and health management domain, opening the door to
model-driven and physics-inspired diagnostics. In applying
the proposed methodology to the case of an industrial con-
veyor belt we have identified several aspects for future re-
search. The probabilistic programming framework has a pre-
diction functionality that could be used to make prognostic
forecasts of remaining useful life. In future research, we plan
on adding this aspect to our methodology. Further, the trans-
lation of generative models into inference models is a man-
ual process requiring a certain degree of familiarity with in-
ference and statistical modeling. How to automate, fully or
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partially, the translation from simulation to inference models
remains an open question. Finally, the proposed methodology
has been scoped and tested at a subsystem level, comprising a
belt, motor, and control mechanism. How to make such mod-
els composable and much larger for system-level diagnosis
remains a challenge to be addressed in future research.
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ABSTRACT

Predictive maintenance deals with the timely replacement
of industrial components relatively to their failure. It allows
to prevent shutdowns as in reactive maintenance and re-
duces the costs compared to preventive maintenance. As
a consequence, Remaining Useful Life (RUL) prediction of
industrial components has become a key challenge for con-
dition based monitoring. In many applications, in particu-
lar those for which preventive maintenance is the general
rule, the prediction problem is made harder by the rarity of
failing instances. Indeed, the interruption of data acquisi-
tion before the occurrence of the event of interest leads to
right censored data. There are few articles in the literature
that take that phenomenon into account for RUL prediction,
even though it is common in the industrial environment to
have a high rate of censored data.

The present article proposes a deep-learning approach based
on multi-sensor time series which allows to consider cen-
sored data during the training of the neural networks. Two
methods are proposed, respectively based on the Dual As-
pect Self-Attention based on Transformer proposed by
(Z. Zhang, Song, & Li, 2022) for non-censored data and on a
recurrent neural network. Their evaluation on the C-MAPSS
benchmark dataset shows, compared to the state-of-the-art
RUL prediction methods, no loss in the absence of censoring,
and outperformance on censored data.

Jean-Pierre NOOT et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. INTRODUCTION

Technology and electronic developments of sensors nowa-
days allow the collection of huge amounts of data on me-
chanical and industrial equipment, in particular time se-
ries measuring their evolution over time. The definition of
the maintenance schedule, which is crucial for the industry,
therefore shifts to predictive, or condition-based mainte-
nance (CBM). The latter is defined by opposition to the his-
torical preventive maintenance, for which the maintenance
schedule is pre-defined, each component being replaced
at fixed time intervals. CBM avoids replacement of healthy
components, and therefore reduces costs, by determining
a dynamic schedule depending on the real-time monitor-
ing of the system. A crucial step is therefore the estimation,
given the actual status of the system, of the Remaining Use-
ful Lifetime (RUL) of a component, that is the time before
its failure.

Several approaches exist to create CBM models for RUL es-
timation (Arena, Collotta, Luca, Ruggieri, & Termine, 2021),
most of them being model-based methods, data-driven meth-
ods or hybridisation of those approaches.

Model-based methods consider the physical phenomenon,
for instance corrosion or fatigue, that leads to the failure. A
mathematical model is used to simulate the studied mech-
anism and to get a RUL prediction (Tinga & Loendersloot,
2019). A precise physical and mechanical knowledge is how-
ever needed to build physical-based models. Moreover, this
approach results in highly complex models when applied to
large scale industrial systems composed with a lot of subsys-
tems.

Data-driven methods regroup approaches that rely on stochas-
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tic models or statistical analysis to create fault detection
models not directly mimicking the underlying physics. It
may consist in statistical algorithms to diagnose battery fault
(Y. Zhao, Liu, Wang, & Hong, 2017), stochastic processes to
mimic the degradation processes (Garay & Diedrich, 2019)
or evolving fuzzy models for semiconductor health manage-
ment (Boutrous, Bessa, Puig, Nejjari, & Palhares, 2022).

Data-driven methods include machine learning algorithms,
which have been extensively used by the Prediction and
Health Management community to establish predictive main-
tenance rules. Multiple linear regression durability models
were for instance used to predict the fatigue life of automo-
tive coil (Kong, Abdullah, Schramm, Omar, & Haris, 2019),
or SVM classifiers for fault detection in vehicle suspensions
(Jeong & Choi, 2019). In (Vasavi, Aswarth, Pavan, & Gokhale,
2021), a kNN classifier is used to detect fault by predicting
vehicle health using real time data, while (Patil et al., 2018)
relies on decision trees and gradient boosting regressor for
RUL prediction.

Deep learning, like machine learning methods, allow to have
no physical or mechanical knowledge of the studied system.
In recent years, numerous articles have demonstrated the
effectiveness of those methods for RUL prediction. The data
at hand being mainly time series, the developed methods
focus on architectures widely used to treat sequential data.
Recurrent neural networks like Long-short-time-memory
(LSTM) (Zheng, Ristovski, Farahat, & Gupta, 2017), or Con-
volutional neural network (CNN) (Sateesh Babu, Zhao, &
Li, 2016) and recently Transformers (Z. Zhang et al., 2022),
which were adapted from the original Transformer archi-
tecture (Vaswani et al., 2017) to deal with time series are
popular method used to perform RUL predictions.

The presence of right-censored data is an important issue
in many real-life industrial applications, which is not taken
into account by most methods. Indeed, when the current
policy on the field application is predictive maintenance,
equipment’s are renewed before failure, leading to numer-
ous time-series in the dataset for which the RUL is unknown.
One way to deal with such data is to use the survival ap-
proach based on Cox models that has been successfully
transposed from medical analysis to maintenance analysis
(Chen et al., 2020; Yang, Kanniainen, Krogerus, & Emmert-
Streib, 2022). An alternative is the ordinal regression (OR)
approach where the RUL prediction is replaced by a vector
of predictions encoding the failure time (Vishnu, Malhotra,
Vig, & Shroff, 2019).

The present paper deals with a new deep-learning method
based on ordinal regression to predict RUL on censored data.
It relies on two main contributions regarding the state of the
art. Firstly, the DAST model (Z. Zhang et al., 2022) based on
Transformers is adapted to an ordinal regression framework.
Secondly, it is put onto competition with an improved of

the LSTM-OR model (Vishnu et al., 2019) to obtain the final
prediction rule.

To illustrate its performance, the proposed method is run on
the C-MAPSS Turbofan NASA benchmark dataset, and com-
pared to state-of-the-art methods, able to consider censored
data or not. The benchmark dataset is being characterized
by the absence of censor, the latter is artificially introduced
at various levels. The proposed method is comparable to
the best methods on non-censored data and better when a
significant amount of data is censored.

2. RELATED WORK

As stated in the introduction, the aim of this study is to con-
sider the RUL prediction problem when the learning dataset
is right-censored. That situation is common in applications,
as such a censoring corresponds to components changed
before the failure. This section introduces the main ideas
of the DAST (Z. Zhang et al., 2022) and LSTM-OR (Vishnu
et al., 2019) architectures, and then builds upon those ideas
to propose a novel method for RUL estimation on censored
data.

Beforehand, let us introduce the notations which will be
used throughout the paper.

For a given unit, we denote by:

• T⋆ the time of failure,

• C the censoring time if relevant, that is if the unit is
replaced before failure,

• T = min(C,T⋆) the observed time of replacement,

• X the time series of the p sensors data, xk,t being the
measure of sensor k at time t ,

• Z the optional of vector covariates, that is characteristics
of the unit which are not varying with time.

Let us fix a maximum value Rmax for the RUL estimation,
which is standard procedure (Heimes, 2008; H. Li, Zhao,
Zhang, & Zio, 2020) and is relevant for the applications, as
it focuses on the precision of the method on the period pre-
ceding the failure. At a given time point t , we then define
the lifetime to predict by

Rt = min(T⋆− t ,Rmax )

Note that this lifetime is observed in the training set only
when T⋆ = T. If not, the only available information is that
Rt ≥ min(C− t ,Rmax ).

All the variables in that section are in fact indexed by the
number i of the considered unit, for instance when comput-
ing a loss. That index is omitted unless necessary for reading
purposes.

2

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 613



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

2.1. Dual Aspect Self-Attention based on Transformer (DA-
ST)

The DAST model is an encoder-decoder, with the specificity
of a double encoding, using a time step encoder and the
sensor encoder.

Inputs

Input Embedding

Positional Encoding

Sensor Encoders Time-step Encoders

Encoder

Decoders

Feed Forward Layer

RUL Prediction

Decoder

Figure 1. Original DAST architecture (Z. Zhang et al., 2022)

The input data of the DAST architecture consists in a decom-
position of the times series X by a sliding window processing
of width W, as shown in Figure 2. The input is thus a list of
matrices (Xt ), each of size (p,W):

Xt =




x1,t · · · x1,t+W
... · · ·

...
xp,t · · · xp,t+W


 (1)

0 25 50 75 100 125 150

time series 1

0 25 50 75 100 125 150

time series 2

0 25 50 75 100 125 150
Time

time series 3

W W

Figure 2. Example of sliding window of size W for time-series
on 3 sensors

The data of each window are normalized to equalize the
amplitude for each sensor and completed with positional
encoding to keep track of the relative time positions of the
columns as well as constant lines corresponding to the co-
variates Z. It is also enriched for each sensor by the mean
value and the slope of the linear regression as a function of
time, as proposed in (Song et al., 2020).

The originality of DAST is to consider these inputs in two
dimensions. On the one hand, the enriched matrix Xt is
given as input of the time step encoder, which encodes
through self-attention scores per time point the dependency
between the vectors of data at different time points. On the
other hand, its transpose XT

t is given as input to the sensor
encoder which uses the same architecture to encode and
capture the dependency information between the sensors.
A final fusion layer finally allows to mix both encodings into
a final one, which contains the importance of different com-
binations of sensors and time steps at the same time. That
information is valuable in the context of RUL estimation and
is processed by the decoder part of the architecture to obtain
a prediction.

As the prediction is a scalar corresponding to R̂t , the model
is trained using a RMSE loss, that is the square root of the
mean squared prediction error when summing over all units
i and time points t .

2.2. Ordinal Regression for RUL Estimation with censored
data

In various applications, the complete lifetime of the units
is not systematically available as the components may be
changed before failure, leading to right-censored lifetime.
Direct RUL estimation requires the complete lifetime of the
components in the learning data set and thus discards such
data, which may represent most of the available data. One
possible method to integrate both right-censored and un-
censored lifetime data, is the ordinal regression approach
developed in (Vishnu et al., 2019).

The key idea is to discretize the object to be estimated, by
replacing the RUL R⋆t by a binary vector of the component
status in the future. To do so, two integers L and K are fixed
and the status of the unit is checked one time every L cycles
(or time points in the time series). The new target is then a
vector Yt of length K where

yt ,k =





0 if T > t +kL,
i.e. the unit is healthy after k ∗L cycles,

1 if T ≤ t +kL and T = T⋆,
i.e. the unit has failed before k ∗L cycles,

- if T ≤ t +kL and T = C,
i.e. the unit status is unknown after k ∗L cycles

t is the time of the current time step and k is the index of Yt .
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Let us for example consider L = 10 and K = 10:

• if the component fails after 75 cycles,
Yt = (0,0,0,0,0,0,0,1,1,1),

• if the component is replaced after 75 cycles but be-
fore failure Yt = (0,0,0,0,0,0,0,-,-, -). The last three ele-
ments are masked as no status appropriate for learning
is available.

Time

FailedUnit 1

FailedUnit 3

FailedUnit 6

Replaced before failureUnit 2

Replaced before failureUnit 4

Replaced before failureUnit 5

Figure 3. Right-censored data: unit 2, 4 and 5 are censored
to the right, they were still healthy when replaced

A learning phase applied on the binary vectors of the train-
ing set allows then to obtain a prediction rule, as initially
proposed using an LSTM architecture (Vishnu et al., 2019).
The prediction for a given unit at time t , denoted by Ŷt , is a
vector of K probabilities indicating the probability of failure
before the corresponding time steps.

As the problem has become a binary classification prob-
lem, the learning is done using the binary cross-entropy
(BCELoss). It is however adjusted for right-censored data
by discarding all coordinates equal to - in the Y vectors. For
example, if Yt = (0,0,0,0,0,0,0,-,-, -), its contribution to the
loss is only computed on the seven first coordinates. In other
terms, the loss is the sum over all units i and times t of

BCE(Yt , Ŷt ) =−
K∑

k=1

(
yt ,k log (ŷt ,k )+ (1− yt ,k )l og (1− ŷt ,k )

)

(2)
where the term in the sum is set to 0 whenever yt ,k is masked.

2.3. The proposed method

We consider a framework to deal with censored data using
the OR encoding with the following step:

1. Adapt the DAST architecture to the OR framework by
adding a sigmoid layer, leading to the DAST-OR archi-
tecture. After training, it outputs a vector (Ŷt ) of length
K for every time point in a time series.

2. Following (Chaoub, Voisin, Cerisara, & Iung, 2021) which
studies LSTM for RUL prediction, a feed-forward-layer
is added in the LSTM-OR architecture, between the
LSTM and the sigmoid output layer.This model is de-
noted as LSTM-MLP-OR. It outputs an alternative vec-
tor (Ŷt ) of length K for every time point in a time series.

3. Map every vector Ŷt into a predicted RUL R̂t , following
(Vishnu et al., 2019):

R̂t = Rmax (1− 1

K

K∑
k=1

ŷt ,k ) (3)

with Rmax = KL being chosen as the length of the time
interval covered by Ŷt .

4. Select the best model in terms of RMSE loss of this RUL
prediction on the validation data.

Note that the RUL estimation introduced step 3 is of prac-
tical use, but also allows comparison with methods in the
literature estimating directly the RUL.

Moreover, to reduce randomness, 10 train of each model are
performed, leading to two options:

1. The simple model: The model with the best loss on the
validation dataset is chosen.

2. The ensemble model: We consider an ensemble of mod-
els, the final prediction corresponding to the average
prediction of the 6 best models among the 10 models
trained.

3. EXPERIMENTAL EVALUATION

3.1. The CMAPSS dataset

The performance of the proposed method is evaluated on
the C-MAPSS (Commercial Modular Aero Propulsion Sys-
tem Simulation) dataset, which is used as a benchmark for
RUL estimation methods. It simulates run-to-failure trajec-
tories of turbofan engines (Saxena, Goebel, Simon, & Eklund,
2008) in two different operating conditions and two failure
modes, leading to four sub-datasets FD001, FD002, FD003
and FD004. The characteristics of the four sets are sum-
marized in Table 1. Each trajectory contains the following
variables:

1. a unit number corresponding to the component identi-
fier,

2. a time variable corresponding to the number of cycles
performed,

3. the simulation parameters (operating condition and
failure modes),

4. the simulated data from 21 sensors.

Table 1. Summary of C-MAPSS dataset

C-MAPSS sub-datasets FD001 FD002 FD003 FD004
Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating condition 1 6 1 6
Fault modes 1 1 2 2
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Input
Layer

Model

Output Layer:
linear

(a) Metric regression

Input
Layer

Model

Output Layer:
sigmoid

(b) Ordinal regression

Input
Layer

Model

Masked outputs
Output Layer:

sigmoid

(c) Ordinal regression with censored data

Figure 4. Metric regression compared to ordinal regression

LSTM

Feed Forward Layer

Output Layer:
Sigmoid

Figure 5. LSTM-MLP-OR architecture

3.2. Data preprocessing and censoring

Sensors having a constant value during the experiment are
removed, leaving 14 sensors for datasets FD001 and FD003,
and 21 for datasets FD002 and FD004. Data standardization
is processed on the remaining sensors by removing the mean
and scaling by standard deviation.

Right-censoring is artificially added to the data, with rates
pc ∈ [0%, 20%, 50%, 70%, 90%]. More precisely, for every
censor rate pc , the corresponding fraction of the units are
randomly chosen, and, for each selected unit, the time series
are truncated prior to failure at a random moment. When
pc = 90%, it leads to a train set where only 10% of the units
have a known RUL, and approximately 45% of the initial data
is kept.

Finally, to be able to chose the best models during the train-
ing, each sub-dataset is divided into a training set and a
validation set, 20% of randomly chosen units joining the
validation set.

3.3. Trained models

Three architectures are trained on the four datasets of the
CMAPSS data:

1. DAST for RUL (Z. Zhang et al., 2022),

2. LSTM-MLP-OR,

3. DAST-OR.

Moreover, each of them are trained ten times, and those
results are used to derive a single and an ensemble model
for each architecture. Ensemble models are denoted with
the addition of a final E, for instance DAST-ORE for the en-
semble version of DAST-OR.

We also consider the model BEST-ORE which is chosen be-
tween DAST-ORE and LSTM-MLP-ORE based on the RMSE
on the validation dataset.

Seven different models are thus obtained, which can be fairly
compared, on exactly the same preprocessing, censoring, as
well as training, validation and test sets.

For all models, we use Rmax = 130, and for the methods
relying on ordinal regression, we consider Y vectors consist-
ing on K = 13 coordinates corresponding to the status every
L = 10 cycles.

3.4. Hyperparameters of the models

The hyperparameters employed for the DAST are those de-
scribed in the original article (Z. Zhang et al., 2022), except
for number of epochs that is set to 250 with early stopping.
They are summarized table 2.

The hyperparameters for DAST-OR are essentially identi-
cal. Table 3 presents those which are specific to DAST-OR
(sigmoid output layer and loss) or are chosen different (a
manual tuning on the window size gave better results). The
number of epochs is set to 500 with early stopping.

The hyperparameters of the LSTM-MLP-OR model mainly
correspond to the article introducing LSTM-OR (Vishnu et
al., 2019). However, not all parameters being explicitly de-
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Table 2. Hyperparameters of DAST

Hyperparameter Value

Input embedding 1 MLP layer with 64 neurons,
activation: Linear

Sensor encoder N = 2 Sensor encoder blocks
with H = 4 heads

Time step encoder N = 2 Timestep encoder blocks
with H = 4 heads

Decoder N = 1 Decoder block
with H = 4 heads

Output layer 1 MLP layer with 64 neurons,
activation: ReLU

Final output layer 1 MLP layer with 1 neurons,
activation: Linear

Learning Rate 0.001
Batch Size 256
Dropout 0.2

Window Size 40 for FD001 and FD003,
60 for FD002 and FD004

Optimizer Rectified Adam
Loss RMSE

Table 3. Hyperparameters of DAST-OR

Hyperparameter Value

Final output layer 1 MLP layer with 13 neurons,
activation: Sigmoid

Window Size 60 for FD001 and FD003,
80 for FD002 and FD004

Loss BCELoss

tailed in the original article, manual tuning has been applied
to the LSTM-MLP-OR model with a few trials on the valida-
tion set.

3.5. Results on uncensored data

This part focuses on the comparison of the results obtained
on data without censoring. Table 4 shows the results for the
seven trained models on each of the four datasets, with vari-
ous state-of-the-art methods. Note that the seven methods
are trained with the same preprocessing and separation into
training and validation sets, whereas the reported values
for other methods correspond those indicated in the corre-
sponding publications. Small variations may therefore not
be significant.

On FD001, results of DAST-ORE are equivalent to the re-
sults of DAST and F+T. On FD002 results of LSTM-MLP-OR
and LSTM-MLP-ORE are significantly better than the re-
sults obtain with DAST, and equivalent to results obtain with
MLP+LSTM and F+T. On FD003 DAST-ORE perform better
than other models of the state of the art. The results of
LSTM-MLP-ORE are equivalent to the result of MLP+LSTM
and F+T. On FD004 LSTM-MLP-ORE perform significantly
better than other models. All the OR method proposed are
significantly better than the LSTM-ORCE.

Two main conclusions can be drawn from those results. The
first is that, even if OR models were designed to handle
right-censored data, the obtained results on uncensored
data are equivalent to those found in the literature with
models specifically made for direct RUL estimation. The
second interesting fact to note is the dependence on the
number of operating conditions in the dataset (cf Table 1).
Differences between sets FD001 and FD003, with a unique
operating condition, and sets FD002 and FD004, with six
different ones, are commonly found in the state of the art
(C. Zhao, Huang, Li, & Yousaf Iqbal, 2020) (Sateesh Babu et
al., 2016) (C. Zhang, Lim, Qin, & Tan, 2016) (Zheng et al.,
2017) (X. Li, Ding, & Sun, 2018). Furthermore, the number
of inputs used between is different. In this study, it appears
that DAST-based methods are more powerful when the op-
erating condition is unique, while LSTM-based outperform
them when there are 6 operating conditions. Learning both
architectures and keeping the best on the validation set, as
does BEST-ORE, is therefore useful.

3.6. Results on censored data

The results on the C-MAPSS dataset for each right-censored
rate are detailed in Tables 6 and 5. The former compares the
proposed ensemble methods to the ensemble LSTM-ORCE
method (Vishnu et al., 2019) for the data subsets (FD001 and
FD004) and censoring rates studied in that article. The train
and validation sets being different, small variations should
not be interpreted. However, it clearly indicates a better
performance of DAST-ORE on FD001 and a significant im-
provement with LSTM-MLP-ORE due to the supplementary
MLP layer on FD004.

Table 6 shows the results for the models listed in section 3.3
trained on the same training and validation data. For read-
ability, BEST-ORE is not indicated, but the associated RMSE
is always the lowest among the RMSEs of LSTM-MLP-ORE
and DAST-ORE.

The FD001 dataset has more simple operating conditions
and more simple failure modes than the other C-MAPSS
sub-datasets. On FD001 the DAST-ORE model has the best
RMSE for each percentage of right-censored value. With
the increase of pc , the RMSE is slowly deteriorating and
reach it’s worst value at pc = 90%, which is not a surprise as
the learning data becomes less informative. Other models,
especially LSTM-based ones, show a bigger deterioration
with increasing censoring.

The results are similar on FD003, which has also only one
operating condition but two failure modes. The best over-
all results are obtained with DAST-ORE. Moreover, the in-
creasing of the RMSE for highly censored data is milder for
DAST-ORE than for competing methods.

FD002 and FD004 are considered more complex than FD001

6
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Table 4. RMSE results on the C-MAPSS dataset without censoring

Model FD001 FD002 FD003 FD004 Average RMSE
LSTM-MLP-OR 14.24 12.00 17.27 15.35 14.94

LSTM-MLP-ORE 13.20 12.77 13.84 14.75 13.64
DAST 12.35 16.48 13.43 19.89 15.54

DAST-E 12.22 15.44 12.89 16.14 14.17
DAST-OR 12.16 15.62 9.64 16.20 13.41

DAST-ORE 11.57 15.55 8.54 18.01 13.42
BEST-ORE 11.57 12.77 8.54 14.75 11.91

DAST (Z. Zhang et al., 2022) 11.43 15.25 11.32 18.36 14.09
LSTM-ORCE (Vishnu et al., 2019) 14.62 - - 27.47 -
MLP+LSTM (Chaoub et al., 2021) 13.26 12.49 13.11 13.97 13.21
F+T (Lai, Liu, Pan, & Chen, 2022) 11.43 13.32 11.47 14.38 12.65

Table 5. Results RMSE on C-MAPSS

FD001
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 14.24 13.20 12.35 12.22 12.16 11.57

20% 15.42 14.01 13.69 12.59 12.73 12.51
50% 15.09 15.96 15.41 13.37 13.39 12.99
70% 17.83 17.97 15.38 14.08 14.28 12.51
90% 30.02 26.76 16.78 17.17 17.01 15.80

FD002
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 12.00 12.77 16.48 15.44 15.62 15.55

20% 15.43 13.01 14.09 13.80 16.37 18.51
50% 13.71 13.15 15.08 14.18 15.39 16.58
70% 14.24 13.24 16.10 14.74 16.71 17.73
90% 16.44 13.61 15.85 15.08 25.23 17.00

FD003
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 17.27 13.84 13.43 12.89 9.64 8.54

20% 15.69 12.80 13.55 12.53 10.03 8.81
50% 13.97 13.46 16.04 12.57 11.69 10.14
70% 21.72 21.13 20.88 15.32 13.46 12.20
90% 38.74 30.66 22.34 22.88 19.59 16.09

FD004
pc LSTM-MLP-OR LSTM-MLP-ORE DAST DAST-E DAST-OR DAST-ORE
0% 16.23 14.75 19.89 16.14 16.20 18.01

20% 15.66 14.42 18.32 15.23 18.01 16.93
50% 16.00 14.67 17.46 15.66 17.43 19.49
70% 16.59 15.11 17.32 17.10 14.84 20.83
90% 18.85 15.47 19.79 17.21 22.41 22.14

Table 6. RMSE results on FD001-FD004 with censor

pc LSTM-MLP-ORE DAST-ORE LSTM-ORCE
(Vishnu et al., 2019)

FD001
50% 15.96 12.99 15.98
70% 17.97 12.51 16.57
90% 26.76 15.80 20.38

FD004
50% 14.67 19.49 30.62
70% 15.11 20.83 31.27
90% 15.47 22.14 38.41

and FD003, because they mix several operating conditions.
In both cases, the LSTM-based models outperform the DAST-

based ones, as for uncensored data, with a small advantage
for the LSTM-MLP-ORE ensemble method. In those two
cases, the decrease of performance with growing censoring
is remarkably low.

The conclusion of this study is therefore two-fold. First, the
competition between LSTM and DAST-based architectures
remains relevant with censored data, as different conditions
may lead to different rankings of those methods. Second,
OR-based methods allow to obtain a reasonable loss of per-
formance when the real time of failure is missing for most of
the learning data.

As prescribed in (Saxena et al., 2008), the results were evalu-
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0 25 50 75 100 125 150 175 200
Time cycle

0

20

40

60

80

100

120

RU
L

Predictions & target RUL of unit 138 dataset FD002 with pc = 90%
Target RUL
DAST-E, RMSE: 13.23
DAST-ORE, RMSE: 12.69
LSTM-MLP-ORE, RMSE: 6.78

(b) Results of unit 138 (FD002) with pc = 90%

0 100 200 300 400
Time cycle

20

40

60

80

100

120

RU
L

Predictions & target RUL of unit 24 dataset FD003 with pc = 70%

Target RUL
DAST-E, RMSE: 10.41
DAST-ORE, RMSE: 11.21
LSTM-MLP-ORE, RMSE: 15.24

(c) Results of unit 24 (FD003) with pc = 70%

0 50 100 150 200 250 300 350
Time cycle

20

40

60

80

100

120

RU
L

Predictions & target RUL of unit 235 dataset FD004 with pc = 0%

Target RUL
DAST-E, RMSE: 14.95
DAST-ORE, RMSE: 17.15
LSTM-MLP-ORE, RMSE: 11.15
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Figure 6. Example of results on one units of each sub-dataset

ated by the RMSE on the predictions of the last time-point
of the time-series in the test set. To illustrate more visually
the results of the different methods, Figure 6 provides some
plots of the predictions of the ensemble methods for ran-
domly picked time series on different datasets and censoring
rates.

3.7. Asymmetric score evaluation

Prediction on C-MAPSS should also be evaluated by the
asymetric score (Saxena et al., 2008) defined by

Score =




e
R̂t −Rt

13 −1 if R̂t −Rt ≥ 0

e−
R̂t −Rt

13 −1 if R̂t −Rt < 0

That score corresponds to a higher penalty for overestima-
tion rather underestimation of the RUL.

Table 7 shows the scores for the ensemble methods DAST-E,
DAST-ORE and LSTM-ORE. If the results are rather coher-
ent with the RMSE comparisons for FD001 and FD003, the
advantage of LSTM-based methods compared to DAST-E is
less clear for FD002 and FD004.

However, it has to be noted that the OR-based methods
were trained with a symmetric BCELoss which does not take
into consideration a different penalty for over and under-
estimations. In terms of binary vectors, it means a higher
penalty for a close to 0 coordinate in Ŷt when the truth is 1
(the fan is predicted running when it actually failed, which
is an over-estimation of the RUL) than for a prediction close
to 1 when the truth is 0.

A possibility to introduce this asymmetry would be to con-
sider a modified loss by replacing Equation 2 by

BCE(Yt , Ŷt ) =−
K∑

k=1

(
αyt ,k l og (ŷt ,k )+ (1− yt ,k )log (1− ŷt ,k )

)

(4)
where α> 1 is a hyperparameter to be optimized.

4. CONCLUSION

This work addresses the challenge of estimating the Remain-
ing Useful Life (RUL) of industrial components from time
series data with no prior physical model of the system and
a high rate of censored data. It does so by considering two
data-driven deep-learning architectures relying on the ordi-
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Table 7. Score results on C-MAPSS

FD001
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 341.00 201.17 206.48

20% 410,63 232,49 269,68
50% 631,91 252,89 296,04
70% 1279,51 458,45 261,79
90% 4566,18 808,5 500,21

FD002
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 708,28 638,34 978,48

20% 753,57 531,06 1891,21
50% 751,84 544,1 1412,07
70% 786,58 647,39 1362,25
90% 860,19 849,25 1286,1

FD003
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 322,06 206,94 103,65

20% 250,9 192,28 111,17
50% 267,75 223,95 143,29
70% 1611,57 437,85 272,35
90% 3100,45 2797,84 447,64

FD004
pc LSTM-MLP-ORE DAST-E DAST-ORE
0% 1741,67 2262,98 2739,62

20% 1772,3 1518,44 2591,59
50% 1434,33 2206,4 2788,02
70% 2096,04 2470,12 3863,9
90% 1689,67 1194,16 2903,72

nal regression approach introduced in (Vishnu et al., 2019)
for RUL estimation. One of them is an improved version
of the LSTM-OR method by (Vishnu et al., 2019), the sec-
ond is an adaptation to censored data of the DAST model
introduced in (Z. Zhang et al., 2022).

These approaches are shown to perform as well on the C-
MAPSS data as the existing direct RUL estimation methods
found in the literature on uncensored data, and better on
censored data.

Furthermore, the two proposed architectures are shown
to be complementary, as they outperform each other de-
pending on the complexity of the dataset. Therefore, in the
context of estimating the lifespan of components, it is in-
teresting to put them in competition, considering that this
approach should yield favorable results regardless of the
complexity of the data and the rate of right-censored data.

CODE AVAILABILITY

The code was written in Pytorch and is available at https://git-
lab.math.unistra.fr/jnoot/rul_estimation_cmapss
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ABSTRACT 

When designing gas turbine engine components, the 
inspection and maintenance (I&M) plan is prepared using the 
safe life. However, the I&M plan determined using safe life 
may be costly since all components are replaced at designated 
life. Therefore, it is important to make maintenance decisions 
considering the time-dependent deterioration process of gas 
turbine engine components for a cost-saving I&M plan. In 
this study, we proposed a maintenance decision-making 
model for gas turbine engine components based on a partially 
observed Markov decision process (POMDP). Using 
dynamic Bayesian networks, a decision-making model 
integrating a reliability analysis model, and a decision model 
for I&M planning was constructed. The signal amplitude data 
resulting from non-destructive inspection according to 
operation hour was used as partially observed data. The total 
cost obtained from the proposed model were compared with 
the results using a fixed I&M plan. The proposed model 
resulted in more cost-effectiveness I&M planning within 
affordable risk levels by considering the interaction between 
risk cost and I&M cost.  

1. INTRODUCTION 

Ensuring the safety of the gas turbine engine is very 
important in aircraft operation. There are two traditional 
inspection & maintenance (I&M) strategies to operate 
aircraft safely; safe life and damage tolerance design. The 
safe life method (C. H. Cook et al., 1982) replaces all 
components after the design allowable life, and time-based 
maintenance (TBM) (Bousdekis et al., 2015) inspects and 
repairs all parts at predetermined intervals. However, 
traditional I&M methods require high costs since I&M 

actions are planned without the consideration of the 
components’ condition. For this reason, a condition-based 
maintenance method that emphasizes combining data-driven 
reliability models with condition-monitored data was 
developed (Alaswad & Xiang, 2017). 
Markov decision process (MDP) is one of the widely used 
methodologies for decision-making models with the 
condition-based maintenance (CBM) method. MDP takes 
actions at each stage to maximize the reward under perfect 
observation of components state. However, there are 
limitations for MDP that perfect observation of the 
components state is unrealistic (Papakonstantinou & 
Shinozuka, 2014b). Partially observable MDP (POMDP) 
quantified the uncertainty of imperfect observation by 
estimating the belief of state from the information obtained 
with the probability of observation. (Papakonstantinou & 
Shinozuka, 2014b, 2014a) determined the optimal life-cycle 
policy of concrete structures by implementing the POMDP. 
(Memarzadeh et al., 2014) proposed the algorithm for 
approximate learning and planning the Bayes-adaptive 
POMDP (BA-POMDP) framework to find the optimal 
maintenance plan of wind farms. 
Morato et al. (Morato et al., 2020) incorporated the dynamic 
Bayesian networks (DBNs) and POMDP to obtain optimal 
I&M strategy for deteriorating structure. They modeled the 
deterioration model based on time-invariant parametric 
DBNs, and an optimal I&M plan was generated by 
minimizing the total cost of inspection, maintenance, and 
reliability. Hlaing et al. (Hlaing et al., 2022) presented the 
non-stationary policy for offshore wind tubular joints by 
integrating the Bayesian networks and POMDP. They 
estimated the probability of failure (POF) using the DBNs 
and obtained optimal I&M policy via POMDP. 
In this work, we proposed the maintenance decision-making 
model for gas turbine engine components. DBNs and 
POMDP were integrated to get optimal I&M policy. The 
fatigue crack growth model was implemented for the 
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deterioration of gas turbine engine components, probability 
of detection (POD) curve which is a function of the crack size 
was used for the inspection model. The remainder of this 
paper is organized as follows. The decision-making model for 
gas turbine engine components is described in “Methodology” 
section. In “Numerical results”, the optimal I&M policy 
obtained using the proposed POMDP model is presented. In 
the final section, the conclusions of this study are 
summarized. 

2. METHODOLOGY 

2.1. PARTIALLY OBSERVABLE MARKOV DECISION 
PROCESS 

MDP provides the framework that finds the optimal policy 
for sequential decision-making problems, as represented in 
Fig. 1. In Fig. 1, the circles are random state nodes, the 
rectangular are decision nodes, and the polygons are reward 
nodes. MDP determines the optimal policy that maximizes 
the expected reward value by using the Bellman equation as 
follows: 
 

𝑉∗(𝑠) = max
𝑎∈𝐴

[𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑉∗(𝑠′)𝑠′∈𝑆 ] (1)

  
where s is states of the system, a is the set of possible actions, 
and T(s, a, s’) is transition matrix which is the probability of 
transit from current state st to next state st+1, R(s, a) is the 
reward when doing action a with current state st, and γ is 
discount factor employed when the problem is infinite 
horizon planning case (Morato et al., 2019). However, since 
MDP has the limitation of perfect observation, POMDP 
determines the optimal policy according to the belief state 
estimated from imperfect observation. In Fig. 2, the belief 
state st is updated from the information of component state 
obtained at the inspection node zt, The optimal policy is 
determined at POMDP as: 
 

𝑉∗(𝑠) = max
𝑎∈𝐴

[𝑏(𝑠)𝑅(𝑠, 𝑎) + 𝛾∑𝑃(𝑧|𝑏, 𝑎)𝑉∗(𝑏′)

𝑧∈𝑍

] (2) 

 
where z is observation, and b is belief state of the component. 
The belief state b with action m at stage n is mbn  = bn ˟ Am, 
the belief state bn+1 at the stage n+1 is updated with 
degradation model D; bn+1 =  mbn ˟ D (Faddoul et al., 2013). 

 
Figure 1. Graphical model for Markov decision process 
 

 
Figure 2. Graphical model for Partially observable MDP 
 

2.2. DETERIORATION AND INSPECTION MODEL 

Paris’ law was used for fatigue crack deterioration model of 
gas turbine engine component as: 
 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (3) 

 
where a is the size of crack, N is the cycles of loads, ΔK is the 
stress intensity factor range which is function of crack size, 
shape, and stress range Δσ, and C and m are the constants 
related to material property.  
Eddy current inspection (ECI), one of the non-destructive 
inspection (NDI) methods, was used as partial observation 
model to update the belief state of the gas turbine engine 
component. The POD of ECI depends on the crack size and 
the detection threshold (Hlaing et al., 2022). The size of the 
crack is estimated from the ECI signal amplitude in Eq. (4), 
and the POD is calculated from Eq. (5). Figure 3 presents the 
relation curve between the signal amplitude and the crack 
length, and Fig. 4 is the probability of detection (POD) 
estimated from the detection result data of NDI personnel (D. 
Lee & Kwon, 2023). The a50/95 = 1.123 in Fig. 4 means that 
the detectable crack size at a 50% probability with 95% 
confidence is 1.123mm. The size of the crack is estimated 
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from the ECI signal amplitude in Eq. (4), and the POD is 
calculated from Eq. (5). 
 

�̂� = 𝛽0 + 𝛽1𝑎 + 𝜀 (4) 

𝑃𝑂𝐷(𝑎) =
𝑎a𝛾

1 + 𝑎a𝛾
(5) 

 

 
Figure 3. Relation between ECI signal and crack size 
 

 
Figure 4. Probability of detection curve 
 

2.3. DECISION-MAKING MODEL BASED ON DYNAMIC 
BAYESIAN NETWORKS 

The maintenance decision-making model based on Dynamic 
Bayesian Networks (DBNs), depicted in Fig. 5 was 
developed by incorporating the deterioration, inspection 
model, and POMDP described above. In Fig. 5, the initial 
nodes have no parent nodes, the static nodes are time-
independently invariant nodes, the observed node obtains 
evidence, the functional nodes formulate the crack length 
distribution and reliability, the decision nodes decide for 
actions, and the cost of the decision incurred in the utility 
nodes. The continuous operation time is discretized into time 
slices with uniform intervals.  
 

 
Table 1. Prior probability distributions of initial nodes 

Var Distribution Mean SD Corr. 

m, 
ln(C) Binormal 

(2.5, 
log(5.2×10-

12) 

(0.3, 
0.47) -0.9 

Δσ 
(MPa) Normal 40 5 - 

a0 
(mm) Lognormal -1.0 0.001 - 

ar 
(mm) Lognormal -1.0 0.001 - 

Yn 
(%) Normal 3.29 2.86 - 

 
First, the crack length distribution at time slice t-1 (𝑎𝑡−1) is 
estimated in the deterioration model using Δσ, m, initial crack 
length at time slice t-1 (𝑎𝑡−10 ). Next, 𝑎𝑡−1 is updated to 𝑎𝑡−1∗  
based on the actions determined by the signal amplitude node 
Yt-1, noise amplitude Yn, decision nodes for inspection DZ, the 
threshold of inspection Dth, and maintenance DM. The 
updated crack length distribution at time slice t-1 𝑎𝑡−1∗  is used 
as initial crack length distribution 𝑎𝑡0 at time slice t. The prior 
distributions of initial nodes are presented in Table 1. 
The actions determined in each decision node are as follows: 
The inspection decision determines whether to perform an 
inspection or not. The cost of the inspection is obtained in 
inspection utility node UZ depending on the result of the 
inspection decision. 
 - No-inspection: the crack length states transit according to 
the deterioration model. 
 - Inspection: binary inspection result is obtained at node Z as 
‘detected’ or ‘not detected’. When the inspection result is 
‘detected’, the probability of failure increases as the belief 
state of crack length larger than the inspection threshold 
increase. On the other hand, the probability of failure 
decreases since the crack length distribution smaller than the 
inspection threshold rise in the case of ‘not detected’.  
The quality of NDI is determined in the threshold decision 
node. The inspection quality is high as the threshold is lower. 
If the signal amplitude obtained at the cracks is larger than 
the inspection threshold, those cracks are detected at 
inspection result node Z. There is no cost for threshold 
decision. 
There are binary options in the maintenance decision node; 
repair or do-nothing. The maintenance utility node UM 
calculates the cost of maintenance. 

- Do-nothing: there is no maintenance action planned in this 
case, the crack length state evolves according to the 
stochastic deterioration process. 

- Repair: perfect maintenance action is performed. The 
crack length distribution 𝑎𝑡−1∗  is replaced by the belief state 
of repair crack 𝑎𝑟 . 
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The total cost at time t is calculated by summing the cost of 
the failure, inspection, and maintenance determined 
according to the results of each decision node as follows: 
 

𝐶𝑇(ℎ) = ∑[𝐶𝐼(𝑡)𝛾 + 𝐶𝑀(𝑡)𝛾 + 𝑃𝑓(𝑡)𝐶𝑓(𝑡)𝛾]

𝑡𝑛

𝑡=𝑡0

(6) 

 
where CT is total cost, h is pre-defined heuristic schedule, tn 
is total time horizon, CI is inspection cost, CM is maintenance 
cost, Pf is probability of failure  estimated at node R, and Cf 
is failure cost determined in utility node UR. The CI and CM 
is not incurred in the case of no-inspection and do-nothing, 
respectively. The optimal actions were determined by 
minimizing the total cost. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Maintenance decision-making model for gas turbine components 

3. NUMERICAL RESULT 

A maintenance decision-making model based on POMDP 
was constructed for the J85 gas turbine engine compressor 
first-stage rotor blade for the F-5 aircraft. The J85 gas turbine 
engine compressor first-stage rotor blade is mounted with a 
disc using tangs. The stress concentration at the center tang 
occurred due to contact force between the retainer pin and an 
inner surface of the tang (B. W. Lee et al., 2011). Since the 
fracture at the center tang may occur due to the fatigue crack 
initiated from fretting damages by contact stress, it is 
important to optimize the I&M planning of the blade center 
tang. 
 

 
Figure 6. J85 engine compressor first-stage blade 
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3.1. DISCRETIZATION SCHEMES FOR MODEL PARAMETERS 

Discretization of each random variable is necessary in 
POMDP since the probability of partial observation is 
discretized (Morato et al., 2020). The accuracy of POF and 
computational efficiency are affected by the discretization 
scheme. The discretization schemes for each variable in Fig. 
5 are presented in Table 2. The random variables were 
discretized with a small number of discretization states for 
computational costs. 
 

Table 2. Discretization schemes 
Var Interval Boundaries 
a, ar 0, exp(log(0.01):(log(3)-log(0.01))/4:log(3)), inf 

m 0, log(exp(1):(exp(3.9)-exp(1))/4:exp(3.9)), inf 
Δσ 1:60/4:60, inf 

Yn, Y 0:6:100 
 

3.2. OPTIMAL POLICY BASED ON DECISION-MAKING 
MODEL 

The overall cost of utilizing the proposed decision-making 
model was compared with that of time-based maintenance 
(TBM), a traditional I&M strategy. In TBM, NDI is 
conducted for every time slice, and when a crack is detected, 
a perfect repair action is performed. On the other hand, the 
decision to execute NDI and repair is made for each time slice 
in the most cost-effective way in the decision-making model. 
The parametric study for the costs of inspection, maintenance, 
and failure was conducted to specify the effects of actions. 
The state of the measured signal amplitude Y was imported 
from the actual measured data at each time slice (D. Lee & 
Achenbach, 2016). If the inspection threshold is smaller than 
the measured signal amplitude, it is observed that a crack is 
detected, and a perfect repair action is performed in the TBM 
strategy. Otherwise, in the POMDP strategy, it is determined 
whether to perform inspection and maintenance actions for 
each time slice depending on the total cost. 
The ratio of total cost between TBM and POMDP depending 
on the NDI threshold over 5 time slices is shown in Fig. 7. 
The evidence indicated the crack state progressed from state 
2 to state 5 in each time slice, with failure occurring at state 
6. After repair action, the crack state returned to state 2. RMI 
is the ratio of cost between inspection and maintenance, RFM 
is the ratio of cost between failure and maintenance, and RC 
is the total cost ratio between TBM and POMD as:  
 

𝑅𝑀𝐼 =
𝐶𝑀
𝐶𝐼

, 𝑅𝐹𝑀 =
𝐶𝐹
𝐶𝑀

(7) 

 

𝑅𝐶 = 100
𝐶𝑃𝑂𝑀𝐷𝑃 − 𝐶𝑇𝐵𝑀

𝐶𝑇𝐵𝑀
(%) (8) 

 

Where 𝐶𝑀  is the cost of maintenance, 𝐶𝐼  is the cost of 
inspection, 𝐶𝐹 is the cost of failure, 𝐶𝑃𝑂𝑀𝐷𝑃 is total cost for 
POMDP, and 𝐶𝑇𝐵𝑀 is that of TBM. The RMI = [10, 20, 30, 40, 
50], and RFM = [100, 50, 25, 20] were used to estimate the 
total cost. The 𝐶𝑃𝑂𝑀𝐷𝑃  is more cost-effective than 𝐶𝑇𝐵𝑀 
when the total cost ratio is a negative value; conversely, if 
this ratio is a positive value, the 𝐶𝑇𝐵𝑀 is less expensive than 
𝐶𝑃𝑂𝑀𝐷𝑃. 
 

 
 
Figure 7. Ratio of total cost between TBM and POMDP 
 
The cost of the POMDP strategy is cheaper than TBM in all 
RMI and RFM when the threshold of inspection is lower than 4. 
This implies that a high-quality inspection is crucial for an 
I&M strategy based on POMDP. When the inspection quality 
is high (Dth = 2, 3), the crack state is identified early. This 
enables decisions on whether to perform inspections and 
repairs based on the state of crack growth. Consequently, the 
POMDP strategy conducts fewer inspections and repairs 
compared to the TBM strategy, and no preventative repairs, 
resulting in lower total costs as illustrated in Fig. 8.  
When Dth = 4, the crack state is detected before it grows near 
the limit state. In the TBM strategy, after detecting the crack, 
repairs are performed to maintain a low probability of failure. 
The inspections following repair prevent the crack from 
propagating toward the limit state, resulting in a low cost of 
failure. On the other hand, in the POMDP strategy, when the 
RMI is low, more repairs are carried out than TBM due to 
lower inspection quality. When RMI is high, the probability of 
failure increases because inspections are not performed after 
repairs, leading to a higher total cost. 
Also, the ratio of total cost Rc increases as the inspection 
threshold decreases. Exceptionally, when using the TBM 
strategy with Dth=5, Rc increases. This occurs as the crack is 
detected in state 5, which is proximate to the failure state, as 
depicted in Figure 8(a). Consequently, the estimated 
probability of failure is relatively high, leading to an 
increased total cost. On the other hand, when using the 
POMDP strategy, repairs were carried out preventatively 
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even if the inspection result indicated ‘No-detected’ as shown 
in Fig. 8(b), owing to the limited inspection quality. 
Therefore, when the inspection threshold is 5, the total cost 
of the POMDP strategy was relatively lower than that of 
TBM since the failure cost of the POMDP strategy was low 
through preventive repairs.  
Fig. 8 presents the optimal actions determined by using TBM 
and POMDP strategy depending on each RMI and RFM during 
5 time slices. There are two color blocks to describe the 
results of the decision at each time slice; the left is inspection, 
and the right is maintenance. The action types of inspection 
are ‘No-inspection’ (gray colors), ‘No-detected’ (sky colors), 
and ‘Detected’ (blue colors). The red colors mean the case of 
a ‘Repair’ action, and the orange colors indicate a ‘Do-
nothing’ action. 
In the context of inspection and maintenance, Fig. 8 
illustrates how the cost ratio impact the frequency of 
inspection and maintenance. Specifically, when the cost ratio 
of inspection and maintenance RMI is relatively 
small compared to the cost of failure and maintenance RFM 
(Fig. 8(b), (c)), more frequent inspection were performed. 
Since the cost of the failure is expensive compare to 
inspection and maintenance, it is more cost-effective to 
identify the state of the crack length early by inspecting 
frequently. For example, the optimal decision for inspection 
of RMI=10, and RF=100 was to inspect every time slice, 
similar to the TBM strategy.  
In the case of high RFM, and high Dth, repair action was 
performed even in the case of ‘No-detected’. Since the cost 
of maintenance is cheaper than that of failure, and the result 
of inspection is uncertain, this policy is optimal to reduce the 
POF. On the other hand, when the information quality of 
inspection was high (Dth≤3), repair action was not performed 
immediately, even though the result of the inspection was 
‘Detected’. In this case, the decision to repair or not can be 
determined by the condition of the crack, not preventatively. 
When RMI is larger than RFM (Fig. 8(d), (e)), the cost of 
maintenance becomes expensive. The preventive inspections 
and maintenance were reduced due to high-cost maintenance. 
Therefore, the inspection was not performed at the first time 
slice for all inspection thresholds. The total cost ratio Rc was 
highest when RMI=50, RFM=20, and Dth =2, as presented in 
Fig. 7. The findings from Figures 7 and 8 indicate that an 
increase in inspection quality and a decrease in the cost ratio 
between maintenance and repair enhance the effectiveness of 
the maintenance decision-making model based on POMDP. 
 

 
(a) TBM 

 

 
(b) POMDP (RMI=10, RFM=100) 

 

 
(c) POMDP (RMI=20, RFM=50) 

 

 
(d) POMDP (RMI=40, RFM=25) 

 

 
(e) POMDP (RMI=50, RFM=20) 

 
Figure 8. Optimal actions of TBM and POMDP 
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4. CONCLUSION 

In this work, we proposed a maintenance decision-making 
model for gas turbine components based on POMDP. DBNs 
and POMDP were integrated to construct the maintenance 
decision-making model. The fatigue crack growth model was 
implemented for deterioration of gas turbine engine 
components, POD curve was used for the inspection model. 
The total cost of POMDP was lower than that of TBM when 
inspection quality was high. Also, it was proven that the 
maintenance decision-making model is more effective than 
TBM as the cost ratio between maintenance and repair is 
smaller by parametric study of cost ratio. 

Our future work will focus on complicate inspection and 
maintenance actions. The various options for inspection and 
maintenance actions will improve the decision-making model 
more elaborately. 
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ABSTRACT

Large-scale infrastructure systems are crucial for societal wel-
fare, and their effective management requires strategic fore-
casting and intervention methods that account for various
complexities. Our study addresses two challenges within the
Prognostics and Health Management (PHM) framework ap-
plied to sewer assets: modeling pipe degradation across sever-
ity levels and developing effective maintenance policies. We
employ Multi-State Degradation Models (MSDM) to repre-
sent the stochastic degradation process in sewer pipes and use
Deep Reinforcement Learning (DRL) to devise maintenance
strategies. A case study of a Dutch sewer network exemplifies
our methodology. Our findings demonstrate the model’s ef-
fectiveness in generating intelligent, cost-saving maintenance
strategies that surpass heuristics. It adapts its management
strategy based on the pipe’s age, opting for a passive approach
for newer pipes and transitioning to active strategies for older
ones to prevent failures and reduce costs. This research high-
lights DRL’s potential in optimizing maintenance policies.
Future research will aim improve the model by incorporating
partial observability, exploring various reinforcement learning
algorithms, and extending this methodology to comprehensive
infrastructure management.

ABBREVIATIONS

DRL Deep Reinforcement Learning.
IHTMC Inhomogeneous Time Markov Chain.
MDP Markov Decision Process.
MPO Maintenance Policy Optmization.
MSDM Multi-State Degradation Model.
PPO Proximal Policy Optimization.
RL Reinforcement Learning.
Lisandro A. Jimenez-Roa et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. INTRODUCTION

Sewer network systems, crucial for public health, popula-
tion well-being, and environmental protection, require mainte-
nance to ensure their reliability and availability (Cardoso et al.,
2016). This maintenance is challenged by limited budgets, en-
vironmental changes, aging infrastructure, and hard-to-predict
system deterioration (Tscheikner-Gratl et al., 2019).

Optimizing maintenance policies for sewer networks requires
methodologies that can efficiently explore a broad solution
space while adapting to the system’s dynamic constraints and
complexities. Maintenance Policy Optmization (MPO) ad-
dresses these needs by developing and analyzing mathematical
models to derive maintenance strategies (De Jonge & Scarf,
2020) that reduce maintenance costs, extend asset life, maxi-
mize availability, and ensure workplace safety (Ogunfowora
& Najjaran, 2023).

This research explores the potential of Deep Reinforcement
Learning (DRL) for MPO of sewer networks, first focusing
on a component-level (i.e., pipe-level) analysis. DRL is a
framework that merges neural network representation learning
capabilities with Reinforcement Learning (RL), a branch of
machine learning known for its effectiveness in sequential
decision-making problems. RL is increasingly recognized for
its role in developing cost-effective policies in MPO across
diverse domains such as transportation, manufacturing, civil
infrastructure and energy systems. It is emerging as a promi-
nent paradigm in the search for optimal maintenance policies
(Marugán, 2023).

This paper aims to achieve two primary objectives: first, to
present a comprehensive model for pipe-level MPO analysis fa-
cilitated by DRL, considering degradation over the pipe length
and employing inhomogeneous-time Markov chain models
to simulate the nonlinear stochastic behavior associated with
sewer pipe degradation; second, to assess the efficacy of the
model’s policy through a case study of a large-scale sewer

1
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network in the Netherlands, comparing it with heuristics, in-
cluding condition-based, scheduled, and reactive maintenance.

We acknowledge as limitations in our approach the focus on
fully observable state spaces, which means that inspection
actions are not necessary, and our analysis is at the component-
level. Future research will aim to broaden this scope to include
partially observable state spaces and system-level analysis.

Contributions. This work’s primary contributions include:

(i) We propose a framework to carry out maintenance pol-
icy optimization for sewer pipes considering the deterio-
ration along the pipe length. This framework integrates
Multi-State Degradation Models (MSDMs) and Deep
Reinforcement Learning (DRL).

(ii) Our framework introduces a novel approach by encod-
ing the prediction of the MSDM into the state space,
aiming to harness prognostics that describe the degra-
dation pattern of sewer pipes.

(iii) We demonstrate that DRL has the potential to devise
intelligent strategic maintenance strategies adaptable to
various conditions, such as pipe age.

(iv) We provide our framework in Python and all data used
in this study at zenodo.org/records/11258904.

Paper outline. Section 2 presents the technical background.
Section 3 outlines our research methodology. Section 4 for-
mulates the MSDM. Section 5 details the framework for main-
tenance policy optimization via DRL. Section 6 presents our
experimental setup. Section 7 analyzes the results. Section 8
discusses findings, concludes, and suggests future research.

Related work. In the past two decades, the need for inte-
gral sewer asset management has become evident (Abraham
et al., 1998), emphasizing the necessity to understand the
mechanisms of deterioration and develop predictive models
for proactive and strategic sewer maintenance (Fenner, 2000).
Sewer asset management encompasses maintenance, reha-
bilitation, and inspection and has been investigated through
various methodologies, including risk-based strategies (Lee et
al., 2021), multi-objective optimization (Elmasry et al., 2019),
Markov Decision Processes (Wirahadikusumah & Abraham,
2003), considering the structure of the sewer network (Qasem
& Jamil, 2021), machine learning applications (Montserrat et
al., 2015; Caradot et al., 2018; Laakso et al., 2019; Hernández
et al., 2021), and decision support frameworks (Taillandier
et al., 2020; Khurelbaatar et al., 2021; Ramos-Salgado et al.,
2022; Assaf & Assaad, 2023).

The integration of RL into sewer asset management is largely
unexplored, with existing research mainly concentrating on
real-time control for smart infrastructure, adapting to envi-
ronmental changes such as storms. Mullapudi et al. (2020)
uses DRL for controlling storm water system valves through
simulation of varied storm scenarios. Yin et al. (2023) employ
RL for near real-time control to minimize sewer overflows.
Meanwhile, Zhang et al. (2023) and Tian et al. (2022) both
examine improving the robustness of urban drainage systems,
the former through decentralized multi-agent RL and the latter
through Multi-RL, with Tian et al. (2024) further improving
the model interpretability using DRL. Furthermore, Kerkkamp
et al. (2022) investigates the sewer network MPO by combin-
ing DRL with Graphical Neural Networks to optimize main-
tenance actions grouping. Jeung et al. (2023) proposes a
DRL-based data assimilation methodology to enhance storm
water and water quality simulation accuracy by integrating
observational data with simulation outcomes.

2. TECHNICAL BACKGROUND

2.1. Multi-state degradation model for sewer pipes
The modeling of sewer pipe network degradation has been
explored through various methodologies, including physics-
based, machine learning, and probabilistic models. For com-
prehensive discussions on this topic, the reader is directed to
Ana & Bauwens (2010); Hawari et al. (2017); Malek Moham-
madi et al. (2019); Saddiqi et al. (2023); Zeng et al. (2023).

We adopt a probabilistic approach employing Inhomogeneous
Time Markov Chains (IHTMCs) to model the multi-state
degradation of sewer pipes. This choice is motivated by the
IHTMC’s capability to better capture the degradation of long-
lived assets such as sewer systems as a non-linear stochastic
process, characterized by age-dependent transition probabili-
ties between degradation states (Jimenez-Roa et al., 2024).

Inhomogeneous Time Markov Chains (IHTMCs). An
IHTMC is a stochastic process {(Xt)}t≥0, where t ∈ [0,∞)
is continues and models time. The IHTMC is defined as a
tuple M = ⟨Ω, S0, Q(t)⟩, where Ω is a set of K finite states
indicating the state space, S0

k is an initial-state distribution
on Ω where

∑
k∈Ω S

0
k = 1, and Q(t) : Ω × Ω → R is a

time-dependent transition rate matrix, with entries qij(t) for
i, j ∈ Ω and i ̸= j, representing the rate of transitioning from
state i to state j at time t. The diagonal entries qii(t) are de-
fined such that the sum of each row in Q(t) is zero, ensuring
that the outflow from any state is equal to the sum of the in-
flows into other states. Q(t) may be parameterized by hazard
rates λ(t|θ) derived from the ratio f(t|θ) and S(t|θ), being
respectively a probability density function and a survival func-
tion, where θ corresponds to the function hyper-parameters.
The evolution over time of the IHTMC is governed by the
Forward Kolmogorov equation:

∂Pij(t, τ)

∂t
=
∑

k∈S

Pik(t, τ)Qkj(t) (1)

Here, Pij(t, τ) : Ω × Ω → [0, 1] is a continuous and differ-
entiable function known as the transition probability matrix,
indicating the probability of transitioning from state i to state
j in the time interval t to τ , where τ > t. From Eq. (1) one
can obtain the master equation of the Markov chain, which
models the flow of probabilities between states by including
inflow and outflow terms:

∂Sk(t)

∂t
=

∑

i∈Ω,i̸=k

Si(t)Qik(t)− Sk(t)
( ∑

j∈Ω,j ̸=k

Qkj(t)
)

(2)
Here, Sk(t) is the probability of being in state k ∈ Ω at time
t, the term

∑
j∈Ω,j ̸=kQkj(t) represents the rates of transition

from state k to all the other states j (excluding self-transitions).

Pipe-element degradation model. We define a pipe ele-
ment by K sequentially arranged states S = [S1, S2, ..., Sk],
where S1 signifies the pristine condition and Sk represents the
worst condition. This categorization is based on sewer net-
work inspection data, which documents types of damage and
their severities on a scale from 1 to 5, along with occasional in-
stances of functional failures (K = 6). The transitions within
our IHTMC, illustrated in Figure 1, permit only progression
from a better to a worse state, prohibiting direct improvements
without repairs, while allowing any severity level to escalate
to functional failure.

2
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Figure 1. Markov chain structure for IHTMC.

Parametrization of IHTMC. We employed a parameter-
ized approach for IHTMC, involving an assumption on the
hazard function. In Section 4.2, we detail the parametrization
used in our experimental setup. Several aspects related to
the multi-state degradation model, including hyper-parameter
tuning and interval-censoring, are beyond the scope of this
paper. For further information, we recommend referring to
(Jimenez-Roa et al., 2024).

2.2. Markov Decision Process
A Markov Decision Process (MDP) models a stochastic se-
quential decision process, where both costs and transition
functions are dependent solely on the current state and action
(Puterman, 1990). Formally, an MDP is described by the tuple
⟨S,A, P (st+1|st, at),R(st, at, st+1), π0, γ⟩, with S as state
space, A as the action space, P (st+1|st, at) as the transition
probability function indicating the probability of transitioning
from state st to st+1 given action at, where st, st+1 ∈ S and
at ∈ A. The reward function R(st, at, st+1) specifies the
reward for moving from st to st+1 by action at. The initial
state π0 represents the distribution across S, and γ ∈ [0, 1]
is the discount factor that balances immediate versus future
rewards.

2.3. Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) produces virtual agents
that interact with environments to learn optimal behaviors
through trial and error, as indicated by a reward signal (Arulku-
maran et al., 2017). DRL has found applications in robotics,
video games, and navigation systems.

We utilize DRL to train agents in virtual environments exhibit-
ing degradation following the MSDM pattern, as detailed in
Section 5. Specifically, we apply Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), a policy gradient method
in RL.
PPO aims to optimize the policy an agent uses for action
selection, maximizing expected returns. It addresses stability
and efficiency issues encountered in previous algorithms like
Trust Region Policy Optimization by offering a simpler and
less computationally expensive method to ensure minor policy
updates.

This is achieved through an innovative objective function that
penalizes significant deviations from the previous policy, fos-
tering stable and consistent learning. The term “proximal”
denotes maintaining proximity between the new and old poli-
cies, facilitating a stable training process and rendering PPO
popular across various RL applications.

3. METHODOLOGY

Our methodology, illustrated in Figure 2, comprises six steps,
detailed below.
Step 1. Perform data handling of historical inspection records,

selecting subsets (cohorts) of interest, and calibrating

the MSDM on this data. This step is beyond the scope
of this paper; for details, see Jimenez-Roa et al. (2022,
2024). The results of this step are given in Section 4.

Step 2. After calibrating the MSDM, integrate these mod-
els into an environment suitable for RL applications.
We present the details of our environment integrating
MSDM in Section 5. In addition, we define environ-
ments for training RL agents. This is to test different
MSDM hypotheses; details on this can be found in
Section 6.

Step 3. Train DRL agents with PPO. Use optuna for hyper-
parameter tuning and Stable Baselines3 for
RL implementation. Details are in Section 7.1.

Step 4. Train and select the RL agents with the optimal hyper-
parameters on the training environments. In essence,
these agents learn the dynamics described by the
MSDM encoded in the environment.

Step 5. Compare the maintenance policies advised by the RL
agents using the test environment against the heuris-
tics: Condition-Based Maintenance (CBM), Sched-
uled Maintenance (SchM), and Reactive Maintenance
(RM). Find the definition of these heuristics in Sec-
tion 6.2.

Step 6. Analyze and compare the behavior of the maintenance
strategies for the different RL models and heuristics.
Reflect on the policies advantages and disadvantages.
Find in Section 7.2 the overview of this comparison,
and in Section 7.3 are the details along episodes.

4. MULTI-STATE DEGRADATION MODELS

4.1. Case study
Our case study conducts a detailed examination of the sewer
pipe network in Breda, the Netherlands, which comprises
25,727 sewer pipes covering 1,052 km, mostly built after 1950.
The network is primarily made of concrete (72%) and PVC
(27%), with the shapes of the pipes being predominantly round
(95%) and ovoid (5.4%). These pipes are designed for trans-
portation (98.2%), with 88% being up to 60 meters in length.
Additionally, 98.3% have a diameter of up to 1 meter, with the
most common diameter being 0.2 meters, and they carry mixed
(63%), rain (21%), and waste (16%) contents. The condition
of the pipes is evaluated through visual inspections accord-
ing to the European standard EN 13508 (EN13508, 2012;
EN13508-2, 2011), focusing on identifying and classifying
damage with specific codes. This study specifically addresses
the damage code BAF, which signifies surface damage and
was observed in 35.3% of the inspections.

4.2. Parametrization
We consider three distributions for hazard rate functions: Ex-
ponential, Gompertz, and Weibull. The hazard rates λ(t|·) for
these distributions are specified as follows:

Exponential function: λE(t|ϵ) = ϵ, (3a)

Gompertz function: λG(t|α, β) = αβeβt (3b)

Weibull function: λW (t|η, ρ) = ρ

η

( t
η

)ρ−1

(3c)

In Eq. (3a), a constant hazard rate indicates that the degrada-
tion model assumes a homogeneous time, exhibiting memory-
less properties. Eq. (3b) and Eq. (3c) present varying hazard
rates, which indicates inhomogeneous time.

3
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Figure 2. Methodology overview for sewer pipe maintenance policy optimization using Deep Reinforcement Learning and
Multi-State Degradation models.

4.3. Solving the Multi-State Degradation Model
In Figure 1, we defined the structure of the Markov chain
to model degradation in a sewer pipe, and in Section 4.2 we
introduced the hazard rate functions. In the following, we
present the corresponding system of differential equations.

∂S1(t)

dt
= −

(
λ12(t|·) + λ1F (t|·)

)
S1(t) (4a)

∂S2(t)

dt
= λ12(t|·)S1(t)−

(
λ23(t|·) + λ2F (t|·)

)
S2(t)

(4b)
∂S3(t)

dt
= λ23(t|·)S2(t)−

(
λ34(t|·) + λ3F (t|·)

)
S3(t)

(4c)
∂S4(t)

dt
= λ34(t|·)S3(t) +

(
− λ45(t|·)− λ4F (t|·)

)
S4(t)

(4d)
∂S5(t)

dt
= λ45(t|·)S4(t)− λ5F (t|·)S5(t) (4e)

∂SF (t)

dt
= λ1F (t|·)S1(t) + λ2F (t|·)S2(t) + λ3F (t|·)S3(t)

+ λ4F (t|·)S4(t) + λ5F (t|·)S5(t) (4f)

Eq. 4 is solved using numerical methods, specifically the
LSODA algorithm from the FORTRAN odepack library im-
plemented in SciPy (Jones et al., 2001–). This algorithm solves
systems of ordinary differential equations by employing the
Adams/BDF method with automatic stiffness detection.

4.4. Parametric Multi-State Degradation Models
We extract a subset from our case study data set to construct
a cohort with concrete sewer pipes carrying mixed and waste
content (cohort CMW), representing 37.1% of the sewer net-
work. The model parameters for this cohort are detailed in
Appendix A in Tables 7 and 8.
Figure 3 illustrates the MSDMs predictions, detailing the
stochastic dynamics of sewer pipe degradation for pipes in

cohort CMW. As Figure 1 describes, this degradation is seg-
mented into five sequentially ordered severity levels (k = 1
to k = 5), plus a functional failure state (k = F ). Differ-
ences in the y-axis scales are intentional, to emphasize details
and behaviors that various degradation models express across
severity levels.

Gray circles represent the frequency per severity level from the
inspection dataset. Jimenez-Roa et al. (2022) details how these
frequencies are computed. Vertical black lines in Figure 3
mark the last available data point for each severity level.

Additionally, Figure 3 presents the Turnbull non-parametric
estimator, which assumes no specific distribution for survival
times (Turnbull, 1976). In our context, this estimator repre-
sents the ground truth of stochastic degradation behavior in
sewer pipes.

Tables 1 presents the Root Mean Square Error (RMSE) com-
puted with respect to the Turnbull estimator, for each MSDM
assumption, for cohorts CMW. These results show that models
employing Gompertz and Weibull distributions yield smaller
RMSEs compared to the one using the Exponential distribu-
tion.

Table 1. RMSE with respect Turnbull estimator, per severity
level k and total RMSE, cohort: CMW.

Exponential Gompertz Weibull

Sk=1(t) 3.38E-02 3.27E-02 3.34E-02
Sk=2(t) 7.04E-02 3.70E-02 3.57E-02
Sk=3(t) 6.27E-02 2.81E-02 4.38E-02
Sk=4(t) 4.28E-03 1.13E-02 5.06E-03
Sk=5(t) 8.33E-03 1.09E-02 3.04E-02
Sk=F (t) 9.19E-03 1.17E-02 3.62E-03

Total 4.13E-02 2.45E-02 2.96E-02

These MSDMs serve two crucial roles within our environment:
first, they drive the degradation behavior of sewer pipes, effec-
tively emulating how sewer pipes degrade over time. Second,
the output from the MSDMs is incorporated as prognostic
information, available to the agent to support decisions at any

4
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Figure 3. Probability of being in state k ∈ Ω at pipe age t
Sk(t), using three hazard functions modeled via Exponential,
Gompertz, and Weibull probability density functions. The
Turnbull non-parametric estimator indicates the ground truth.
The gray circles indicate the frequency based on the inspection
data set.

time point. This latter aspect is considered a novel feature
of our framework. Details on the MDP are provided in the
section below.

5. DEFINITION OF MARKOV DECISION PROCESS FOR
MAINTENANCE POLICY OPTIMIZATION OF A SEWER
PIPE CONSIDERING PIPE LENGTH DEGRADATION

Figure 4 provides the workflow that the RL agent uses to learn
maintenance policies for sewer pipes, considering degradation
along the pipe length. In the following sections, we provide the
details of the environment, namely the state and action spaces,
as well as the transition probability and reward functions.

5.1. State space (S)
Our approach focuses on developing age-based maintenance
policies, incorporating the sewer pipe’s age into the state rep-
resentation. Our state space is continuous and it is structured
to include three key components: (i) the age of the pipe, (ii)
the health vector, and (iii) the stochastic prediction of severity
levels. We next describe the last two components.

5.1.1. Health vector (h)
In modeling the degradation of linear structures like sewer
pipes, it is essential to represent changes accurately along their
length. For this purpose, we define a health vector (h), which
quantitatively measures the degradation at various points along
the pipe. The vector is crucial in our framework, particularly
influencing the reward function as described in Section 5.4.
Construction of h: We discretize the pipe into segments of
equal length ∆L, with ∆L < L, where L is the total length
of the pipe. The number of segments, nd, is calculated using
the ceiling function to ensure it remains an integer even if L is
not perfectly divisible by ∆L:

nd =

⌈
L

∆L

⌉
(5)

Each segment’s degradation level is initially assessed and cat-
egorized into severity levels according to the MSDM. As the
degradation progresses, the state of each segment changes
following the transition probabilities described by the matrix
Pi,j , where i is the current severity level, and j is the subse-
quent severity level, as described by the forward Kolmogorov
equation (Eq. 1).

Notice that by doing this, we assume there is no statistical de-
pendency between segments, which is a strong assumption that
needs further research. However, for simplicity, we maintain
this assumption in our degradation model.
Quantifying Degradation: The distribution of severity lev-
els across the pipe is captured in vector d, with each element
indicating the severity level of a segment. To quantify this
distribution in the health vector h, we first count the num-
ber of segments at each severity level k using the following
expression:

ndk
=

nd∑

i=1

1{di=k} (6)

where 1 is the indicator function that is 1 if the condition is
true and 0 otherwise. The health vector h is then determined by
normalizing these counts to reflect the proportion of segments
at each severity level:

hk =
ndk

nd
(7)

Here, ndk
is the number of segments at severity level k. Thus,

hk becomes part of the state space indicating the level of
degradation present in the pipe.

5.1.2. Stochastic prediction of severity levels
To enable the agent to access information provided by the
MSDM, we incorporate the prediction of severity levels into
the state space. This is accomplished by solving Eq. 2, yield-
ing a distribution Sk(t).

Finally, our state space is defined as a tuple with 13 elements:

S = ⟨Pipe Age,h1,h2,h3,h4,h5,hF , S1, S2, S3, S4, S5, SF ⟩

5.2. Action space (A)

Our action space A is discrete with dimensionality |A| = 3.
At each time step t, the agent selects an action at. If the
decision at time t is do nothing, at is set to 0. To perform
maintenance, at is set to 1, and to replace the pipe, at is set to
2. The outcomes of these actions are discussed in Section 5.3.

5
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Figure 4. Environment for maintenance policy optimization of a sewer pipe via Deep Reinforcement Learning, considering
degradation along the pipe length.

5.3. Transition function (P )
Our transition function P (st+1|st, at) is stochastic, dependent
on time t, and considers both the actions a ∈ A and the current
st and next state st+1 dynamics described by the MSDM. We
illustrate the behavior of P with the following example.

For a 30-year-old pipe with length L = 40 meters and dis-
cretized in segments of length ∆L = 1, let the current state
space be st=30 ∈ S:

st=30 = ⟨30, 0.60, 0.35, 0.025, 0.025, 0.0, 0.0,
0.475, 0.436, 0.069, 0.010, 0.005, 0.005⟩ .

st=30 indicates the age of the pipe is 30 years. From Eq. 7, the
number of segments at severity k is determined by multiplying
the health vector (hk):

hk = [0.60, 0.35, 0.025, 0.025, 0.0, 0.0]

by 40 meters, yielding ndk
= [24, 14, 1, 1, 0, 0], indicating

that, out of the 40 meters of pipe length, 24 segments of 1
meter are at severity k = 1, 14 at severity k = 2, and so forth.

The distribution Sk(t = 30.0) predicts the probability of being
in a severity level k at age t = 30. This is achieved by
evaluating t = 30.0 in the corresponding MSDM.

Sk(t = 30.0) = [0.475, 0.436, 0.069, 0.010, 0.005, 0.005]

Assuming the agent takes an action every half year, we illus-
trate the effect of each action in A below.
- If at = 0: the agent decides to “do nothing”, the pipe’s

degradation evolves in line with the MSDM progression.
Here the new state space becomes sa=0

t=30.5.

sa=0
t=30.5 = ⟨30.5, 0.575, 0.35, 0.05, 0.025, 0.0, 0.0,

0.470, 0.439, 0.071, 0.010, 0.05, 0.05⟩
Notice that the pipe age increased to 30.5, and ndk

=

[23, 14, 2, 1, 0, 0], where a segment with severity k = 1
progressed to k = 2, and one segment with k = 2 advanced
to k = 3. Additionally, Sk(t) is updated by evaluating
t = 30.5.

- If at = 1: the agent decides to “perform maintenance,” all
damage points with severity levels k ∈ {3, 4, 5} are moved
to k = 2. Consequently, this action does not affect damage
points with severity levels k ∈ {1, 2, F}. The new state
space becomes sa=1

t=30.5.

sa=1
t=30.5 = ⟨30.5, 0.60, 0.40, 0.0, 0.0, 0.0, 0.0,

0.47, 0.439, 0.071, 0.010, 0.05, 0.05⟩
Notice that the pipe age increased to 30.5, and ndk

=
[24, 16, 0, 0, 0, 0]. However, Sk(t) is updated by evaluat-
ing t = 30.5, same as when at = 0.

- If at = 2: the agent decides to “replace” the pipe, resetting
its condition to as good-as-new. The new state space is
sa=2
t=0.0:

sa=2
t=0.0 = ⟨0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.986, 0.014, 0.0, 0.0, 0.0, 0.0⟩.
The pipe age is reset to 0.0, with ndk

= [40, 0, 0, 0, 0, 0],
and Sk(t) is updated for t = 0.0.

5.4. Reward function (R)
Our reward function R(st, at, st+1) assigns a reward rt at
every decision point t, determined by the current state st and
action at. This function integrates the costs of maintenance
(CM ), replacement (CR), and failures (CF ). R is sparse
because it issues a non-zero value only when failures occur or
interventions are undertaken.
Maintenance cost CM is calculated as per Eq. 8, where it com-
bines a variable cost based on severity k with a fixed logistic
cost of C500, covering the expenses related to maintenance.

6
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These costs vary with the severity level k, as detailed in Table 2.
Note that no maintenance costs are associated with k = F
because maintenance cannot be performed on a segment that
has already failed. In this case, the agent must replace.

CM = −(hk · ckM + 500) (8)

Table 2. Maintenance costs per severity k per segment (ckM )

k = 1 k = 2 k = 3 k = 4 k = 5 k = F

ckM = 0 0 -C500 -C700 -C900 N.A.

Replacement costs (CR) is computed with Eq. 9:

CR = −(450 + 0.66D + 0.0008D2)L (9)

Here, L and D denote the pipe’s length in meters and diameter
in millimetres, respectively. CR is in Euros (C).

The cost of failure, denoted by CF , entails assigning a sub-
stantial penalty when the agent allows a segment of the pipe to
achieve a failure state (k = F ). This penalty cost is established
at C-100,000. Our reward function is then:

rt =
CM + CR + CF

100′000 + 900× 40
=
CM + CR + CF

136′000
(10)

where rt represents the reward obtained at time t, the normal-
ization constant 136′000 corresponds to the most expensive
penalty possible at time t. Thus, rt is defined within the inter-
val [−1, 0]. This reward function aims for the agent to balance
maintenance actions with the prevention of undesirable pipe
conditions.

6. EXPERIMENTAL SETUP

6.1. Setup
We will evaluate our framework with a single pipe of constant
length (40 meters) and diameter (200 mm) from the cohort
CMW, which carries mixed and waste content. Given the con-
stant dimensions, the replacement cost CR, as defined in Eq. 9,
is C24,560. The pipe age, when initializing the episode, is
randomly sampled from the uniform distribution U ∼ [0, 50],
allowing the agent to learn the behavior of pipes within this
age range. Additionally, we evaluate the policy in steps of half
a year and ∆L = 1 meter.

In the methodology section, we describe the training of two
agents: Agent-E and Agent-G. Agent-E is trained in an envi-
ronment where sewer pipe degradation follows the MSDM pa-
rameterised with an Exponential probability density function,
while Agent-G is trained in an environment where degradation
follows the MSDM parameterised with a Gompertz probability
density function.

Both agents are tested in an environment where sewer pipe
degradation follows the MSDM parameterized with the Weibull
probability density function.

During training, each agent follows a specific state space,
defined as follows:

SAgent-E
Training = ⟨Pipe Age,hE

k , S
E
k (t)⟩ (11a)

SAgent-G
Training = ⟨Pipe Age,hG

k , S
G
k (t)⟩ (11b)

Here, S represents the state space for each agent during train-
ing. The subscripts E and G denote the Exponential and
Gompertz probability density functions, respectively. Each
agent’s objective is to learn an optimal maintenance strategy
based on their environment’s dynamics.

For testing, both agents are evaluated in the same environment,
with the state space defined as follows:

SAgent-E
Testing = ⟨Pipe Age,hW

k , SE
k (t)⟩ (12a)

SAgent-G
Testing = ⟨Pipe Age,hW

k , SG
k (t)⟩ (12b)

In both cases, SE
k (t) and SG

k (t) remain consistent with the
training phase, reflecting the MSDM predictions. However,
the health vector hk follows the degradation behavior de-
scribed by the Weibull probability density function, indicated
by the subscript W .

6.2. Comparison of maintenance strategies
We compare the RL agent’s performance against maintenance
policies based on heuristics. For this, we define the following:

• Condition-Based Maintenance (CBM): Maintenance ac-
tions are based on the sewer pipe’s condition. Specifically,
replacement (at = 2) is performed if pipe age ≥ 70
or hk=F ≥ 0.0; maintenance (at = 1) is conducted
if hk=4 ≥ 0.1 or hk=5 ≥ 0.05; otherwise, no action
(at = 0) is taken.

• Scheduled Maintenance (SchM): Actions are time-based.
Replacement (at = 2) is executed if hk=F ≥ 0.0; main-
tenance (at = 1) occurs every 10 years; otherwise, no
action (at = 0) is taken.

• Reactive Maintenance (RM): Replacement is under-
taken only upon pipe failure, i.e., replacement (at = 2) is
performed if hk=F ≥ 0.0; otherwise, no action (at = 0)
is taken.

Note that CBM and SchM are defined based on plausible
values. However, these heuristics can be further calibrated
for enhanced performance, which is beyond the scope of this
paper.

7. RESULTS

7.1. Implementation and hyper-parameter tuning
Our framework uses Stable Baselines3 (Raffin et al.,
2021), comprising robust implementations of RL algorithms
in PyTorch (Ansel et al., 2024). Specifically, we utilize the
PPO algorithm. Hyper-parameter optimization is performed
using optuna (Akiba et al., 2019), a framework dedicated to
automating the optimization of hyper-parameters.

The search space encompasses: exponentially-decaying learn-
ing rate with a decay rate of 0.05, with an initial learning rate
ranging from 10−5 to 10−2, discount factor (γ) from 0.8 to
0.9999, entropy coefficient from 0.0001 to 0.01, steps per up-
date (n steps) from 250 to 3000, batch sizes from 16 to 256,
activation functions (‘tanh’, ‘relu’, ‘sigmoid’), policy network
architectures ([16, 16], [32, 32], [64, 64], [32, 32, 32]), and
training epochs (n epochs) from 5 to 100.

We set up optuna to conduct 500 trials, aiming to maximise
cumulative reward in 100 episodes. Table 3 details the optimal
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hyper-parameters identified. These parameters are used to
obtain the results discussed in Sections 7.2 and 7.3, where our
agents are trained over a total of 5 million time steps.

Table 3. Optimal hyper-parameters found using optuna.

Hyper-parameter Value
Learning rate 0.0003

Discount factor 0.995
Entropy coefficient 0.008

Steps per update (n steps) 2080
Batch size 104

Activation function Sigmoid
Policy network architecture [32, 32, 32]

Training epochs (n epochs) 50

7.2. Policy analysis: overview
This section offers a broad evaluation of the policies, with a
detailed analysis over episodes presented in Section 7.3. We
compare the agents’ performances with the heuristics detailed
in Section 6.2 across 100 simulations in the test environment
(Eq. 12), considering pipe ages of 0, 25, and 50 years, aim-
ing to evaluate policy efficacy concerning degradation over
varying pipe ages.

Table 4 presents the mean policy cost for Agent-E, Agent-
G, CBM, SchM, and RM, highlighting the best and second-
best policies in blue and red, with corresponding means and
standard deviations from the simulations.

Table 4. Policy cost comparison: Mean and standard deviation
(Std.) of costs for Agent-E, Agent-G, CBM, SchM, and RM,
evaluated over 100 episodes in the test environment. Costs, in
thousands of Euros (C), for pipe ages of 0, 25, and 50 years.

Pipe age: 0 Pipe age: 25 Pipe age: 50

Policy Mean Std. Mean Std. Mean Std.

Agent-E 51.3 80.8 116.5 97.7 156.8 121.2
Agent-G 39.7 66.2 78.7 96.6 127.1 128.3

CBM 51.3 107.2 112.3 88.5 110.7 86.6
SchM 42.5 70.9 78.9 96.4 159.8 95.9

RM 48.6 76.6 135.8 86.5 165.7 80.8

From these results, we observe that Agent-G’s policy generally
outperforms others for pipe ages of 0 and 25 years, securing a
second-best position for pipes aged 50 years. It is noted that
the cost of all policies increases with pipe age, which aligns
with expectations as older pipes require more interventions.

After reviewing the mean policy costs, our focus shifts to the
specific actions involved in each policy. Table 5 provides a
summary of the actions executed by each policy across sim-
ulations for different pipe ages. For new pipes, the SchM
policy leads in maintenance activities (at = 1), with Agent-G
following. In terms of replacements (at = 2), Agent-E is the
foremost in implementing this action, with CMB in second
place. Both Agent-G and SchM exhibit lower replacement fre-
quencies, explaining the mean policy costs since maintenance
actions incur lower expenses compared to the penalties and
replacement costs resulting from pipe failures.

For pipes aged 25 years, Agent-G executes more maintenance
actions (at = 1), similar to SchM. Agent-E opts for no main-
tenance, aligning more with RM’s strategy. Although CBM

Table 5. Percentage of actions per policy obtained with
Agent-E, Agent-G, CBM, SchM, and RM, evaluated over
100 episodes in the test environment, for different pipe ages.

Pipe age Action Agent-E Agent-G CBM SchM RM

0
at = 0 99.5 97.51 99.54 94.76 99.61
at = 1 0.0 2.21 0.05 4.95 0.00
at = 2 0.5 0.28 0.41 0.29 0.39

25
at = 0 98.81 94.96 98.14 94.56 98.92
at = 1 0.00 4.50 0.62 4.94 0.00
at = 2 1.19 0.53 1.24 0.50 1.08

50
at = 0 98.4 94.52 98.05 93.99 98.68
at = 1 0.0 4.43 0.67 4.88 0.00
at = 2 1.6 1.05 1.28 1.13 1.32

carries out some maintenance actions, replacement actions
predominate, indicating a greater tendency to permit pipe fail-
ures, which explains the observed differences in mean policy
costs.
For pipes aged 50 years, CMB offers the most cost-effective
policy, with Agent-G’s following. CMB conducts fewer main-
tenance actions and more replacements than Agent-G, account-
ing for the cost disparity. The policies of Agent-E, RM, and
SchM have similar costs. Despite SchM conducting more
maintenance, its high number of replacements suggests the
maintenance interval requires adjustment. These results in-
dicate that the strategies of CBM, SchM, and RM are less
efficient for older pipes due to their higher failure probability.

Regarding the mean pipe severity level to assess the impact of
various policies on pipe degradation, as shown in Table 6. Our
analysis reveals a notable correlation between the average ac-
tions per policy, detailed in Table 5, and the mean pipe severity
level. Specifically, the Agent-G control strategy tends to main-
tain pipes within a severity level of k ∈ [1, 2, 3], whereas the
Agent-E, CBM, SchM, and RM policies often result in higher
severity levels k ∈ [4, 5, F ], which correlates with increased
policy costs.

Table 6. Percentage of severity level per policy obtained with
Agent-E, Agent-G, CBM, SchM, and RM, evaluated over 100
episodes in the test environment, for different pipe ages.

Pipe age Severity Agent-E Agent-G CBM SchM RM

0

k = 1 59.77 58.75 59.94 59.84 58.88
k = 2 33.27 39.14 32.67 38.05 33.15
k = 3 5.39 1.70 6.00 1.79 6.36
k = 4 1.38 0.28 1.13 0.26 1.30
k = 5 0.18 0.13 0.25 0.04 0.31
k = F 0.01 0.01 0.01 0.01 0.01

25

k = 1 50.49 41.72 46.88 39.07 46.62
k = 2 38.96 55.27 43.09 55.55 40.86
k = 3 8.37 2.63 8.48 4.85 9.80
k = 4 1.37 0.29 1.18 0.41 1.51
k = 5 0.78 0.07 0.36 0.10 1.18
k = F 0.02 0.01 0.02 0.01 0.03

50

k = 1 57.93 44.65 55.01 40.92 54.36
k = 2 32.58 51.40 36.14 50.46 33.09
k = 3 7.50 3.29 7.20 7.34 9.32
k = 4 1.31 0.39 1.19 0.59 1.64
k = 5 0.65 0.25 0.43 0.67 1.55
k = F 0.03 0.02 0.02 0.03 0.03
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To summarize, our findings indicate that the Agent-G’s policy,
derived using DRL, implements a dynamic management strat-
egy that varies with the pipe’s age. This strategy encompasses
a more passive approach with new pipes, transitioning to ac-
tive intervention as the pipes age. This indicates the agent’s
preference for more frequent maintenance actions rather than
allowing pipe failures, which incur higher penalties and re-
placement costs.

Moreover, Agent-G outperforms Agent-E, illustrating the im-
pact of the degradation model assumption. Specifically, Agent-
G’s prognostic model used during training aligns more closely
with the test environment’s degradation pattern than Agent-
E’s, potentially explaining why Agent-G is better equipped to
navigate and understand the degradation pattern. This, in turn,
enables it to devise a more effective maintenance policy by
leveraging a more accurate degradation model.

7.3. Policy analysis over episode
In Section 7.2, we present an overview of policy performances.
This section delves into the details per episode to provide
further understanding on these policies. Figures 5, 6, and 7
detail the performance of the Agent-E, Agent-G, CMB, and
SchM policies for pipes with ages 0, 25 and 50, respectively.
The RM heuristic is excluded from this analysis due to its
straightforward approach: allowing the pipe to fail before
replacing it.

Figure 5 shows that for a brand new pipe: (a) Agent-G per-
forms maintenance on the pipe at approximately 32 years old;
(b) Agent-E opts to replace the pipe when it is around 35
years old, which may be attributed to the presence of elements
with higher severity levels in that specific episode; (c) CBM
chooses not to act, which results in the least expensive policy
in this comparison. However, it is observed that some pipe
sections reach severity level k = 5 throughout the episode.
Not taking any action is deemed risky since progressing to
k = F becomes more likely and incurs higher costs; (d) SchM
effectively controls severity levels but is more expensive than
Agent-G’s policy due to more frequent maintenance actions.

Figure 6 shows that for a pipe aged 25: (a) Agent-G exhibits in-
creased activity, indicating more frequent maintenance actions,
especially as the pipe ages to 50, shortening the maintenance
intervals; (b) Agent-E postpones any action until the pipe fails,
at which point it replaces the pipe with a new one, akin to RM;
(c) CBM also initiates maintenance around the pipe’s 50-year
mark. However, degradation escalates from age 60, leading to
failure at 66. The inability to manage this increased severity re-
sults in significant penalty costs, diminishing the effectiveness
of this policy; (d) Similarly, SchM manages severity levels
effectively until the pipe reaches approximately 70 years of
age, at which point degradation accelerates, resulting in failure
at 73.
Figure 7 shows that for a pipe aged 50: (a) Agent-G opts to
replace the pipe at age 50, followed by maintenance in the
subsequent time step. This decision is likely influenced by
parts of the pipe being at severity levels k ∈ 3, 4. Such a
scenario is plausible, as new pipes can exhibit high severity
levels at a young age due to defects in the material or errors
during the construction and installation process. This concept
is represented in the MSDM by the initial probability state
vector (S0

k). Additionally, Agent-G recommends maintenance
at the interval when the pipe reaches the age of 26 years; (b)

Agent-E suggests replacement at approximately 62 years, with-
out recommending further maintenance; (c) CMB advocates
for maintenance at about 65 years, followed by replacement at
70 years, in line with heuristics described in Section 6.2; (d)
SchM consistently performs maintenance at regular intervals,
yet faces significant degradation, culminating in failure around
97 years.

8. DISCUSSION AND CONCLUSIONS

In this paper, we explore the applications of Prognostics and
Health Management (PHM) in sewer pipe asset management.
Our study focuses on component-level (i.e., pipe-level) main-
tenance policy optimization by integrating stochastic multi-
state degradation modeling and Deep Reinforcement Learning
(DRL). The goal is to assess the effectiveness of DRL in
deriving cost-effective maintenance strategies tailored to the
specific conditions and requirements of sewer pipes.

A key contribution of our work is the integration of prognostics
models with a maintenance policy optimization framework.
We utilize a tailored reward function that aligns with dam-
age severity levels, enabling a more complex and realistic
maintenance optimization setup.

Our methodology includes a real-world case study from a
Dutch sewer network, which provides historical inspection
data. Through hyper-parameter tuning and policy analysis, we
benchmark our optimized policies against traditional heuris-
tics, including condition-based, scheduled, and reactive main-
tenance.
Our findings suggest that agents trained with the Proximal
Policy Optimization algorithm are highly capable of devel-
oping strategic maintenance policies, adapting to pipe age,
and surpassing heuristic baselines by learning cost-effective
dynamic management strategies.

To evaluate the impact of degradation model assumptions,
we trained one agent using the Gompertz probability density
function and another using the Exponential probability density
function.
During testing, both agents were assessed in an environment
parameterized with the Weibull probability density function.
The Gompertz-trained agent, whose behavior more closely
resembled the Weibull model, demonstrated better general-
ization, resulting in more effective maintenance policies com-
pared to the Exponential-trained agent.

Future work: The following directions are identified:

• Advancing toward partially observable state spaces with
the introduction of inspection actions, considering context,
and leveraging deep learning capabilities.

• Utilizing knowledge acquired by agents to develop ex-
plainable and robust heuristics.

• Although this paper focused on a single cohort of pipes,
studies in Jimenez-Roa et al. (2022, 2024) show different
cohorts exhibit varied dynamics, highlighting the impor-
tance of understanding how RL agents adapt.

• Comparing RL-based approaches with other policy op-
timization algorithms to better understand the capacity
of RL methods to achieve global-optima maintenance
strategies.

• Investigating various reward functions (e.g., dense) and
RL algorithms to determine the most effective for devising
maintenance policies.

• Extent to system-level analysis and evaluate aspects such

9

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 637



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -2.0K): [Maintenance: -2.0K, Replace: 0.0K, Failure: 0.0K], Total Reward: -0.00

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(a) Agent-G

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -24.6K): [Maintenance: 0.0K, Replace: -24.6K, Failure: 0.0K], Total Reward: -0.20

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(b) Agent-E

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( 0.0K): [Maintenance: 0.0K, Replace: 0.0K, Failure: 0.0K], Total Reward: 0.00

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(c) Condition-based Maintenance (CBM)

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -6.0K): [Maintenance: -6.0K, Replace: 0.0K, Failure: 0.0K], Total Reward: -0.00

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(d) Scheduled Maintenance (SchM)

Figure 5. Behavior of policies over an episode for a new pipe, showing the health vector over the pipe age and actions per policy:
(a) Agent-G, (b) Agent-E, (c) Condition-based Maintenance (CBM), and (d) Scheduled Maintenance (SchM).

as scalability.
• Moving toward multi-infrastructure asset management to

promote coordinated management for optimizing costs
and minimizing disruption from interventions.
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Figure 6. Behavior of policies over an episode for a pipe aged 25, showing the health vector over the pipe age and actions per
policy: (a) Agent-G, (b) Agent-E, (c) Condition-based Maintenance (CBM), and (d) Scheduled Maintenance (SchM).

learning through dynamic python bytecode transformation
and graph compilation. In Proceedings of the 29th acm
international conference on architectural support for pro-
gramming languages and operating systems, volume 2 (pp.
929–947).

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath,
A. A. (2017). Deep reinforcement learning: A brief survey.
IEEE Signal Processing Magazine, 34(6), 26–38.

Assaf, G., & Assaad, R. H. (2023). Optimal preventive main-
tenance, repair, and replacement program for catch basins
to reduce urban flooding: Integrating agent-based modeling
and monte carlo simulation. Sustainability, 15(11), 8527.

Caradot, N., Riechel, M., Fesneau, M., Hernandez, N., Tor-
res, A., Sonnenberg, H., . . . Rouault, P. (2018). Practical
benchmarking of statistical and machine learning models
for predicting the condition of sewer pipes in berlin, ger-
many. Journal of Hydroinformatics, 20(5), 1131–1147.

Cardoso, M., Almeida, M. d. C., & Santos Silva, M. (2016).
Sewer asset management planning–implementation of a
structured approach in wastewater utilities. Urban Water
Journal, 13(1), 15–27.

De Jonge, B., & Scarf, P. A. (2020). A review on maintenance
optimization. European journal of operational research,
285(3), 805–824.

11

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 639



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -33.8K): [Maintenance: -9.2K, Replace: -24.6K, Failure: 0.0K], Total Reward: -0.20

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(a) Agent-G

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -24.6K): [Maintenance: 0.0K, Replace: -24.6K, Failure: 0.0K], Total Reward: -0.20

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(b) Agent-E

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -32.1K): [Maintenance: -7.5K, Replace: -24.6K, Failure: 0.0K], Total Reward: -0.20

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(c) Condition-based Maintenance (CBM)

k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -149.7K): [Maintenance: -25.1K, Replace: -24.6K, Failure: -100.0K], Total Reward: -1.10

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(d) Scheduled Maintenance (SchM)

Figure 7. Behavior of policies over an episode for a pipe aged 50, showing the health vector over the pipe age and actions per
policy: (a) Agent-G, (b) Agent-E, (c) Condition-based Maintenance (CBM), and (d) Scheduled Maintenance (SchM).
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APPENDIX A. PARAMETERS OF MULTI-STATE DEGRA-
DATION MODELS

Table 7. MSDM hyper-parameters for cohort CMW, using haz-
ard functions modeled with the exponential (λE(t|ϵ)), Gom-
pertz (λG(t|α, β)), and Weibull (λW (t|η, ρ)) probability den-
sity functions.

λE(t|ϵ) λG(t|α, β) λW (t|η, ρ)
i → j ϵ α β η ρ

1 → 2 2.4E-02 2.3E+00 8.4E-03 1.3E+00 4.4E+01
2 → 3 9.4E-03 2.1E-02 5.5E-02 2.9E+00 7.7E+01
3 → 4 5.7E-03 3.3E+00 2.8E-03 3.5E+00 8.1E+01
4 → 5 1.8E-02 2.4E+00 8.7E-03 7.0E+00 5.5E+01
1 → F 3.0E-18 1.4E-01 3.1E-04 4.1E-06 4.6E+01
2 → F 6.0E-04 8.8E-01 7.0E-19 2.7E-04 4.6E+01
3 → F 1.0E-18 2.2E-03 4.5E-02 3.0E-05 4.7E+01
4 → F 1.0E-18 9.8E-05 8.6E-03 1.1E-03 4.5E+01
5 → F 1.0E-18 7.0E-19 3.8E-01 1.7E+00 5.9E+01

Table 8. Initial state vector S0
k for MSDM of cohort CMW.

S0
k Exponential Gompertz Weibull

k = 1 9.89E-01 9.58E-01 9.23E-01
k = 2 1.26E-17 0.00E+00 2.59E-02
k = 3 3.70E-23 4.00E-02 3.10E-02
k = 4 1.11E-02 1.61E-03 1.13E-02
k = 5 2.11E-22 2.00E-15 2.07E-03
k = F 3.87E-22 1.56E-04 6.40E-03

14

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 642



Model-based Probabilistic Diagnosis in Large Cyberphysical
Systems

Giso Dal1, Arjen Hommersom2, Guus Grievink3, and Peter J.F. Lucas4

1,3,4 EEMCS Faculty, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
gisodal@gmail.com, g.grievink@student.utwente.nl, peter.lucas@utwente.nl

2 Open University, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands
arjen.hommersom@ou.nl

ABSTRACT

Model-based diagnosis is concerned with diagnosing faults
or malfunction of real-world physical or cyberphysical sys-
tems using a model of the structure and behavior of the sys-
tems. As cyberphysical systems can be extremely large and
complex, and the associated computational models will be
then equally large and complex, they impose a hard to beat
challenge on the computational feasibility of reasoning with
such models. When such a model is able to handle the uncer-
tainty associated with diagnostics, giving rise to probabilis-
tic model-based diagnostics, the computational feasibility be-
comes even harder. This paper: (1) proposes a novel graphi-
cal method underlying model-based diagnostics; (2) demon-
strates experimentally how a novel, by the authors developed
architecture of partitioned positive weighted model counting,
is able to handle exact inference to answer a variety of prob-
abilistic queries regarding the health status of a cyberphysi-
cal system. Results obtained are well within acceptable time
bounds.

1. INTRODUCTION

Cyberphysical systems combine and integrate physical and
computational processes often with a special role for sensor
information (Lee, 2008). Nowadays, because of the explo-
sive rise in the role of embedded software in physical sys-
tems, there are many of such systems, for example industrial
printing or vending machines. In particular in a commercial
setting, such machines are desired to experience the least pos-
sible downtime, as being out of order usually has undesirable,
often financial, consequences for the users. Thus there is a
need to find the causes of malfunction as quickly as possible,
a process usually referred to a diagnosis, a terms taken from
the field of medicine (Lucas, 1996); the terms troubleshoot-

Giso Dal et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

ing and fault-finding are also often used in engineering. In the
case of cyberphysical systems faults or defects concern physi-
cal or software components, or possibly their interaction. The
purpose of the diagnostic process consists of automated fault
finding followed by repair or assisting technicians in a repair
job on site (Grievink, 2022).

Automated computer-based diagnosis in engineering has a
long-standing tradition, where in particular fault tree analysis
is a commonly used technique (Ruijters & Stoelinga, 2015).
However, other automated fault detection and analysis meth-
ods have also been developed (Dowdeswell, Sinha, & Mac-
Donell, 2020). In the present paper we depart from a frame-
work developed in the 1980s by Johan de Kleer, and which
is known as model-based diagnosis, MBD for short (de Kleer
& Williams, 1987). The adjective ‘model-based’ comes from
the principle that with the design of a machine one possesses
already valuable knowledge about its structure or architecture
and its functional components and their interactions before
the machine is actually produced, purchased, and employed
in practice. This knowledge can be put to use in a diagnostic
setting.

De Kleer’s method of model-based diagnosis is based on com-
paring qualitative predictions of behavior of a model of a
given machine with actual observations, which explains why
it is also called consistency-based diagnosis (CBD) (Reiter,
1987). CBD is traditionally seen as a kind of symbolic or
logical assumption-based reasoning (Genesereth & Nilsson,
1987). However, even in the early days of MBD it was re-
alized that probabilistic information could play a role in im-
proving the accuracy of diagnostic solutions (de Kleer, 1991).
It was subsequently proved by Judea Pearl that MBD can
be mapped to the multivariate probabilistic representation of
Bayesian networks (Pearl, 1988). The advantage of Bayesian
networks as a formalism of model-based diagnosis is that in
principle uncertain, probabilistic knowledge about the occur-
rence of faults can be integrated and also learned from data.
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However, a well-known problem of MBD, and probabilistic
MBD is no exception, is that models can be very large and
thus inference is often infeasible. There can be little doubt
that with the large and complex cyberphysical systems devel-
oped today, and even more so in the future, building and per-
forming inference with such models will hit computational
obstacles. During the last few years we have been working
on moving the boundaries of probabilistic inference by de-
veloping a novel framework referred to as partitioned posi-
tive weighted model counting (that can also be parallelized),
inspired by the success of model counting in software verifi-
cation (Dal & Lucas, 2017; Dal, Laarman, Hommersom, &
Lucas, 2021). This framework was shown in various papers
to be superior to other probabilistic methods (Dal et al., 2021;
Dal, Laarman, & Lucas, 2023). This made us wonder whether
it might be a good candidate for model-based diagnosis of
large cyberphysical systems. Positive weighted model count-
ing exploits symmetries in probability tables, which typically
also occur in models used in MBD.

The main contributions of this paper are as follows:

• A new representation of compositional Bayesian networks
that supports developing large probabilistic model-based
systems from specifications of system components;

• A novel method of probabilistic model-based diagnosis,
we call it Bayesian model-based diagnosis, that properly
takes into account the dependences between components
in MBD, different from an earlier developed and limited
method (Grievink, 2022);

• Experimental evidence that our publicly available soft-
ware tool PARAGNOSIS 1 (Dal et al., 2023), implement-
ing partitioned weighted model counting, supports solv-
ing diagnostic problems of systems with different size
and complexity, including very large and complex ones.

The organization of this paper is as follows. First, in Sec-
tion 2, some basic principles of consistency-based diagnosis
are introduced, follows by a compact summary of the method
of weighted model counting, and the mapping of MBD to
Bayesian networks. As our work on partitioned positive
weighted model counting has been extensive published, we
refer for details about how it works to those publications (Dal
& Lucas, 2017; Dal, Michels, & Lucas, 2017; Dal et al., 2021,
2023). In Section 3 the compositional method of assumption-
based Bayesian model-based diagnosis is developed. Experi-
mental results are summarized in Section 4, which is followed
by conclusions and a discussion of the results in Section 5.

2. BACKGROUND

2.1. Consistency-based Diagnosis

Given specific input and output of a cyberphysical system,
the output of the model of the system is compared with the
1https://github.com/gisodal/paragnosis
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1
0

1

0 predicted
[1] observed

1 predicted
[0] observed

Figure 1. Full adder with inputs and observed and pre-
dicted outputs. Here, Obs = {in1(X1) = 1, in2(X1) =
0, in1(A2) = 1, out(X2) = 1, out(R1) = 0}.

observed output of the (real) system. A discrepancy between
these two indicates a fault or malfunction in the actual system
and explains the name ‘consistency-based diagnosis’ (Reiter,
1987). Below, some of the common definitions that occur
in the literature on CBD are repeated and adapted, where in
particular (de Kleer, Mackworth, & Reiter, 1992) is followed.

A diagnostic problem DP is defined as a system SYS together
with a set of observation Obs: DP = (SYS,Obs). A sys-
tem SYS consists of a system description SD and a set of
components Comps: SYS = (SD,Comps). The system de-
scription defines the normal behavior of components and how
these components are connected by means of first-order log-
ical sentences. Given SYS, a diagnosis D ⊆ Comps is de-
fined as a subset-minimal set of components that, when be-
having abnormally, explains the observation of a faulty sys-
tem. Formally, a diagnosis is defined as a subset-minimal set
D ⊆ Comps such that:

SD∪Obs∪{Ab(c) | c ∈ D}∪{¬Ab(c) | c ∈ Comps\D} 2 ⊥
(1)

where ‘Ab’ is the abnormality predicate that indicates that
a component c behaves abnormally (and thus ¬Ab indicates
normal behavior) and ⊥ is falsum (the left-hand side of 2 is
consistent).

Example 2.1 (Adapted from (Reiter, 1987)). Consider the
logical circuit depicted in Fig. 1, which represents a full adder,
i.e. a circuit that can be used for the addition of two bits with
carry-in and carry-out bits. This circuit consists of two AND
gates (A1 and A2), one OR gate (R1) and two exclusive-Or
(XOR) gates (X1 andX2); Comps = {A1, A2, X1, X2, R1}.
The input and output of components c are denoted as in(c)
and out(c), respectively.

The behavior description SD consists of the following ax-
ioms:

¬Ab(c) → out(c) = and(in1(c), in2(c)), for c ∈ {A1, A2},
¬Ab(c) → out(c) = xor(in1(c), in2(c)), for c ∈ {X1, X2},
¬Ab(c) → out(c) = or(in1(c), in2(c)), for c = R1.

These logical rules describe the normal behavior of each in-
dividual component (gate).

2
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The component connections are described as follows:

out(X1) = in2(A2) out(X1) = in1(X2)

out(A2) = in1(R1) in1(A2) = in2(X2)

in1(X1) = in1(A1) in2(X1) = in2(A1) .

out(A1) = in2(R1)

With the observations Obs as indicated in Fig. 1 it is clear
that when assuming the empty diagnosis, D = ∅ — all com-
ponents are behaving normally — 1 will give an inconsis-
tency, as also indicated in the figure (predicted and observed
outputs differ). There are multiple solutions for the diagnos-
tic problem in this case. For example, D = {X1}, D′ =
{X2, R1}, and D′′ = {X2, A2} are diagnoses.

2.2. Weighted Model Counting

2.2.1. Bayesian Networks

A Bayesian network (BN) B = (G,P ) is a directed acyclic
graph G = (V,A) that associates 1–1 random variables Xv

to nodes v ∈ V in the graph (Pearl, 1988). The directed
edges (v, w) ∈ A represent conditional (in)dependence as-
sumptions and P stands for a joint probability distribution of
the set of variables XV defined as follows:

P (XV = xV ) =
∏

v∈V
P (Xv = xv | Xπ(v) = xπ(v)) (2)

Thus, a BN is defined in terms of a (family of) conditional
probability distributions ofXv ∈ XV given the variables cor-
responding to the parents π(v) of v ∈ V in the graph, i.e.,
Xπ(v), specified as P (Xv |Xπ(v)), called conditional proba-
bility tables or CPTs for short in the following.

Posterior probability distributions of the form

P (XU | Evidence), (3)

with ‘Evidence’ a set of observations or measurements con-
cerning particular variables Xv ∈ XV , with typically v 6∈ U ,
U ⊆ V , can be computed based on the specification of a BN
—a process called probabilistic inference or reasoning— us-
ing common axioms of probability theory. However, for real-
life networks advanced algorithms are required as the com-
putation is NP-hard in general and often quite intensive for
real-life networks (Koller & Friedman, 2009).

By exploiting the conditional independence assumptions, BNs
represent concise factorizations of a joint probability distri-
bution. The size of the factorization has direct implications
toward the cost of probabilistic inference. A more expres-
sive model must be used to in order to exploit properties of
CPTs (Chavira & Darwiche, 2008). A prominent way of
achieving this is to find a more concise and canonical repre-
sentation such as a Binary Decision Diagram (BDD) (Bryant,
1986). Compiling a BN to a decision diagram (DD) rep-

Table 1. Three examples of models of the encoding of vari-
able X and associated probability distribution.

Models Associated probability
1 x1 x2 x3 ω1 ω2 W (ω1)W (ω2)=0.8 · 1 =0.8
2 x1 x2 x3 ω1 ω2 W (ω1)W (ω2)=1 · 0.1 =0.1
3 x1 x2 x3 ω1 ω2 W (ω1)W (ω2)=1 · 0.1 =0.1

resentation is commonly referred to as knowledge compila-
tion (Darwiche & Marquis, 2002), or simply compilation.

2.2.2. Encoding

Prior to compiling a BN to a DD, we require an encoding to
transition from the multi-valued domain of discrete random
variables to the Boolean domain. There are multiple ways
to do this. We choose to first translate a BN to a Boolean
formula with dedicated variables to represent probabilities
(Chavira & Darwiche, 2008; Dal & Lucas, 2017).

Conjunctive Normal Form (CNF) from logic, where formulas
consist of conjunctions of subformulas of literals with only
disjunctions, called clauses, is commonly used to facilitate
compilation. We create for every Xv ∈ XV a set of atoms
a(Xv) = {x1, . . . , xn}. Semantically, xi ∈ a(Xv) repre-
sents Xv being equal its ith value. In addition, an atom ωj is
introduced for every unique probability in Xv’s CPT, i.e., ωj
can refer to multiple distinct entries in Xv’s CPT if they rep-
resent the same probability. A clause is introduced for each
entry of the CPT, with an ωj atom that has a weight W (ωj)
that is linked to the actual probability, and W (ωj) = 1. Fi-
nally clauses are added to prevent inconsistent representa-
tions, such as making sure that a variable cannot get multiple
values at the same time. This is illustrated by an example (Dal
& Lucas, 2017)

Example 2.2 (Bayesian Network encoding). Let BN B be
defined for variables {X,Y } with factorization P (X,Y ) =
P (Y | X)P (X). For simplicity’s sake, we focus on just vari-
able X; X has three values, thus the CPT has 3 entries, in
this case only two distinct. To encode X and its probabilities
we create atoms a(X) = {x1, x2, x3}. The atom ω1 is intro-
duced for X = 1, ω2 for X = 2 and X = 3 (as they have the
same probability), with W (ω1) = 0.8, W (ω2) = 0.1.

The CNF representation is as follows:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧
(x1 ∨ ω1) ∧ (x2 ∨ ω2) ∧ (x3 ∨ ω2)

The first clause enumerates the possible values ofX , whereas
the second to fourth clause ensure that X (as a random vari-
able) cannot have more than one value. The last three clauses
link a probability to an actual value of X . The encoding
includes the truth assignments (models) for variable X as
shown in Table 1. Note that the weighted model count sums
to 1.0 for this selection of models. However, there are other
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models of this CNF, e.g., model {x1,x2,x3,ω1,ω2}, model
{x1, x2, x3, ω1, ω2}, etc. Only minimal models sum to 1.0,
i.e., models with the largest number of negations.

2.2.3. Compilation

Now that we have an encoding, we can consider its com-
pilation to a Weighted Positive Binary Decision Diagrams
(WPBDD) (Dal & Lucas, 2017). A WPBDD is an ordered
BDD that represents a concise factorization of a Boolean for-
mula f as a (rooted) directed acyclic graph with decision
nodes, and two terminal nodes labeled with > (true) and ⊥
(false). Each non-terminal node v is labeled with a Boolean
variable var(v) = xv and has two children, high(v) and low(v),
with a set of weight variables weights(v) at the edge to node
high(v) (explaining the adjective ‘positive’ in WPBDD). Each
root-terminal path contains a variable at most once, and in a
particular total or partial order.

A CNF encoding as described above acts as an entry point for
the language compiler (Dudek, Phan, & Vardi, 2020). Such
compilers target different variations of DDs.

The respective DD is built using the typical bottom-up strat-
egy (Bryant, 1986), by applying DD operations to construct
a DD representing the encoded formula from the previous
step. The process of compiling into a respective DD is by
far the most expensive operation, compared to the inference
step, which is linear in the size of the DD as desired.

2.2.4. Inference

Inference is performed through Weighted Model Counting on
the DD, WMC for short (Chavira & Darwiche, 2008; Dar-
wiche & Marquis, 2021). This process sums the weight of
every truth assignment. In the decision diagram, these as-
signments are represented by paths and the weights by edge
labels. Edges to nodes high(v) and low(v) are solid → and
dashed 99K, respectively (see below). Since these paths often
overlap in the DD structure, inference through model count-
ing is linear in the size of the target representation (Darwiche
& Marquis, 2002).

Let’s look at a WPBDD compilation and inference example.
A WPBDD exactly represents the encoding provided. In or-
der to perform inference we can trivially transform the logical
circuit that the WPBDD represents into an arithmetic circuit.

Example 2.3 (Compilation and inference). Consider again
variable X from Example 2.2. For the compiled DD the or-
dering for variable X is ordering x3 ≺ x2 ≺ x1. Reduction
rules specific to WPBDDs allow the removal of the x2 node
to further reduce its size. Each path from the root to the >-
terminal semantically implies evidence. There are three pos-
sible paths shown below. If we have evidence prior to travers-
ing the compiled representation, we only consider the paths
that are consistent with the evidence.

Path Logic Semantics
x3 → > x1 ∧ x2 ∧ x3 X = 3
x3 99K x2 → > x1 ∧ x2 ∧ x3 X = 2
x3 99K x2 99K x1 → > x1 ∧ x2 ∧ x3 X = 1

To perform inference, we need to link to the probabilities that
allows us to compute P (X = 3) = 0.1, by the assignment
(x1, x2, x3) = (⊥,⊥,>).
The tool PARAGNOSIS offers important ways to optimize com-
pilation and inference by partitioning and parallelization (for
details see (Dal et al., 2021, 2023)).

2.3. Mapping to a Bayesian Network

To add a probabilistic aspect to consistency-based diagnosis,
a logical diagnostic problem can be mapped to a Bayesian
network. There are different ways for translating a diagnostic
problem into a Bayesian diagnostic problem. Two of these
will be highlighted. One of these is the traditional method
proposed by Pearl (Pearl, 1988), and implemented later by
Srinivas (Srinivas, 1994), and the other is a more recent adap-
tation introduced by us. The latter one is used for this re-
search, but since it is based on the traditional method both
will be expanded upon.

2.3.1. Pearl’s Method

Following Pearl’s method (Pearl, 1988), in Fig. 2a an abstract
2-component system has been translated into a Bayesian net-
work. Each input and output of a component are modeled
as nodes. A component is modeled as an output node that is
the child of all its input nodes. Note that one of the inputs
of component L is the output of component K and thus the
output node of K is directly linked to the output node of L.
Next to these, per component, a health node H (also called
‘abnormality node’ in the literature) is added as the parent
of the output node. This node corresponds to the abnormal-
ity predicate in MBD and similarly indicates whether or not
the component behaves abnormally: the abnormality literal
of the traditional approach could be mimicked by assigning
the values ‘normal’, corresponding logically to the assump-
tion ‘¬Ab(c)’, whereas the value ‘abnormal’ would corre-
spond to ‘Ab(c)’. However, a disadvantage of this approach
is that health nodes and input nodes are independent; they
only become conditionally dependent when a common child
of input nodes or a descendant of the child is instantiated to a
value (Pearl, 1988).

2.3.2. Method Based on Connected Health Nodes

The method which is used in the present paper no longer
assumes that inputs and health nodes are independent. The
health nodes support enforcing extra dependencies between
the inputs and outputs, and when none of the children or de-
scendants of the children of the input nodes are instantiated.
This method is illustrated in Fig. 2b. Note that in this repre-
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(a) Pearl’s method with health nodes; health nodes shaded.
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(b) New method with health nodes connecting inputs and out-
put; health nodes are shaded.

Figure 2. Two methods of mapping of a simple system model
with two components K and L to a Bayesian network.

sentation, all inputs are explicitly represented in the Bayesian
network and the relationship between the output of the pre-
vious subpart (e.g. component K) and the next subpart (e.g.
component L) is represented by an arc between the output
node and one input node (e.g. the arc OK → I1L). The con-
ditional probability distribution of any connected output node
O, P (O | I1, . . . , In, H), is such that P (O | I1, . . . , In, H =
normal) ∈ {0, 1}, dependent on the value of input variables
Ik, with k = 1, . . . , n.

2.3.3. Establishing a Bayesian Diagnosis

With the logical diagnostic problem mapped to a Bayesian
diagnostic problem, probabilistic inference methods can be
used to derive whether or not the components behave cor-
rectly as expected to form a diagnosis (Pearl, 1988).

Before such derivation can take place, first the evidence, con-

sisting of observed values of inputs and specific outputs, should
be included, which is analogous to the observations ‘Obs’
in MBD. With probabilistic inference methods, the posterior
probabilities of each of the chosen health nodes can be calcu-
lated. Then for a given set of health variables H , a diagnosis
is defined as follows:

D = argmax
h

P (H = h | Evidence,Health-assumptions)

(4)
i.e., the assignment h to H with the maximum probability,
where it is possible to condition on the health variables not
included in H by ‘Health-assumptions’, the other health vari-
ables that are given an (assumed or observed) value. We call
this process assumption-based Bayesian model-based diag-
nosis, or Bayesian MBD for short.

The same method can be used for Pearl’s Bayesian-network
structure of a diagnostic model. However, in that case it is
mandatory to instantiate the last output variables to enforce
dependence between input and health values and one can no
longer simulate various flow schemes.

3. METHODOLOGY

To investigate whether weighted model counting with parti-
tioning offers a suitable and fast algorithm for Bayesian model-
based diagnosis, some Bayesian MBD models were designed.
Unfortunately, it is virtually impossible to get access to large
industrial MBD systems with their associated data for a publi-
cation, because of the industry’s fear of disclosure of
competition-sensitive information to the public domain. For
this reason, we had to resort to designing an artificial model,
that nevertheless was inspired by existing pipe systems as
used in the chemical and oil industry.

The research question that is explored in the remainder of this
paper is whether partitioned positive weighted model count-
ing can effectively deal with large Bayesian MBD models in
such a way that acceptable diagnostic results are obtained.
For this purpose the PARAGNOSIS toolkit was implemented
(Dal et al., 2023).

3.1. Basic Elements

Bayesian MBD requires the development of Bayesian-network
models of systems, where the models consist of components,
where some of those components are identical in nature, and
compositional ways to merge these models together to build
an overall model of a system. The result will be an abstrac-
tion of the real-world system that reflects both structure and
behavior of the real-world system and that can be used for
simulation purposes. In addition for MBD it is necessary to
include behavior modes, e.g., whether the component is be-
having normally or abnormally (other modes are sometimes
also used) for each of the components that could be defec-
tive, which will be represented as health variables. Finally,
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Figure 3. System of connected fluid pipes with one join, one
split, and four flow sensors.

information about the behavior of a component is obtained
through sensors.

3.2. Generating a System

Consider a pipe system, such as the one shown in Fig. 3, that
consists of connected pipes, joints of pipes, and splittings of
pipes (splits) that transport a fluid, e.g., water or oil, and have
an input and output of fluid. The flow of the fluid is measured
by means of flow sensors and is discretized into three states:
‘maxflow’, ‘lowflow’, and ‘noflow’. Each pipe has one flow
coming into it and one flow going out of it; if pipe x behaves
normally:

∀x(PipeIn(x) = v → PipeOut(x) = v)

with v a free variable standing for a state. However, the actual
health status of the pipe is ignored here, and assumed to be
normal. Alternatively, if we want to take into account the
health status and pipe x has a leak, the outgoing flow will be
lower than the incoming flow:

∀x((PipeIn(x) = maxflow ∧ Health(x) = leak)→
PipeOut(x) = lowflow))

whereas for normal health we get:

∀x((PipeIn(x) = v ∧ Health(x) = normal)→
PipeOut(x) = v))

Thus, it is needed to include the health status as an additional
condition. Similar logical specifications can be developed for
the other elements of pipe systems, i.e., the joints and split-
tings.

As we use individual pipe components to develop (generate)
pipe systems of various complexity and size, as is also done
when developing real-life pipe systems, we will number pipe
components from input to output flow of the entire system, in
terms of two parameters: width (from left to right) and height
(top to bottom) of the directed graph (starting with 1). We
come back to this issue in Section 4.

A clear disadvantage is that uncertainty in the health status
and the likelihood that a leak may give rise to low or no flow is

missing in the logical representation. Bayesian model-based
diagnosis will support representing this important aspect of
diagnosis, i.e., the ability to deal with uncertainty, as will be
discussed below.

3.3. Uncertainty and Bayesian-network Components

To model a system that incorporates uncertainty, we need
design Bayesian-network components that correspond to the
various parts of the real system. Based on the mentioned
specifications in the section above, we distinguish pipe, join,
and split Bayesian-network components. The health status
of a pipe component is controlled by a health variable, called
variously ‘JoinHealth’, ‘PipeHealth’, ‘SplitHealth’. As above,
the continuous flow is mapped to discrete values, we distin-
guish three flow values: maximal (maxflow), low (lowflow),
or absent (noflow).

The three basic Bayesian-network components are depicted
in Fig. 4, 5, and 6. These can be put together in various
topologies giving rise to a plethora of pipe systems. In addi-
tion sensors can be added to components to measure the sta-
tus of the flow in the individual pipes. Sensor readings will be
used below as evidence in the experiments to diagnose faults
in the different pipe systems. Software and figures have been
generated using the R language (R Core Team, 2024), the
R-library bnlearn (Scutari, 2024), with GeNIe Modeler2 for
producing graphical figures.

Figure 4. Pipe-shaped component; there is no need to model
the actual pipe as it is sufficient to represent the input and
output of the pipe and how these relate to each other by means
of health modes.

3.4. Compositionality by Probability Distributions

Each pipe is modeled as a flow out of ‘PipeOut’ with one
flow coming into ‘PipeIn’. The prior probability of a pipe’s
health being normal is set to 0.8 (P (PipeHealth = normal) =
0.8). The distribution of the input of the pipe depends on the
output of the previous component in a deterministic manner,

2https://www.bayesfusion.com/genie
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Figure 5. Split-shaped component consisting of a single in-
put and in this case two outputs. In addition, each output is
controlled by a health mode.

Figure 6. Join-shaped component consisting of two (or more)
inputs and a single output that merges the inputs. In addition,
the actual merge is controlled by one health node per input.

i.e., we do not consider defects between components. Since
this structure is the same for every pipe, the CPT of each pipe
is also identical such that the probability distribution

P (PipeOuti | PipeIni = v,PipeHealthi = w)

is the same for each i, but varies for specific values of v andw
as shown in Table 2. In case the component behaves normally,
there is no impact on the flow of the pipes, which reflects
the logical specifications of Section 3.2. Furthermore, the
CPT reflects the impact of a leaking pipe. Given a normal
flow, if the pipe is leaking, there is a high probability the flow
is reduced, and in severe cases, it may even lead to no flow
in the output. If there is low flow in the input, we assume

Table 2. CPT for the output node of a pipe.

PipeOuti
maxflow lowflow noflow

PipeIni PipeHealthi
maxflow normal 1 0 0

leak 0.1 0.8 0.1
lowflow normal 0 1 0

leak 0 0.8 0.2
noflow normal 0 0 1

leak 0 0 1

that a leaking pipe has less impact and there is still a high
probability there is a low flow in the output, though it may be
diminished to no flow.

The split-shaped component is modeled in a similar manner
to a pipe, with the exception that this component contains
multiple health and output nodes. That is, the prior distri-
butions P (SplitHealthi) = P (PipeHealthj), the distribution
of the ‘splittingIn’ is determined by the output in its parent
component, and

P (SplittingOuti|SplittingIn = v,SplitHealthi = w) =

P (PipeOutj |PipeInj = v,PipeHealthj = w)

for values of i, j (instances of the named components), v and
w.

4. EXPERIMENTS AND EVALUATION

We have checked the validity of the proposed models in order
to prove their usefulness. For the purpose of evaluating the di-
agnostic capabilities of our weighted model counting method,
the 3rd aim of the research, we have generated pipe Bayesian
networks ‘pipes-sensors-w-h’ with height h and width w as
described in Section 3.2. This results in w parallel pipes that
run h layers deep. Each pipe in the first layer is directly con-
nected to one pipe in the second layer downstream, and so on,
for h layers. This effectively lengthens the pipes in the first
layer, and creates w parallel pipes of length h. Each pipe in
every layer has a sensor that registers flow or noflow, and is
identified by the coordinate in its name. For instance, ‘sen-
sor2 3’ is the sensor attached to the second pipe in layer 3.

4.1. Experimental Setup

We report some experimental results of our software tool
PARAGNOSIS and various pipe Bayesian MBD models. All
below experiments ran on a system with as CPU an Intel
Hexa Core i7-8750H (2.20-4.10Ghz), 9Mb cache 45W, with
Kingston HyperX 16Gb (2× 8Gb) DDR4 2400Mhz RAM.

Evidence is only set on ‘FlowOut’, ‘FlowIn’, and (some of
the) sensors. Only consistent evidence is considered. This
means that ‘sensor2 i’ ≥ ‘sensor2 j’, for i < j. In other
terms, it is impossible for an upstream pipe to have no flow
and for a downstream pipe to have flow at the same time.
We also only consider FlowIn > FlowOut. When we say
maxflow to lowflow or maxflow to noflow, this means from
FlowIn = maxflow to FlowOut = lowflow, or to FlowOut =
noflow, respectively.

Consider network ‘pipes-sensors-5-2’ (5 parallel pipes, 2 lay-
ers deep). Table 3 shows diagnostic results for maxflow to
noflow, Table 4 for maxflow to lowflow and Table 5 for lowflow
to noflow. To allow quick reading we used the following
abbreviations: ‘pH’ stand for ‘pipeHealth’; ‘jH’ for ‘join-
Health’; ‘sH’ for ‘splitHealth’, respectively. We compute the
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Table 3. Results for network ‘pipes-sensors-5-2’ for maxflow to noflow. Posteriors are computed for health nodes and indicate
the probability of a leak. Probabilities preceded by ‘+’ indicate the posterior’s increase compared to the prior. The following
abbreviations are used: ‘pH’ stands for ‘pipeHealth’; ‘jH’ for ‘joinHealth’; ‘sH’ for ‘splitHealth’.

Sensors Remaining sensors are set to flow Remaining sensors are not set
set to
noflow

3 variables with
highest posteriors

3 variables with most
increased posteriors

3 variables with
highest posteriors

3 variables with most
increased posteriors

sensor1 1
sensor1 2

pH1 1 (0.738)
jH2 (0.390)
jH3 (0.390)

pH1 1 (+0.514)
sH1 (+0.201)
pH1 2 (+0.024)

pH1 1 (0.740)
sH1 (0.388)
jH2 (0.380)

pH1 1 (+0.516)
sH1 (+0.198)
pH1 2 (+0.024)

sensor2 1
sensor2 2

pH2 1 (0.738)
jH1 (0.390)
jH3 (0.390)

pH2 1 (+0.514)
sH2 (+0.201)
pH2 2 (+0.024)

pH2 1 (0.740)
sH2 (0.388)
jH1 (0.380)

pH2 1 (+0.516)
sH2 (+0.198)
pH2 2 (+0.024)

sensor3 1
sensor3 2

pH3 1 (0.738)
jH1 (0.390)
jH2 (0.390)

pH3 1 (+0.514)
sH3 (+0.201)
pH3 2 (+0.024)

pH3 1 (0.740)
sH3 (0.388)
jH1 (0.380)

pH3 1 (+0.516)
sH3 (+0.198)
pH3 2 (+0.024)

sensor4 1
sensor4 2

pH4 1 (0.738)
jH1 (0.390)
jH2 (0.390)

pH4 1 (+0.514)
sH4 (+0.201)
pH4 2 (+0.024)

pH4 1 (0.740)
sH4 (0.388)
jH1 (0.380)

pH4 1 (+0.516)
sH4 (+0.198)
pH4 2 (+0.024)

sensor5 1
sensor5 2

pH5 1 (0.738)
jH1 (0.390)
jH2 (0.390)

pH5 1 (+0.514)
sH5 (+0.201)
pH5 2 (+0.024)

pH5 1 (0.740)
sH5 (0.388)
jH1 (0.380)

pH5 1 (+0.516)
sH5 (+0.198)
pH5 2 (+0.024)

sensor1 2 pH1 2 (0.579)
jH2 (0.390)
jH3 (0.390)

pH1 2 (+0.354)
sH1 (+0.039)
jH2 (+0.011)

pH1 1 (0.444)
pH1 2 (0.444)
jH2 (0.380)

pH1 1 (+0.219)
pH1 2 (+0.219)
sH1 (+0.103)

sensor2 2 pH2 2 (0.579)
jH1 (0.390)
jH3 (0.390)

pH2 2 (+0.354)
sH2 (+0.039)
jH1 (+0.011)

pH2 1 (0.444)
pH2 2 (0.444)
jH1 (0.380)

pH2 1 (+0.219)
pH2 2 (+0.219)
sH2 (+0.103)

sensor3 2 pH3 2 (0.579)
jH1 (0.390)
jH2 (0.390)

pH3 2 (+0.354)
sH3 (+0.039)
jH1 (+0.011)

pH3 1 (0.444)
pH3 2 (0.444)
jH1 (0.380)

pH3 1 (+0.219)
pH3 2 (+0.219)
sH3 (+0.103)

sensor4 2 pH4 2 (0.579)
jH1 (0.390)
jH2 (0.390)

pH4 2 (+0.354)
sH4 (+0.039)
jH1 (+0.011)

pH4 1 (0.444)
pH4 2 (0.444)
jH1 (0.380)

pH4 1 (+0.219)
pH4 2 (+0.219)
sH4 (+0.103)

sensor5 2 pH5 2 (0.579)
jH1 (0.390)
jH2 (0.390)

pH5 2 (+0.354)
sH5 (+0.039)
jH1 (+0.011)

pH5 1 (0.444)
pH5 2 (0.444)
jH1 (0.380)

pH5 1 (+0.219)
pH5 2 (+0.219)
sH5 (+0.103)

posteriors of value leak for all health variables, given the ev-
idence that a set of sensors is set to noflow. This set can be
found in the leftmost column. ‘FlowOut’ and ‘FlowIn’ are
also observed respectively.

We compare two experiments. Columns 2-3 represent the ex-
periment where all sensors are observed. Unobserved sensors
(those not present in column 1) are set to flow. Columns 4-5
represent the experiment where unobserved sensors are not
set. Columns 2 and 4 contain the health variables with the
highest leak probability, whereas column 3 and 5 contain the
health variables with the most increased leak posteriors, com-
pared to the posteriors computed with only ‘FlowOut’ and
‘FlowIn’ in the evidence.

4.2. Observations and Diagnostic Results

The posteriors in Table 3 (maxflow to noflow) show that di-
agnoses are consistent with the evidence. Consider evidence
‘sensor1 1’ and ‘sensor1 2’ equal to noflow and all remain-
ing sensors are set to flow. The most likely location for a
leak is ‘pipeHealth1 1’. When the evidence does not include

values for sensor1 1, we see that pipeHealth1 2 indicates a
leak. Resulting diagnoses, consisting of the highest probabil-
ities for the health variables, seemed to correspond to what
we expected.

When removing the flow sensors from the evidence we see
that the evidence ‘sensor1 2’ does not lead to a definitive leak
(a probability greater than 0.5) as indicated by pipeHealth1 2.
However, pipeHealth1 2 has the highest leak probability along
with upstream pipeHealth1 1. Their posteriors also have in-
creased the most as indicated in the last column. This finding
is also logical, we have not set ‘sensor1 1’ to flow, thus the
leak can still be in any layer.

For Table 4 and Table 5 we see the same behavior, thereby
validating the diagnostic capabilities of our Bayesian MBD
approach.

4.3. Larger Networks

We have created larger systems using the description in Sec-
tion 4.1, and perform weighted model counting using PARAG-
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Table 4. Results for network ‘pipes-sensors-5-2’ for maxflow to lowflow. Posteriors are computed for health nodes and indicate
the probability of a leak. Probabilities preceded by ‘+’ indicate the posterior’s increase compared to the prior. The following
abbreviations are used: ‘pH’ stands for ‘pipeHealth’; ‘jH’ for ‘joinHealth’; ‘sH’ for ‘splitHealth’.

Sensors Remaining sensors are set to flow Remaining sensors are not set
set to
noflow

3 variables with
highest posteriors

3 variables with most
increased posteriors

3 variables with
highest posteriors

3 variables with most
increased posteriors

sensor1 1
sensor1 2

pH1 1 (0.752)
sH1 (0.388)
jH2 (0.264)

pH1 1 (+0.522)
sH1 (+0.201)
pH1 2 (+0.021)

pH1 1 (0.750)
sH1 (0.386)
pH1 2 (0.251)

pH1 1 (+0.520)
sH1 (+0.199)
pH1 2 (+0.020)

sensor2 1
sensor2 2

pH2 1 (0.752)
sH2 (0.388)
jH1 (0.264)

pH2 1 (+0.522)
sH2 (+0.201)
pH2 2 (+0.021)

pH2 1 (0.750)
sH2 (0.386)
pH2 2 (0.251)

pH2 1 (+0.520)
sH2 (+0.199)
pH2 2 (+0.020)

sensor3 1
sensor3 2

pH3 1 (0.752)
sH3 (0.388)
jH1 (0.264)

pH3 1 (+0.522)
sH3 (+0.201)
pH3 2 (+0.021)

pH3 1 (0.750)
sH3 (0.386)
pH3 2 (0.251)

pH3 1 (+0.520)
sH3 (+0.199)
pH3 2 (+0.020)

sensor4 1
sensor4 2

pH4 1 (0.752)
sH4 (0.388)
jH1 (0.264)

pH4 1 (+0.522)
sH4 (+0.201)
pH4 2 (+0.021)

pH4 1 (0.750)
sH4 (0.386)
pH4 2 (0.251)

pH4 1 (+0.520)
sH4 (+0.199)
pH4 2 (+0.020)

sensor5 1
sensor5 2

pH5 1 (0.752)
sH5 (0.388)
jH1 (0.264)

pH5 1 (+0.522)
sH5 (+0.201)
pH5 2 (+0.021)

pH5 1 (0.750)
sH5 (0.386)
pH5 2 (0.251)

pH5 1 (+0.520)
sH5 (+0.199)
pH5 2 (+0.020)

sensor1 2 pH1 2 (0.653)
jH2 (0.283)
jH3 (0.283)

pH1 2 (+0.423)
sH1 (+0.028)
jH2 (+0.015)

pH1 1 (0.459)
pH1 2 (0.459)
sH1 (0.292)

pH1 1 (+0.228)
pH1 2 (+0.228)
sH1 (+0.105)

sensor2 2 pH2 2 (0.653)
jH1 (0.283)
jH3 (0.283)

pH2 2 (+0.423)
sH2 (+0.028)
jH1 (+0.015)

pH2 1 (0.459)
pH2 2 (0.459)
sH2 (0.292)

pH2 1 (+0.228)
pH2 2 (+0.228)
sH2 (+0.105)

sensor3 2 pH3 2 (0.653)
jH1 (0.283)
jH2 (0.283)

pH3 2 (+0.423)
sH3 (+0.028)
jH1 (+0.015)

pH3 1 (0.459)
pH3 2 (0.459)
sH3 (0.292)

pH3 1 (+0.228)
pH3 2 (+0.228)
sH3 (+0.105)

sensor4 2 pH4 2 (0.653)
jH1 (0.283)
jH2 (0.283)

pH4 2 (+0.423)
sH4 (+0.028)
jH1 (+0.015)

pH4 1 (0.459)
pH4 2 (0.459)
sH4 (0.292)

pH4 1 (+0.228)
pH4 2 (+0.228)
sH4 (+0.105)

sensor5 2 pH5 2 (0.653)
jH1 (0.283)
jH2 (0.283)

pH5 2 (+0.423)
sH5 (+0.028)
jH1 (+0.015)

pH5 1 (0.459)
pH5 2 (0.459)
sH5 (0.292)

pH5 1 (+0.228)
pH5 2 (+0.228)
sH5 (+0.105)

NOSIS (Dal et al., 2023). It is clear that the created systems
are particularly strenuous on the inference side, due to the
joining node in the network. Its CPT increases exponentially
when width w increases. Table 6 shows compilation and in-
ference times of these networks. The results reflect the afore-
mentioned comment, as compilation and inference time most
notably increase as the width of the network increases. As a
comparison, the well known Munin network (Jensen & An-
dreassen, 2008) is considered to be large, and has 1041 vari-
ables with 98423 probabilities (Dal et al., 2021). This demon-
strates the inference capabilities of weighted model counting
using PARAGNOSIS (Dal et al., 2023). Fig. 7 show a nearly
linear increase in compilation time with respect to the num-
ber of probabilities in the networks. However, the increase in
compilation and inference time is more exponential in nature
as we increase the width of the network.

5. DISCUSSION AND CONCLUSIONS

Following the analysis of the diagnostic behavior, it appears
that the compositional Bayesian-network structures developed

0
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Figure 7. Compilations time with respect to the number of
probabilities.

in the sections above display behavior that is at least partly
natural and intuitive. For example, a Bayesian model-based
diagnostic model of a pipe system that has no input flow will
raise an inconsistency in its (conditional) probability distri-
bution if its output flow is assumed to be low or maximal.
Another interesting aspect of the behavior is that faults are
assumed to be closest (in terms of path length) to the entered
observations that are incompatible with the expected behav-
ior. This is a consequence of the propagation of probabilistic
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Table 5. Results for network ‘pipes-sensors-5-2’ for lowflow to noflow. Posteriors are computed for health nodes and indicate
the probability of a leaku. Probabilities preceded by ‘+’ indicate the posterior’s increase compared to the prior. The following
abbreviations are used: ‘pH’ stands for ‘pipeHealth’; ‘jH’ for ‘joinHealth’; ‘sH’ for ‘splitHealth’.

Sensors Remaining sensors are set to flow Remaining sensors are not set
set to
noflow

3 variables with
highest posteriors

3 variables with most
increased posteriors

3 variables with
highest posteriors

3 variables with most
increased posteriors

sensor1 1
sensor1 2

sH1 (0.506)
pH1 1 (0.498)
jH2 (0.360)

pH1 1 (+0.293)
sH1 (+0.216)
pH1 2 (+0.042)

pH1 1 (0.508)
sH1 (0.500)
jH2 (0.356)

pH1 1 (+0.303)
sH1 (+0.210)
pH1 2 (+0.044)

sensor2 1
sensor2 2

sH2 (0.506)
pH2 1 (0.498)
jH1 (0.360)

pH2 1 (+0.293)
sH2 (+0.216)
pH2 2 (+0.042)

pH2 1 (0.508)
sH2 (0.500)
jH1 (0.356)

pH2 1 (+0.303)
sH2 (+0.210)
pH2 2 (+0.044)

sensor3 1
sensor3 2

sH3 (0.506)
pH3 1 (0.498)
jH1 (0.360)

pH3 1 (+0.293)
sH3 (+0.216)
pH3 2 (+0.042)

pH3 1 (0.508)
sH3 (0.500)
jH1 (0.356)

pH3 1 (+0.303)
sH3 (+0.210)
pH3 2 (+0.044)

sensor4 1
sensor4 2

sH4 (0.506)
pH4 1 (0.498)
jH1 (0.360)

pH4 1 (+0.293)
sH4 (+0.216)
pH4 2 (+0.042)

pH4 1 (0.508)
sH4 (0.500)
jH1 (0.356)

pH4 1 (+0.303)
sH4 (+0.210)
pH4 2 (+0.044)

sensor5 1
sensor5 2

sH5 (0.506)
pH5 1 (0.498)
jH1 (0.360)

pH5 1 (+0.293)
sH5 (+0.216)
pH5 2 (+0.042)

pH5 1 (0.508)
sH5 (0.500)
jH1 (0.356)

pH5 1 (+0.303)
sH5 (+0.210)
pH5 2 (+0.044)

sensor1 2 pH1 2 (0.376)
jH2 (0.360)
jH3 (0.360)

pH1 2 (+0.171)
jH2 (+0.001)
jH3 (+0.001)

sH1 (0.372)
jH2 (0.357)
jH3 (0.357)

pH1 1 (+0.117)
pH1 2 (+0.117)
sH1 (+0.081)

sensor2 2 pH2 2 (0.376)
jH1 (0.360)
jH3 (0.360)

pH2 2 (+0.171)
jH1 (+0.001)
jH3 (+0.001)

sH2 (0.372)
jH1 (0.357)
jH3 (0.357)

pH2 1 (+0.117)
pH2 2 (+0.117)
sH2 (+0.081)

sensor3 2 pH3 2 (0.376)
jH1 (0.360)
jH2 (0.360)

pH3 2 (+0.171)
jH1 (+0.001)
jH2 (+0.001)

sH3 (0.372)
jH1 (0.357)
jH2 (0.357)

pH3 1 (+0.117)
pH3 2 (+0.117)
sH3 (+0.081)

sensor4 2 pH4 2 (0.376)
jH1 (0.360)
jH2 (0.360)

pH4 2 (+0.171)
jH1 (+0.001)
jH2 (+0.001)

sH4 (0.372)
jH1 (0.357)
jH2 (0.357)

pH4 1 (+0.117)
pH4 2 (+0.117)
sH4 (+0.081)

sensor5 2 pH5 2 (0.376)
jH1 (0.360)
jH2 (0.360)

pH5 2 (+0.171)
jH1 (+0.001)
jH2 (+0.001)

sH5 (0.372)
jH1 (0.357)
jH2 (0.357)

pH5 1 (+0.117)
pH5 2 (+0.117)
sH5 (+0.081)

information through the network which reflects the observa-
tions combined with the associated uncertainty derived from
the conditional probability tables. At first thought, one may
think that this behavior is not compatible with the actual real
world, as one would expect that for identical components, the
likelihood of failure would also be identical independent of
where the component is located in the overall system. How-
ever, as only by observing flow input and output and sensor
data allows one to locate faults, the probabilistic reasoning
provided by a Bayesian model-based diagnostic model right-
fully exploits that information to the maximal extent and does
indeed offer information where to look first.

In principle, the Bayesian-network network structure and its
associated probabilistic parameters can be learned from ob-
servational data of a working real machine, although this will
be associated with some major challenges. Where it would be
straightforward to learn the prior distribution of health vari-
ables from the data, for example for ‘PipeHealth’, it would be
harder to learn the conditional distributions

P (PipeOut|PipeIn = v,PipeHealth = w),

for values of v, w, from data, partly because these proba-
bilities are supposed to represent generic local probabilities,
whereas in real-world systems quite a lot of the local behav-
ior is determined by non-local behavior arising elsewhere in
a system. Measurements that fully explain local behavior
of components will usually not be available. Instead, avail-
able sensor data can be exploited, and basically this requires
the development of new methods to answer questions of how
local probability distributions can be approximated with the
data from real-world systems that can be measured. Since
parameter learning does not appear straightforward, it can be
expected that structure learning will be even harder. However,
here one has to keep in mind that for cyberphysical systems
there often is quite some knowledge available already about
its architecture and functional components, which clearly makes
this problem much less challenging. Thus the positive mes-
sage is that with relatively little effort a good starting point
for developing a Bayesian model-based diagnostic model is
within reach.

It should be mentioned that the example pipe model which
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Table 6. Compilation and inference times for pipes-sensors-w-h, where compilation size is the number of arithmetic operators
in the compiled representation.

Network Number of Number of Compilation Compilation Maginalization
Width w Height h variables probabilities size time (ms) time (ms)

5 10 223 25833 76908 98.165 4.334
5 20 423 28033 128619 116.489 8.927
5 30 623 30233 107223 112.460 6.582
5 40 823 32433 136836 116.275 9.780
5 50 1023 34633 133992 115.188 7.974
5 100 2023 45633 202545 153.610 11.971
5 200 4023 67633 341820 235.962 20.261
6 10 267 143049 127431 905.657 9.245
7 10 311 843561 498813 6085.595 37.000
7 200 5631 902081 645177 6275.068 42.671
8 10 355 5043465 463594 38781.416 36.785

was employed in the research, has some limitations. In the
first place, because of the restriction in our research to prob-
abilistic inference in discrete Bayesian networks. It would
have been more natural to use hybrid Bayesian networks to
represent the behavior of a pipe system, with continuous vari-
ables for the representation of flow and sensor information
and discrete for the health variables. Nevertheless, discrete
variables do allow one to approximate continuous variables
usually to a sufficient degree. Furthermore, in the context of
flow modeling, the assumption that flow can be modeled by
a directed acyclic graph may be questioned, although propa-
gation of probabilistic information goes in both directions, in
and against the direction of the arcs.

The issues mentioned above do not interfere with other con-
clusions concerning the probabilistic diagnostic method de-
signed and whether exact probabilistic inference is feasible
for large diagnostic problems. We have also tested large ver-
sions of our model-based diagnostic models, in order to inves-
tigate the limits of weighted model counting. We are able to
perform weighted model counting in networks that are signif-
icantly larger than the largest networks in the field of Bayesian
networks (Dal et al., 2023).

All in all, this research contributes to ideas on how Bayesian
model-based diagnosis can be applied to large cyberphysical
systems. Future research should shed light on whether the
proposed probabilistic diagnostic methods can be of value in
diagnosing faults in other systems than the pipe systems we
studied.
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ABSTRACT

Modern manufacturing equipment offers numerous config-
urable parameters for optimization, yet operators often under-
utilize them. Recent advancements in machine learning (ML)
have introduced data-driven models in industrial settings, in-
tegrating key equipment characteristics. This paper evaluates
the performance of ML models in classification tasks, reveal-
ing nuanced observations. Understanding model decision-
making processes in failure detection is crucial, and a guided
approach aids in comprehending model failures, although hu-
man verification is essential. We introduce MOXAI, a data-
driven approach leveraging existing pre-trained ML models
to optimize manufacturing machine parameters. MOXAI un-
derscores the significance of explainable artificial intelligence
(XAI) in enhancing data-driven process tuning for produc-
tion optimization and predictive maintenance. MOXAI as-
sists operators in adjusting process settings to mitigate ma-
chine failures and production quality degradation, relying on
techniques like DiCE for automatic counterfactual generation
and LIME to enhance the interpretability of the ML model’s
decision-making process. Leveraging these two techniques,
our research highlights the significance of explaining the model
and proposing the recommended parameter setting for im-
proving the process.

1. INTRODUCTION

Today’s highly automated manufacturing equipment often
provides many configurable parameters to ensure optimal
production and accommodate an increased range of products.
In practice, machine operators and process engineers rely on
a limited set of well-understood key parameters for process
controlling and optimization, overlooking the broader space

*Clemens Heistracher et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited. (*) These
authors contributed equally to this work.

of configurable options and underutilizing the potential to en-
hance equipment effectiveness. The increased demand for in-
dividualization and, consequently, the decrease in batch sizes
amplify this effect and further increase the workload for op-
erators. Recent advances in machine learning have led to
a surge in data-driven AI/ML models deployed in industrial
scenarios for applications such as quality inspection and pre-
dictive maintenance, which have integrated key characteris-
tics and patterns of production equipment.

The demand for explainability becomes crucial to optimizing
complex manufacturing and production processes as mod-
els grow more intricate, resembling “black boxes” that hin-
der users from understanding the rationale behind predic-
tions. Explainable Artificial Intelligence (XAI) methods
address this challenge by providing human-understandable
explanations for data-driven decisions. In XAI, two pri-
mary categories are evident (Molnar, 2020): model-agnostic
and model-specific approaches. Model-agnostic techniques,
such as feature importance and surrogate models, offer in-
sights into decision-making processes across various mod-
els. Conversely, model-specific methods delve into a model’s
intrinsic aspects, such as coefficients in linear regression
or visualizing decision cuts in decision trees. Local and
global scopes characterize explanations, with techniques
like Local Interpretable Model-Agnostic (LIME) (Ribeiro,
Singh, & Guestrin, 2016), and Shapely Additive Explana-
tions (Lundberg & Lee, 2017) offering local insights. An-
other popular approach in XAI is counterfactual explana-
tions (Ates, Aksar, Leung, & Coskun, 2021; Jalali, Haslhofer,
Kriglstein, & Rauber, 2023), which determine changes to in-
put data necessary for altering a model’s output.

In this work, we strive to automate the process of providing
recommendations to machine operators in an interpretable
manner, empowering them to understand and adjust param-
eters effectively for optimal performance (Fig. 1). For this
purpose, we introduce MOXAI tuning, a data-driven approach
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leveraging existing pre-trained AI/ML data models to opti-
mize manufacturing machine parameters by applying model-
agnostic counterfactual explanations. Given that numerous
manufacturing optimization and predictive maintenance tasks
are framed within a binary classification –distinguishing be-
tween healthy and damaged assets, or regression – predict-
ing health indicators or remaining useful life, counterfactuals
emerge as a compelling solution.

To demonstrate the concept and applicability of the proposed
approach, we apply MOXAI on the AI4I 2020 Predictive
Maintenance Dataset (Matzka, 2020), which is a simulated
dataset designed to mirror authentic predictive maintenance
data typically observed in industrial manufacturing settings.
Applying MOXAI to those samples where the model predicts
machine failures, we can analyze the rationale behind these
predictions and obtain suggested modifications to fine-tune
different process parameters and prevent machine failures.
By querying MOXAI for explanations, we assume that mit-
igating the reasons behind the model failure prediction will
result in an enhanced quality outcome. MOXAI explanations
are constrained to a subset of features directly or indirectly
controlled by the operator. Evaluations involve comparing
model suggestions with production settings to quantify the
impact on machine failures, by applying LIME to verify the
explanations discovered.

The rest of the paper is structured as follows: First, an
overview of the related work is given in Section 2 . Section
3 introduces MOXAI. Section 4 describes the experimental
setup considered for evaluation purposes, presenting experi-
mental results. Further discussion on results and MOXAI’s
approach is presented in Section 5. Finally, Section 6 con-
cludes the paper.

2. RELATED WORK

Two main categories emerge in the domain of XAI: model-
agnostic and model-specific approaches. Model-agnostic
techniques do not rely on specific model characteristics and
can generally be applicable across various models to provide
insights into their decision-making process (Molnar, 2020).
Such methods include feature importance (e.g., shapely val-
ues (Lipovetsky & Conklin, 2001)) and model approxima-
tion techniques (e.g., surrogate models (Ribeiro et al., 2016)).
Conversely, model-specific approaches study the intrinsic as-
pects of a model and offer a deeper understanding of its
learning structure. For instance, coefficients of a linear re-
gression model, visualization of decision cuts of a shal-
low decision tree, or more complex approaches such as
Layer-Wise propagation explanations (Bach et al., 2015),
DeepLift (Shrikumar, Greenside, & Kundaje, 2017), and
Class Activation Map (Zhou, Khosla, Lapedriza, Oliva, &
Torralba, 2016), which visualize the distributed weights of
a neural network.

The scope of the explanations provided by either of the
aforementioned techniques can be either local (explaining
one sample) or global (explaining all the samples) (Molnar,
2020). Local Interpretable Model-Agnostic (LIME) (Ribeiro
et al., 2016), and Shapely Additive exPlanations (Lundberg &
Lee, 2017) are popular techniques that produce local expla-
nations. Recent studies suggest that the comprehensibility of
local explanations, specifically when including the counter-
factuals, increases the human understanding of the model’s
decision boundary (Jalali et al., 2023). Counterfactual expla-
nations are “hypothetical samples that are as similar as pos-
sible to the sample that is explained while having a different
classification label” (Ates et al., 2021). Therefore, we argue
that combining a local explainability approach with generat-
ing counterfactuals can help an end user understand the small
meaningful changes that cause the shift in the model’s deci-
sion with minimal computational effort.

Many XAI approaches have been applied in the literature
to address manufacturing optimization problems. Schock-
aert et al. (Schockaert, Macher, & Schmitz, 2020) propose
an approach for local interpretability of a model optimized
on training data, which forecasts the temperature of the hot
metal a blast furnace produces. Combining a Variational Au-
toEncoder (VAE) with LIME significantly improves gener-
ated synthetic samples for training the ML model. Seiffer
et al. (Seiffer, Ziekow, Schreier, & Gerling, 2021) develop a
framework to detect temporal changes in manufacturing data
with SHAP values to enhance error prediction. The frame-
work detects and handles concept drift so that the gener-
ated ML models are of sufficient quality in the long term.
Jakubowski et al. (Jakubowski, Stanisz, Bobek, & Nalepa,
2021) developed an LSTM autoencoder model for detecting
anomalies in the hot rolling process to produce steel coils.
They applied SHAP explanations to determine the reasons for
anomalies. Regarding model interpretability, Jakubowski et
al. (Jakubowski, Stanisz, Bobek, & Nalepa, 2022) employed
the SHAP method and counterfactual explanations to gain in-
sight into the decisions made by their trained models. These
explanations effectively highlighted the features responsible
for the abnormal state of the mill or work rolls, helping iden-
tify the anomaly’s root cause. Ameli et al. (Ameli et al., 2022)
employ XAI methodologies to determine the specific sen-
sors exhibiting anomalies, enhancing decision-making within
glass production monitoring. These sensors are localized,
analyzing the cause of anomalies by saliency XAI. The ap-
proach of Senoner et al. (Senoner, Netland, & Feuerriegel,
2022) involves the development of a data-driven decision
model by leveraging high-dimensional data with nonlinear re-
lationships alongside SHAP to discern the intricate relation-
ships between production parameters and manufacturing pro-
cess quality.

In summary, XAI methods are sporadically utilized in pro-
duction and predictive maintenance to optimize models and
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Figure 1. MOXAI information flow for parameter recommen-
dations.

enhance understanding. The approach involving counterfac-
tuals has been minimally employed thus far despite its con-
siderable promise in this domain.

3. METHODOLOGY

The general idea of MOXAI is to extract suggestions for
production parameters (i.e., part of the AI/ML model input
features) leading to a desired manufacturing target, relying
on pre-trained AI/ML models, and using XAI local explana-
tions through so-called counterfactual instances. A counter-
factual instance is a synthetic data point similar to the orig-
inal instance but with a different model outcome. It is cre-
ated by perturbing the model’s input parameters within cer-
tain bounds. Our goal through counterfactual explanations
is to answer the question “what changes to the input (pro-
duction) parameters of the model would have resulted in a
different prediction?”. MOXAI allows for faster fine-tuning
of the configuration of a production process by iterating over
instances for which the production output is not as desired.

3.1. Automatic Parameter-Settings’ Recommendation

We developed MOXAI to guide machine operators toward
better production parameters in case of product quality de-
viations. We envision a scenario in which process control,
quality inspections, or data-driven models indicate a devia-
tion, and the operator is uncertain how to modify the config-
uration. MOXAI leverages methods from explainable AI to
suggest an optimized configuration based on the most recent
sample. It requires an existing data model for product quality
prediction based on the process parameter and configuration.
Our model-agnostic method requires the changeable machine
configuration to be part of the model input.

We use the framework for Diverse Counterfactual Explana-
tions (DiCE) (Mothilal, Sharma, & Tan, 2020) to generate
recommendations. We leverage counterfactuals to suggest
machine parameters that produce good product quality ac-
cording to the data model. DiCE aims to generate action-
able counterfactual sets, ensuring that individual counterfac-
tual examples are feasible and diverse. To achieve this, DiCE
adapts diversity metrics through diversity via Determinantal
Point Processes (Kulesza, Taskar, et al., 2012) and incorpo-
rates feasibility using proximity constraints and user-defined
constraints. Process parameters are optimized by extracting
the model’s capability to determine which parameters lead to
a high-quality product. It also addresses sparsity by consid-
ering the minimal number of features that must be changed
to transition to the counterfactual class. Additionally, it al-
lows users to specify constraints on feature manipulation,
such as box constraints on feasible feature ranges, to ensure
the practicality of counterfactual examples within real-world
constraints. The MOXAI workflow is depicted in Figure 1.

3.2. Human-Guided Correction of Model Failures

To understand the model’s decision boundary for detecting
defected cases from no-defect cases, we apply LIME, which
also offers understandable visualizations for operators and
developers to understand why the model failed to detect de-
fective samples. LIME produces instance-based explanations
by estimating the decision boundary of the black-box model
within a narrow neighborhood. The underlying assumption
is that a linear model can effectively approximate the lo-
cal decision boundary of the black box. The coefficients of
this linear model then elucidate the contribution of each fea-
ture to the prediction of a sample within this neighborhood.
Consequently, LIME’s explanations are represented by fea-
ture value boundaries. These boundaries signify the impact
of each feature; when the feature values fall within these
boundaries in a given local neighborhood, they influence the
model’s decision toward or away from a particular class.

MOXAI’s correction algorithm utilizes LIME and examines
the top five common explanations provided by this approach
for all instances. It performs the following steps: it counts
the frequency of these explanations; it then ranks the expla-
nations based on their frequency counts. Next, it records the
lowest and highest bounds observed for the most influential
feature in the explanations. Human input may be needed from
a domain expert who has viewed the data and understands the
feature boundaries at this stage. This is necessary because
LIME sometimes presents an upper or lower-bound inequal-
ity. In such cases, we need to determine the missing bound-
ary. The algorithm then iterates over the generated list and
replaces the corresponding feature in the explanations with
a randomly generated float within the boundary range. We
continue the iteration if this alteration does not rectify the
model’s prediction. If the alteration corrects the prediction,

3

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 657



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Table 1. Results of trained models on the test set.

Recall Precision F1-Score
Nearest Neighbor (KNN) 0.97 0.97 0.97
Decision Tree (DT) 0.99 0.99 0.99
Random Forest (RF) 0.99 0.99 0.99
Gradient Boosting (GBM) 0.99 0.99 0.99
Neural Network (MLP) 0.97 0.94 0.96

Table 2. Detailed results of the trained decision tree on the
test set.

Accuracy Recall Precision F1-score
HDF 0.99 0.95 0.93 0.94
PWF 0.99 0.92 0.89 0.90
OSF 0.99 0.73 0.87 0.78

Machine-Failure 0.99 0.99 0.99 0.99

we proceed to the next misclassified sample. We further em-
phasize that this approach merely identifies the approximate
decision boundary of the model rather than identifying the ac-
tual cause of the defect. We can only observe the parameter
responsible for the model’s misclassification, which may or
may not directly correlate with the underlying cause of the
defect. The outcomes of this algorithm are discussed in Sec-
tion 4.3.

4. EXPERIMENTAL SETUP AND RESULTS

We demonstrate MOXAI’s operation using the AI4I dataset, a
synthetic dataset commonly used in the scientific community.
The AI4I dataset covers a realistic industrial use case and pro-
vides an analytical definition for most error types, which can
be used to validate corrections as suggested by MOXAI. The
dataset consists of 10,000 samples with five numerical fea-
tures of a milling process, a categorical feature for different
product types, and the target variables, which describe the
state of five error types:

• Tool wear failure (TWF): The tool fails after a random
up-time between 200 - 240 minutes.

• Heat dissipation failure (HDF): The tool fails due to
small temperature differences between the tool and air
and slow rotational speeds.

• Power failure (PWF): The tool fails for very high or very
low power, defined as the product of torque and rota-
tional speed.

• Overstrain failure (OSF): Product variant-dependent er-
ror for high tool wear and torque combination.

• Random failures (RNF): A randomly assigned error type.

We exclude TWF and RNF failures from the evaluations due
to their random component, as we require an analytical defi-
nition of the error for validation.

Figure 2. Power Failure (PWF) healthy and defect samples in
the test set, as well as generated counterfactual samples, for
rotation speed vs. torque of the milling process.

4.1. Data Preprocessing and Modeling

The machine learning model is the core of our approach,
and we trained different models following standard best prac-
tices. We use a stratified split of 80% of the data for train-
ing/validation and 20% for testing, resulting in 7714 samples
for the healthy state and 234 defects, of which 115 are HDF,
94 are PWF, and 95 are OSF – note that some machine defects
are a combination of multiple failures. The imbalance in the
data can be seen as an indication for up-sampling approaches
such as SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer,
2002). Still, our experiments showed no significant improve-
ment, and our reported models are trained on the provided
data only. We performed experiments using five different
model architectures implemented by scikit-learn1: k-nearest
neighbors , Decision Tree, Random Forest, Gradient Boost-
ing, and Neural Network, and report the results in Table 1,
as well as the breakdown of the best-performing model in
Table 2, where we see that the detection of the HDF and
PWF are more trivial than ODF, which is consistent among
the models. Therefore, we can assume that the misclassifica-
tion of machine failure is potentially caused by detecting the
OSF.

4.2. Parameter-Setting Recommendations

MOXAI uses DiCE as an explainer backend, which was ini-
tialized using the trained model and the training data. We
use the genetic algorithm provided by DiCE, as it supports
parameters that prioritize counterfactuals similar to training
data and thus avoid regions in the parameter space that are
not well defined due to missing training data. We allow vari-
ation in all features, but real-life use cases will likely require
limiting the parameters that can be modified at the machine.
1https://scikit-learn.org
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Table 3. Accuracy of suggested parameters.

KNN DT RF GBM MLP
HDF 0.89 1.0 1.0 0.94 0.78
PWF 0.91 1.0 1.0 1.0 0.71
OSF 0.58 0.95 0.95 0.84 0.47
overall accuracy 0.81 0.98 0.98 0.93 0.68

Figure 3. Pairplot of the test set and created counterfactual
samples, for the five different numerical features characteriz-
ing the milling process.

To evaluate MOXAI, we use the analytic definition of errors
provided by the AI4I dataset creators. For each defective
sample of the test set, we use MOXAI to calculate a sug-
gested set of machine parameters. Figures 2 and 3 depict the
healthy and defective samples in the test set and the generated
counterfactuals. We take the error definition to determine if
the solution proposed by MOXAI actually solved the prob-
lem and corresponded to a healthy product. We report the
percentage of successful corrections as accuracy in Table 3.

4.3. Correction of Model Failures

We generate LIME explanations for each failed sample using
the models discussed in the preceding section. We encounter
21 failed samples, comprising 15 false negatives (FNs) and
six false positives (FPs). Through the analysis of modeling
separated failure modes, we noticed that these misclassifica-
tions predominantly stem from the model’s failed attempt to
detect PFW and OSF accurately. We extract the explanations
using the algorithm detailed in Section 3.2. To correct false
positives (FPs), we randomly generate float values within
the approximate feature range identified by LIME to pro-
duce counterfactual instances. We leverage our understand-
ing of value ranges given by dataset providers, contributing

Figure 4. LIME’s local explanations for a misclassified sam-
ple as not a machine failure (FN).

Figure 5. LIME’s local explanations for a sample correctly
classified as a machine failure (TP).

to failures in each specific mode, to rectify errors in parame-
ter settings. Similarly, we apply this method to false negatives
(FNs), mostly from inaccuracies in process temperature val-
ues. By generating counterfactual instances, we illustrate the
adjustments required in parameter values to identify defective
samples accurately. In Figure 4 and Figure 5, we demonstrate
a comparison of a true positive (correctly detected machine
failure) with a scenario where the model predicted a failure
as ”not a failure” with low confidence (the prediction proba-
bility for the class Failure is 0.47) explained by LIME. The
plot shows that, even though the features Air temperature,
Torque and Tool wear are positively contributing to this pre-
diction being a failed sample, the values of Rotational speed
and Process temperature are shifting the model’s decision to-
wards the class ”not a Failure”. MOXAI suggests a minor
change of Process Temperature to a value slightly smaller
than 311.10, creates a counterfactual, and corrects this pre-
diction. In practice, the domain expert should verify whether
this change is valid and does not contradict the definition of
this failure mode.

5. DISCUSSION

The evaluation of model performance in a classification task
unveils nuanced observations. While all models exhibit sat-
isfactory accuracy in data classification, their effectiveness
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in generating reliable counterfactual samples varies. No-
tably, tree-based models emerge as the most robust, surpass-
ing alternative methodologies, such as Multi-Layer Percep-
tron (MLP) and K-Nearest Neighbors (KNN). Furthermore,
an analysis of error types reveals differences among model
performances. Specifically, most models demonstrate profi-
ciency in addressing tool wear (PWF) and heat dissipation
(HDF) errors but struggle when confronted with errors aris-
ing from multiple product types (OSF). These findings un-
derscore the importance of assessing classification accuracy
and considering models’ ability to provide dependable coun-
terfactual samples and their efficacy in handling diverse error
types. Moreover, the current state of MOXAI is limited to the
parameters within the proximity of its training set. Therefore,
it cannot suggest optimizations for unseen production scenar-
ios. One approach to address this limitation could be the us-
age of digital twin solutions that are more flexible when it
comes to approximating new parameters and production set-
tings.

We underscore the significance of comprehending the
model’s decision-making process in failure detection and why
these particular counterfactuals were suggested. A guided
approach aids in understanding why a model failed and
whether the model’s identified correlations are logical. While
MOXAI offers an interpretable and human-in-the-loop sys-
tem for comprehending model failures and suggesting mean-
ingful samples tailored to this specific use case, the semi-
automatic counterfactuals produced by our human-guided ap-
proach could benefit from considering feature co-linearities
and interactions, and a domain expert should verify them to
exclude nonsensical examples. This process is crucial for
gauging the model’s reliability and assessing the suitability of
a fully automated counterfactual generation module. There-
fore, the operator can plainly trust the model’s recommen-
dations to choose the best settings based on the explanations
provided by LIME’s output.

6. CONCLUSION

The approach of XAI to enhance data-driven process tun-
ing for optimizing production or predictive maintenance is
promising. MOXAI proposes a data-driven, XAI-powered
approach to optimizing manufacturing machine parameters,
relying on pre-trained ML models of any nature. We have
trained different ML models for failure prediction in a pop-
ular synthetic dataset representing a realistic industrial sce-
nario, applying MOXAI’s information flow to identify poten-
tial corrections to improve failure samples and improve un-
derstanding of the operation of these ML models.

DiCE is a key element in automatically generating counter-
factual explanations, which can assist operators in adjusting
process settings so that machine failures or degraded produc-
tion quality can be reduced. Applying LIME explanations

to address false predictions within our model proved insight-
ful. We successfully rectified both false positives and false
negatives by analyzing failure modes and generating counter-
factual instances based on LIME insights. Additionally, our
demonstration of LIME’s output underscores its potential to
enhance model decisions’ interpretability.

Enhancing the understanding of counterfactual methods is
important for future advancements. This ensures that such
methods foster a causal understanding for human operators
while avoiding any risks of biased, sub-optimal, or erroneous
explanations.
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ABSTRACT

This paper presents a Natural Language Processing (NLP)
method aimed at detecting faults within field failure reports
of drilling tools. It builds on the definition of entities specif-
ically matched to our unique requirements. These entities
have been annotated within the dataset under the guidance of
a Subject Matter Expert (SME), laying a foundation for our
NLP method. By utilizing a model based on bidirectional en-
coder representations from transformers, the method achieves
an F1-score of 88% in identifying entities and consequently
detecting faults within field failure reports. This work is part
of a long-term project aiming to construct a failure analysis
and resolution system for drilling tools.

1. INTRODUCTION

The oil and gas industry relies heavily on logging tools that
operate in extreme environmental conditions, including ele-
vated temperatures, vibrations, and pressures. Such condi-
tions can accelerate the degradation of tools, leading to po-
tential failures. These failures not only compromise opera-
tions by providing inaccurate information but also result in
delayed deliverables, tool repair, or even cancellation of the
entire operation. Such setbacks translate into nonproductive
time and substantial financial losses. Efficiency and speed in

Corina Maria Panait et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the maintenance process are critical when a logging tool fails.
The maintenance team tackles the task of navigating exten-
sive unstructured data to identify patterns of failures. Stream-
lining this maintenance workflow is essential to expedite the
turnaround time of the tool, achieving its swift return to op-
erational readiness and minimizing nonproductive intervals
and associated financial losses. Manual analysis of these data
proves extremely time-consuming in the context of an indus-
try where avoiding downtime is a priority.

While Prognostics and Health Management (PHM) methods
have been successfully utilized to enable predictive mainte-
nance, this approach has its limitations (Mosallam, Laval,
Youssef, Fulton, & Viassolo, 2018; Mosallam, Kang, Youssef,
Laval, & Fulton, 2023; Mosallam, Youssef, et al., 2023; Kang
et al., 2022). It primarily relies on equipment sensor data
and does not take into account the rich source of informa-
tion in maintenance logs, such as failure reports, asset perfor-
mance, maintenance policies, and failure patterns collected
during the life cycle of asset management. Through comput-
erized analysis, i.e., NLP, it is possible to make the process
considerably more efficient (Stenström, Al-Jumaili, & Parida,
2015). For instance, (Juan Pablo Usuga Cadavid & Fortin,
2020) utilized an NLP model named CamemBERT (Bidirec-
tional Encoder Representations from Transformers) to predict
the criticality and duration of maintenance issues based on
free-form text comments from operators (Martin et al., 2019).
Despite the unstructured and imbalanced nature of mainte-
nance logs, the authors suggest that their approach can pro-
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vide significant advantages in coupling production schedul-
ing with maintenance logs, enabling the adaptation of plan-
ning to the shop floor. Despite the recent and rapid develop-
ment of the NLP field, extracting meaningful insights from
maintenance logs remains a challenging task. (Brundage,
Sexton, Hodkiewicz, Dima, & Lukens, 2021) argue that cur-
rent NLP tools are not suitable for engineering data and pro-
pose a domain-driven approach called Technical Language
Processing (TLP). They suggest that key NLP tools need to
be adapted to the maintenance domain based on available
maintenance text-based data. For example, (Naqvi, Ghufran,
et al., 2022) introduced a TLP approach utilizing a Case-
Based Reasoning (CBR) framework paired with a domain-
adapted BERT model to address maintenance issues through
textual data from mining operations. This approach, partic-
ularly the use of a Transformer-based Sequential Denoising
Autoencoder (TSDAE) for unsupervised fine-tuning and co-
sine similarity for case assessment, underscored the impor-
tance of domain-specific model training (Wang, Reimers, &
Gurevych, 2021). (Lee & Marlot, 2023) proposed Oil &
Gas domain-relevant entity and relationship extraction from
drilling reports. The approach involves training a Named En-
tity Recognition (NER) model to identify key information or
failure symptoms in the reports, such as equipment, opera-
tions, or events, which can be considered a fault detection
task from maintenance logs. This is followed by a Rela-
tion Extraction model that identifies the relationships between
the entities and recommends early mitigation using historical
data. The authors also applied data augmentation techniques
to increase the data samples and improve the model’s per-
formance in detecting rare entities. Finally, (Naqvi, Varnier,
Nicod, Zerhouni, & Ghufran, 2022) propose an NLP method
for fault diagnostics from maintenance logs. The study finds
that fine-tuning CamemBERT outperforms classical NLP ap-
proaches and that data augmentation using deep contextual-
ized embedding further improves performance.

We present an NLP-based fault detection approach leveraging
a NER model based on the BERT framework for Logging-
While-Drilling Service (LWD) (Hansen & White, 1991) (Fig-
ure 1). This approach addresses equipment failures within
unstructured data, offering a robust solution for the oil and
gas industry. The BERT model, chosen for its advanced con-
textual understanding of words in text, excels at identifying
and classifying key entities related to equipment failure and
operational procedures within textual data. Custom and ac-
tionable entities were defined through extensive data labeling
to enhance the model’s proficiency in recognizing relevant in-
formation.

The rest of this paper is structured into four sections. Section
2 presents a description of the failure investigation process.
The method and the results are presented in section 3 and 4,
respectively. Finally, section 5 concludes the paper.
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Figure 1. Multifunction LWD Service.

2. FAILURE INVESTIGATION PROCESS

Field incidents and maintenance data are utilized to construct
the dataset required for this work. These data are stored across
various business systems in diverse formats. Field incidents
are reported in the Failure Investigation Business System known
(FIBS). Field Crew generates a field failure report which in-
cludes the following details:

1. Basic event information, including event date, location
and the suspected failed technology.

2. The primary content is the “Field Failure Description,” a
free-text input where the Field Crew documents all their
observations concerning the event sequence and the fail-
ure symptoms of suspected technology. This part is the
cornerstone of our analysis, as identifying historical events
with similar failure symptoms is crucial.

3. The “Remedial Actions Attempted,” also a free-text in-
put, where the Field Crew records all the actions that they
attempted to restore the tool to normal operation.

Maintenance Data is primarily stored in a maintenance busi-
ness system. A field failure Work Order (WO) is generated
for each technology implicated in field incidents and flagged
by the field crew when creating the FIBS report. The main
section of each Work Order for technicians involved in failure
investigations is the failure description section, where they
provide free-text input on analysis, testing, and findings. This
segment serves as a valuable source of insights and knowl-
edge, helping others who may encounter similar failures with
the same technology. After completing the investigation and
if any failed components are identified, this failed part is then
recorded in a dedicated business system. The failed compo-
nents are confirmed immediate causes in all historic incidents,
which can be utilized to establish a failure Pareto chart, illus-
trating the probability of specific causes for distinct failure
symptoms. The failure investigation process is summarized
in Figure 2.

Report Field 
Incident

Generate Field 
Incident Report

Generate 
Maintenance 

WO

Failure Analysis 
& Resolution

Figure 2. Failure Investigation Process.

A critical part of this process is analyzing failure reports of
LWD service to determine whether the downhole conditions
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have had any detrimental effects on the operability. Due to the
complexity of this service, analysis of this vast amount of data
is very time-consuming and prone to error if performed man-
ually. Therefore, fault detection from maintenance logs is of
utmost importance for operation. An automated tool, which
can determine different failure symptoms from maintenance
logs with minimal user input, removes variability, eliminates
human error and provides an efficient decision on the required
maintenance in a fraction of the time. The reliability bene-
fits are clear and provide significant cost savings both for the
client in terms of reduced Non-Productive Time at the rigsite
and for the Original Equipment Manufacturer in terms of re-
duced Materials and Supplies (M&S) during maintenance and
troubleshooting.

3. PROPOSED METHOD

Currently, this work focuses solely on one technology, a multi-
function Logging-While-Drilling tool designed for oil and
gas well drilling applications. This technology integrates a
comprehensive suite of formation-evaluation measurements
(resistivity, porosity, density, natural gamma-ray, etc.) and
drilling parameters (temperature, pressure, shock, vibration,
etc.) into a single housing. Given the domain-specific nature
of the data, it was necessary to create bespoke entities tailored
to our unique requirements. This crucial task was carried out
by an SME. The SME annotated key entities within a vetted
dataset, laying the groundwork for a robust NLP model. This
model is adept at identifying and categorizing phrases that fall
into predefined entity groups, each critical for deciphering the
complex narratives within the data:

1. Failure Symptom: This category captures the explicit de-
tails of failures, such as ’png stopped firing’ or ’no poros-
ity data.’ Identifying these allows for a precise under-
standing of the failure characteristics.

2. Data Channels: These entities encompass technical log
parameter values like ’state changing to 2304.’ Their
recognition is vital for correlating technical readings with
failure events.

3. Operational Actions: This group includes actions taken
in response to issues, such as ’downlink to shutdown
png.’ Understanding these actions aids in assessing the
effectiveness of operational responses.

4. Drilling Conditions: These entities report on the physical
conditions during drilling, like ’top cement was tagged.’
Recognizing these conditions is essential for contextual-
izing failures within their operational environment.

The proposed method consists of three steps: data collection,
data preparation, and modelling, as illustrated in Figure 3.

SLB-Private

256 Failures From 2019 
Onwards Data Collection

- Text Preprocessing

- Entity Annotation

- Annotation Formatting

Data Preparation

Fault Detection Model 
Through Token 

Classification Using BERT
Modeling

Figure 3. Proposed Method.

3.1. Data Collection

The dataset comprises 256 failure descriptions, extracted from
internal database tables, focusing on data from the year 2019
onwards. This time restriction was applied because the ma-
jority of relevant and validated data, as identified by the SME,
begins from this period.

3.2. Data Preparation

The data processing involved three main steps: text prepro-
cessing, entity annotation, and adaptation to the dataset for-
mat of the (Hugging Face, Accessed: 2024-05-27) library,
a widely-used platform that provides pre-trained models for
natural language processing tasks:

1. Text Preprocessing: In this step we concentrated on re-
moving non-alphanumeric characters and converting all
text to lowercase to ensure uniformity and reduce com-
plexity in the dataset. Additionally, we removed sections
of text that originated from application-dependent for-
matting, such as incident dates and job numbers, as these
did not contribute valuable information for fault detec-
tion.

2. Entity Annotation: We utilized syntactic strategies to en-
sure qualitative consistency throughout the entire dataset.
A significant decision in this process was to include verbs
and adverbs in all entity categories. This approach was
adopted to maintain grammatical consistency across en-
tities, which is crucial for reducing the risk of misclassi-
fication. The annotation was executed by the SME using
the Doccano application, resulting in a JSON (JavaScript
Object Notation) file, a format used for storing structured
data. This file contains failure descriptions and lists of
three chained elements, detailing the starting character,
ending character, and associated category for each en-
tity. While only 256 reports were labeled, the annotated
data itself is extensive, with each failure description often
containing multiple annotated phrases and entities.
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Figure 4. Hugging Face IOB Formatting.

3. Annotation Formatting: We converted generated annota-
tions into a format compatible with the Hugging Face to-
ken classification paradigm. After validating the model,
a corresponding tokenizer was utilized to divide the text
into subwords. Subsequently, the character spans from
Doccano were converted into Inside-Outside-Beginning
tagging (IOB) format, a requirement for Hugging Face.
An example of such formatting can be observed in Fig-
ure 4, where some tokens in a sentence are assigned the
corresponding IOB formatted FAILURE SYMTPOM la-
bels. The total amount of BI tags is 11, 333 as illustrated
in Figure 5. The tokens ids and attention masks were also
retained during the final conversion to the Dataset object.
This object adheres to best practices for data splitting in
cross-validation, featuring a distribution of 204 instances
for training, 26 for validation, and 26 for testing.

Figure 5. Bar Distribution Graph of BI-tags.

3.3. Modeling

Formally, we can define every failure description report, X ,
as a sequence of tokens:

X = {x0, x1, ..., xn} (1)

where xi represents the ith token in the report.

Our objective is to obtain a sequence of predicted labels, Y ,

Y = {y0, y1, ..., yn} (2)

where yi is the label of the xi token.

For this purpose, we began by examining various unsuper-
vised learning models to extract insights from text. However,
we found that at the time of solution development, none were
trained on an industry-specific corpus. Most available NER
models were designed to identify general entities like date,
location, person, and company, which did not align with our
business-specific needs.

After completing the annotation of entities, we undertook a
comparative analysis of several NLP models. This included,
but was not limited to, Spacy NER, ”distilbert-base-uncased”,
and ”bert-base-cased”. Our objective was to identify the most
suitable model for our fault detection use case. Among these,
”bert-base-cased” demonstrated initially promising results. Con-
sequently, we focused on fine-tuning its hyperparameters to
optimize performance.

The BERT model is pretrained on two tasks: masked lan-
guage modeling and next sentence prediction. Each token in
BERT is represented by a combination of its token embed-
ding, segment embedding, and position embedding. During
our fine-tuning process, we utilized BERT’s default activa-
tion function, GELU, along with a final classification layer
that employs a softmax function to determine class proba-
bilities. For token classification, we extract the hidden layer
representation of each token and apply the softmax function
to compute the probabilities for each class.

The formula for the softmax function is detailed below, where
K is the number of classes and zi is the output of the classifi-
cation layer:

Z = [z0, z1, ..., zK ] (3)

s(zi) =
ezi

∑K
j=1 e

zj
(4)

4. RESULTS

In line with the time constraints of our business objectives, we
explored the hyperparameter space for the ”bert-base-cased”
model exhaustively. To evaluate our model’s performance,
we primarily focused on the F1-score, a metric derived from
precision and recall. The formulas for precision, recall, and
F1-score are provided below:

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

F1− score = 2(
precision ∗ recall
precision+ recall

) (7)
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Entity Precision Recall F1-score No. of Instances
B-DATA CHANNELS 0.92 0.94 0.93 3816
I-DATA CHANNELS 0.81 0.74 0.78 2378
B-DRILLING CONDITIONS 0.50 0.18 0.27 227
I-DRILLING CONDITIONS 0.59 0.27 0.37 1073
B-FAILURE SYMPTOM 0.63 0.80 0.71 450
I-FAILURE SYMPTOM 0.72 0.79 0.75 2711
B-OPERATIONAL ACTIONS 0.50 0.78 0.61 460
I-OPERATIONAL ACTIONS 0.59 0.49 0.54 1708
macro avg 0.69 0.64 0.68 4762
weighted avg 0.88 0.88 0.88 4762

Table 1. Classification Report of BERT Checkpoint.

This effort led to a satisfactory model checkpoint, achieving
an F1-score of 88%. This score reflects the model’s precision
and reliability in recognizing entities (See Table 1).

The most effective entities identified by the model were Data
Channels and Failure Symptom, with weighted averages of
81% and 74% respectively. These averages were calculated
by multiplying the F1-score by the corresponding support
value and dividing by the sum of support for each BI-tags
pair. Operational Actions showed average performance with
a 55% score, while Drilling Conditions lagged at 35%. The
lower performance in these categories correlates with a re-
duced token support count, indicating the model’s sensitivity
to class imbalances.

Our analysis of the text data revealed that the weakly pre-
dicted categories had less variance in our validated data sam-
ple, underscoring the need for more representative data for
these categories. Other insights pertain to the nature of tech-
nology failures. We observed that there are a limited number
of ways in which failures manifest, and this limitation aided
the model’s performance in identifying well-represented enti-
ties. Specifically, certain phrases indicating a specific techlog
parameter value or failure symptom recur more frequently in
the failure descriptions.

5. CONCLUSIONS

In this paper, we presented a fault detection NLP-based method
from maintenance logs. The methods builds on identifying
four technical-defined entities, essential to the failure inves-
tigation process. This approach entailed fine-tuning ”bert-
base-cased” model which achieved an F-1 score of 88%, un-
derscoring the model’s precision and reliability in recogniz-
ing critical entities.

The practical implications of our work are significant, with
the potential to improve operational decision-making through
enhanced pattern recognition in historical failure data. The
impact of our findings is geared towards improving opera-
tional efficiency, reducing downtime, and cutting costs.

In future work, we aim to expand our research from identi-
fying failures to comprehensively diagnosing them. This will

involve a more detailed examination of failure events to ex-
tract insights into their causes and impacts. By advancing
from simple detection to in-depth diagnostics, we will offer
not just identification but also solutions.

Additionally, we intend to develop a Case-Based Reasoning
system that will complement our NLP framework. This sys-
tem will feature a similarity model to gather and compare
similar cases, bringing forward solutions that have been ef-
fective in the past. This enhancement is expected to not only
pinpoint failures but also recommend validated resolutions,
thereby streamlining the path from problem recognition to
problem-solving.

The integration of the CBR system is expected to leverage
historical insights and expert knowledge, evolving into a dy-
namic model that improves with each new dataset. This step
will mark a significant advance in intelligent fault detection
systems, pushing the boundaries of what is currently possible
in operational efficiency and safety.

REFERENCES

Brundage, M. P., Sexton, T., Hodkiewicz, M., Dima,
A., & Lukens, S. (2021). Technical lan-
guage processing: Unlocking maintenance knowl-
edge. Manufacturing Letters, 27, 42-46. doi:
https://doi.org/10.1016/j.mfglet.2020.11.001

Hansen, R., & White, J. (1991). Features of logging-
while-drilling (lwd) in horizontal wells. In Spe/iadc
drilling conferencespe/iadc drilling conference. doi:
10.2118/21989-MS

Hugging Face. (Accessed: 2024-05-27).
https://huggingface.co/.

Juan Pablo Usuga Cadavid, S. L. R. P., Bernard Grabot,
& Fortin, A. (2020). Valuing free-form text data
from maintenance logs through transfer learning with
camembert. Enterprise Information Systems, 16(6),
1790043. doi: 10.1080/17517575.2020.1790043

Kang, J., Varnier, C., Mosallam, A., Zerhouni, N., Youssef,
F. B., & Shen, N. (2022). Risk level estimation
for electronics boards in drilling and measurement

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 666



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

tools based on the hidden markov model. In 2022
prognostics and health management conference (phm-
2022 london) (p. 495-500). doi: 10.1109/PHM2022-
London52454.2022.00093

Lee, M., & Marlot, M. (2023). Information Re-
trieval from Oil and Gas Unstructured Data with
Contextualized Framework. , 2023(1), 1-5. doi:
https://doi.org/10.3997/2214-4609.202332039

Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y.,
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ABSTRACT

Traditionally, companies have relied on vibration based con-
dition monitoring technologies to implement condition based
maintenance strategies. However, these technologies have
drawbacks, such as the requirement of contact accelerome-
ters. As an alternative, acoustic condition monitoring is non-
invasive and allows for easy deployment. Furthermore, the
use of microphones potentially enables the monitoring of mul-
tiple components using a single sensor, making the moni-
toring system scale better with machine or production com-
plexity. However, microphone signals typically show a low
signal-to-noise ratio (SNR), impacted by the high level of
background noise which is often present in industrial envi-
ronments. Particularly, the traditional method for monitoring
the health condition of rolling element bearings, based on as-
sessing whether the squared envelope spectrum of the bear-
ing signal exceeds a given threshold at the fault frequencies,
cause too many false positives when applied directly to mi-
crophone signals. It is therefore crucial to develop strategies
to increase the robustness of acoustic monitoring methods. In
this paper, we present and evaluate two data-driven strategies
to robustly diagnose bearing faults from a microphone signal.
Our proposed strategies are noise weighting based on the de-
tection of background noise, and an artificial intelligence (AI)
model that uses as input a combination of the traditional bear-
ing fault frequencies and the mel spectrum of the microphone
signal. These methods leverage both domain knowledge and
data-driven techniques to increase the detection robustness.
Our approach is implemented as a model trained and tested
on bearing accelerated lifetime tests performed in the Smart
Maintenance Lab setup at Flanders Make. Our results show
that the use of our proposed strategies leads to significant im-

Kerem Eryılmaz et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

provements in diagnostic performance and time to first detec-
tion over noise-unaware acoustic monitoring methods.

1. INTRODUCTION

Condition monitoring involves the continuous monitoring of
machine parameters to detect changes that are indicative of a
developing fault. This a key component of condition based
maintenance, the strategy that schedules maintenance actions
based on the current health diagnosis of machine components,
with the goal of reducing equipment downtime and total main-
tenance cost. The detection of faults in rolling element bear-
ings is of special interest, since they are critical components
of rotating machinery, and their faulty signals are often masked
under other dominant sources (Randall, 2011). The use of
accelerometers is the most common approach for monitoring
bearing and gear faults, as vibrations often carry early infor-
mation of their incipient damages (Lee et al., 2014).

There exist a wide range of well-established signal process-
ing methods that are applied to vibration signals in order to
estimate the health condition of a bearing. One of the most
successful methods is envelope analysis, whose comprehen-
sive description is given in (Randall & Antoni, 2011). It relies
on the extraction and tracking of the fault characteristic fre-
quencies in the squared envelope spectrum (SES) of the vibra-
tion signal generated by the bearing. As their name suggests,
these frequencies are related to the bearing faults, and contain
an increasing amount of energy as faults become more seri-
ous. For bearings operating under conditions of low load and
low rotational speed, a different method based on stochas-
tic resonance is proposed and shown to outperform envelope
analysis in (Ompusunggu, Devos, & Petre, 2013).

However, a disadvantage of diagnosis techniques based on vi-
bration analysis is that the accelerometers should be mounted
close to the rotating component of interest. Consequently,
several accelerometers are needed to monitor multiple bear-
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ings, and accessibility constraints may render this impossible.

As an alternative to overcome these limitations, acoustic non-
contact sensors such as microphones have recently drawn at-
tention mainly for two reasons. First, they allow for easier
deployment, as they do not need to be physically mounted by
bolts, glue or magnets. Second, microphone signals may ac-
quire information from several bearing signatures, potentially
enabling the monitoring of multiple components with fewer
sensors than in schemes based on accelerometers. Neverthe-
less, microphones will unavoidably collect signals from un-
desirable noise sources mixed with the signals emitted by the
bearings. In industrial environments, these noise sources are
generally quite strong and varied in nature, leading to micro-
phone signals with low signal-to-noise ratio (SNR) that result
in poor diagnosis performance. For this reason, dedicated
methods to increase the robustness to background noise are
crucial in acoustic monitoring.

Due to the wide array of different noise sources present in
industrial environments, data-driven strategies are a power-
ful tool to increase the robustness of acoustic monitoring.
In a data-driven strategy, healthy and damaged bearings are
classified by a data-driven model trained using a set of rel-
evant acoustics features. In (Mian, Choudhary, & Fatima,
2022), six sound quality features from microphone signals
were used to train a support vector machine to diagnose bear-
ing damages. For the diagnosis of bearing, rotor and stator
faults in induction motors, a frequency domain feature ex-
tractor method combined with a nearest neighbour classifier
is proposed and shown to perform well in (Glowacz, 2019).

Another commonly used strategy to achieve robust acoustic
monitoring relies on microphone arrays and beamforming.
The works presented in (Cardenas Cabada, Leclere, Antoni,
& Hamzaoui, 2017; Ricardo Mauricio, Denayer, & Gryllias,
2022, 2023), and references therein, show that this strategy
can produce good diagnosis results for bearing monitoring
using beamforming. However, the requirement of multiple
microphones and precise positioning increases the practical
complexity of implementing this solution. For this reason,
we consider beamforming strategies outside of the scope of
this work, and focus on data-driven strategies using a single
microphone.

In this paper we propose two data-driven methods to increase
the robustness of the diagnosis of bearing faults using acous-
tic sensing. Our first approach is noise weighting based on
the detection of background noise, and the second one is an
artificial intelligence (AI) model whose input is a combina-
tion of the bearing fault frequencies and the mel-spectrum
of the microphone signal. These methods integrate both do-
main knowledge and a data-driven technique, and they are
trained and tested on bearing accelerated lifetime experiments
performed in the Smart Maintenance Lab setup at Flanders
Make. The goal is to evaluate the performance of our pro-

posed methods, and show that acoustic monitoring is a cost
effective and practical alternative to vibration monitoring.

The rest of this paper is structured as follows. In Section
2, the well-established envelope analysis method for bearing
fault diagnosis is reviewed, and an explanation of its poor per-
formance when applied to acoustic sensing is provided. Our
two proposed data-driven methods for robust acoustic bear-
ing fault diagnosis are detailed in Section 3. A description of
the experimental setup is given in Section 4, which includes
the performed bearing accelerated lifetime experiments, the
acoustic scene, and the parameters of the signal processing
and AI models. The performance of our proposed methods is
evaluated and discussed in Section 5. Finally, the main con-
clusions are summarized in Section 6.

2. PROBLEM STATEMENT

Rolling element bearings are a crucial component in a wide
variety of rotating machinery. However, over time they can
develop faults such as surface fatigue defects or wear. For
localized faults, as the rolling elements strike a fault in the
inner or outer race, an impulse is generated that excites high
frequency resonances on the structure between the bearing
and the sensor location.

2.1. Vibration-based bearing fault diagnosis

The vibration signals from a faulty bearing can be modelled
as a modulated blend of several signal components: an impul-
sive signal associated with the fault, the high frequency sig-
nals related to the the dynamics of other machine components
such as the shaft and gears, the modulation between these sig-
nals and additional noise. The well-established method for
bearing diagnostics is the so-called envelope method, which
first enhances the impulsive signal generated by the fault, and
then estimates the energy at the fault characteristic frequency
and its harmonics from its squared envelope spectrum (SES).
A complete explanation of the method is provided in (Randall
& Antoni, 2011).

In this paper we focus on inner race faults, for which the fault
characteristic frequency is the ball pass frequency, inner race
(BPFI), given by

fBPFI =
nfr
2

{
1 +

d

D
cosϕ

}
, (1)

where fr is the shaft speed (frequency), n is the number of
rolling elements, d is the diameter of the rolling elements, D
is the pitch diameter , and ϕ is the contact angle. Other fault
characteristic frequencies are the BPFO (ball pass frequency,
outer race) and the BSF (ball spin frequency), corresponding
respectively to outer race and rolling element faults.

In order to quantify the presence and severity of an inner race
fault, we use as a feature the median of the SES value at the
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Figure 1. The squared envelope spectrum (SES) of the signal
produced by a bearing with an inner race fault, acquired with
an accelerometer (top) and a microphone (bottom). The BPFI
and its first three harmonics are encircled in blue. The shaft
frequency, BPFO and BDF (twice the BSF) are indicated for
the sake of completeness.

BPFI and its harmonics. Throughout the rest of the paper, we
refer to this feature as the BPFI feature. Mathematically, it is
expressed as

ξBPFI = median
k
{Y (kfBPFI)} , k ∈ {1, . . . , nharm}, (2)

where Y (kfBPFI) denotes the peak magnitude of the SES at
the k-th harmonic of the BPFI, median

k
{·} denotes the me-

dian value of the set indexed by the integer k, and nharm is the
number of harmonics considered. Finding the peaks is done
by searching the maximum SES magnitude around the the-
oretical fault frequency (Eq. 1) and its harmonics, within a
pre-defined range tolerance.

2.2. Noise-unaware acoustic diagnosis

The direct application of diagnosis based on the fault char-
acteristic frequencies, such as the BPFI, to acoustic sensing
presents two problems. The first is that microphone signals
are generally weaker than vibration signals, due to the larger
distance between the microphone and the bearing. An ex-
ample of this issue is provided in Figure 1, which shows a
comparison of the SES from an accelerometer and a micro-
phone signal produced by a bearing with an inner race fault.
The BPFI and its first three harmonics can be easily identi-
fied in the accelerometer SES, while they cannot be clearly
distinguished from the noise floor in the microphone SES.

Figure 2. Comparison of the BPFI feature ξBPFI between an
accelerometer (top) and a microphone signal (bottom) over a
bearing accelerated lifetime.

Figure 3. Comparison of the distribution of microphone-
based BPFI feature ξBPFI between healthy and faulty states
over the entire dataset.

The second problem is that the background acoustic noise is
considerably stronger than the noise present in a vibration sig-
nal acquired by an accelerometer, and more diverse in nature
due to the wide variety of potential noise sources present in
industrial environments. As a result, microphone signals typ-
ically have a significantly poorer SNR. Moreover, due to this
background noise, there will be additional energy present in
the BPFI and its harmonics even when the bearing is healthy,
leading to a great number of false positives over the bearing’s
lifetime.

This matter is illustrated in Figure 2, where a comparison is
shown between the BPFI feature of an accelerometer and a
microphone signal over the lifetime of a bearing in one of
our accelerated lifetime experiments. The experimental setup
and conditions are described in Section 4. It can be readily
seen that the BPFI feature in the accelerometer signal dis-
plays a clear distinction between the healthy and faulty states
of the bearing, while the BPFI feature in the microphone sig-
nal exhibits many spikes during the healthy state, leading to
an unreliable diagnosis of the bearing inner race fault. Fig-
ure 3 further demonstrates the difficulty by showing the great
overlap between the distributions of BPFI feature values ac-
quired through the microphone for bearings in healthy and
faulty states.
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Figure 4. Diagram of the noise-unaware method with shallow
AI for diagnosis of bearing inner race faults with acoustic
sensing. The diagram would represent the baseline method
by removing the shallow AI and the RMS feature.

The simplest strategy to enhance the diagnostic performance
using the BPFI feature is to introduce a smoothing step. This
method, with the choice of a median filter for smoothing, is
what we consider our baseline for comparing the performance
of diagnostic methods in this paper.

A more refined step is to introduce a shallow AI model before
smoothing. In our case, this shallow AI is a two-layer fully
connected neural network (NN) whose input features are the
BPFI feature ξBPFI and the RMS value of the microphone sig-
nal. Both methods do not take the presence of acoustic noise
explicitly into account, so we refer to them as noise-unaware
methods. In particular, the BPFI and RMS features are very
poor informants on the presence of background noise, hence
the shallow AI can learn very little about rejecting undesired
disturbances.

Figure 4 displays a diagram representing noise-unaware di-
agnosis with shallow AI and smoothing. The same diagram
would represent the baseline method by removing the RMS
feature and the shallow AI block.

3. METHODS FOR ROBUST ACOUSTIC BEARING FAULT
DIAGNOSIS

In this section we describe the two data-driven methods that
we propose to increase robustness to noise in acoustic bear-
ing fault diagnosis. As explained in Section 2, background
noise introduces unreliability in the form of a high amount of
false positives. The goal becomes therefore to reduce these
false positives while retaining as much of the true positives as
possible.

3.1. Noise-aware smoothing

Noise-aware smoothing aims to refine the health indicator
calculated from the BPFI feature by taking into account the
noise level present at each interval of time. To achieve this,
a weighted median filter is applied to the raw health indica-
tor over an interval of the last N points, where the weights
are designed such that the influence of each point is inversely
proportional to its noise level. A diagram of the diagnosis
process including this strategy is shown in Figure 5.

The weighted median filter works as follows. If we are given
a series of predictions x0, ..., xt with noise levels d0, ..., dt ∈

Figure 5. Diagram of noise-aware smoothing for diagnosis of
bearing inner race faults with acoustic sensing.

[0, 1], and a window size N , the noise-weighted prediction at
time t would be computed as follows:

1. Assign a weight to every prediction xt′ as 1− dt′ .
2. Sort predictions xt−N , ..., xt and keep their associated

weights wt−N , ..., wt in that order too.

3. Compute the cumulative weight for each item xt′ , i.e.∑t′

a=t−N wa.

4. The item where the cumulative weight exceeds half of
the total weight is the weighted prediction, i.e. x′t at time
t such that

∑t′

a=t−N wa ≥ 1
2

∑t
w=t−N wa

Median smoothing follows the same procedure, except that
all the weights are set to 1, reducing it to a regular median
filter.

In order to obtain a noise level, each time interval is assigned
a score that represents the likelihood that an undesired acous-
tic disturbance is present in it. For our case, an undesired
disturbance is defined as any short-time sound that is not in-
formative about the phenomenon being monitored, i.e., all
sound events not generated by the bearing of interest itself.
This excludes stationary background noise as well as distur-
bances that take last longer than a round of data acquisition
(ten (10) seconds in our case).

This score is computed as the maximum of the output of a
collection of noise detectors. These detectors are designed
to indicate acoustic disturbances that can be characterized as
events. This means any sounds whose presence in time, al-
though it may be repeated, is limited. Examples include tools
getting dropped, sporadic speech, various machinery turning
on or off. Specifically, we implemented detectors targeting
disturbances with the following characteristics:

Narrow-band disturbances: This detector indicates the pres-
ence of noise in a specific frequency band. In our experi-
ments, the sources of this kind of disturbances were a pump
and a forklift present in our laboratory.

High frequency disturbances: This detector indicates the
presence loud, complex noises that have a lot of energy in
high frequency bands. In our experiments, the source of this
kind of disturbances was a neighboring experimental setup
that kept loudly dropping off metal pipes.

4
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Figure 6. Example of the output of the detector for general
loud disturbances. The regions circled correspond to intervals
where no disturbance is detected.

General loud disturbances: A detector for loud events, de-
signed to capture sudden changes in the root mean squared
(RMS) value of the signal. This takes into account the fact
that the bearings do not cause such changes at any point in
their operation.

Speech disturbances: Voice Activity Detection (VAD) is a
field of active research with many mature results. For this
reason, we chose to utilize a VAD solution, provided by the
Silero project (SileroTeam, 2021), based on a pre-trained neu-
ral network.

All detectors, except those for speech and general loud distur-
bances, require a characterization of the acoustic disturbances
in the environment where the bearing of interest is located.
An example of the output of the detector for general loud dis-
turbances is shown in Figure 6. This detector captures some
loud events that do not correspond to our known disturbance
sources, marked as unknown. It also reacts to the pump acti-
vation, since it produces sudden changes in the RMS value of
the signal. Capturing the same disturbance with several de-
tectors is beneficial, as we are interested in catching as many
as possible rather than determining their type. The regions
of low disturbance score, that appear circled in the graph, are
those given higher weight by noise-aware smoothing.

3.2. Noise awareness with deep AI and hybrid features

This method aims to utilize a deep AI model to obtain a reli-
able health indicator of bearing faults from acoustic informa-
tion. The main idea is to introduce and train a deep AI model
that uses adequately general features extracted from micro-
phone recordings of healthy and faulty bearings. At a high
level, it operates as a generalized way to clue the model in
about what parts of the frequency spectrum are useful to pay
attention to, and which parts are best to ignore. This model
acts in combination with the very specific fault frequency fea-
tures, thus integrating a data-driven technique with domain
knowledge. The diagram in Figure 7 represents the diagnos-
tic process that combines the indicators from both the BPFI
feature and the deep AI-model.

The advantages of using a deep AI model are twofold. The
first one is that it can learn complex patterns during the train-
ing process, leading to better diagnostic performance. The

Figure 7. Diagram of deep AI-based noise awareness for di-
agnosis of bearing inner race faults with acoustic sensing.

second one is that, as long as sufficiently varied examples
of disturbances are included during the training phase, it can
learn to work with many kinds of noise sources.

The features for this method need to represent the relevant
bearing fault information while being of reasonable dimen-
sionality. For this purpose, the features we chose are the mel-
spectrogram of the acoustic signal. This is a spectrogram ob-
tained by a mel filter bank, a set of half-overlapped triangular
filters equally spaced on the mel scale (Rabiner & Schafer,
2010). Since this is a logarithmic scale for frequency, the fil-
ters are narrower for low frequency bands and wider for high
frequency bands.

For training, we chose a supervised approach, where we use
as labels the output of anomaly detection from the accelerom-
eter signal as ground truth. The features are normalized using
their values at the start of the experiment, as the absence of
normalization would be too sensitive to microphone gain and
positioning.

There are several choices for the deep AI model, such as a
deep neural network, a recurrent neural network, a tempo-
ral convolutional network or a transformer. In this work, our
choice is a deep neural network (DNN), whose specifics are
given in Section 4.3.

4. EXPERIMENTAL SETUP

The bearing datasets used in this study are collected in Flan-
ders Make’s Smart Maintenance Living Lab (Ooijevaar et al.,
2019). This lab is developed as an open test and develop-
ment platform and aims to support the adoption of condition
monitoring technologies in the industry. It consists of seven
identical drive train sub-systems. The setups are designed to
perform accelerated lifetime testing of bearings and run bear-
ings to their end-of-life. The accelerated lifetime test allows
to create surface fatigue faults in bearings and monitor the
fault evolution and accumulation during the (accelerated) life.

4.1. Bearing test rig and accelerated lifetime experiments

One of these experimental setups to perform the accelerated
lifetime test is shown in the middle image of Figure 8. The
setup comprises of a single shaft with a test bearing. The shaft
is supported by a support bearing on each side. The test bear-
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Figure 8. Illustration of the initial bearing state (left), the
experimental test rig setup designed to perform accelerated
life tests (middle), and the final state, a surface fatigue fault
at the inner race of the bearing (right).

ing is lubricated by an internal oil bath. The setup is driven
by a motor at a rotation speed up to 3000 RPM. In this work,
we focus on experiments driven at 2000 RPM. Each setup
is equipped with an accelerometer, temperature sensor, load
sensor and speed sensor. The radial accelerations are mea-
sured at a sampling frequency of 50 kHz by an accelerometer
attached to the bearing housing. The rotational speed and ra-
dial load of each setup can be controlled, such that each setup
can operate at stationary and non-stationary operating con-
ditions. An industrial Beckhoff control platform is used to
acquire and store the sensor signals and to control the speed
and load of each setup.

In total more than 70 bearing accelerated life tests have been
performed on a FAG 6205-C-TVH deep groove ball bearing
resulting in surface fatigue faults at the inner race. Two mech-
anisms are used to accelerate the bearing lifetime:

• A high radial load up to 9 kN (C/P = 1.6) is applied to
the bearing outer ring with a hydraulic cylinder.

• Before the start of the test a small initial indentation of
approximately 300 µm was created in the bearing inner
race using a Rockwell C hardness tester. This indentation
is used as a local stress riser and represents a local plas-
tic deformation caused by, for instance, a contamination
particle.

The accelerated life time tests are stopped as soon as 20g
peak-to-peak accelerations are reached, resulting in severe
rolling contact surface fatigue at the inner race (Halme & An-
dersson, 2009). The start and end condition of the inner race
of one of the test bearing are shown in the left and right im-
ages of Figure 8.

4.2. Acoustic setup

The acoustic signals are acquired through two B&K 4189A21
microphones sampled at 50 kHz. One of them was placed
under the safety cover of the bearing test setup, and the other
outside of the cover, as showed in Figure 9. These micro-
phones will be referred to respectively as IntMic and ExtMic

(a) Microphone inside the
safety cover, referred to as
IntMic.

(b) Microphone outside the
safety cover, referred to as
ExtMic.

Figure 9. Illustration of microphone positions used for the
experimental recordings.

Figure 10. Illustration of the acoustic scene.

throughout the rest of the paper.

The experimental setup is situated in a large laboratory area
at Flanders Make’s facilities in Leuven, which has an uncon-
trolled and reverberant acoustic environment shown in Figure
10. It is a concrete room that contains many different kinds
of setups such as drivetrains, looming machines etc., some-
times running simultaneously. There is also human activity
with technicians and engineers running and maintaining the
setups, or going about their daily activities. Due to the vary-
ing sizes of the setups here, sometimes small vehicles like
forklifts or the crane integrated into the laboratory can also
operate here. This makes the background noise potentially
quite complex.

Specifically for the dataset we collected, there are a few com-
mon sources of noise that are often present, and we chose
them as our focus for techniques that need us to character-
ize the kind of background noises that need suppressing. The
most consistent, and arguably the simplest, disturbance is that
coming from the hydraulic pump used to apply load on the
test bearing. This pump activates roughly every minute in or-
der to keep the pressure, and thus the load, constant. This cre-
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Figure 11. The spectrogram of an instance of pump activation
with a faulty bearing being tested, captured by the ExtMic mi-
crophone. The pump activity is highlighted inside the green
rectangle.

ates a very audible and consistent noise that is quite apparent
in the signal, as can be readily observed in the spectrogram
presented in Figure 11. The second common disturbance is
a sharp, impulsive noise made by a nearby setup dropping
metal pipes in a container. This happens once or twice a
minute. Finally, on multiple occasions, there are people who
are either walking or standing around the setup while in con-
versation. These are usually captured by the microphones,
and constitute a third kind of disturbance we are interested in.

4.3. Processing configuration

The feature extraction is performed on segments of 10 sec-
onds. For the BPFI feature, the tolerance of the SES peak
search around the BPFI and its harmonics is set to 1.5% of
the theoretical frequency (Eq. 1). The number of harmonics
nharm for the calculation of ξBPFI (Eq. 2) is set to 4. The mel
spectrogram is calculated on 64 mel bands. The features are
normalized using Z-score normalization, where the mean and
standard deviation are computed on the first 30 minutes of
the corresponding experiment. In experiments that lasted for
more than one day, this calculation is done for each day.

Our dataset consists of two groups of run-till-failure exper-
iments, all at 2000 RPM, where the bearing developed an
inner race fault. The first group is characterized by contin-
uous monitoring, where the sensors (accelerometer and mi-
crophones) constantly acquired data. This group contains 11
experiments, 7 of which run till failure and 4 of them ended
prematurely. The second group contains 5 experiments were
periodic monitoring of 1 second every 10 seconds was ap-
plied, 3 of them run till failure and 2 of them ended prema-
turely. This group is only used for training purposes. For
cross-validation purposes, the dataset is split in three folds.

In addition to the captured data, a set of ground truth labels
is also provided. It should be noted here that this labelling is
not based directly on the physical state of the bearing, since it
would not be available without stopping the test and disman-
tling the bearing, but based on analysis of the data captured
by the accelerometer. Using this labelling the moment in time
where the bearing starts having faulty behavior is determined.
Data prior to this moment is then considered as healthy, and
data afterwards is considered faulty.

For the deep AI model, we choose a deep neural network
(DNN) with an input layer, three hidden layers of 32, 16 and
8 units, and an output layer.

5. RESULTS AND DISCUSSION

In this section, we evaluate and compare the performance
of both noise-aware and noise-unaware methods for bearing
fault diagnosis using the microphone ExtMic signals, as its
location outside of the safety cover of the setup is the most
realistic. For clarity, we provide a summary of the methods
evaluated in the following list.

1. Noise-unaware methods: These methods, described in
Section 2.2, do not take the presence of noise explic-
itly into account. A diagram illustrating both methods
is shown in Figure 4.
(a) Baseline: The baseline method is based on the BPFI

feature with median-smoothing.
(b) Shallow AI: This method uses the BPFI and RMS

features as input to a two-layer fully connected NN
(shallow AI) and median-smoothing to achieve a di-
agnosis result.

2. Noise-aware methods: These methods aim to increase
their robustness to noise, as explained in Section 3.
(a) Noise-aware smoothing: The method described in

Section 3.1, where the weights of the smoothing fil-
ter depend on the detected noise level. Its diagram
is shown in Figure 5.

(b) Deep AI with hybrid features: The method de-
tailed in Section 3.2. It combines the BPFI and
RMS features with mel spectrum features, where
the latter are the input of the DNN (the deep AI
model). It uses median-smoothing to obtain a di-
agnosis result. Its diagram is shown in Figure 7.

(c) Deep AI combined with noise smoothing: This
method is a combination of the two previous meth-
ods, i.e., the methods 2a and 2b.

5.1. Performance metrics

We use several metrics to assess the diagnostic performance
of the proposed methods.

• EPR: The point on a precision vs. recall plot where these
two metrics are equal. A high score indicates a high ratio
of true positives with respect to both predicted positive
samples and real positive samples. Expressed as a per-
centage.

• ROD: Rate of detection, the rate at which faults are de-
tected before the safety stop, at a given precision value,
equivalent to recall. In our case, we compute this value
at 99% precision. More formally, if TP and FN denote
respectively the true positive and false negative counts,
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then
ROD =

TP

TP + FN
, (3)

where TP
TP+FP > .99. Expressed as a percentage.

• TOFD: Average time of first detection in seconds, i.e,
the time between the occurrence of the fault and the first
time the model detects its, for a given precision value. In
our case we compute this value at 99% precision, and it
is only considered if the ROD is 100%. In the same way
as our ground truth labels, the occurrence of the fault
is defined based on accelerometer data. Note that this
metric can be defined w.r.t. any source more reliable than
the acoustic signal we are using. Formally, this metric is
computed as

1

N

N∑

n=1

tfault,n − tdetection,n, (4)

where ROD = 1.0, tdetection,n is the time of detection,
and tfault,n is the time the fault occurred, both for the
n-th experiment.

Regarding the TOFD metric, note that there is always some
delay between the occurrence of a fault and its detection.
There are two main sources of this delay. The first one is re-
lated to smoothing, and is not affected by the fact that we are
running accelerated lifetime tests. This means that it would
remain constant (for a given smoothing filter) even in regular
testing. The second is the time gap between the fault being
available to a vibration sensor versus it being available to an
acoustic sensor. This delay pertains to the evolution of the
fault, and therefore scales with the fault accelerations applied
during the testing procedure. If we were to run regular life-
time tests, these delays would be multiplied by a correspond-
ing factor. This means that, while the first delay is adjustable,
the second delay is a consequence of the physics of the sys-
tem and can only be reduced so much. It is a hard constraint
on acoustic monitoring.

5.2. Performance results

The performance metrics for our evaluated methods are dis-
played in Table 1.

5.2.1. Performance of noise-unaware methods

It can be clearly seen that the baseline method’s performance
is quite poor, since its EPR is barely over 50 %, and at 99%
precision it is only able to detect 14% of the faults.

The introduction of the shallow AI causes a significant jump
in model performance, where it can now reach 100% ROD at
a precision level of 99%, and an EPR point of 69%. How-
ever, note that the TOFD of 1520 seconds, about 25 minutes,
is quite high, due to the required size of the smoothing win-

Table 1. Performance results of the evaluated methods.

Method EPR ROD TOFD
Baseline 55% 14% -

Shallow AI 69% 100 % 1520 sec

Noise-aware smoothing 72% 100 % 1031 sec

Deep AI & hybrid features 79% 100 % 605 sec

Deep AI & hybrid features
+ noise-aware smoothing 81% 100 % 600 sec

Figure 12. Example of health indicator obtained from the
shallow AI method before and after median smoothing.

dow to reach a high precision. An example from the health
indicator obtained by the shallow AI method is displayed in
Figure 12, both before and after median smoothing. It can
be observed that the shallow AI allows for a clear distinction
of the faulty state when the fault actually develops, but it is
the smoothing that removes the high amount of false posi-
tives. However, each process introduces a noticeable delay in
the health indicator, which is expected to be dependent on the
particular characteristics of the background noise.

5.2.2. Performance of noise-aware methods

The use of noise-aware smoothing increases the EPR to 72%,
maintains the ROD of 100%, and its TOFD is decreased by
33% with respect to the TOFD of the shallow AI method.
This is a strict but moderate improvement over the best noise-
unaware method.

The further addition of the mel spectrum features and the
deep AI model causes a significant leap in performance, where
the EPR point reaches 79%, and the TOFD is decreased by
42% and 60% of the TOFD values of the noise smoothing and
shallow AI methods respectively. This improvement demon-
strates the ability of the DNN to learn complex patterns from
the mel spectrum features, and to complement the BPFI fea-
ture to achieve a better diagnostic performance. An example
from the health indicator obtained by this method is displayed
in Figure 13, both before and after median smoothing. It can
be readily observed that before smoothing, the false positives
are notably less frequent than in the example of the shallow
AI method from the same experiment, shown in Figure 12.
Smoothing removes these false positives, but crucially it in-
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Figure 13. Example of health indicator obtained from the
deep AI with hybrid features method before and after median
smoothing.

Table 2. EPR points for median and noise-aware smoothing
for methods 1b, 2a, 2b and 2c. Hybrid refers to the combina-
tion of BPFI and RMS with mel spectrum features.

Smoothing type Features

BPFI & RMS Hybrid
Median 69% 79%

Noise-aware 72% 81%

troduces less delay than in the shallow AI example. The rea-
son is that, as the deep AI method produces fewer false posi-
tives, the smoothing window can be shorter, thus minimizing
the additional delay introduced by this step.

Last of all, the combination of the two noise-aware methods,
i.e., where noise-smoothing is applied to the deep AI method
with hybrid features, achieves a moderate increase of the EPR
until 81%, and no significant reduction in TOFD.

5.3. Effect of smoothing: noise-aware vs median

Note that the inclusion of noise-aware smoothing results in
a moderate EPR improvement over the same method using
median smoothing. This can be seen in Table 2, where the
EPR points are arranged depending on the smoothing type
and features that methods utilize. The reason is that noise-
aware smoothing addresses the following issues:

• For a true increase in the anomaly score, noise-aware
smoothing is typically faster to respond due to its non-
even weighting.

• In case of quickly fluctuating anomaly scores, median
smoothing is a lot less stable due to its inability to choose
what to prioritize.

In most other cases noise-aware smoothing behaves compa-
rably to median-smoothing, offering the same benefits. This
makes noise-aware smoothing an attractive enhancement, al-
though it comes with the additional cost of designing appro-
priate noise detectors for the acoustic scene where the ma-
chinery of the monitored bearings operates.

6. CONCLUSION

In this study, we have focused on developing robust meth-
ods for acoustic condition monitoring of inner race faults in
rolling element bearings in industrial environments. This is
a challenging problem due to the strong influence of back-
ground noise, which introduces a high amount of false posi-
tives and delays fault detection, resulting in poor diagnostic
performance. Our two proposed noise-aware methods have
different levels of complexity. The first and simplest one is
noise-aware smoothing, which adapts the smoothing weights
according to the detected noise levels. The second and more
complex one is a deep AI model that uses mel spectrum fea-
tures and acts in combination with the bearing fault frequen-
cies to achieve a diagnostic result. These methods have been
trained and tested with an accelerated bearing lifetime dataset
acquired in the Flanders Make Smart Maintenance Lab, which
is a reverberant environment where strong and diverse acous-
tic disturbances were present.

The results demonstrate significant improvements over the
noise-unaware baseline, both in diagnostic performance and
in detection time, using a single microphone signal. More-
over, these benefits are distinct both when the noise-aware
methods are applied independently or in combination, so they
can thus be chosen according to the monitoring requirements
of each particular use case. In summary, we have shown
that, when employing adequate strategies to increase robust-
ness to noise, acoustic monitoring can be a cost-effective and
practical alternative for vibration monitoring. Future work in
this problem involves studying the influence of the training
dataset size on accuracy, applying and testing our strategies
to other bearing fault types, and studying the effect of data
augmentation in the training of the deep AI model.

ACKNOWLEDGMENT

This research work was supported by Flanders Make, the strate-
gic research centre for the manufacturing industry, and more
precisely by the ACMON ICON research project. Authors
would like to thank this project for funding the research pre-
sented in this paper.

REFERENCES

Cardenas Cabada, E., Leclere, Q., Antoni, J., & Hamzaoui,
N. (2017). Fault detection in rotating machines with
beamforming: Spatial visualization of diagnosis fea-
tures. Mechanical Systems and Signal Processing, 97,
33-43. (Special Issue on Surveillance)

Glowacz, A. (2019). Fault diagnosis of single-phase induc-
tion motor based on acoustic signals. Mechanical Sys-
tems and Signal Processing, 117, 65-80.

Halme, J., & Andersson, P. (2009). Rolling contact fatigue
and wear fundamentals for rolling bearing diagnostics -

9

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 677



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

state of the art. Journal of Engineering Tribology, 224,
377–393.

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D.
(2014). Prognostics and health management design for
rotary machinery systems—reviews, methodology and
applications. Mechanical Systems and Signal Process-
ing, 42(1), 314-334.

Mian, T., Choudhary, A., & Fatima, S. (2022). An efficient
diagnosis approach for bearing faults using sound qual-
ity metrics. Applied Acoustics, 195, 108839.

Ompusunggu, A. P., Devos, S., & Petre, F. (2013). Stochastic-
resonance based fault diagnosis for rolling element
bearings subjected to low rotational speed. Interna-
tional Journal of Prognostics and Health Management
(IJPHM), 4.

Ooijevaar, T., Pichler, K., Di, Y., Devos, S., Volckaert, B.,
Hoecke, S. V., & Hesch, C. (2019). Smart machine
maintenance enabled by a condition monitoring living
lab. IFAC-PapersOnLine, 52(15), 376-381. (8th IFAC
Symposium on Mechatronic Systems MECHATRON-
ICS 2019)

Rabiner, L., & Schafer, R. (2010). Theory and applications
of digital speech processing (1st ed.). USA: Prentice
Hall Press.

Randall, R. B. (2011). Vibration-based condition moni-
toring: Industrial, aerospace and automotive applica-
tions. John Wiley & Sons, Ltd.

Randall, R. B., & Antoni, J. (2011). Rolling element bear-
ing diagnostics—a tutorial. Mechanical Systems and
Signal Processing, 25(2), 485-520.

Ricardo Mauricio, A. M., Denayer, H., & Gryllias, K.
(2022). Time-domain beamformed envelope spectrum
of acoustic signals for bearing diagnostics. In Confer-
ence proceedings of ISMA 2022 - USD 2022.

Ricardo Mauricio, A. M., Denayer, H., & Gryllias, K. (2023).
Beamformed envelope spectrum of acoustic signals for
bearing diagnostics under varying speed conditions. In
Proceedings of NOVEM 2023.

SileroTeam. (2021). Silero models: pre-trained
enterprise-grade STT / TTS models and benchmarks.
https://github.com/snakers4/silero-models.
GitHub.

10

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 678



 1 

On the Feasibility of Condition Monitoring of Belt Splices in Belt 
Conveyor Systems Using IoT Devices* 

Henrik Lindström1, Johan Öhman2, Vanessa Meulenberg3, Reiner Gnauert4, Claus Weimann5, and Wolfgang Birk6 

1,2,3,6 Predge AB, Västra Varvsgatan 11, 97234 Luleå, Sweden 
{Henrik.Lindstrom,Johan.Ohman ,Vanessa.Meulenberg, Wolfgang.Birk}@predge.se 

6 Automatic Control, Luleå University of Technology, 97187 Luleå, Sweden 
Wolfgang.Birk@ltu.se 

4,5 HOSCH Fördertechnik GmbH, Am Stadion 36, 45659 Recklinghausen, Germany 
{Reiner.Gnauert, Claus.Weimann}@hosch.de 

 
ABSTRACT 

This paper investigates fully automated condition monitoring 
of belt splices within operational belt conveyor systems, 
using IoT devices to predict and inform on potential belt 
breakage or tearing. Such events cause production stops and 
potentially harm workers. Belt splices are laminated belt 
connections subject to deterioration during operation and are 
usually weak spots. The proposed scheme circumvents 
manual inspection efforts and uses the HOSCHiris 
DISCOVER IoT device for sensing and data acquisition. 
Each belt conveyor is equipped with one individual IoT 
device acquiring the motion signal of the scraper which is 
used to learn signal patterns of the pulley and the belt to 
identify both location and deterioration of the individual 
splices. Deterioration is characterized from an initial healthy 
condition to a severe condition of the splice to inform on the 
potential need for action. To assess the feasibility of the 
scheme, several tests are designed and performed in an 
industrial belt conveyor system. The results indicate that the 
scheme can provide valuable insights into the splice 
condition and its degradation.  

1. INTRODUCTION 

Belt conveyor systems are widely used to transport material 
and are an essential component in many industry sectors but 
are often critical assets in a production chain of bulk material, 
like in e.g. mining. Unexpected breakdowns of belt conveyor 
systems render production stops, losses, and can severely 
harm workers in close perimeter of such events.  

The belt usually consists of several pieces, vulcanized 
together to achieve sufficient length. The vulcanized joints 

are called splices. In Figure 1, a simplified sketch of a belt 
conveyor is shown, and how splices could be distributed 
along the belt. The condition of these splices deteriorates 
during operation, leading to breakage or tearing. To 
preventively detect damage, all splices are regularly 
inspected. For this, the belt is run empty and at low speed to 
visually assess the belt surface and splices by a worker, 
leading to frequent downtimes in production. The quality of 
this manual condition assessment depends on the workers’ 
expertise to identify issues on a moving belt, while keeping 
sufficiently attentive and tracking the splice locations. Such 
a campaign can last for several hours for longer belt 
conveyors, and thus human errors are not uncommon. To 
circumvent the problem of production losses, there is a need 
for monitoring solutions that work during normal operation. 

 
Figure 1: Sketch of the belt conveyor system with two splices 
and a scraper unit equipped with the sensing device 
generating the output 𝒛(𝒕). 

Various methods have been proposed for monitoring steel 
cord belt splices. Min (2010) suggests using Hall effect 
sensors to measure belt deformation and bending moment 
equations to assess the tensile force. However, concrete 
results validating this technique are lacking. Harrison (1985) 
and Kozłowski et al. (2020) propose methods based on 
measuring magnetic fields generated by belt reinforcement 
steel cords. Kozłowski, et.al. (2020) found that through a 

*Henrik Lindström et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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variability analysis, the magnetic current can be compared to 
an estimated pattern. With this method, the cords could be 
monitored. Bancroft et al. (2017) used a camera and encoder 
to visually inspect mechanical splices and could determine 
the splice condition. Alport et al. (2001) developed artificial 
neural networks for splice monitoring using conveyor belt 
video footage, achieving splice identification accuracy of at 
least 89%. However, further development is needed for 
monitoring splice degradation and internal defects. Roxon 
Oy's HX products utilize laser scanning for surface damage 
and for monitoring the belt thickness that could detect splice 
elongation (Roxon, 2024). 

The solutions discussed above require splices with steel cord 
reinforcement or mechanical splices that are easily visible. A 
camera installation or laser scanner, even though it has 
potential, requires the additional installation of equipment, 
resulting in increased maintenance costs. Moreover, the 
methods described above frequently lack definitive results 
regarding their accuracy.  

The contribution of this paper is an analytics solution for 
condition monitoring of belt splices utilizing the 
displacement data from one individual belt scraper, as 
patented by Weimann and Kiel (2020). The benefit of this 
approach is that it can be used for all belt configurations, 
while in operation and with material on the belt. Since only 
the displacement of the scraper is analyzed, no additional 
equipment is required, making it a cost-effective solution.  

The paper is structured as follows. First, a problem definition 
and description of the approach is given, followed by a 
summary of the scraper sensing solution. Next, the analytics 
solution is described, including belt speed estimation, 
transformation to distance domain, belt signature estimation, 
splice re-identification and degradation, and condition 
estimation. Thereafter, the proposed method is applied and 
tested in a real-life setting and the results are presented and 
discussed. Finally, the work is concluded. 

2. PROBLEM DEFINITION AND APPROACH 

Splices are fixed locations on a belt which means that the 
individual splice locations need to be re-identified in 𝑧(𝑡), 
which is the displacement of the scraper (Figure 1). While 
𝑧(𝑡) is time-based, the splice itself has a spatial location and 
structure along the belt. The problem of the condition 
monitoring of a splice over time is therefore to identify the 
passage of an individual splice at the sensor and to assess its 
degradation based on the signal that is acquired during the 
passage of the splice at the sensor. Moreover, the belt speed 
is not constant and needs to be treated as unknown. Using an 
individual IoT device combined with the scraper to measure 
𝑧(𝑡) would avoid any integration of the sensing solution with 
the control system or IT infrastructure, making deployment 
easy and fast. 

The approach to address the problem is as follows: The 
HOSCHiris DISCOVER System is selected as the IoT device 
measuring the displacement 𝑧(𝑡)  of the scraper. From the 
measurement and using design information of the pulley, the 
belt speed is estimated. Thereafter, the measurement signal 
𝑧(𝑡)  is transformed into the spatial or distance domain, 
denoted 𝑧(𝑑), where 𝑑 denotes the distance that is covered. 
The annotated locations of the splices in the distance domain 
can then be re-identified in 𝑧(𝑑) requiring the detection of 
complete belt revolutions in the data. For every revolution of 
the belt, the splice locations can then be assessed, and their 
change can be tracked over the number of belt revolutions or 
time. Using the change in 𝑧(𝑑𝑖) for splice 𝑖 at location 𝑑𝑖 , 
condition indicators are derived and then mapped into 
actionable insights for decision making on maintenance or 
stopping of the belt conveyor. 

Some challenges to this approach must be addressed. First, 
the measurement signal is affected by noise, which come 
from the surface structure of the belt and the pulley, but also 
from the scraping action to remove material from the belt. It 
is also not uncommon that material can get stuck between the 
scraper and the belt for some time which can lead to a 
temporary large displacement signal. How these effects will 
be managed is described in Section 4. 

Moreover, the solution is intended to work independently of 
a control system or any integration into the IT infrastructure 
of the belt conveyor owners. The solution is therefore 
implemented in a cloud-based architecture as depicted in 
Figure 2. There, the IoT device connects with the HOSCH 
cloud to ingest the data and makes it accessible for the 
analytics in the partnering Predge cloud. All front-end 
functionalities are collected in HOSCH cloud, like 
configuration, alarming, visualization of actionable insights 
on the splices, and dashboards for the decision making of the 
user. 

 
Figure 2: Cloud architecture to acquire the IoT device data, 

store and process it to provide actionable insights. 

3. SENSING SOLUTION 

In this section, a short description is given of the sensing 
solution, based on the patent by Weimann et al. (2020). 
Figure 3 depicts a sketch of the scraper at the drive pulley on 
the belt, including the sensor. The pulley has a lining 
generating a high friction surface that is in contact with the 
belt. In the current setup, the high friction surface consists of 
three segments. The scraper is fixed to an axle where it can 
rotate. Connected to the scraper is a spring rod to adjust the 
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tension at which the scraper is in contact with the belt. The 
spring rod will move proportionally to the scraper. Opposite 
the spring rod, there is a sensor mounted to the housing which 
measures the distance between the sensor and a magnet 
attached to the end of the spring rod.  

 
Figure 3. HOSCH HD PU pre scraper connected to the pre-

tensioning spring and sensing device. 

In Error! Reference source not found., the raw sensor s
ignal is displayed showing approximately 16 meters of the 
belt passing by the sensor, where the speed was increased at 
12:22:07. The recurrent sinusoidal-like motion originates 
from the surface structure of the pulley where the drum is 
equipped with a lining composed of several segments. It is 
important to note that the pulley surface is a disturbance in 
the signal and may mask the belt surface changes. When the 
speed is increased the pulley rotational speed is increasing 
which leads to an increase in the frequency of the sinusoidal-
like disturbance. 

 
Figure 4. Raw sensor signal for a short time where the 

conveyor belt is run at two different speeds. 

The sensor is connected to the IoT measurement system that 
samples the sensor signal and pre-processes it. It is thereafter 
locally stored and transmitted to the cloud wirelessly.  

4. ANALYTICS SOLUTION 

In this section the analytics solution to determine the 
condition of splices on a belt is presented.  

4.1. Overview 

The condition monitoring of splices using the scraper 
displacement measurement 𝑧(𝑡)  requires several steps, as 
shown in Figure 5. One reason for this is that the splices are 
not as prominent in the sensor signal as the joined effect of 
all disturbances, like sensor noise, surface structures of pulley 
and belt, and displacement due to material removal from the 

belt. Consequently, the algorithm needs to recover the 
displacement that is attributed to the splices. In addition, the 
displacement needs to be correctly assigned to an individual 
splice to assess the surface change at the splice location.  

 
Figure 5. Block diagram for the condition monitoring of 

splices. 

To ensure that surface changes are correctly assigned, the 
measured displacements need to be associated with specific 
locations along the belt. By estimating the belt speed from the 
measurement signal, transforming it into the distance domain 
and then identifying complete revolutions of the belt, it is 
possible to associate displacement measurements with 
specific coordinates along the belt. The identification of 
complete revolutions is done using an estimate for the belt 
surface signature, denoted 𝑏𝑠(𝑑).  

After an initial learning of a reference belt signature 𝑏𝑠𝑅(𝑑), 
it is possible to match a complete revolution. Since splices 
are fixed locations 𝑠𝑝𝑖 along the belt with an overestimated 
length 𝜏, a distance series can be extracted from the aligned 
raw data 𝑧𝑎(𝑑), reflecting the splice location, denoted 𝒛𝑠,𝑖 . 
Since the pulley rotation and belt rotations are not aligned, 
the displacement induced by the pulley surface structure 
needs to be compensated for rendering 𝒛′

𝑠,𝑖 . Now the change 
in the surface can either be assessed in absolute terms or 
relative to a nominal 𝒛′

𝑠𝑅,𝑖 , which is learned from data or 
provided by the user. The surface change can be assessed in 
different way and renders a condition indicator 𝐶𝑠,𝑖 . An 
advantage of this approach is that local belt damages are not 
confusing the association of splices to specific data series 
which enables the detection of new monitoring locations. 
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4.2. Speed estimation 

To analyse the splice condition, the belt speed 𝑣(𝑡), needs to 
be estimated. The edges of the lining segments on the pulley 
introduce a distorted sinusoidal structure to the displacement 
data 𝑧(𝑡). This reoccurring structure in the signal is utilized 
when estimating the speed of the belt, by measuring the time 
between two registered edges and converting the time to a 
velocity. The displacement data 𝑧(𝑡) is split into five second 
batches of data 𝑋(𝑡), such that small changes in speed can be 
registered. 𝑋(𝑡) is now assumed to be a stationary process 
and can be normalized as  

𝑋′ =
𝑋 − �̅�

σ
 (1) 

where �̅� is the mean and σ is the standard deviation of 𝑋. The 
normalization in (1) is done such that when computing the 
autocorrelation function (ACF) of the batch, there will not be 
any variance offset present. The ACF for a stationary process 
is defined as 

𝑟𝑋′(τ) =  ∫ 𝑋′(𝑡)𝑋′(𝑡 + τ)dt
∞

−∞

. (2) 

The ACF in (2) is used here because of the repetitiveness of 
𝑧(𝑡). The ACF will show local maxima at distances away 
from zero corresponding to the time it takes for the next lining 
segment to appear. Let 𝑖′  be the solution to the following 
minimization problem that searches for the index in 𝑟𝑋′(τ) 
that corresponds to the first local maxima. 

Minimize 𝑖 ∈ dom(𝑟𝑋′)  

s. t. 𝑖 ≥ 𝑚  

 𝑟𝑋′(𝑖) ≥ ℎ (3) 

 ∇𝑟𝑋′(𝑖) = 0  

 ∆𝑟𝑋′  (𝑖) < 0  

In (3), 𝑚 is a lower limit of 𝑖 , ℎ is a lower limit of 𝑟𝑋′  at 
index 𝑖 and the third and fourth criterions requires 𝑖 to be at a 
local maximum to  𝑟𝑋′ . The solution 𝑖′   to (3) is then the 
smallest index which satisfies all the criterions for (3). The 
velocity of the belt is calculated as  

𝑣 =
𝐷

3𝑖′
 (4) 

where 𝐷 is the circumference of the pulley. The calculations 
in (2), (3) and (4) are done for each batch, resulting in a vector 
of speed estimations that will later be used for transforming 
the time series into a distance series.  

4.3. Transformation to distance domain 

If the average speed in the speed vector was greater than 0.2 
m/s, 𝑧(𝑡)  is transformed into a distance series, 𝑧(𝑑) . The 
time series signal is sampled at a fixed rate at instance 𝑘 
independent of the belt speed. The covered distance 𝑑𝑘 by the 

belt is a multiplication of the time instances 𝑡𝑘  by the belt 
speed 𝑣(𝑡𝑘). The resulting distance dependent series  𝑧(𝑑𝑘) 
is not sampled equidistantly. By applying a linear 
interpolation with a fixed distance sample rate of 1 cm, an 
equidistant distance series is found. The benefit of 
transforming the time series into a distance series is that it 
enables the comparison of splice data regardless of the belt 
speed, since the position of the splices and the pulley will 
always be the same.  

4.4. Estimating the Belt Signature 

Now that the measured signal is available as a distance series, 
it is possible to relate a specific position on the belt with a 
specific point in the distance series, if the starting point of the 
belt in the distance series is known. It is not necessary to 
know an exact starting point, but it should be known where a 
revolution of the belt starts and ends. The belt itself has a 
surface structure that will produce displacements at the 
scraper. This displacement will occur repeatedly in the 
distance series. However, the distance series is affected by 
disturbances, like e.g. the pulley surface structure, damage to 
the belt and operation related disturbances. Understanding 
the stochastic nature of the disturbances, the sinusoidal 
disturbance behavior of the pulley, and assuming the belt 
surface is smooth a Kalman filter can be employed to 
estimate the belt surface and its derivative 𝑑𝑏𝑠(𝑑). Note that 
the Kalman filter is not realized in the time domain but in the 
distance domain. 

The underlying model for the Kalman filter is defined as a 
sinusoidal motion which is biased by the surface signature 

𝑥𝑘+1 = [

1 𝑑𝑆 1 0

−𝜔2𝑑𝑆 1 0 0
0 0 1 𝑑𝑆

0 0 0 1

] 𝑥𝑘 + 𝜈𝑘

𝑧𝑘 = [    1    0 0  0  ]𝑥𝑘 + 𝜂𝑘

 (5)  

where 𝜔 is the spatial frequency of the sinusoidal-like motion 
induced by the pulley structure, 𝑑𝑆 is the spatial sample rate, 
𝜂 and 𝜈 are normally distributed noise terms, and 𝑘 denotes 
the sample instance. Further, the state vector is defined as 

𝑥 = [𝑧
𝜕𝑧

𝜕𝑑
𝑏𝑠

𝜕𝑏𝑠

𝜕𝑑
]

𝑇

  (6) 

The Kalman filter as described by Gustafsson (2000) is 
implemented using (5) as the model, initial conditions 𝑥0 =
[𝑧0 0 0 0]𝑇, and the variance of the sensor signal as 𝑅. Setting 
the covariance matrix 𝑄 reflecting 𝜈 and initial conditions for 
the state covariance matrix 𝑃 , is usually difficult and 
dependent on the situation. Here, 𝑄 is chosen as a diagonal 
matrix 𝑄 = 𝑑𝑖𝑎𝑔(10−1, 10−1, 10−7, 10−9)  and the initial 
condition 𝑃0 = 100 ⋅ 𝑄. 

To identify belt rotations, the derivate 𝑑𝑏𝑠(𝑑) of 𝑏𝑠(𝑑) is 
used in relation to a reference signature. Performing the 
estimation on several belt rotations enables the learning of a 
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reference signature by deriving the median of all recorded 
repetitions of the signature, denoted 𝑑𝑏𝑠𝑅(𝑑) . Note, the 
reference derivative signature d𝑏𝑠𝑅(𝑑) can have an arbitrary 
starting point on the belt. To identify a complete revolution 
of the belt in the estimated signature, an optimization 
problem can be solved that identifies the position of 𝑏𝑠𝑅(𝑑) 
in the currently estimated 𝑑𝑏𝑠(𝑑) , by minimizing the 
deviation between the two series. The localization and 
identification of the splices and other points of interest 
(POI’s) for monitoring is then solved as a lookup. The 
identification of the start of a belt revolution is describe here. 
Define 

𝐿′ =
argmin

𝐿
 
1

𝑁
∑(𝑑𝑏𝑠(𝑖 + 𝐿) − 𝑑𝑏𝑠𝑅(𝑖))2

𝑁

𝑖= 0

 (7) 

where 𝑁 is the number of datapoints in 𝑑𝑏𝑠𝑅. The solution 𝐿′ 
to (7) will be an index where the reference 𝑑𝑏𝑠𝑅 is the most 
alike 𝑑𝑏𝑠 and will describe where a new belt rotation is taken 
place. By having a knowledge of the splice locations in belt 
reference 𝑑𝑏𝑠𝑅(𝑑) , it is now possible to also localize the 
splice locations in 𝑧(𝑑𝑘). 

4.5. Splice and Pulley References 

Similar to having reference distance series for the belt 
signature, references for the splices and the pulley can be 
derived. Moreover, the pulley surface structure is a dominant 
disturbance of high magnitude and the rotation of the pulley, 
and the belt are only rarely aligned. Thus, one and the same 
position on the belt will be affected by different disturbances 
due to the pulley surface structure. Nevertheless, by having a 
pulley reference and aligning it with the recorded distance 
series, it is possible to remove it by subtraction from the 
distance series. As a result, the distance series representing 
the changes in the belt surface can be recovered. The 
remaining signal components are then 𝒛′

𝑠,𝑖 and its reference  
𝒛′

𝑠𝑅,𝑖.  Using these two series it is possible to quantify the 
change in the belt surface and as a result calculate condition 
indices, that quantify the change over the number of 
revolutions of the belt.  

4.6. Condition indices 

The condition of the splice or any POIs on the belt can be 
characterized by two main parameters, the vertical 
displacement of the surface and the longitudinal extend of the 
area of change. Since the belt is composed of laminated layers 
of rubber and reinforcement materials, the lamination can 
degrade and variations in thickness can occur. Damages can 
also lead to lose parts or bubbles that can be filled with 
material. Typical condition indices include: 

||𝒛′
𝑠,𝑖 − 𝒛′

𝑠𝑅,𝑖
||

2
 (8) 

max (|𝒛′
𝑠,𝑖

− 𝒛′

𝑠𝑅,𝑖
|) (9) 

min (|𝒛′
𝑠,𝑖

− 𝒛′

𝑠𝑅,𝑖
|) (10) 

These indices can be tracked over time and their change can 
be predicted if the change is smooth over the number of 
revolutions of the belt. These condition indices can then be 
used as actionable insights for decision making on 
maintenance and stop of operation. 

5. RESULTS & DISCUSSIONS 

This section will present the results from tests that have been 
conducted at an industrial site. For this end, the solution was 
implemented in a cloud-based architecture as depicted in 
Figure 2. Two HOSCHiris DISCOVER units were installed on 
two belts with lengths of approximately 550 m and the splice 
condition monitoring scheme was adapted to the pulleys and 
belt. The tests were conducted to assess the speed estimation, 
belt signature estimation, and the condition monitoring. 

For the condition monitoring specific tests were conducted, 
where rubber patches were glued to the belt surface. The 
splice areas themselves were newly vulcanized, which means 
they should not be estimated to a severe condition. 

5.1. Speed Estimation 

The estimated speed estimates were derived from the raw 
data signal by the algorithm. The displacement data is shown 
in Figure 6a where the belt starts from a stand still. The belt 
speed is then increased to 30%, 50%, 70%, 80%, 90%, 100%, 
and back to 30% of the maximum speed (3.3 m/s).  

 
Figure 6. Speed estimation. 

In  Figure 6b, the estimated speed is shown. Shortly before 
13:10, the speed is incorrectly estimated to be 0 m/s, which 
could be due to the loss of data in that time frame. There are 
also two spikes in the speed estimation at around 12:05 and 
13:17, usually in high acceleration events when the belt is 
started or stopped. Using data from the control system, the 
speed estimation was validated rendering an error of 4% 
during the tests.   
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5.2. Belt Signature Estimation 

For the belt signature estimation, no direct validation was 
possible, as the fine structure is estimated. Instead, the 
recurrence of the belt signature was used to assess the 
validity, by checking if the localization of the splices using 
the signature is correct. 

In Figure 7a, a randomly picked sequence from normal 
operation is shown, where the displacement data is already 
transformed into the distance domain using the estimated 
speed. The estimated derivative belt signature 𝑑𝑏𝑠(𝑑), with 
its unique features can be seen in Figure 7b. The data shows 
two full revolutions of the belt and the noticeable similarity 
of the pattern before and after 60000 cm.  

 
Figure 7. Transformation of displacement data to signature 

belt surface derivative 

Using the pattern matching algorithm to align the belt 
rotations, the splices could be correctly localized within one 
meter of accuracy. 

5.3. Condition monitoring of glued patches 

To validate the condition assessment, artificially introduced 
POIs in the form of rubber patches glued to the belt surface 
were analyzed. For each belt, four patches of 100 x 200 x 1 
mm were glued to the belt surface. The idea of the test was to 
track how the patches are degraded over the passages by the 
scraper and finally stripped from the belt surface. 

To achieve this, references were created for each patch area 
and the already existing belt signatures and pulley references 
were utilized, which are generally true in the monitoring 
scheme. The belt conveyors were then operated as usual.  

For the condition assessment of the patches the index in (9) 
is used and shown in Figure 8. The degradation of the patch 
is clearly distinguishable at about 13 belt rotations, and after 
about 21 rotations, it is no longer visible as it was removed 

from the belt by the scraper. This shows that POIs can be 
monitored and that changes in their behavior are estimated by 
in the monitoring scheme. However, the intensity of the patch 
degradation is not constant nor monotonically increasing 
each revolution and there is also some variation in the 
condition index. 

 
Figure 8. Maximum deviation of the belt before, while and 

after a patch was added. 

Since the patches have sharp front edges, the collision 
induces an impulse on the scraper with subsequent 
movement. At the same time the scraper movement is 
sampled at a rate of 100 Hz. Depending on the alignment of 
the impulse with the sampling of the sensor signal and the 
belt speed, the maximum displacement might not be 
recorded, yielding a variability and error in the condition 
index. Nevertheless, the degradation phase of the patch is 
clearly captured by the scheme. 

5.4. Condition monitoring of the splices 

As already noted, the splices were newly vulcanized yielding 
a very smooth surface, which requires operation to take place 
over a long period of time (usually longer than a year). It was 
therefore expected that the splices would not generate any 
impact on the condition index. For the test, sequences from 
normal operation of the belt conveyor are used and 
information from inspections was collected. 

Again, the maximum deviation index as given in (9) was used 
to assess the condition. The expectation from the test was that 
the index would not show any high values. In total 150 belt 
revolutions were assessed, which were received in batches of 
10 minutes. 

 
Figure 9. Maximum deviation of the belt for a splice area. 

In Figure 9 it can be seen that no higher peaks are visible and 
that the condition index varies around a low value, which is 
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comparable to the lower value ranges that can be seen in 
Figure 8. The inspections during the normal operation also 
confirmed that the splices are in good condition throughout 
the test period. It can therefore be concluded that the 
monitoring scheme is not generating false indications during 
normal operation and replicates the condition of the splices 
correctly. 

6. CONCLUSION 

In this work, the fully automated condition monitoring of belt 
splices within operational belt conveyor systems was 
investigated. It is shown how the belt speed can be estimated 
from a signal displacement signal, how a point of interest on 
a conveyor belt can be localized and its degradation can be 
monitored. For this end, typical statistical and Bayesian 
filtering approaches are applied together with simple learning 
schemes that provide data driven models of the belt, pulleys, 
and normal conditions of the points of interest.  

Based on the conducted tests and their assessment it can also 
be concluded that the condition monitoring of the belt surface 
using the displacement signal of a single HOSCHiris 
DISCOVER IoT device is feasible and that actionable 
insights on the degradation of the belt can be provided to 
operators and maintenance staff to ensure safe operation. The 
proposed solution is now online and part of the normal 
operation in an industrial plant. 

 Future work will target the collection of experience from the 
solution in normal operation, the benchmarking of used 
methods with other approaches, and assessing the 
effectiveness in capturing degradation events early on and in 
good time for decision making on operation and maintenance. 
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ABSTRACT

Particle filters are widely used in model-based prognostics.
They estimate the future health state of an asset based on mea-
surement data and an assumed degradation dynamics. Fil-
ters are in general applied to estimate only the states given a
known dynamics of the process. In model-based prognostics,
the dynamics is assumed to be known in an analytical form,
but the parameters vary per device and need to be learned
from the measurements as well. This is especially important
for the calculation of the remaining useful life (RUL), as the
prediction of the future evolution is needed.

There are commonly used approaches for this: Augmenting
the state space with the parameter, together with assuming
them to stay constant or adding an artificial diffusive evolu-
tion to them. The Liu–West filter improves on this by modify-
ing the artificial evolution such that mean and standard devia-
tion of the marginal parameter distribution are kept the same.
Both approaches require to choose some tuning parameters,
which might be difficult in practical applications. In addi-
tion, the model parameter is often assumed frozen for the
prediction part, leading to an inconsistency. We propose how
a modification of the parameter evolution in case of missing
measurements can solve this in both cases.

More recently algorithms for combined state estimation and
exact parameter estimation have been introduced, especially
the Storvik filter, based on the usage of a sufficient statistic.
We analyze how this can be applied to overcome difficulties
with existing approaches, avoiding the need for tuning param-
eters. We also extend the Storvik filter in order to deal with
time-steps with missing measurements. Two formally equiv-
alent approaches are presented. These are applicable in all

Kai Hencken et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

cases of missing measurements, coming either from irregular
data acquisition, e.g. only during maintenance or inspection,
or as part of the prediction step of the RUL calculation.

We study the different methods for two simple models in or-
der to demonstrate potential issues with existing approaches
and to explore the stability of the new one based on the Storvik
filter. Finally we apply it to a practical application in the area
of electrical distribution systems.

1. INTRODUCTION

The most common approach for predicting the end-of-life
(EOL) of a device is to model its degradation. Let xt be a
degradation variable, describing the health of the device and
evolving e.g. with time t. In the simplest case, we define the
(soft) failure of the device as the condition that xt reaches a
predefined critical value xcritical (Goebel et al., 2017; Galar,
Goebel, Sandborn, & Kumar, 2021). xt can here be either
a scalar or a vector, see e.g. (Peng, Ye, & Chen, 2018). We
limit ourselves to the scalar case.

The evolution of xt is in general described by a stochastic
model. We restrict ourselves here to the discrete-time case,
indexed by t, and assume that the state evolves from time
instance t to t+ 1 as

xt+1 ∼ p(xt+1 | xt; θ), (1)

where p is a suitable probability model depending on a pa-
rameter vector θ. We assume the value of θ to be specific to
each individual device rather than describing the behavior of
a fleet and a prior distribution p(θ) to be known.

In most cases the degradation variable xt is not directly mea-
surable but needs to be inferred from an observable zt. This
might be a direct measurement of xt corrupted by measure-
ment error or a quantity that can be indirectly associated with
it. Quite generally the relation between the degradation vari-

1
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able xt and the observable zt is described by

zt ∼ p(zt | xt; θ), (2)

where p is a probability model possibly also depending on the
parameter vector θ.

The combination of Eqs. (1) and (2) forms a state-space model
(SSM) with unknown parameter θ.

The aim of prognostics is to calculate the remaining useful
life given the measurements z0:t0 up to the current time hori-
zon t0, using the predictive probability

p(xt | z0:t0), t > t0. (3)

Note that in Eq. (3) the parameter θ does not appear, as it has
been marginalized over. The uncertainty associated with θ
is therefore automatically considered. Due to the stochastic
nature of the evolution and the uncertainty in the parameter,
the RUL is itself a random variable. Its distribution is given
by

RUL(t | t0) ∼ p(t | {xt+t0 ≥ xcritical}
∩ {xt′ < xcritical ∀t′ < t+ t0}).

(4)

A review of the prognostics paradigm and its applications
can be found, e.g., in (Si, Wang, Hu, & Zhou, 2011; Jouin,
Gouriveau, Hissel, Péra, & Zerhouni, 2016; Goebel et al.,
2017; Galar et al., 2021).

Determining the RUL requires a combined state and param-
eter estimation approach. In principle, the estimation can be
obtained with any Bayesian method, e.g., a Markov Chain
Monte Carlo (MCMC) approach, that determines the joint
distribution p(x0:t, θ | z0:t0) of all past, present and future
states and the parameter using all measurements until time
t0. In practice, this approach is not viable, since the evalua-
tion has to be repeated each time a new measurement point
is added. Hence, the method becomes computationally more
demanding as time increases. A sequential approach is more
appropriate, such as a sequential Monte Carlo method (SMC),
see e.g. (Doucet, de Freitas, & Gordon, 2001; Chopin & Pa-
paspiliopoulos, 2020). This requires to update the joint dis-
tribution p(xt, θ | z0:t0+1) at each increase of the horizon
taking into account only the new measurement zt0+1 and the
already known joint distribution until t0. The determination
of the distribution of the state x0:t0 , especially of only the cur-
rent state xt0 , is a well-studied problem for known parameter
values, regularly solved with the help of particle filters. In
contrast, the determination of the joint distribution of states
and parameter is a more difficult one and often solved by ap-
plying some approximations.

In addition to the estimation problem for xt0 , prognostics ap-
plications require the ability to make predictions. Indeed, in
order to compute the RUL as in Eq. (4) one needs to calcu-
late the future distribution for xt for t > t0, see Eq. (3). A

related topic is the ability to evolve the sequential approach
when measurements are sparse and obtained at irregular time
intervals only. For instance, we expect measurements to be of
this form, if they are obtained as part of a maintenance or in-
spection routine. If the time interval between measurements
is long, it is beneficial to evolve the distribution of state and
parameter and only keep their values at the current time. It
allows to continue to evolve the distribution up to the next
measurement without the need to restart from the last mea-
surement point.

In this paper, we consider the two issues above and present:

• A critical review of the state of the art on particle based
sequential methods for joint state and parameter estima-
tion in SSMs;

• Proposals on how to extend the methods to deal with
missing measurements, required especially for future pre-
dictions;

• Explore the use of the Storvik filter as an exact approach
to the combined state and parameter estimation problem
for prognostics applications.

The remainder of this paper is organized as follows. In Sec. 2
we briefly review the application of particle filters to SSMs.
In Sec. 3 we present common approaches to perform joint
state and parameter estimation, introducing also a possible
way to handle missing measurements. In Sec. 4 we review the
Storvik filter, an exact method for the combined state and pa-
rameter estimation, together with an extension of the method
in case of missing measurements in Sec. 5. In Sec. 6 we an-
alyze the applicability of the methods for two simple models,
that are typical for prognostics applications, and in Sec. 7 we
present results of the application of the Storvik filter on real
data. We conclude the paper with an outcome and give poten-
tial future directions in Sec. 8.

2. THE PARTICLE FILTER FOR SSMS

The particle filter is synonymous for the SMC approach to
state estimation in nonlinear SSMs. For an introduction and
review see, e.g., (Doucet, Godsill, & Andrieu, 2000; Doucet
et al., 2001; Chopin & Papaspiliopoulos, 2020). Neglecting
the parameter θ, particle filters approximate the probability
distribution of the states by an empirical distribution based
on a set of N particles {xit}Ni=1. The approximation incorpo-
rating weights for each particle is

p(xt | z0:t) ≈ p̂(xt | z0:t) =
N∑

i=1

wi
tδxi

t
(xt),

where the weights {wi
t}Ni=1 are normalized to sum to one, and

where δx() denotes the Dirac delta distribution centered in x.
Particles and weights are propagated and updated according
to Bayes’ rule using the SSM defined by Eqs. (1) and (2).

2
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The simplest implementation is the bootstrap particle filter,
given for completeness in Algo. 1. More complex algorithms
have been proposed in the literature in order to overcome the
shortcomings of the bootstrap particle filter in practice. The
main is the impoverishment of the particle set. This refers to
the fact that without resampling most weights degenerate over
time, or with resampling (as done in the bootstrap particle
filter) only a few particles are retained after the resampling
step.

Algorithm 1 Bootstrap particle filter

1: Initialize {xi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , t0 do
3: for i = 1, . . . , N do ▷ Propagate
4: Sample x̃it ∼ p(xt | xit−1);
5: Compute w̃i

t = wi
t−1p(zt | x̃it);

6: end for
7: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

8: for i = 1, . . . , N do ▷ Resample
9: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

10: Set xit = x̃kt , w
i
t = 1/N ;

11: end for
12: end for

In this form, the particle filter assumes the model parameter
θ to be known and fixed. Therefore, it cannot be directly ap-
plied to prognostics application, as the parameter values are
typically specific to each individual device. Missing mea-
surements can be treated on the other hand trivially: If the
measurement zt is unavailable, we marginalize Eq. (2) with
respect to zt and replace p(zt | x̃it) by

∫
p(z′t | x̃it)dz′t = 1.

In practice, this corresponds to not updating the weights (line
5 of Algorithm 1) and only sampling x̃it from the distribution
p(xt | xit−1). Resampling is not required in this case, but
could still be done, even though it might lead to unnecessary
impoverishment of the particles.

3. STATE AND PARAMETER ESTIMATION WITH PARTI-
CLE FILTERS

Estimating sequentially both state and parameter of a model
is a difficult problem. Several methods have been proposed in
the literature, see, e.g., (Doucet et al., 2000, 2001). Many of
these do not treat the parameter estimation sequentially, and
are therefore not further discussed here. In this section, we
only describe three of the most common approaches in the
prognostics literature, see, e.g., (Si et al., 2011; Jouin et al.,
2016).

3.1. Parameter-augmented bootstrap particle filter

The straightforward approach to state and parameter estima-
tion consists in augmenting the state-space xt with the pa-
rameter θ, i.e., defining a new state space Xt = (xt, θt). The

underlying dynamics for xt is unchanged and is defined by
Eq. (3). The parameter θ is assumed to not evolve in time,
i.e., it follows the trivial dynamics

θt = θt−1,

and θ0 = θ. Together with the prior distribution p(θ0) = p(θ)
this is equivalent to the solution of the full problem. The
augmented state of the resulting SSM can then be estimated
using the bootstrap particle filter. The resulting method is
given in Algo. 2.

With this method, the parameter θt does not evolve over time.
Hence, the set of possible values for it is fixed throughout
the algorithm, and is equal to the initial samples θi0 from the
prior distribution p(θ). Due to resampling, only a few dis-
tinct values of θ survive after some time (in the worst case
only one). Therefore, this algorithm leads in many cases to a
strong overconfidence on the parameter uncertainty, and pos-
sibly to a wrong estimate of its value. Despite this shortcom-
ing, this approach has been proposed in (An, Choi, & Kim,
2013), even if only in a tutorial setting.

Algorithm 2 Parameter-augmented bootstrap particle filter

1: Initialize {xi0, θi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , t0 do ▷ Propagate
3: for i = 1, . . . , N do
4: Set θ̃it = θit−1

5: Sample x̃it ∼ p(xt | xit−1; θ̃
i
t);

6: Compute w̃i
t = wi

t−1p(zt | x̃it; θ̃it);
7: end for
8: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

9: for i = 1, . . . , N do ▷ Resample
10: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

11: Set xit = x̃kt , θit = θ̃kt , wi
t = 1/N ;

12: end for
13: end for

3.2. Diffusive bootstrap particle filter

The main limitation of the parameter-augmented bootstrap
particle filter is the impossibility to create new parameter val-
ues θit. This can be overcome by increasing their variability
over time and in particular by exploring values close to the
particles that survive the resampling. Since we only have in-
formation regarding the likelihood function or posterior dis-
tribution of values of state and parameter represented by some
particles, some approximation is needed.

The most popular approach to create variability in the param-
eter consists in adding a stochastic dynamic term to its time
evolution. In almost all practical cases, this dynamics takes
the form of a Brownian motion, i.e.,

θt ∼ N (θt−1,Σθ), (5)
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where Σθ is a suitable covariance matrix.

Whereas the motivation for the stochastic evolution of the pa-
rameter θ is purely to improve the particle filter method, it
is often proposed, that it attempts to capture the mismatch
between the model and the real underlying process, even if
the parameter is not – in principle – changing in time. De-
spite this mismatch being potentially a valid point, using a
stochastic dynamics for this in prognostics is difficult to jus-
tify. Indeed, the variation of the degradation variable is often
rather limited and deviations will tend to be rather system-
atic than random. Another case made is that it allows to cap-
ture change-points of the parameter, where the time evolution
changes abruptly, e.g., due to a transition to a faulty state.
Such transitions are often handled better using dedicated ap-
proaches. In addition, the diffusive nature of Eq. (5) leads to
past measurements being considered progressively less by the
filter, leading to a larger parameter and prediction uncertainty.

On a more practical side, introducing the covariance matrix
Σθ adds hyperparameters to the algorithm that are often diffi-
cult to tune. Unfortunately, the performance of the algorithm
relies strongly on a good choice of them. If the covariance has
too small elements the parameter is essentially static and the
method has the same issues as in Sec. 3.1. Conversely, if Σθ

has too large elements, the dynamics introduces overdisper-
sion to the parameter. This second case is particularly con-
cerning in case of missing measurements and especially in
the prediction phase. Indeed, without measurements, which
are the driving force constraining the parameter, the diffusive
dynamics leads to a strong and purely artificial increase in un-
certainty. The calculation of the RUL is most susceptible to
this, as a prediction over a long time horizon is made. A hy-
brid approach is often employed to overcome this difficulty:
The parameter is evolved using the stochastic model for the
estimation phase, but is then frozen for the prediction phase.
This inconsistency is listed as one of the open questions in
(Jouin et al., 2016).

We propose here the introduction of an improved parameter
evolution by using a time dependent covariance matrix Σθ in
order to mitigate this issue. The time dependence is defined in
the following way: the parameter is only updated when mea-
surements are done, otherwise it remains unchanged. This
corresponds formally to setting Σθ = 0 for time steps with-
out measurements. With this practical approach, we do not
incur an artificial but unneeded overdispersion and still retain
the better exploration of the parameter space with respect to
the method of Sec. 3.1. We also remove the inconsistency
in calculating the evolution in the parameter estimation and
prediction phase. Despite these improvements, the diffusive
bootstrap filter still strongly relies on choosing appropriately
the covariance matrix to avoid either the impoverishment of
the particles, or the loss of information carried by past mea-
surements.

The diffusive bootstrap particle filter algorithm including the
improvement for missing measurements is shown in Algo. 3.

Algorithm 3 Diffusive augmented bootstrap particle filter in-
cluding treating of missing measurements

1: Initialize {xi0, θi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , t0 do ▷ Propagate
3: for i = 1, . . . , N do
4: if zt available then
5: Sample θ̃it ∼ p(θt|θit−1,Σθ);
6: else
7: Set θ̃it = θit−1;
8: end if
9: Sample x̃it ∼ p(xt | xit−1; θ̃

i
t);

10: Compute w̃i
t = wi

t−1p(zt | x̃it; θ̃it);
11: end for
12: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

13: for i = 1, . . . , N do ▷ Resample
14: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

15: Set xit = x̃kt , θit = θ̃kt , wi
t = 1/N ;

16: end for
17: end for

3.3. Liu–West filter

A popular approach trying to avoid the artificial overdisper-
sion of the parameter due to the stochastic evolution of the
parameter has been proposed in (Liu & West, 2001), referred
to here as “Liu–West filter”. Their approach has been widely
used due to two advantages: it is independent of the specific
model and it is easy to implement. Examples of its use in
prognostics application are e.g.(Hu, Baraldi, Di Maio, & Zio,
2015; Peng et al., 2018).

The Liu–West filter, similarly to the diffusive particle filter
of Sec. 3.2, evolves the parameter in time with a stochastic
process. Unlike it, the process is tuned such that the mean
and covariance of the marginal parameter distribution stays
invariant during the parameter update process. The overdis-
persion of the parameter estimation is therefore kept under
control, avoiding the main drawback of the diffusive boot-
strap filter.

At each time t, the parameter value for the ith particle is sam-
pled from the modified stochastic process

θit ∼ N(mi
t,Σt),

with suitable values for mi
t and Σt. To calculate these, the

(weighted) meanmt and covariance Σm,t of the marginal dis-
tribution over all θit−1 are determined. These are then used to
get

mi
t = aθit−1 + (1− a)mt (6)

and
Σt = (1− a2)Σm,t, (7)

4
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In Eqs. (6) and (7), the scalar tuning parameter a ∈ [0, 1] is
used in both mi

t and Σt such that the marginal distribution
of the newly sampled {θit}Ni=1 have the same mean mt and
covariance Σt as before. In this way the overdispersion from
the sampling of θit is kept at a minimum.

Two limiting cases can be seen: If the coefficient a → 1
the parameter values of the particles do not move over a time
step, the Liu–West filter approaches the static particle filter.
Conversely if a→ 0 all particles have parameters drawn from
a common normal distribution, independent of the individual
parameter values of the particles at the previous time step.
The parameter a is often chosen very close to a → 1 (e.g.
0.995) or even adapted over time to cope with the improved
knowledge of the parameter. The method was inspired by the
analogy of the marginal parameter distribution in the diffusive
update step with a kernel density estimation or a Gaussian
mixture model centered around the mi

t.

A possible implementation of the Liu–West filter is given in
Algo. 4; the main difference is the modified calculation of the
update of the parameter value of the particles. We give here
only the simplest implementation, whereas in (Liu & West,
2001) some additional importance sampling steps are used in
addition.

Algorithm 4 The Liu–West particle filter

1: Initialize {xi0, θi0, wi
0 = 1/N}Ni=1;

2: for t = 1, . . . , T do ▷ Propagate
3: for i = 1, . . . , N do
4: Determine mean mt and variance Σt of

the marginal of the θit−1;
5: Determine mi

t = aθit−1 + (1− a)mt;
6: Sample θ̃it ∼ N (mi

t, (1− a2)Σt);
7: Sample x̃it ∼ p(xt|xit−1, θ̃

i
t);

8: Evaluate the corresponding weights
wi

t ∝ wi
t−1p(zt|xit, θ̃it);

9: end for
10: for i = 1, . . . , N do ▷ Resample
11: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

12: Set xit = x̃kt , θit = θ̃kt , wi
t = 1/N ;

13: end for
14: end for

The Liu–West filter often works in practice, but requires tun-
ing of the hyperparameter a, which might be difficult to set to
a reasonable value in a real application. A wrong value of a
can lead, as before to an incorrect prediction.

Dealing with missing measurements can be done in two pos-
sible ways: The first one replaces p(zt | · · · ) by one and
evolves the parameter θit in the same way as for time steps
with measurements. The second one follows the proposal
above and keeps the parameter fixed for that time step. This

corresponds formally to choosing a = 1 for them.

4. STORVIK FILTER

In (Storvik, 2002; Johannes & Polson, 2006; Erol, Li, Ram-
sundar, & Russell, 2013) the authors propose a class of parti-
cle filter approaches that are exact with respect to the param-
eter distribution. Even though they slightly differ in their spe-
cific implementation, they are based on the same basic con-
cept and we refer to them together as “Storvik filter”.

The main problem with parameter estimation in SSMs, and
therefore also in SMC, is the increasing number of measure-
ment data and hidden states, which makes evolving the pa-
rameter distribution progressively harder over time. The Stor-
vik filter assumes the existence of a finite-dimensional suf-
ficient statistic s(x, z) for the distribution of the parameter
given the states x0:t and the measurements z0:t. Denoting
st = s(x0:t, z0:t), sufficiency means that

p(θ | x0:t, z0:t) = p(θ | st).

The value of st carries all the relevant information contained
in the history of x0:t and z0:t. In addition, the Storvik filter
requires a recursive rule

st = S(st−1, xt, zt).

to update the sufficient statistic with each new state and mea-
surement.

The existence of a sufficient statistic with a finite and fixed
dimension independent of t is not guaranteed. The Fisher–
Pitman–Koopman–Darmois theorem states that such a finite
sufficient statistic st exists if and only if the distribution of
θ belongs to the exponential family, see e.g. (Barankin &
Maitra, 1963). This is often the case and thus guarantees a
wide applicability of the Storvik filter. Especially many mod-
els use normal distributed process noise terms together with a
linear dependency of the parameter, which can be addressed
with this approach as discussed in (Erol et al., 2013). Exten-
sions to distributions that are not members of the exponential
family can be found in (Johannes & Polson, 2006), where
the authors consider mixtures of exponential families for this
case. Finally, in (Joyce & Marjoram, 2008) the authors dis-
cuss the determination of approximately sufficient statistics
from data, if exact sufficient statistics are not available.

The Storvik filter is given in Algo. 5. It shares a number
of similarities with the already discussed filters in that the
parameter is evolved as well in each time step. The particles
contain in addition to xit and θit also sit, which are used to
sample new values of θit ∼ p(θit | sit).

5. STORVIK FILTER WITH MISSING MEASUREMENTS

Incorporating missing measurements into the Storvik filter is
not straightforward, as was in the other cases, due to the re-

5
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Algorithm 5 The Storvik particle filter

1: Initialize {xi0}Ni=1;
2: Compute {si0 = s(xi0, z0)}Ni=1;
3: for t = 1, . . . , T do ▷ Propagate
4: for i = 1, . . . , N do
5: Sample θit ∼ p(θt | sit−1);
6: Sample x̃it ∼ p(xt | xt−1, θ

i
t);

7: Evaluate w̃i
t = wi

t−1p(zt | x̃it, θit);
8: Compute s̃it = S(sit−1, x̃

i
t, zt);

9: end for
10: Normalize ŵi

t = w̃i
t/
∑

j w̃
j
t , i = 1, . . . , N ;

11: for i = 1, . . . , N do ▷ Resample
12: Sample k from the set {1, . . . , N}

with weights {ŵj
t}Nj=1;

13: Set xit = x̃kt , sit = s̃kt , wi
t = 1/N ;

14: end for
15: end for

quired update of the sufficient statistic in each step. We have
identified two possible approaches:

1. Resampling the parameter at each step, despite missing
measurements. We denote this choice by “U” as in “Up-
dating”.

2. Freezing the parameter to the value at the last observed
time. We denote this choice by “F” as in “Frozen”.

The two approaches can be shown to result from splitting the
joint posterior distribution for the evolution of the state from
t+ 1 to t+ k without measurements into

p(xt+1:t+k, θ) = p(θ|st+k)p(xt+1:t+k),

showing that the sufficient statistic needs to be updated us-
ing all xt+1:t+k to get the correct distribution of θ at the end.
The distribution p(xt+1:t+k) on the other hand can be decom-
posed in two different ways, either as

p(xt+1:t+k) =

∫
p(xt+k|θ)p(xt+k−1|θ) . . .

p(xt+1|θ) p(θ|x1:t, z1:t)dθ

which corresponds to sampling one θ at the last time step
with a measurement and sampling all new values of x with
it, which is the ”F” approach. Alternatively one can write

p(xt+1:t+k) =

∫
p(xt+k|xt+k−1, θ)p(θ|st+k−1)dθ×

p(xt+1:t+k−1)

which corresponds to updating the sufficient statistic after
each step and sampling a new θ from it. This is the ”U”
approach. This shows that both approaches are identical in
principle, but could still be more or less efficient in applica-
tions.

A possible implementation of both approaches is given in Al-

gos. 6 and 7 for the ”U” and ”F” approach replacing lines 3
to 9 in Algo. 5, respectively. Please note the similarity of the
two approaches to the one previously discussed.

Algorithm 6 Storvik particle filter “U” for predictions

1: for i = 1, . . . , N do
2: Sample θit ∼ p(θt | sit−1);
3: Sample xit ∼ p(xt | xt−1, θ

i
t)

4: Set wi
t = wi

t−1

5: Compute sit = S(sit−1, x
i
t)

6: end for

Algorithm 7 Storvik particle filter “F” for predictions

1: Set θit = θit−1 for i = 1, . . . , N
2: for i = 1, . . . , N do
3: Sample xit ∼ p(xt | xt−1, θ

i
t)

4: Set wi
t = wi

t−1

5: Compute sit = S(sit−1, x
i
t)

6: end for

6. SIMULATION STUDY

We compare the performances of the four algorithms (para-
meter-augmented bootstrap particle filter, diffusive bootstrap
particle filter, Liu–West filter, and Storvik filter) when applied
to two simple models mimicking typical degradation dynam-
ics. In addition we use a MCMC implementation in order
to get the exact posterior distribution for all cases, using the
JAGS probabilistic programming language (Plummer, 2003).

6.1. The linear model

The simplest model is the one of a Brownian motion with
drift for xt

xt+1 ∼ N (xt + α, σx) (8)

together with a normal distributed measurement error

zt ∼ N (xt, σz) (9)

This model is also referred to in the literature as the Whitmore
model (Whitmore, 1995). For this study, we assume that only
α is unknown and that σx and σz are known, so that only α
and xt need to be determined. This model falls into the class
of having normal distributed process noise and being linear
in the parameter. Therefore the sufficient statistic is known to
be the mean and standard deviation of the distribution of the
parameter α.

The prior distributions are assumed to be given as

p(α) = N (α0, σα0
) (10)

and
p(x0) = N (z0, σx0) (11)

centered around the first measurement z0.

6
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To simulate the data set we have used x0 = 1000, α = −8.65,
σx = 1, and σz = 5. The prior distribution parameters are
α0 = α = −8.65, σα0

=
√
5 and σx0

= 10.

6.2. The stretched exponential or Weibull model

For many devices, e.g. for batteries or capacitors, the degra-
dation process accelerates over time. The Weibull function,
also known as stretched exponential, is often employed to
capture this. We use a model of the form

xt+1 ∼ N
(
xt − 3α

(
− ln

(xt
X

))1−1/3

xt, σx

)
,

which is chosen to follow approximately a Weibull function
with shape parameter 3, but in the form of a time-independent
stochastic process. The measurement model reads as before

zt ∼ N (xt, σz),

We assume the same prior distribution for α and x0 as in
Eqs. (10) and (11).

As in the linear model, the process noise is modeled as nor-
mal distributed and the dependency on the parameter is linear,
even if the evolution of xt is not. This makes the sufficient
statistic to be as before the mean and standard deviation of
the distribution for α.

For the simulation we have used initial condition x0 = 995,
maximum value X = 1000, σx = 1, σz = 5, and α = 1/80.
For the prior we use α0 = α = 1/80 and σα0

= 6 · 10−3 and
where σx0

= 1 to avoid sampling impossible values x0 ≥
X . Parameters were chosen, such that the two models are
comparable in terms of the degradation path.

For all tests we simulate 100 time steps with the measure-
ments thinned, such that only every 5th time step was recorded
to verify how efficiently the methods can treat missing mea-
surement. We also stopped the estimation phase at either time
horizon t0 = 30 or 75 and continued with the prediction part
only. The data set used, as well as the mean degradation curve
for the two models are shown in Fig. 1.

6.3. Results

Figure 2 demonstrates the issues that can affect the static and
the diffusive particle filters and the Liu–West filter. Measure-
ments are available until t0 = 75, after which only predic-
tions were done. Note that we selected hyperparameters in
order to exaggerate the issues. A more fine-tuned approach
would lead to better agreement with the MCMC results.

With respect to the MCMC based reference result, given in
Figure 2(d) we observe:

• Figures 2(a) and (b) demonstrate the underestimation and
overestimation of the parameter uncertainty when using
the static parameter-augmented particle filter and the dif-

Figure 1. The mean value for xt and the thinned measurement
data zt for the two models is shown.

(a) Parameter augmented filter (b) Diffusive filter

(c) Liu–West filter (d) MCMC

Figure 2. Parameter estimation for the Weibull model for the
three different particle filter: (a) static bootstrap, (b) diffusive,
and (c) Liu–West filter. (d) gives the reference results using
the MCMC approach. Mean values and uncertainty in terms
of two standard deviations are given.

fusive particle filter, respectively.
• Figure 2(c) demonstrates that also the Liu–West filter can

yield overdispersed results, even if overall less severe
than for the diffusive particle filter case.

In Fig. 3 we give the results for the two implementations (”F”
and ”U”) of the Storvik filter for missing measurements for
the linear model, in Fig. 4 for the Weibull model. In or-
der to focus on the performance of the two algorithm in the
prediction phase, we set the time horizon to t0 = 30. We
observe that both implementations of the Storvik filter for
missing measurements lead to results that are consistent with
the MCMC result, despite (or due to) the absence of tuning
hyperparameters. We also observe that the two implemen-
tations are practically indistinguishable, with the exception
of a slightly more unstable behavior of the U implementa-
tion, visible in the initial time period of the Weibull model in

7
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(a) Storvik filter using ”F”

(b) Storvik filter using ”U”

(c) MCMC

Figure 3. Parameter and state estimation of the linear model
with the Storvik filter: Results using the two different treat-
ments in case of missing data are compared using (a) the
Frozen and (b) the Update approach. Results are compared
with the reference result using the MCMC approach. On the
left the evolution of the parameter estimation, on the right the
difference between predicted and the true state is given. In
both cases the mean and the uncertainty in terms of two stan-
dard deviation is shown.

Fig. 4(b).

7. APPLICATION TO REAL DATA WITH BREAKER OPEN-
ING TIMES

In this section, we test the application of the Storvik filter
against real data from an application with circuit breakers. In
this case model misspecification is present and could under-
mine the applicability of the approach.

Circuit breakers are protection devices to interrupt short cir-
cuit currents occurring in an electric network. They are op-
erated by mechanical mechanisms whose malfunction is one
of dominant failure modes for them. The time required to
open or close the contacts is the commonly monitored prop-
erty. For instance, a reduction in a spring force or an increase
in friction leads to an increase of this time. Hence, tracking
it as a function of the number of operations enables to predict
the end-of-life of these devices.

The evolution of the time xt of the mechanical opening/clos-
ing operation is in general stochastic. Please note that t in this

(a) Storvik filter using ”F”

(b) Storvik filter using ”U”

(c) MCMC

Figure 4. Parameter estimation of the Weibull model with
the Storvik filter: Results using the two different treatments
in case of missing data are compared using (a) the Frozen
and (b) the Update approach. Results are compared with the
reference result using the MCMC approach. On the left the
evolution of the parameter estimation is given showing the
mean and the uncertainty in terms of two standard deviation,
whereas on the right we give the full distribution for the final
time step.

case typically refers to the number of operations performed
instead of the time in operation. We describe it by the linear
model as given in Eq. (8). The main issue with the data is that
the measurement error is not following a normal distribution
as assumed in Eq. (9). In fact, because of the signal process-
ing performed during acquisition, the data is strongly quan-
tized, as can be seen in Fig. 5(a). This was already discussed
and analysed in (Hencken, 2021), which concluded that as-
suming normal distributed error gives reasonable results in a
full analysis.

As circuit breaker often perform a larger number of opera-
tions, the use of a sequential approach will be an advantage in
practice. We therefore explore here whether a particle based
approach based on the Storvik filter is suitable. The model
features three unknown parameters: the drift α and the two
standard deviation for the process σx and the measurement
σz , which leads to a more complex sufficient statistic. Fol-
lowing the usual normal-inverse-gamma model, the sufficient
statistic consists of six variables, which are mean and stan-
dard deviation of the normal distribution of the drift α and

8
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(a) Storvik filter (b) MCMC

Figure 5. Results of the application of the Storvik filter to the
estimation of the degradation process of opening times xt of
a circuit breaker as a function of the number of oerations t.
(a) shows the original data together with the state estimations
and the prediction of the future evolution for the Storvik filter
using the “U” method, (b) the same but for the MCMC refer-
ence approach.

the location and scale parameter of the inverse Gamma distri-
bution for σx and similar for σz . For more details, we refer to
(Storvik, 2002), where the sufficient statistic, as well as their
update rules, are given.

As all measurements are available, we focus on a comparison
of the basic Storvik filter without missing measurements with
the exact result as given by the MCMC approach. The results
of the state estimation and the expected future evolution of
the two models are shown in Fig. 5. The Storvik filter is able
to estimate the states quite similar to the ones found in the
reference approach and in addition is able to capture the fu-
ture evolution. Some slight deviations are visible, especially
of the MCMC results showing a slightly larger uncertainty
at the end of the measurements. But this demonstrates in a
first step the possible application of the Storvik filter in real
applications.

8. CONCLUSIONS AND OUTLOOK

Model-based prognostics requires joint state and parameter
estimation. A sequential approach is most suitable to avoid
increase in computational complexity over time. Several ap-
proaches involving particle filters and their potential issues
have been discussed. We have focused also on the need of
a robust treatment of time steps with missing measurements
either due to irregular data acquisition or for the predictions
needed for the RUL calculation. We have explored the use
of the Storvik filter for prognostics application as an exact
parameter estimation approach. We have shown that it can
be naturally extended to incorporate missing measurements
in two ways, which are similar to the ones discussed for the
other particle filter approaches. Its main limitation is that it
is restricted to problems allowing for the existence of a suffi-
cient statistic. Simulations using two simple models showed
the robustness and reliability of the Storvik filter, whereas we
demonstrated as well, that other approaches can lead to er-
roneous results. We have also applied it to one real world
examples, in order to test its applicability in a case, where the

assumed model is not valid.

Prognostics using particle filters is an active area of research
and development of real applications. The promising results
with the Storvik filter should be further explored and its appli-
cability to more complex problems, including higher dimen-
sional state space and parameter vectors, but also to mod-
els beyond the restricted class studied here, should be ex-
plored. Finding suitable sufficient statistics in these more
general models, even outside the exponential family, is an-
other line of research to be undertaken.
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ABSTRACT 

This paper extends the research presented at the Prognostics 
and Health Management (PHM) Asia-Pacific 2023 
Conference Data Challenge, focusing on a more pragmatic 
approach to spacecraft propulsion system health assessment. 
While the previous competition saw a variety of solutions, 
they predominantly relied on the assumption of highly stable 
initial hydraulic conditions – an idealization seldom met in 
real-world scenarios. In practical settings, factors such as 
operational noise, recent operational states, and ambient 
environmental conditions significantly disrupt this stability, 
rendering such solutions less feasible. Addressing this gap, 
our current study introduces a novel diagnostic model 
capable of valve faults without depending on the initial stable 
state of hydraulics. This approach marks a significant shift 
from our previous methodology, which primarily utilized 
similarity measures and physics-inspired features to classify 
health states and identify solenoid valve faults in spacecraft 
propulsion systems. The proposed model in this paper is 
validated against a diverse set of conditions, emphasizing its 
robustness and applicability in fluctuating real-world 
scenarios. Our findings demonstrate that the new model not 
only effectively diagnoses system health under varied and 
less controlled conditions but also enhances the practicality 
of spacecraft health management, offering a more adaptable 
solution in the face of operational uncertainties. 

1. INTRODUCTION 

Propulsion systems in spacecraft are essential for navigating 
through the cosmos, and their dependable and effective 
operation is critical. Therefore, the health management of 
these systems is of utmost significance. The role of 
Prognostics and Health Management (PHM) is central in 
ensuring this dependability, as it allows for the early 

identification and assessment of potential problems or 
irregularities within the propulsion mechanisms.  

To promote Spacecraft PHM, the Japan Aerospace 
Exploration Agency (JAXA) created and released a dataset to 
the public (Tominaga et al., 2023), and at the same time, a 
data challenge was held at the PHM Asia Pacific 24 
conference to facilitate the use of this data (PHMAP 2023 
Secretariat, 2023). The Data Challenge required complex 
diagnostics such as analytical detection, classification, and 
regression, and many institutions took on the challenge. 
Despite the complexity of the problem, the top three teams of 
the data challenge ultimately succeeded in creating highly 
accurate models, and these results have been compiled and 
published in papers (Kato, et al., 2023) (Lee et al., 2023) 
(Minami & Lee, 2023). This effort was an important step in 
the promotion of spacecraft PHM. However, there are two 
major problems in adapting these models to the real world. 

The first problem is the presence of non-noise regions that are 
unique to this data set. All of the top three teams found and 
used a time region in the given pressure sensor data that is 
completely free of noise. In this time region, all data sets with 
identical health conditions have the same pressure values, and 
the differences among Spacecraft individuals and data are 
zero. Specifically, the given pressure time series data is 
completely free of noise/variation in the initial 0.1 seconds (0 
to 0.1 sec) of the 1.2 seconds. This is evidenced by the results 
of the data analysis (Kato, et al., 2023). This is presumably 
because this data set was generated by simulation. Since this 
specificity is considered to be different from the behavior of 
pressure in the real world, there is a concern that even if a 
high-performance model is created using only the completely 
noise-free portion of this data set, it will be completely 
useless in the real world if any noise is added, or if there is 
any variation in the data. To dispel this concern, it is 
necessary to evaluate the model using data with 
noise/variance. 

The second problem is the use of valve open-state data. The 
data given are data from three iterations of valve opening and 
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the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
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closing, and the three proposed models use only the data from 
that first valve open state. However, in the valve open state, 
the propulsion system is not closed as a system and its 
pressure behavior is subject to external influences. Therefore, 
the pressure in the valve open state is a very complex and 
unpredictable behavior. Therefore, in pursuit of a robust 
model, state estimation is required using the pressure in the 
valve closed state, i.e., when the system is closed. 

Because of these two major problems, the models proposed 
in the data challenge may not stand up to use in the real world.  

To summarize the above points: 

Firstly, regarding the variance-free region of the dataset: 
• The spacecraft valve dataset contains an unrealistic 

time region that is free of variance. 
• The models proposed in the data challenge use this 

variance-free time region, which may result in poor 
performance when applied to real-world data. 

• To ensure the proposed models perform well in the 
real world, it is necessary to validate them using 
time regions with variance. 

Next, regarding the data during valve opening and closing: 
• When the valve is open, the system is open, making 

the sensor data complex and unpredictable. This 
cannot be verified until tested with real-world data. 

• For building a robust model, it is preferable to use 
data from the closed system when the valve is closed. 

• All models proposed in the data challenge are 
designed and trained using data from the valve-open 
state. 

• To construct a robust model, it is necessary to design 
new models based on data from the valve-closed 
state. 

To address this issue, this paper examines and evaluates the 
models for the PHM of spacecraft valve under the restriction 
that data from the variance-free portion is not used and 
assumes following two cases: Case 1 uses data from the valve 
open state, while Case 2 uses data from the valve closed state. 

Model construction was examined under these scenarios to 
promote the construction of a more robust PHM model. 

2. PROBLEM STATEMENT 

The PHM Asia-Pacific 2023 Conference Data Challenge 
focused on Prognostics and Health Management for 
spacecraft propulsion systems, with the system's schematic 
illustrated in Figure 1. The training dataset provides 177 sets 
of synthetic data produced by simulations. Each set includes 
measurements from seven pressure sensors labeled P1 to P7, 
as depicted in Figure 1. These measurements were taken at a 
sampling rate of 1 kHz, throughout 1200 ms, and encompass 
three cycles of valve open-close operations, as shown in 
Figure 2.  

The training dataset covers three distinct spacecraft, labeled 
#1 through #3, and it encompasses three different health 
conditions: normal operation, bubble anomalies, and solenoid 
valve faults. Solenoid valve faults could potentially occur in 
one of the four valves labeled SV1 through SV4, as shown in 
Figure 1. In the event of a fault, the solenoid valves may open 
anywhere from 0% to 100% of their full range. Under normal 
conditions, they open 100%. Note that the training data only 
include cases in which the valve open ratios are 0%, 25%, 
50%, 75%, and 100%. The competition aims to utilize the 177 
training data points to evaluate the health conditions of the 46 
test data points. Half of the test data originates from 
spacecraft #4, which is not represented in the training set. 

In this study, we focus only on the most complex task of 
estimating valve apertures. Two problem settings, Case 1 and 
Case 2, are used to validate the model for the two major 
problems described in the Introduction. Each is described in 
detail in the following sections. 

Figure 1. Schematic of experimental propulsion system 

Figure 2. Typical pressure profile 

Figure 3. Pressure differences among normal data 
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Figure 4. Data Regime 

2.1. Case 1: Valve opening ratio prediction using data at 
valve opening with noise/variance 

In Case 1, only the data of the valve open state of the second 
and third cycle of the valve open/close cycles is used. 
Specifically, as shown in the green area of Figure 4, out of 
the total 1.2 seconds of pressure data, only 0.4 to 0.5 seconds 
and 0.8 to 0.9 seconds, for a total of 0.2 seconds of data are 
used. 

Case 1 evaluates model performance with the following 
metrics as well as data challenge 

The evaluation metric is as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑆𝑐𝑜𝑟𝑒𝑖

𝑁𝑡𝑒𝑠𝑡
𝑖

∑ 𝑆𝑐𝑜𝑟𝑒(𝑚𝑎𝑥)𝑖
𝑁𝑡𝑒𝑠𝑡
𝑖

 (1) 

Here, 𝑁𝑡𝑒𝑠𝑡  is the number of test data. 𝑆𝑐𝑜𝑟𝑒𝑖 is as follow: 

𝑆𝑐𝑜𝑟𝑒𝑖: For the solenoid valve correctly identified as fault, 
prediction of the opening ratio: max (20-|truth – prediction|, 
0) 

For spacecraft #4, 𝑆𝑐𝑜𝑟𝑒𝑖  are doubled, considering the 
difficulty. 𝑆𝑐𝑜𝑟𝑒(𝑚𝑎𝑥)  is the score if there were no 
prediction errors. Therefore, the total score can range from 
0% to 100%. 

2.2. Case 2: Valve opening ratio prediction using data at 
valve closed 

In Case 2, only the data of the valve closed state for the 1st, 
2nd, and 3rd cycles of the whole sensor data are used. 
Specifically, as shown in the orange area of Figure 4, out of 
a total of 1.2 seconds of pressure data, 0.1 to 0.4, 0.5 to 0.8, 
and 0.9 to 1.2 seconds of pressure data are used. 

Since Case 2 is more difficult than Case 1 and it is difficult 
to estimate the valve opening ratio with continuous values, 
set the classes according to the valve opening ratio as shown 
in Figure 5, and set the problem as a classification problem to 
predict the valve opening ratio class instead of a regression 

problem to predict the numerical value of the valve opening 
ratio. 

The classification models are evaluated using the following 
metric where TP is the total number of test data that are 
correctly classified. 

Figure 5. Labeling of valve opening ratio 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑁𝑡𝑒𝑠𝑡

 (2) 

3. BACKGROUND: MODEL SELECTION 

PHM often face the challenge of dealing with noise and 
variability in data, which can obscure the fundamental 
patterns necessary for accurate diagnosis and prediction. A 
common approach to address this issue is the use of filtering 
techniques, such as moving averages and other signal 
processing methods. 

Simple filtering techniques, such as moving averages and 
other basic smoothing methods, are widely used in PHM to 
reduce noise and improve signal quality. For instance, 
Mubarak et al. (2023) demonstrated that applying a moving 
average filter to time series signals outperformed traditional 
condition monitoring methods in tasks such as Rolling 
Element Bearing Fault Diagnosis and Hydraulic 
Accumulator State Classification. Similarly, Boškoski and 
Urevc (2011) showed that passing vibration signals through 
a band-pass filter effectively removed noise, enhancing the 
accuracy of bearing fault detection by analyzing the envelope 
spectrum of the filtered signals. 

However, these simple methods have significant limitations. 
The primary concern is their inability to distinguish between 
noise and useful information. As a result, essential diagnostic 
information may be inadvertently removed along with the 
noise. This is particularly problematic in scenarios like 
predicting valve opening degrees, where minute pressure 
fluctuations carry significant diagnostic value. Standard 
noise removal techniques are likely inappropriate here, as 
they can degrade model performance by losing critical 
diagnostic information. 

To address the limitations of simple filtering, advanced 
techniques such as deep learning are utilized (Najafabadi et 
al., 2015). Deep learning models, including Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), and Generative Adversarial Networks (GANs), 
excel in distinguishing noise from useful signals. For 
example, Baptista and Henriques (2022) used a one-
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dimensional denoising GAN (1D-DGAN) to filter noise from 
turbofan engine operational data, significantly improving 
fault detection accuracy. Liu et al. (2018) proposed a novel 
bearing fault diagnosis method using an autoencoder in the 
form of an RNN. This method employed a Gated Recurrent 
Unit (GRU)-based denoising autoencoder to predict multiple 
vibration values of rolling bearings for the next period from 
the previous period. The proposed method demonstrated 
satisfactory performance with high robustness and 
classification accuracy. 

While these advanced methods are effective in removing 
noise without losing useful information, they typically 
require large amounts of training data. Such extensive 
datasets are essential for the model to learn complex patterns 
and distinguish subtle differences between noise and useful 
signals. 

In contrast, the dataset used in this study is very limited. This 
limitation makes the application of deep learning approaches 
impractical, as the model is likely to overfit the small dataset 
and fail to generalize to unseen data. 

Given these constraints, rule-based models or simple models 
with fewer parameters are more suitable for this study. 
Therefore, this study focuses on designing and validating 
methods for the two cases set in the previous section, based 
on models proposed in the data challenge that meet these 
criteria. Specifically, we use the polynomial regression 
model based on pressure drop proposed by Minami and Lee 
(2023) and the similarity-based regression model proposed 
by Kato et al. (2023). 

In Case 1, we directly utilize the existing models proposed in 
the data challenge to evaluate their performance in the 
presence of noise and variability. The primary focus is to 
assess whether and to what extent the performance of the 
previously proposed models degrades with increased 
variability. 

In Case 2, since the models proposed in the data challenge 
are based on the assumption of valve open states, they cannot 
be used directly. This study examines the adaptation of these 
models' features to valve closed states. By doing so, it 
becomes possible to leverage the existing model structures 
while adapting them to new conditions. 

4. METHODOLOGY AND RESULTS 

In this section, the design and validation of models for two 
distinct cases are conducted. For both cases, a linear 
regression model is adopted as the benchmark method. This 
benchmarking methodology involves extracting nine types of 
basic statistics (Mean, Standard Deviation, Minimum, 25th 
Percentile, Median, 75th Percentile, Maximum, Skewness, 
Kurtosis) from each of the seven sensors. After extraction, 
dimensionality reduction is performed using PCA.  

4.1. Case 1 

In Case 1, the green area in Figure 4. Here, we examine how 
well the solution proposed in the data challenge maintains 
performance in a noisy and varied environment. 

4.1.1. Methodology 

As shown in Figure 1, there were two main valve opening 
prediction models implemented in the data challenge: one is 
the method that estimates the valve opening ratio by 
performing a polynomial fit based on the pressure drop/slope 
immediately after valve opening (Lee et al., 2023) (Minami 
& Lee, 2023). The other is the method that uses the similarity 
of the overall pressure during the first 0.1 seconds after the 
valve opens to estimate the pressure. (Kato, et al., 2023). 

To adapt these proposed methods for Case 1, here, the 
predicted valve open ratio is calculated for each of the 
predictions for the 2nd cycle data (0.4 to 0.5 sec) and the 3rd 
cycle data (0.8 to 0.9 sec), and take the average of these is the 
final predicted value 

4.1.2. Results 

The prediction results from each model are shown in Table 1, 
and the calculation results of the estimation accuracy are 
shown in Figure 6. 

Polynomial Fit's model is still able to maintain a high 
accuracy rate of 96%, albeit with lower accuracy, relative to 
previous results in the noiseless region. This suggests that the 
pressure drop is an important indicator that is not easily 
affected by noise. On the other hand, the model using 
Similarity shows a significant drop in accuracy, from 89% to 
48%. This indicates that Similarity is susceptible to noise and 
has poor generalization performance when the valve is open. 
These results indicate that the Polynomial Fit method, which 
focuses on the initial pressure drop, is effective in estimating 
the valve opening ratio, even with noise and variation, as long 
as data on the valve opening state is available. On the other 
hand, since the data is a simulation and the number of N is 
small, it is necessary to verify the validity of this finding by 
measuring data in a setting closer to reality. 
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Table 1. Models and predicted valve opening ratio 

 

  
Figure 6. Regression accuracy 

4.2. Case 2 

In Case 2, only the data in the orange region of Figure 4 is 
used as a more practical but more difficult setting compared 
to Case 1. 

4.2.1. Methodology 

Unlike Case 1, the solution proposed in the data challenge 
cannot be used, thus a new model must be devised. 
Theoretically, the difference in pressure behavior with valve 
opening is determined only by the pressure state immediately 
before closing the valve, and it all returns to a constant 
pressure with time after closing. In other words, the 
difference in valve opening ratio has the greatest effect on the 
pressure immediately after the valve is closed, and as time 
passes, the difference in valve opening ratio has less effect on 
the pressure difference. Therefore, we devised the following 
two models that focus on the pressure behavior immediately 
after the valve is closed. 

4.2.2. Method 1: Valve closing pressure surge 

The first proposed model focuses on the pressure increase 
immediately after valve closing, similar to the focus on 
pressure drop in Case 1. As an example, shown in Figure 7, 
the pressure rise after valve closing is divided by the valve 
opening %, which may be used to classify the pressure rise. 
The label of the training data with the closest pressure based 
on the pressure after the specified time after the valve is 
closed is estimated as the label of the test data. Three models 
are created based on the pressure at 106 ms, 107 ms, and 108 
ms after the valve was closed. 

Figure 7. Example of pressure surge after valve closed 
(SV1) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑒𝑙
= 𝐿𝑎𝑏𝑒𝑙 (argmin

𝑖
‖𝑃(𝑡𝑟𝑎𝑖𝑛𝑖) − 𝑃(𝑡𝑒𝑠𝑡)‖) (3) 

where training is the with training data, P is the pressure at 
the valve fault location, Label is the label of the training data, 
and Predicted Label is the label of the test data. 

4.2.3. Method 2: Similarity 

In this proposed model, as shown in Figure 8, the Euclidean 
distance is measured as the similarity of waveforms during a 
certain number of seconds after the start of valve closing 
operation, and the training data label with the highest 
similarity is used as the prediction label. Three models were 
created based on waveforms of different lengths (100 ms, 10 
ms, and 5 ms). 

 
Figure 8. Similarity measurement process 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑒𝑙
= 𝐿𝑎𝑏𝑒𝑙 (argmin(

𝑖
𝐸𝐷(𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑡𝑒𝑠𝑡))) (4) 

𝐸𝐷(𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑡𝑒𝑠𝑡)  calculates the Euclidian distance of i-th 
training data and test data as a similarity. 

4.3. Results 

Table 2, Figure 9, and Figure 10 show the classification 
results and the results of valve opening estimation for the two 
models. 

Table 2. Classification Results 

 

 
Figure 9. Classification Accuracy 

 
Figure 10. Confusion Matrix 

The results show that Method 2 has better overall accuracy 
than Method 1 and the benchmarking method. The results of 
Method 1 show that in Case 1, high accuracy can be obtained 
only with pressure drop, while in Case 2, accuracy is not as 
good as it was, only with pressure rise. Possible reasons for 
this include variations in the timing of valve switching and 
the fact that the pressure rise is more complex than the 
pressure drop because it is caused by pressure propagation 
throughout the system. 

Among the Method 2, the best accuracy was found when 10 
ms waveforms were used. This suggests that there may be 
information useful for valve opening prediction in a specific 
interval. Although it is difficult to conduct a detailed analysis 
here due to the small amount of data, if more data were 
available, it would be possible to conduct an EDA and 
analyze the useful data areas.  

From the above analysis, it is found that it is possible to use 
similarity to classify valve opening ratio classes and estimate 
intervals using only data for the closed valve state. 

5. CONCLUSIONS 

To construct a practical and robust spacecraft PHM model, 
we built and validated a valve opening prediction model with 
the constraint of eliminating noise/variation-free regions 
from the data set. 

In Case 1, we verified the capability of the model proposed 
in the data challenge based on the valve opening data. The 
results showed that the regression model focusing on pressure 
drop had a regression accuracy of 96% even in the presence 
of noise and variability. On the other hand, the model using 
similarity was found to be only 48% accurate. This shows that 
the pressure drop model can produce robust results even with 
noise. 

In Case 2, the model is built using only data from a closed 
system and closed valves. The model focusing on the 
pressure increase achieved only 70% accuracy in 
classification, while the model focusing on similarity 
achieved 100% accuracy. Further development of the model 
is needed to realize point estimation by regression rather than 
interval estimation of valve opening ratio by classification. 

6. FURTHER RESEARCH 

In this study, considering that system behavior generally 
becomes unstable when the system is open, a method that 
does not use the valve-open data from the dataset was 
proposed in Case 2. However, since the extent of instability 
depends on the application and the usage environment, it is 
necessary to collect data through experiments and verify the 
validity in future work.  
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ABSTRACT 
Reliability is a central aspect of machine learning 
applications, especially in fault diagnosis systems, where 
only an accurate and reliable diagnosis system is 
economically justifiable, considering that any false diagnosis 
would lead to an increase in maintenance costs or a reduction 
in system efficiency. Recent advances in machine learning 
(ML) techniques have encouraged condition monitoring 
researchers to focus their efforts on finding suitable ML-
based solutions for system condition assessment. However, 
to address the reliability issue, it is crucial to consider a larger 
amount of data measured by heterogeneous sensors on the 
system together with non-sensor information. The trend of 
data fusion has already started in other areas of ML 
application, and many of today's state-of-the-art models 
benefit from various types of fusion techniques to improve 
their accuracy. However, traditional classifiers do not 
provide any information about the prediction uncertainty, and 
they tend to show falsely high confidence when encountering 
low-quality data or previously unseen classes. Fusion of 
different data sources without considering the epistemic or 
aleatory uncertainty can lead to a deterioration of the result. 
Bayesian frameworks have traditionally been used to 
quantify uncertainty of systems; however, only recent 

advances made it possible to successfully implement 
Bayesian ML models. 

The research methodology was investigated using the 
MAFAULDA dataset generated by SpectraQuest's 
Machinery Fault Simulator. This simulator experimentally 
simulated various bearing conditions, including normal 
operation and inner and outer ring bearing failures, at variable 
speeds. The dataset consists of 1951 instances measured 
using two triaxial accelerometers, a microphone, and a 
tachometer. 

Diagnosis has been done via two multi label 1D 
Convolutional Neural Networks - each for a selected sensor - 
and their prediction along with their associated uncertainty 
quantity has been fused utilizing Bayesian model averaging. 
The methodology is capable of fusion of various decisions 
made based on different data sources and generate a unified 
decision with associated confidence level. Fusion process is 
uncertainty aware and application of 1D networks reduce the 
amount of data needed. 

1. INTRODUCTION 

1.2. Motivation behind the study 

While Condition Monitoring Systems (CMS) have been 
extensively researched in recent years, the issue of their 
reliability has often been overlooked. It's crucial to recognize 
that CM relies on a complex system comprising sensors, 

Atabak Mostafavi et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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acquisition devices, data analysis techniques, and expertise. 
Having in mind that any system that can fail, would 
eventually fail highlights the importance of reliability studies 
on CMS. This gap in research domain has prompted the 
authors to investigate the reliability of CMS with the aim of 
increasing awareness and attracting other scientists’ attention 
to the issue of the reliability of CMS. 

The main goal of condition monitoring is to enhance the 
detection of failures compared to traditional methods like 
periodic maintenance in a cost-effective manner [1].  
Therefore, addressing uncertainty in models does not imply 
admitting their malfunction; rather, a CMS with high 
uncertainty may prevent severe failures and associated costs 
and casualties that could be overlooked by competitor 
approaches. Acknowledging and addressing sources and 
levels of uncertainty in any diagnosis system is essential, as 
uncertainty is an inevitable aspect. Providing this critical 
information can help operators to make informed decisions 
and conduct thorough risk analyses. 

1.1. Condition monitoring background 

Condition monitoring (CM) serves as a vigilant process or a 
precision instrument focused on the early detection of 
machinery faults, failures, and wear, aiming to minimize 
downtimes and maintenance costs while maximizing 
production output. By detecting failures in their early stages, 
CM optimizes maintenance planning and action, thereby 
mitigating the risk of escalating damage and catastrophic 
failures. Moreover, it enhances comprehension of machinery 
behavior, consequently refining maintenance practices and 
operational efficiency [2]. 

CM techniques typically involve continuous measurement of 
machinery indicators or signals (online CM) or periodic 
assessments at predetermined intervals (offline CM) to detect 
abnormal deviations from baseline signals, distinguishing 
them from normal operational variations or detecting any 
fault signature [3]. 

Many examples for the development of CM can be found in 
literature: [4] designed and developed an integrated wireless 
vibration sensing tool to monitor milling equipment, 
employing Support Vector Machine (SVM) for analysis. [5] 
compared the statistical parameters of vibration signals for 
bearing diagnosis and suggested that signal power is the most 
effective criterion for diagnosis. [6] proposed an intelligent 
feature extraction method from vibration signals of bearing 
datasets to prevent human intervention for large signal 
analysis tasks. [7] reviewed vibration based condition 
monitoring of rotary machinery. [8] proposed a deep learning 
based gearbox fault diagnosis method that addresses data 
scarcity. [9] have fused multiple vibration signal into two-
dimensional rectangular matrix and employed a two-
dimensional convolutional neural network (2D-CNN) for 
bearing fault diagnosis. 

Rotating machinery is a primary focus of CM research due to 
its challenging nature. This includes various industrial 
components such as rolling and journal bearings, gearboxes, 
shafts, blades, entire systems like wind turbines, 
reciprocating machines, electric motors, pumps, helicopters, 
fans, cam mechanisms, generators, and compressors. Various 
diagnostic parameters can be monitored, such as vibrations, 
acoustic emissions, electrical currents, flow rates, rotational 
speeds, pressure levels, temperature, lubrication conditions, 
strain, wear, and rotor-stator interactions. Vibration emerges 
as the predominant condition indicative of rotary machine 
health, as each component exhibits a unique vibration 
signature closely correlated with operational conditions. 
Faults or defects within components introduce additional 
dynamic forces, manifesting as vibrations within specific 
frequency ranges. Notable fault types detectable via 
vibration-based CM techniques include looseness, 
eccentricity, unbalance, blade defects, misalignment, bearing 
faults, gear damage, and shaft deformations  [3]. 

1.2. Uncertainty in diagnosis 

Uncertainty plays a significant role in human affairs, 
permeating everyday decisions in ordinary life. Decision-
making, a fundamental capability of human beings, is 
essential for survival and well-being. However, decision-
making is inherently challenged by uncertainty about the 
future. Anticipation of future events, upon which decisions 
are based, is inevitably subject to uncertainty. This is 
particularly evident in diagnostic uncertainty in engineering, 
where engineers often struggle to make definitive diagnoses 
despite extensive testing and relevant information [10]. 

In the realm of CM, ensuring the reliability of the diagnostic 
system is paramount. Indicating a fault where no fault is (a 
so-called false positive) can lead to unnecessary stoppages 
and maintenance, increasing operational costs, while false 
negatives risk failure and the propagation of damage. 
Ensuring the reliability of CMS is crucial for achieving their 
main goals of cost reduction and failure prevention. 
Considering the substantial investment necessary for 
implementing these techniques, only a reliable system that 
effectively prevents expensive failures can be justified. 

To address these challenges, an uncertainty-aware fusion 
approach is essential. This approach involves explicitly 
modeling and quantifying the uncertainty associated with 
each source of information and the fusion process itself. By 
accounting for uncertainty, decision-makers can better assess 
the reliability and confidence level of the fused information. 
Moreover, an uncertainty-aware fusion approach enables the 
identification of potential sources of error or bias in the fusion 
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process, allowing for more robust and trustworthy decision-
making outcomes. 

Information fusion, as a methodological approach, presents a 
promising solution to the challenge of managing uncertainty 
in complex systems. By integrating diverse sources of 
information, including both sensory and non-sensory data, 
information fusion aims to enhance decision-making 
processes by providing a more comprehensive and accurate 
understanding of the observed system [11]. 

One of the primary advantages of information fusion is its 
capacity to leverage the strengths of individual sources of 
information while compensating for their inherent 
limitations. For instance, while sensory data such as vibration 
measurements may provide insights into the mechanical 
condition of a machine, non-sensory data such as operational 
logs or historical maintenance records can offer valuable 
contextual information. By combining different types of 
information, information fusion enables a more holistic 
assessment of the system's health status. However, 
implementing data fusion poses several challenges, 
particularly due to the diversity of data sources and sensor 
technologies involved. These challenges include issues 
related to data compatibility, data quality, and data 
integration. For instance, data collected from different 
sensors may vary in terms of accuracy, precision, and 
sampling frequency, making it challenging to effectively 
merge them into a cohesive dataset. Neglecting model 
uncertainty during fusion process can significantly impact the 
reliability of the fused information. Inaccurate or unreliable 
diagnoses from individual sources can propagate errors and 
inconsistencies throughout the fusion process, leading to a 
loss of fidelity in the final fused output. [12] 

1.3. Authors contribution 

The field of condition monitoring is vast, with numerous 
research initiatives aiming to enhance fault diagnosis 
techniques. This work contributes to the existing body of 
knowledge by introducing several approaches: 
 

1- Multi-Label Fault Diagnosis: The authors propose a 
multi-label approach to fault diagnosis, enabling 
handling of complex fault scenarios. This 
methodology allows for the assignment of 
independent probability values to each fault class, 
providing a more detailed understanding of the 
system's health status. 

2- Addressing Data Scarcity: The research addresses 
the common challenge of data scarcity by 
introducing a Custom 1D Convolutional Neural 
Network (CNN). 1D CNN architecture reduces the 
amount of data required for accurate fault diagnosis, 

thereby overcoming limitations associated with 
insufficient data availability. 

3- Reliability Enhancement: The study enhances the 
reliability of fault diagnosis by leveraging multiple 
probabilistic decisions from different sensors. 
Through a Bayesian Model Averaging (BMA) 
approach, the authors combine the probabilistic 
outputs of various sensors, resulting in more robust 
and accurate diagnostic outcomes. This integration 
of diverse sensor data contributes to improved 
decision-making and system health assessment. 

2. MULTILABEL PROBLEM 

In traditional single-label classification, the model learns 
from a set of examples, each associated with a single label 
from a set of distinct labels. Typically, a traditional classifier 
utilizing a SoftMax layer assigns a probability value to each 
label, ensuring that the sum of probabilities across all 
possible labels equals one. The model then selects the label 
with the highest probability as the predicted label. However, 
this approach limits the model to predicting only one label 
per instance. 
In contrast, in multi-label classification, the model assigns a 
probability value between zero and one independently to each 
class for a given instance. This allows for multiple labels to 
simultaneously have high probabilities. These classes are 
non-mutually exclusive and may overlap by definition. This 
approach was mainly used for text categorization and medical 
diagnosis [13]. Multi-label classification has been used by 
[14] to classify X-ray image via residual attention learning to 
diagnosis thorax disease. [15] utilized multi-label modeling 
for person re-identification to address the challenges of 
unsupervised learning, utilizing memory-based non-
parametric classifier and integrates multi-label classification 
and single-label classification in a unified framework. [16] 
used attention based multi-label graph neural network to 
highlight the dependencies of labels in text classification. 
In the context of system diagnosis and machinery fault 
detection, multi-label classification has not been widely 
investigated despite its value for identifying complex faults, 
especially when there's a correlation between them. By 
setting an appropriate threshold, the model can predict a 
neutral class, indicating uncertainty about the outcome, rather 
than forcing a specific label prediction. In contrast to single-
label classification where the model assigns a probability 
value summing up to one across all classes, multi-label 
classification assigns an independent probability to each label 
(see Figure 1). This means that there may be cases where 
none of the labels have a high enough probability to cross the 
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threshold, indicating that the network lacks confidence in its 
prediction.  

 
Figure 1 Label assignment in Multi-class vs Multi-label 

modeling 

Various techniques exist for implementing a multi-label 
model, as shown in Figure 2. However, the details of each 
technique are beyond the scope of this paper, and interested 
readers are referred to [13, 17] for more information. 
In addressing the problem, two primary approaches are 
commonly employed. Firstly, we can transform the problem 
into smaller, single-label components, allowing the use of 
any machine learning method to address each segment. 
Alternatively, we can adapt the algorithm itself to enable 
multi-label classification. 
In the transformation approach, we can convert the problem 
into single-label binary classification using various methods: 

• Powerset of Labels: This method decomposes the 
problem into all possible combinations of labels. 
While it provides insight into label relations, it can 
be computationally expensive. 

• Binary Relevance: This approach compares a single 
label to all others or to one other label. 

• Label Manipulation: We can also delete or create 
new labels as needed. 

When implementing CNNs, different loss functions and 
activation layers may be required at the end of the network to 
accommodate multi-label classification. 

3. BAYESIAN MODEL AVERAGING 

In many cases, multiple models can adequately describe the 
distributions that generate observed data. When faced with 
this scenario, selecting the best model becomes crucial and is 
typically based on criteria such as how well the model fits the 
observed dataset, its predictive capabilities, or likelihood 
penalizations like information criteria. Once a model is 
selected, inferences are drawn and conclusions are made 
under the assumption that the selected model accurately 
represents the underlying truth. However, there are 
drawbacks to this approach. Selecting a single model can lead 
to overconfident inferences and riskier decisions, as it 
overlooks the inherent uncertainty in model selection and 

relies heavily on specific assumptions about the selected 
model. [18] 

BMA provides a systematic and coherent methodology for 
addressing model uncertainty. It applies Bayesian inference 
directly to the problem of model selection, combined 
estimation, and prediction. BMA provides a straightforward 
criterion for model selection and leads to more cautious 
predictions. However, implementing BMA can be 
challenging, as it involves making various assumptions and 
decisions based on specific situations and contexts. [18] 

 
Figure 2 Overview of multi-label classification techniques 

Let us consider an ensemble of models represented as 
 𝑴𝒍, 𝒍 = 𝟏, … , 𝑲 , and let 𝒀  represent observed data from 
dataset and 𝜽𝒍 be parameter of the model 𝒍, then likelihood 
function of 𝒀  given 𝜽𝒍  and 𝑴𝒍  can be written as 
𝑳(𝒀|𝜽𝒍, 𝑴𝒍) . Additionally, prior probability of model 
parameters neglecting hyperparameters can be written as 
𝝅(𝜽𝒍|𝑴𝒍) now, one can easily show posterior probability for 
model parameters as:  

𝜋(𝜃𝑙|𝑌, 𝑀𝑙) =
𝐿(𝑌|𝜃𝑙 , 𝑀𝑙)𝜋(𝜃𝑙|𝑀𝑙)

∫ 𝐿(𝑌|𝜃𝑙 , 𝑀𝑙)𝜋(𝜃𝑙|𝑀𝑙) 𝑑𝜃𝑙

 (1) 

The denominator of (1) is called model’s marginal likelihood 
or model evidence which represent prior distribution of all 
the parameter values related to model 𝑴𝒍. Let’s denote it as:  

𝜋(𝑌|𝑀𝑙) =  ∫ 𝐿(𝑌|𝜃𝑙 , 𝑀𝑙)𝜋(𝜃𝑙|𝑀𝑙) 𝑑𝜃𝑙 (2) 

Bayesian model averaging introduces an additional level to 
this hierarchical modeling framework by incorporating a 
prior distribution over the entire set of models under 
consideration. This incorporates for the prior uncertainty 
regarding each model's ability to accurately represent the 
observed data. This is represented as a probability density 
function across all the models, and can be written as 𝝅(𝑴𝒍) 
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or 𝒍 = 𝟏, … , 𝑲 , now we can show the posterior of model 
probability as: 

𝜋(𝑀𝑙|𝑌) =
𝜋(𝑌|𝑀𝑙)𝜋(𝑀𝑙)

𝛴𝑙=1
𝑘 𝜋(𝑌|𝑀𝑙)𝜋(𝑀𝑙)

 (3) 

One now may re-write (3) as a ratio to a baseline model: 

𝐵𝐹𝑙𝑚 =
𝜋(𝑀𝑙|𝑌)

𝜋(𝑀𝑚|𝑌)
 (4) 

This can be interpreted as the relative strength of the models 
with respect to each other. It is clear that Eq. (3) can be 
expressed as the division of Eq. (4) as: [18] 

𝜋(𝑀𝑙|𝑌) =
𝐵𝐹𝑙1𝜋(𝑀𝑙)

𝛴𝑚=1
𝑘 𝐵𝐹𝑚1𝜋(𝑀𝑚)

 (5) 

If 𝜟 is a quantity of interest, such as the utility of a course of 
action, then its posterior distribution can be formulated 
as: [19] 

𝜋(𝛥|𝑌) = 𝛴𝑙=1
𝑘 𝜋(𝛥|𝑀𝑙 , 𝑌)𝜋(𝑀𝑙|𝑌) (6) 

Here and on for simplicity we would address 𝝅(𝑴𝒍|𝒀) term 
as 𝒘𝒍. The 𝒘𝒍s are probabilities; hence, they are nonnegative 
and sum up to 1. It is important to bear this in mind during 
their estimation. [20] 

4. ESTIMATING BY LIKELIHOOD MAXIMIZATION 

For convenience, we restrict attention to the situation where 
the conditional probability density functions (PDFs) are 
approximated by normal distributions. We maximize 𝒘𝒌 by 
maximum likelihood from the validation/training dataset. 
The likelihood function is defined as the probability of the 
training data given the parameters to be estimated. The 
maximum likelihood estimator is the value of the parameter 

vector that maximizes the likelihood function, that is, the 
value of the parameter vector under which the observed data 
were most likely to have been observed. It is convenient to 
maximize the logarithm of the likelihood function (or log-
likelihood function) rather than the likelihood function itself, 
for reasons of both algebraic simplicity and numerical 
stability; the same parameter value that maximizes one also 
maximizes the other. Estimation through likelihood 
maximization involves approximating the conditional PDFs 
here for ease of computation normal distributions has been 
selected. We maximize the weights 𝒘𝒌 by maximizing the 
likelihood function using the validation/training dataset. The  
likelihood function represents the probability of observing 
the training data given the parameters to be estimated.  

𝐿(𝑤𝑘|𝑌) = 𝛴𝑡𝛴𝑘=1
𝑘 𝑙𝑜𝑔 𝜋(𝛥|𝑀𝑙 , 𝑌) 𝑤𝑘 (7) 

where the summation is over values of 𝒕  that index 
observations in the training set. [20] 

5. MODEL ARCHITECTURE 

5.1. Convolutional neural network 

CNNs have received considerable attention and have been 
proven effective in various domains. One promising area for 
CNNs is in fault diagnosis and CM. Researchers have been 
increasingly using ML techniques, especially CNNs, for 
system diagnosis, particularly when monitoring signals such 
as vibration, acoustics, or temperature. [21] has utilized 
multi-branch residual convolutional neural network to 
diagnose crane gearbox with vibration signal that has been 
transferred to 2D images using Markov transformation field. 
[22] suggested an explainable CNN model that analysis 
cyclostationary vibration signals to diagnose wind turbine 
gearbox fault. [23] has proposed a light weight CNN model 
for bearing fault diagnosis based on Fast Fourier Transfer 

Figure 3 1D CNN for multi-label classification of bearing fault 
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(FFT) image coding of vibration signals. [24] has proposed a 
multiscale quadratic attention-embedded CNN with attention 
mechanisms to address the challenges associated with 
bearing vibration signals for fault diagnosis. [25] has fused 
vibration and microphone signals utilizing a 1D-CNN to 
enhance the accuracy of diagnosis. [26] has introduced a 
CNN model to diagnose bearing fault utilizing motor speed 
signal to remove the necessity of additional sensors. 
A CNN consists of several layers, including an input layer, a 
convolutional layer, an activation layer, and a fully connected 
layer. Additional layers such as normalization and dropout 
are often used for generalization and to prevent overfitting. 
At the core of CNNs are convolutional layers, which allow us 
to automatically extract features from input data by 
mimicking how the brain's visual cortex processes images. 
This can be achieved by convoluting the input data with a 
filter, which is an n by m matrix whose elements are defined 
during the training phase, and moving the filter through the 
data at a constant step called a "stride". The convolution layer 
produces new images called feature maps. The feature map 
emphasizes the unique features of the original image. [27, 28] 
Although 2D CNNs have been commonly used for 
vibrational based diagnosis tasks, their effectiveness depends 
on a preprocessing step that converts the 1D signal into a 2D 
format. However, this preprocessing step often results in 
information loss and reduced diagnostic reliability. Although 
1D and 2D CNNs share similar architectures, the key 
difference between them lies in their filter sliding 
mechanisms. In 1D CNNs, the filter slides vertically along 
the height to extract features, with the height determining the 
number of sample points for convolutional operations. On the 
other hand, 2D CNNs slide the filter both horizontally and 
vertically, with the height and width of the filter dictating the 
range of convolution operations for each step. However, 1D 
CNNs offer advantages over their 2D counterparts when 
processing 1D signals. This preference stems from several 
factors: [29] 
 

• Computational complexity of 1D and 2D 
convolution calculations differ due to the fact that 
1D CNN operates with one dimension less, 
resulting in significantly lower computational costs 
under identical conditions (same configuration, 
network, and hyperparameters). 

• Reduced computational complexity makes 1D 
CNN suitable for low-cost real-time applications 
on smaller devices. 

• Processing signals in the time domain eliminates 
the need for an additional step to convert a one-
dimensional signal to a two-dimensional signal. 
This avoids adding irrelevant data and preserves 
the information present in the original data. 

Here, we introduce a customized 1D CNN network (refer to 
Figure 3) along with the associated hyperparameters (see 
Table 1) for multi-label classification of bearing fault 
diagnosis. The application of 1D CNN allows us to employ 
shallower networks and avoids the inclusion of irrelevant 
information that may result from the conversion of 1D to 2D 
data.  

By employing a sigmoid activation function at the last layer 
of the CNN architecture, along with a binary entropy loss 
function, the conventional multi-class CNN classifier has 
been transformed into a multi-label classifier that operates 
independently within each class and predicts whether the 
instance belongs to that class or not, as in a "one against all" 
strategy. This approach eliminates the need to train multiple 
networks for each label, thus reducing the necessity of large 
data and computational effort. 

Table 1 Model Hyperparameters 

Hyperparameter Value 
Mini batch size 25 

Max epoch 50 
Network selection 
(Early stoppage) 

Minimum validation 
loss 

optimizer Adam 
Learning rate 0.001 
Loss Function Binary cross-entropy 

Padding “Same” 
Software MATLAB 

6. TEST DATASET AND PREPRATION 

The methodology has been applied on the MAFAULDA 
dataset. The dataset consists of 1951 multivariate time-series 
acquired by sensors on SpectraQuest's Machinery Fault 
Simulator (MFS) Alignment-Balance-Vibration (ABVT). It 
includes six different simulated states: normal function, 
imbalance fault, horizontal and vertical misalignment faults, 
and inner and outer bearing faults. This heterogeneous dataset 
involves measuring acoustic and vibration signals, providing 
comprehensive insights into machinery behavior and fault 
diagnosis. Each measurement lasts for 5 seconds, with 49 
measurements for normal conditions, 197 for horizontal 
misalignment with angles of 0.5, 1.0, 1.5, and 2.0 degrees, 
301 for vertical misalignment with angles of 0.51, 0.63, 1.27, 
1.40, 1.78, and 1.90 degrees, and 333 for mass imbalance of 
6, 10, 15, 20, 25, 30, and 35 grams. Bearing faults have been 
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combined with 5, 6, 20, and 35 grams of mass imbalance to 
enhance the effect of the fault. The available experiment 
specification includes details of used equipment’s, including 
the SpectraQuest Inc. Alignment/Balance Vibration Trainer 
(ABVT) Machinery Fault Simulator (MFS), Industrial IMI 
Sensors accelerometers, Monarch Instrument MT-190 analog 
tachometer, and Shure SM81 microphone. Data acquisition 
parameters such as sensitivity, frequency range, and 
measurement range are specified for each sensor. Sequences 
are categorized based on fault types, with details on the 
number of sequences per fault category, load values, and 
degrees of misalignment. The database is openly accessible 
online, with links provided at [30] for downloading the entire 
dataset or specific parts corresponding to different fault types. 
Figure 4 depicts the data preparation process for training the 
models. Raw vibration signals from the tangential direction 
of the overhang (sensor number four) and underhang (sensor 
number seven) accelerometers, each corresponding to a 
different model, are inputted along with the tachometer 
signal. These signals are then divided into five successive 
parts of one second each. The first three rotations of each one-
second signal are then extracted, resulting in variable vector 
lengths. Following, random noise is added to reduce signal 
quality to signal-to-noise ratio (SNR) level of 10. The data 
set is then randomly divided into training (60 %), validation 
(20 %), and test (20 %) sets to facilitate model evaluation and 
validation. Additionally, reducing the data to three 
revolutions per second helps to evaluate the model under 
more realistic conditions where acquiring large datasets may 
not be feasible. 

7. RESULT 

The proposed 1D CNN was trained using the preprocessed 
training set (see Figure 4) of data from sensors four and seven 
separately. Probability acceptance threshold of 0.5 was set for 
each label output by the models. The models were then 
evaluated on the test dataset, and the performance results for 
the tangential overhang accelerometer signal are reported in 
Table 2, while those for the tangential underhang 
accelerometer are shown in Table 3. The corresponding 
confusion matrices are depicted in Figure 5 and Figure 6. 
Subsequently, BMA was performed on the two models, 
where BMA parameters were computed by maximizing the 
likelihood using the validation dataset. The related values are 
reported in Table 4. Finally, the results of the combined 
model via BMA, with the same probability acceptance 
threshold of 0.5, are shown in Table 5, along with its 
confusion matrix in Figure 7. Two instances from the test set 
have been selected and reported in Table 6 to demonstrate the 
step-by-step improvement of the results: 

• In case A, the underhung model shows the highest 
probability for the outer race fault, which is an 
incorrect label. However, overhung and the 
combined model correctly identifies the fault as a 
cage fault. 

• Case B reports an instance where the underhung 
model correctly identifies the label, but the 
overhung model fails to do so. Once again, the 
combined model correctly classifies the instance. 

The results indicate an increase in performance of almost 5 % 
over the overhang accelerometer model and an increase of 
8 % over the underhang accelerometer model. Considering 
the confusion matrix and accuracy of each class for each 
model, the calculated BMA parameters were as expected. 

 
Figure 4 Data preparation scheme 

 
Table 2 Accuracy of proposed 1D multi-label CNN for 

tangential Overhang accelerometer 

Tangential Overhang accelerometer 

Label 
Outer 

Race Fault 
Cage 
Fault 

Ball 
Fault 

Healthy  

Accuracy (%) 78.06  97.45 92.35 99.49 
Overall Accuracy (%)  87.76 

 

Table 3 Accuracy of proposed 1D multi-label CNN for 
sensor tangential Underhung accelerometer 

Tangential Underhung accelerometer 

Label 
Outer 

Race Fault 
Cage 
Fault 

Ball 
Fault 

Healthy  

Accuracy (%) 95.41 89.29 95.41 99.49 
Overall Accuracy (%)  84.69 

 

Table 4 BMA parameters 

Posterior probability of 
Overhang Model 

Posterior probability of 
Underhung Model 

0.3728 0.6272 
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Table 5 Accuracy of combined model via BMA 

Tangential Underhung accelerometer 

Label 
Outer 

Race Fault 
Cage 
Fault 

Ball 
Fault 

Healthy  

Accuracy (%) 93.88 96.43 96.94 99.49 
Overall Accuracy (%)  91.84 

 

Table 6 Instances from test set 

 

Case A Case B 

O
verhang 

U
nderhung 

C
om

bined 

O
verhang 

U
nderhung 

C
om

bined 

Outer 
Race Fault 0.04 0.59 0.39 0.46 0.78 0.66 

Cage Fault 1.00 0.24 0.52 0.01 0.2 0.13 

Ball Fault 0.00 0.05 0.03 0.54 0.02 0.21 

Healthy 0.00 0.00 0.00 0.00 0.00 0.00 

True label Cage Fault Outer Race Fault 

8. CONCLUSION  

This study introduces a multi-label approach to fault 
diagnosis, which facilitate the handling of complex fault 
scenarios by assigning an independent probability value to 
each class. To address the common issue of data scarcity, a 
Custom 1D CNN is proposed to reduce the required amount 
of data. Additionally, a BMA approach is employed to 
enhance the reliability of diagnosis by combining multiple 
decisions from different sensors. Evaluation of the technique 
on a public dataset shows a 5 to 8 % improvement in the 
accuracy of the combined BMA model result compared to 
individual models. The discussed algorithm provides an 
explainable process for decision fusion, emphasizing the 
quality of each diagnosis. BMA offers an uncertainty-aware 
fusion platform, where each model contributes based on its 
performance in the training and validation phases. 

 
Figure 5 Confusion Matrix Multi-Label classifier - 

Tangential Overhung accelerometer 

 
Figure 6 Confusion Matrix Multi-Label classifier - 

Tangential Underhung accelerometer 

 
Figure 7 Confusion Matrix BMA combined Model 
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ABSTRACT

The global transition to electric power, aimed at mitigating
climate change and addressing fuel shortages, has led to a
rising usage of lithium-ion batteries (LIBs) in different fields,
notably transportation. Despite their many benefits, LIBs pose
a critical safety concern due to the potential for thermal run-
away (TR), often triggered by spontaneous internal short cir-
cuit (ISC) formation. While extensive research on LIB fault
diagnosis and prognosis exists, forecasting ISC formation in
batteries remains unexplored. This paper presents a new method-
ology that combines the extended Kalman filter (EKF) algo-
rithm for real-time estimation of ISC state with an adaptive
linear regressor model for forecasting remaining useful life
(RUL). This approach is designed for seamless integration
into actual battery management systems, offering a computa-
tionally efficient solution. Numerical validation of the frame-
work was conducted due to the current lack of experimental
data in the literature. The significance of this work lies in its
contribution to ISC prognosis, providing a practical solution
to enhance battery safety.

1. INTRODUCTION

In response to the increasing environmental consciousness
and the urgent need to address climate change, car manu-
facturers and consumers are turning towards cleaner alterna-
tives to traditional gasoline-powered vehicles. Electric vehi-
cles (EVs) are at the forefront of this shift, offering signif-
icant reductions in emissions that lead to cleaner air and a
more sustainable planet. This movement is not just a trend;
governments worldwide are actively supporting and encour-
aging the adoption of EVs through various policies. These

Lorenzo Brancato et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

include the implementation of stricter emissions regulations,
mandates for zero-emission vehicles, and substantial invest-
ments in charging infrastructure.

LIBs have emerged as the go-to choice power source in EVs
due to their numerous advantages, such as high energy den-
sity, powerful performance, and extended lifespan (Ding, Cano,
Yu, Lu, & Chen, 2019). Despite their many benefits, LIBs are
subjected to degradation phenomena (Han et al., 2019). This
continuous degradation poses risks like battery failures and
safety hazards, above all TR accidents (Feng, Ouyang, et al.,
2018). The most common cause of TR incidents is ISC, mak-
ing it imperative for the battery management system (BMS) to
detect ISC formation and prevent severe ISC formation early.
This is pivotal for ensuring the safe and reliable operation of
EVs.

Understanding the intricate mechanism behind spontaneous
ISC formation is an ongoing area of study that demands fur-
ther research (Feng, Ouyang, et al., 2018). However, obser-
vations indicate that ISC formation, when not triggered by
external factors like crushing or penetration, generally pro-
gresses slowly (Zhang et al., 2021). Moreover, research has
shown that ISC formation predominantly impacts the electri-
cal and thermal properties of the cell (Huang et al., 2021).
This suggests that monitoring both the voltage and tempera-
ture of the cell, which are typically available in commercial
BMS, could be exploited to detect and track ISC formation.

In recent years, researchers have made significant strides in
developing various diagnostic algorithms aimed at detecting
ISC and preventing TR. Most of these approaches are purely
data-driven and aim at identifying parameter inconsistencies
among single or multiple cells. These approaches utilize fac-
tors such as voltage (Hermann & Kohn, 2013), temperature
(Yang, Cui, & Wang, 2019), State of Charge (SoC) (Zheng et
al., 2018), and capacity (Reichl & Hrzina, 2018). However,
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the subtle changes in electro-thermal signals caused by spon-
taneous ISC formation may not be immediately discernible
within the battery dynamic responses, especially during the
early stages of ISC. Additionally, signal variations due to ex-
ternal factors could potentially trigger false alarms. Conse-
quently, establishing a precise threshold value presents a con-
siderable challenge, as this value greatly affects the speed and
accuracy of detection.

More advanced data-driven approaches have emerged to ad-
dress these challenges, harnessing the capabilities of machine
learning techniques. These approaches employ models such
as deep neural networks (Cui et al., 2024) or random forest
(Liu, Hao, Han, Zhou, & Li, 2023). However, since these
methods rely solely on existing data, their performance is sig-
nificantly limited by the scarcity of available data and the dif-
ficulties in generating new datasets.

To overcome these limitations, also model-based approaches
have been developed to detect ISC. These include equivalent
circuit models (ECM) (Asakura, Nakashima, Nakatsuji, &
Fujikawa, 2010; Yokotani, 2014; Ikeuchi, Majima, Nakano,
& KASA, 2014; Feng, Pan, He, Wang, & Ouyang, 2018), or
more advanced electro-chemical models (Ma, Deng, & Wang,
2023). The basic idea of these methods is to transform the
problem of ISC detection into model parameters and state es-
timation. The battery models are established to predict the
voltage and temperature of the cells. The measured voltage or
temperature of each cell is then compared with the predicted
value of the model. If the residual between the two exceeds
the allowable error range, it is considered that an ISC has oc-
curred.

This work fills a crucial gap in the literature by focusing on
prognosis and predicting the behavior of batteries experienc-
ing spontaneous ISC formation. While there are existing ISC
detection methods, as far as the authors are aware, no other
studies have delved into predicting the evolution of ISC. What
sets apart the prognostic framework introduced in this work is
its dual capability: not only does it detect ISC for early warn-
ings, but it also quantifies its severity and forecasts its future
progression, enabling timely preventive measures. Moreover,
the methodology emphasizes efficiency in selecting models
and algorithms, considering their practical implementation in
a BMS.

We build the prognostic framework upon the capabilities of
the online ISC estimation algorithm proposed by the same au-
thors in Ref. (Jia, Brancato, Giglio, & Cadini, 2024), which,
unlike other ISC detection methods:

• utilizes both electrical and thermal measurements to en-
hance ISC detection and estimation accuracy;

• detect ISC by estimating a model parameter strictly re-
lated to the spontaneous ISC formation, allowing also to
track the ISC state evolution.

This study introduces a method for predicting the battery RUL
probability density function (pdf) using an adaptive linear re-
gressor model to forecast the evolution of the ISC state until
an appropriate threshold is reached. The proposed method is
designed to be fully automated and can be easily integrated
into a BMS for diagnosing and prognosis of spontaneous ISC
formation. Moreover, the flexibility of the framework lies in
its capacity to accommodate, in principle, various ISC state
trajectories.

To validate our approach, we conducted a numerical case
study that simulated the effects observed in measurements
due to spontaneous ISC formation. This study aims to eval-
uate the effectiveness of our framework, given the scarcity
of experimental data. Gathering such data proves challenging
due to the complex nature and associated risks inherent in this
phenomenon.

The paper is structured as follows: Section 2 briefly details
the methods employed in developing the diagnosis and prog-
nosis framework. In Section 3, the capabilities of the pro-
posed method are demonstrated through a numerical case study
involving a cylindrical LIB cell experiencing spontaneous ISC
formation. Finally, Section 4 presents the conclusions drawn
from this work and suggests potential directions for further
research.

2. METHODOLOGY

2.1. Online ISC estimation algorithm

A dynamical system state comprises variables describing its
condition and behavior. Non-linear dynamical systems ex-
hibit dynamics not expressible linearly. State-space models
represent system dynamics and observations using a hidden
state vector x. State equation f governs state vector evolution
with some input u and some process noise w, while observa-
tion equation h relates observed data, denoted with y, to the
state vector x, some input u and some measurement noise n.

The EKF estimates non-linear system states (Simon, 2006). It
approximates non-linear dynamics linearly via Taylor expan-
sion. The algorithm involves two steps: prediction, estimat-
ing the next state (x̂) and observations (ŷ) with the previous
state and calculating error covariance matrix (Σx̂); correction,
updating state estimate and covariance with weighted innova-
tion terms based on system observations. Proper initialization
of the algorithm is crucial, assigning values to state vector
estimate and error covariance matrix. The full algorithm is
detailed in Table 1.

The electro-thermal model of a cylindrical cell described in
our previous work (Jia et al., 2024), whose governing equa-
tions and parameters are summarized in Table 2 and Table 3,
is discretized in time considering the following augmented
state vector that includes the equivalent ISC conductance pa-
rameter GISC , expressed in Ω−1, and representative of the
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Table 1. Description of the extended Kalman filter algorithm.

Extended Kalman Filter Algorithm
Initialization:

Initialize state estimate x̂−
0 and error matrix covariance Σx̂−0

Prediction Step:
Predict the state estimate:
x̂−
k = f(x̂+

k−1, uk−1, w̄k−1)
Predict the observations:
ŷk = h(x̂+

k−1, ŷk−1, uk−1, n̄k−1)
Predict the error covariance matrix:
Σx̂−

k
= AkΣx̂−

k−1
AT

k +BkΣwB
T
k

Correction Step:
Compute the Kalman gain matrix:
Kk = Σx̂−

k
CT

k (CkΣx̂−
k
CT

k +DkΣnD
T
k )

−1

Update the state estimate:
x̂+
k = x̂−

k +Kk(yk − ŷk)
Update the error covariance matrix:
Σx̂+

k
= Σx̂−

k
−Kk(CkΣx̂−

k−1
CT

k +DkΣnD
T
k )K

T
k

Where:
Ak = ∂f

∂x

∣∣
x̂+
k−1

,uk−1,w̄k−1
Bk = ∂f

∂w

∣∣
x̂+
k−1

,uk−1,w̄k−1

Ck = ∂h
∂x

∣∣
x̂+
k−1

,uk−1,n̄k−1
Dk = ∂h

∂n

∣∣
x̂+
k−1

,uk−1,n̄k−1

and Σw,Σn are the covariance matrices of the two independent,
zero-mean, Gaussian processes w and n.

actual ISC state:

x = [z, iRC1
, iRC2

, h, GISC , T ]
T (9)

where z is the dimensionless state-of-charge (SoC), iRC1
and

iRC2
are the two polarization currents (expressed in A), and

T is the surface temperature (expressed in K).

Finally, the input vector and the output vector are defined as
follow:

u = [it, vt]
T (10)

y = [vt, T ]
T (11)

assuming that the load current it, the terminal voltage vt, and
the surface temperature T are all measurable quantities.

2.2. RUL estimation via simple linear regression

A simple linear regression model describes the linear rela-
tionship between a dependent variable, y, also known as the
response, and one independent variable, x, also known as the
predictor. In general, a simple linear regression model can be
a model of the form:

yi = β0 + β1xi + εi, i = 1, ..., n (12)

where n is the number of observations, yi is the i-th response,
β0 is the model constant, β1 is the slope of the model, εi is
the i-th error term that captures the variability in yi that is
not explained by the linear relationship with xi (Seber & Lee,
2012). The usual assumptions for simple linear regression
modeling are: (i) the error terms εi are uncorrelated; (ii) the
error terms εi have independent and identical normal distri-
butions with mean zero and constant variance, σ2

ε ; (iii) the
responses yi are uncorrelated.

In this study, we develop an approach to predicting the evolu-
tion of ISC state using a simple linear regression model. Here,
the response variable is the estimated equivalent ISC resis-
tance, denoted as RISC , which can be calculated as 1/GISC .
This estimate is obtained from the equivalent ISC conduc-
tance while cycling the battery cell. The predictor variable in
our model is the number of cycles, denoted as N . To ensure
adaptability, our approach involves fitting the simple linear
regression model using a robust least squares estimation algo-
rithm (Holland & Welsch, 1977) within a sliding window of
fixed size W . This means that although the number of obser-
vations analyzed remains constant at n = W , the actual data
points yi can vary between each query. To address the uncer-
tainties in our predictions, once the model is fit with the latest
available data points, we generate different realizations of the
ISC evolution by sampling from the estimated Gaussian dis-
tribution of the error terms, εi ∼ N(0, σε). These realizations
are then truncated when they reach a predetermined threshold
for the ISC state value. Through this process, we estimate the
pdf of the RUL.

3. RESULTS

In this section, we validate the performance of the framework
proposed in this work through a numerical study due to the
scarcity of experimental data in existing literature.

3.1. Simulating spontaneous ISC formation

To maintain simplicity and ensure consistency with our method-
ology, we use the electro-thermal battery model described in
Section 2.1 to simulate the dynamics of a real battery cell.
In practice, the voltage and surface temperature signals pro-
cessed by the proposed online ISC estimation algorithm are
generated by this same model, hereafter referred to as ”the
plant”. Nonetheless, we equip the plant with appropriate noise
generators to capture non-modeled dynamics.

In the plant, it is assumed that the progression of degradation
follows a power-law pattern over time:




RISC(t) = Ri − (Rf −Ri) ·

(
t

Tend

)p(T )

p(T ) = p0 · e−
c
T

(13)
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Table 2. The governing equations of the electro-thermal model.

Equation name Equation expression
Current Kirchhoff law i = it + iISC , with iISC = vt/RISC (1)
Voltage Kirchhoff law vt = OCV(z) +M0sign(i) +Mh−R1iR1 −R2iR2 −R0i (2)
Coulomb counting dz

dt
= − η

Q
i (3)

RC circuit dynamics
diRCj

dt
= − 1

RjCj
iRCj − 1

RjCj
i, with j = 1, 2 (4)

Hysteresis dynamics dh
dt

= −
∣∣∣ γηQ i

∣∣∣h−
∣∣∣ γηQ i

∣∣∣ sign(i) (5)

Electrical heat Qin = R0i
2 +

v2
t

RISC
(6)

Dissipated heat Qout = hconv(T − Tamb)A (7)
Heat balance dT

dt
= − 1

mcm
(Qin −Qout) (8)

Where it is the load current, vt is the terminal voltage, z is the state of charge, iRCj are the
polarization currents, h is the unitless hysteresis state, and T is the surface temperature.

Table 3. Model parameters.

Parameter name Symbol Value Unit
Open-circuit voltage OCV f(z) V
Series resistance R0 9.18 mΩ
1st polarization resistance R1 2.53 mΩ
2nd polarization resistance R1 21.32 mΩ
1st polarization capacitance C1 5116 F
2nd polarization capacitance C1 3582 F
Instantaneous hysteresis voltage term M0 0 V
Dynamic hysteresis voltage term M 0.16 V
Coulombic efficiency η 0.994 −
Rate of decay constant γ 1 −
Capacity Q 2.05 Ah
Battery cell mass m 76 g
Specific heat capacity cm 1095 J/KgK
Heat transfer convection coefficient hconv 10 W/m2K
Battery outer surface A 5.3 ×10−3 m2

Ambient temperature Tamb 298 K

Here the exponent p is a variable that changes with tempera-
ture, behaving according to an Arrhenius function; Ri is the
initial ISC resistance value; Rf is the final ISC resistance
value; Tend is the cycling time needed to evolve from Ri to
Rf ; p0 and c are respectively the Arrhenius constant and rate
terms. The values of these parameters are indicated in Table 4

The degradation model, which also incorporates a temperature-
dependent exponent, is formulated and parameterized based
on the following assumptions:

• ISC persists throughout the entire lifespan of the cell,
with its formation and evolution spanning hundreds of
hours or more (Zhang et al., 2021);

• As ISC progresses, the internal temperature of the cell
increases, leading to complex chemical reactions involv-
ing electrode materials, electrolyte, and separator (Feng,
Ouyang, et al., 2018);

• Most of these chemical reactions are exothermic, accel-
erating the TR occurrence. When the temperature over-
comes a critical point, various degradation phenomena

Table 4. Degradation model parameters.

Parameter name Symbol Value Unit
Initial ISC resistance value Ri 1000 Ω
Final ISC resistance value Rf 0.1 Ω
Cycling time from Ri to Rf Tend 1200 h
Arrhenius constant term p0 3278 −
Arrhenius rate term c 3.1× 10−3 K

occur, such as solid-electrolyte interphase layer decom-
position, anode-electrolyte reactions, electrolyte break-
down, separator meltdown, and cathode failure. All these
phenomena contribute to further increasing the internal
temperature of the cell, ultimately triggering TR (Feng,
Ouyang, et al., 2018).

The way the degradation sub-model described by Eq. (13)
relates to the electro-thermal cell model summarized by the
equations in Table 2 is graphically illustrated in Figure 1. This
model is simulated by cycling the plant using a dynamic stress
test current cycle and constant charging. The resulting ISC
state evolution is illustrated at the top of Figure 2, where the
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Figure 1. Electro-thermal battery cell model subjected to
spontaneous ISC degradation model evolution. (a) Electri-
cal sub-model coupled with the ISC degradation model. (b)
Thermal sub-model.

x-axis has been scaled to cycles and the y-axis has been log-
scaled to enhance visibility.

During the simulation, some important health-related quanti-
ties, i.e., the maximum temperature, Tmax, and the discharg-
ing time, tdis, measured across one cycle, have also been
recorded along with the voltage and temperature measure-
ments. These quantities are shown at the bottom of Fig-
ure 2. These quantities are, in fact, strongly correlated with
the severity of the ISC. The observed trends agree with those
expected for spontaneous ISC formation, as referenced in (Feng,
Pan, et al., 2018). Figure 2 further outlines three distinct re-
gions with dotted lines that correspond to the ISC severity
state in the plant. These states are defined based on the ob-
served effects on the aforementioned health-related quanti-
ties: in the soft ISC region, these quantities exhibit minimal
changes; in the moderate ISC region, these changes become
more noticeable; in the severe ISC region, the changes are
extremely significant.

3.2. Prognosis

To save memory space and computational costs, we only store
the data points of the Gaussian posterior pdf estimate of the
ISC state obtained from the EKF at the end of each cycle.
This decision is made considering that the ISC state is not ex-
pected to change significantly within a single working cycle.
Although the online ISC estimation algorithm is designed to
acquire and store data every second, we prioritize saving only

SoftModerateSevere

Figure 2. Top: ISC state evolution in the plant during cycling.
Bottom: evolution of the maximum temperature Tmax and
the discharging time tdis measured across one cycle.

these specific data points to local memory.

When enough data is available in the local memory, the user
can request the prognosis. In this study, we define the prog-
nosis triggering point as when the estimated ISC state enters
the moderate ISC region, specifically when R̂ISC ≤ 100Ω,
as indicated at the top of Figure 3. Additionally, we use a
sliding window size W of 50 data points to ensure the linear
regressor model captures the local trend behavior. This can
be seen in the bottom part of Figure 3, which illustrates the
linear regression at the prognosis query N = 520 cycles.

After fitting the parameters of the linear regressor model, the
RUL pdf is computed. This is done by moving forward in
time with the fitted model, sampling different realizations
of the error terms from the estimated Gaussian distribution,

5
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Figure 3. Top: Example of prognosis query when N = 520
cycles, outlining the sliding window W . Bottom: Linear re-
gression on the latest available data points in the sliding win-
dow.

εi ∼ N(0, σε), to account for modeling uncertainties. The
prediction is then truncated up to a threshold value of 10 Ω to
prevent the system from entering the severe ISC region. This
process, at the prognosis query N = 520 cycles, is illustrated
in Figure 4.

By repeating this process at different prognosis queries the
RUL pdf prediction evolution is obtained, as shown in Fig-
ure 5, and compared with the actual RUL evolution of the
plant. The results demonstrate the satisfactory performances
obtained with the proposed method. The estimated RUL steadily
converges to the true RUL value. However, the results consis-
tently suggest that the true RUL is far outside the 95% confi-
dence interval. This is because the linear regressor model can
well approximate the local degradation behavior with good
accuracy. However, the latter changes as ISC progresses due

500 600 700

N (cycles)

101R
I
S
C
(+

)

True evolution
Forecasted evolution
95% Con-dence Bands
RUL threshold

200 220 240

N (cycles)

0

0.02

0.04

0.06

0.08

0.1

pdf(RULjN=520)
True RUL

Figure 4. Top: predicted ISC state trajectory when N = 520
cycles. Bottom: corresponding RUL pdf estimation.

to the aforementioned exothermic electrochemical reactions,
which are accounted for with the degradation model described
in Eq. (13) considering an Arrhenius-like term. Furthermore,
the confidence bounds narrow progressively as the prognosis
steps advance, due to the increased accuracy of the EKF es-
timation as the ISC state becomes more severe, as also can
be appreciated on top of Figure 3. This, in turn, leads to a
smaller variance of the residuals with the estimated linear re-
gressor at a later prognosis query, when the ISC state is more
severe.

4. CONCLUSION

This work presents a prognosis framework for spontaneous
ISC formation. The proposed framework leverages the po-
tentialities of an EKF algorithm to online estimate and track
the evolution of the equivalent ISC resistance value, which is
a quantity representative of the actual ISC state of the battery
cell. At appropriate instants, some of the estimated ISC resis-
tance values are saved to local memory. The stored data are
then processed for prognosis. When enough data are stored,
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Figure 5. Comparison between true RUL evolution and pre-
dicted RUL evolution.

the user can request the prognosis algorithm to predict the
battery RUL pdf. This is done by employing a linear regres-
sor model for the prediction and a Monte Carlo simulation
for quantifying the uncertainties involved. This work estab-
lishes a first step toward effective spontaneous ISC formation
prognosis. Due to the lack of experimental data in the liter-
ature, the proposed approach has been validated numerically
with synthetic measurements that aim to accurately reproduce
the expected effects ISC has on the electrical and thermal
characteristics of the cell. Furthermore, a degradation model
that reasonably reproduces the expected evolution of ISC has
been constructed based on certain assumptions that may not
be fulfilled with real experimental data. Nevertheless, the
framework proposed could in principle accommodate differ-
ent degradation trajectories. Consequently, to further validate
the approach, future studies will apply the methodology to
real experimental data on spontaneous ISC formation as soon
as the latter is available. On top of that, the method could
be improved by using more sophisticated regressor models,
such as ARIMA or NARX models, to improve the RUL pre-
diction performance for a cell subjected to spontaneous ISC
formation.
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ABSTRACT

This paper investigates the remaining useful lifetime (RUL)
estimation of bearings under dynamic, i.e., time-varying, op-
erating conditions (OC). Unlike conventional studies that as-
sume constant OC in bearing accelerated life tests, we intro-
duce a dataset with time-varying OC during run-to-failure
experiments, simulating real-world scenarios. We explore
data-driven approaches to identify the transition point from a
healthy to an unhealthy state and estimate the RUL. Addition-
ally, we examine strategies for integrating OC information to
enhance RUL estimations. These methodologies are evalu-
ated through numerical experiments using various machine
learning algorithms.

1. INTRODUCTION

Rolling element bearings are extensively used in industrial
applications, such as wind turbines, electric motors, and gen-
erators. These bearings account for the largest percentage of
failures in rotating machinery (Alewine & Chen, 2010) and
about 40%-50% of all motor faults (Sharma et al., 2015).
Failure of bearings may result in expensive downtime, in-
creased maintenance costs due to failures propagating to other
parts, and catastrophic effects if they support critical equip-
ment. Predictive maintenance can be employed to increase
the efficiency and reliability of bearings and technical sys-
tems in general, as it prevents unexpected failures and max-
imizes their availability. Predictive maintenance builds on
prognostics, which involves the accurate estimation of the re-
maining useful lifetime (RUL) of technical systems or com-
ponents, such as bearings.

For developing RUL estimation methods for bearings, exist-

Alireza Javanmardi et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

ing datasets often focus on accelerated life tests conducted
under constant operating conditions (OC) (Lee et al., 2007).
In some cases where varying OC were taken into account, the
OC only change between different run-to-failure experiments
but remain constant within each experiment (Nectoux et al.,
2012; Wang et al., 2018). However, this approach falls short
of accurately simulating real-world scenarios where bearings
may experience time-varying conditions throughout their op-
erational life. Some research has been conducted on time-
varying conditions. For example, Du et al. (2022) propose
extracting features from the angular domain and RUL pre-
diction based on the unscented particle filter. However, their
proposed methodology was evaluated on ball bearing run-to-
failure experiments, considering only varying rotating speed
in the range [1450, 1550] rpm. Furthermore, the time point
of degradation onset was manually determined. N. Li et al.
(2019) propose a so-called “two-factor” state-space model
based on a Wiener process, where the underlying degradation
process is modeled in the state transition function, and the
influence of the varying condition on the measured signal is
captured in the measurement function of the proposed model.
However, the proposed methodology builds on the assump-
tion that the OC are known a priori and follow a known pat-
tern. Furthermore, their methodology was evaluated on ball
bearings subjected to cyclic varying speed conditions, taking
up two speed values, namely 2200 rpm and 2600 rpm.

To address the presented limitation of existing studies and en-
hance the relevance to practical applications, we introduce a
new dataset of bearing run-to-failure experiments, in which
OC can dynamically vary over time, such as in a non-periodic
and stochastic manner. Thus presenting new challenges for
RUL estimation, as the vibration data not only reflects bear-
ing degradation but is also influenced by changes in OC. Ta-
ble 1 provides an overview of the existing datasets and their
comparison to ours.
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Table 1. Comparison between the publicly available datasets and our dataset.

IMS (Lee et al., 2007) Pronostia (Nectoux et al., 2012) XJTU-SY (Wang et al., 2018) LDM (Aimiyekagbon, 2024)
Bearing type Roller bearing Ball bearing Ball bearing Ball bearing
Rotating speed [rpm] 2000 1500, 1650, 1800 2100, 2250, 2400 [1500, 3600]
Static load [kN] 26.7 4, 4.2, 5 10, 11, 12 [1.5, 4]
Dynamic load amplitude [kN] ✗ ✗ ✗ [0.5, 1.7]
Dynamic load type ✗ ✗ ✗ Sinusoidal and Gaussian noise

Data-driven techniques for estimating the RUL involve es-
tablishing a mapping between available information, mainly
vibration data, and the RUL. Typically, the initial step is to ex-
tract features from vibration data, given its high-dimensional
nature and lack of a discernible trend for RUL estimation.
Features are typically extracted in the time-, frequency-, and
time-frequency-domain. While finding the best feature rep-
resentation lies beyond the scope of this paper, we primarily
adopt the Fast Fourier Transform (FFT) to obtain a frequency-
domain representation of the vibration signal. Furthermore,
to address the challenge of high dimensionality, we employ a
methodology akin to that proposed in (Ren et al., 2018; von
Hahn & Mechefske, 2022). This involves segmenting the re-
sulting FFT signal into distinct frequency buckets and subse-
quently identifying the maximum value within each bucket.

It has been observed that the behavior of bearings does not
exhibit a consistent trend from the beginning to the failure
time. Instead, a typical scenario involves an initial phase of
normal behavior followed by an abrupt shift at some point
during the lifespan, indicating the initiation of degradation.
These points, marking the transition from a healthy to an un-
healthy state, are referred to as transition times. While exist-
ing approaches use various engineering techniques to detect
these transition times (X. Li et al., 2019), this study employs
a 2-means clustering technique on extracted features to de-
fine the transition time as the moment when the cluster of a
bearing changes with respect to its initial cluster. After iden-
tifying the transition time, the subsequent data points can be
used to train a RUL estimator model.

The dataset consisting of all features after the transition times,
along with their corresponding RUL labels, can be fed into
any supervised machine learning or deep learning model for
fitting an RUL estimator. The challenge of estimating the
RUL under dynamic OC is addressed through various ap-
proaches in the literature. Huang et al. (2019) incorporate
the OC as an additional input in their deep network model.
Fu et al. (2021) and Javanmardi & Hüllermeier (2023) sug-
gest normalizing data according to OC. F. Li et al. (2020)
integrate several algorithms into one model and select an op-
timal algorithm set for different OC to minimize their im-
pact. Numerous studies address this problem by employing
transfer learning or domain adaptation to handle the distri-
bution shift between the training (source) and testing (target)
domains (Mao et al., 2019; Fan et al., 2020; da Costa et al.,
2020; Ding, Jia, Miao, & Huang, 2021; Ding, Jia, & Cao,

2021; Zhang et al., 2021). Ding et al. (2022) consider multi-
source adaptation to manage the presence of subdomains in
the source caused by multiple OC. To this end, we consider
three distinct approaches in this study:

• Firstly, we train a regressor using only the previously at-
tained features without taking the OC into account. This
approach serves as a baseline for the subsequent two meth-
ods.

• Secondly, we employ the OC to normalize the features,
aiming to mitigate its impact on the overall feature set.

• Thirdly, we concatenate the OC with the previously at-
tained features, thereby incorporating them as additional
features.

In the following sections, we first formalize the problem state-
ment along with the details of all steps, from feature extrac-
tion to transition time determination and RUL estimation. Later,
we elaborate on the data generation process and present com-
prehensive numerical results for the proposed approaches.

2. PROBLEM STATEMENT

Consider a dataset containing N instances of bearing run-to-
failure data. Each bearing i in the dataset with a lifetime of
Ti is represented as a time series Zi :=

{
z
(i)
1 , z

(i)
2 , . . . , z

(i)
Ti

}
.

Here, z(i)t :=
(
v
(i)
t , o

(i)
t

)
, where o(i)t ∈ Rdo contains in-

formation about the operating and environmental conditions
during the tth measurement cycle, and v(i)t ∈ Rdv represents
the vibration signal collected during that measurement. For
all t ∈ [Ti] := {1, . . . , Ti}, the RUL y(i)t of instance i at time
t can be computed as follows:

y
(i)
t = Ti − t . (1)

2.1. Feature Extraction from the Vibration Data

The vibration signal in the time domain v(i)t is often high-
dimensional, making it unsuitable for direct integration into
a machine learning framework. In this study, we employ dis-
crete Fourier transform to convert the signal into its frequency
spectrum. This transformation results in V (i)

t , a signal with
the same dimensionality as the original time signal. Next, we
partition the signal into m equally sized buckets B1, . . . , Bm

(with B1 corresponding to the lowest frequency bucket and
Bm to the highest) and simply extract the maximum ampli-
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tude within each bucket to construct the m-dimensional fre-
quency domain features X(i)

t , i.e.,

X
(i)
t =

(
max
j1∈B1

V
(i)
t (j1), . . . , max

jm∈Bm

V
(i)
t (jm)

)
, (2)

where V (i)
t (k) represents the kth component of the signal V (i)

t .
Having access to this new feature, in the literature also known
as the Spectrum-Principal-Energy-Vector (Ren et al., 2018),
resolves the challenge posed by the high dimensionality of
the initial vibration signal.

2.2. Transition Time Determination

K-means clustering is an unsupervised machine learning al-
gorithm that clusters similar data points based on their prox-
imity in the feature space. The algorithm initializes K cluster
centroids and assigns each data point to the nearest centroid,
recalculating the centroid of each cluster based on the mean
of the assigned data points until convergence. The goal is
to minimize the sum of squared distances between each data
point and its assigned centroid. Here, we merely want to di-
vide data points into a healthy or unhealthy cluster, thus K=2.
We assume that each bearing starts in a healthy state, and
hence, the cluster of the first point is considered healthy. A
change in the cluster in the subsequent times is considered
the beginning of the degradation. Once trained on the train-
ing data, the algorithm can be used in an online fashion for
each test data instance to detect its changepoint promptly and
initiate RUL prediction.

Following the extraction of low-dimensional features X(i)
t

from the vibration data, we can utilize a 2-means clustering
algorithm to assign a cluster label δ(i)t ∈ {0, 1} to each mea-
surement time t for every bearing i. Subsequently, we define
t
(i)
TT , the transition time, as the moment when the cluster of

the ith bearing differs from its initial cluster. Formally, this is
expressed as

t
(i)
TT = min

{
t : t ∈ [1 + Tc, Ti] and δ(i)t ̸= δ

(i)
1

}
, (3)

where Tc serves as a hyperparameter, representing the toler-
ance level. It signifies that a change in the cluster occurring
earlier than Tc is not considered in the transition time calcu-
lation. The transition times for two bearing experiments are
exemplarily depicted in Figure 1. Once the transition times
are determined, we can define healthy and unhealthy datasets
as follows:

Dhealthy =

{
(X

(i)
t , o

(i)
t , y

(i)
t ) : i ∈ [N ], t < t

(i)
TT

}
, (4)

Dunhealthy =

{
(X

(i)
t , o

(i)
t , y

(i)
t ) : i ∈ [N ], t ≥ t(i)TT

}
. (5)
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Figure 1. The first extracted feature (blue) plotted for two
bearings alongside their determined transition times (red).
Here Tc is set to 150.

2.3. RUL Estimation

After extracting features from the vibration data and deter-
mining transition times, the next step is to estimate the RUL
of the bearing. The primary focus of this paper is to leverage
machine learning algorithms for that purpose. From a ma-
chine learning perspective, the problem is framed as a super-
vised regression setting—finding a mapping from the feature
space to the RUL space. However, we have yet to explore
how to benefit from OC information. In this context, we con-
sider three distinct scenarios as outlined below and depicted
in the flowchart in Figure 2.

• Scenario 1 (disregarding OC): In this scenario, OC in-
formation is neglected, and training proceeds without con-
sidering such contextual data.

• Scenario 2 (OC for feature scaling): This approach in-
volves utilizing OC information for data/feature normal-
ization. The methodology employs PCA to reduce the
dimensionality of OC data from do to 1. Subsequently, a
uniform discretization method is applied to bin the result-
ing one-dimensional feature into B bins. Next, inspired
by a prior study (Javanmardi & Hüllermeier, 2023), the
data in each bin is normalized to the [0, 1] interval using
B distinct MinMax scalers, aiming to mitigate the impact
of diverse OC indirectly.

• Scenario 3 (OC as additional features): In this method,
OC information is treated as an additional set of features,
thereby augmenting the feature space. The objective is to
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Figure 2. Flow chart of the proposed method.

enable the machine learning model to identify and con-
sider interactions between OC and vibration features dur-
ing the RUL estimation process.

Note that any machine learning or deep learning model can
be used as the underlying RUL estimator for the three pro-
posed scenarios. In this paper, we focus on traditional ma-
chine learning models, such as gradient boosting (GB) and
random forest (RF).

3. CASE STUDY

The experimental dataset, which consists of accelerated life
tests of ball bearings subjected to time-varying conditions, is
gathered at the Chair of Dynamics and Mechatronics (LDM)
at Paderborn University. The specifications of the test bearing
allow an experiment with valuable condition monitoring data
to take several hours. Specifically, the 61806-2RS rolling el-
ement bearing with a basic static load rating C0 = 3.15 kN
and a dynamic load rating C = 4.00 kN have a basic rating
life L10 of approximately five hours while considering a con-
stant equivalent load of 4.50 kN, a rotating speed of 2500 rpm
and other factors not been considered, such as lubrication.

The bearing test rig with its components is captured in Fig-
ure 3(a). The test bearing within its housing (3) is mounted
on a shaft. The shaft is coupled with the driving motor (1)
via a jaw coupling (2) and supported by two spherical roller
bearings (8) within their housing. A static pre-load is exerted
on the bearing via a lever structure (5), which is attached to
the bearing housing. To this end, the compression spring,

mounted on the lever structure, is compressed by the linear
actuator (10). A dynamic load is superimposed on the static
pre-load by means of an electrodynamic shaker (7), which is
connected to the test bearing housing via a stinger (9).

The input signals, namely the exerted forces and shaft rotating
speed, are measured synchronously with vibration and tem-
perature as condition monitoring data. Three one-directional
accelerometers (4) measure the vibration of the bearing indi-
rectly. Two accelerometers (A and C) measure the vibration
horizontally from the housing, and one (B) measures verti-
cally from the lever structure, as illustrated in Figure 3(b).
The ambient temperature and bearing temperature are mea-
sured with Pt100 resistance thermometers. The bearing tem-
perature is measured indirectly from its housing at the po-
sitions (T1 and T2) depicted in Figure 3(b). Measurements
were acquired at a sampling duration of 1.6 s and a measure-
ment interval of approximately 12 s. The temperature sig-
nals are measured with a sampling rate of 10 Hz. To facili-
tate high-frequency analysis, vibration data were sampled at
128 kHz for experiments till B09 and due to data storage is-
sues at 64 kHz for experiments from B10. This lower sam-
pling frequency is theoretically sufficient for analysis in the
frequency range of interest up to 32 kHz.

During an experiment, the test bearing is subjected to dy-
namic load superimposed on a static pre-load. To accom-
modate different dynamic load types, the dynamic load is si-
nusoidal with a constant frequency of 2 Hz for some experi-
ments. The amplitude of the sinusoidal load is stationary per
measurement and takes on a random value from a station-
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Figure 3: (a) Ball bearing test-rig with the following components: (1) motor, (2) jaw coupling, (3) bearing housing, (4) ac-
celerometers, (5) lever structure, (6) electrodynamic shaker (DFG, 2017), (7) support bearing housing, (8) stinger connected to
a quartz force sensor, and (9) linear actuator.
(b) Accelerometer and temperature placement on the test bearing housing without the shaft
(c) A dismantled test bearing with a surface defect on the inner ring raceway and spalls on a rolling element.

ary uniform distribution within a predefined interval between
measurements. For other experiments, the dynamic load is
Gaussian white noise with a maximum excitation frequency
of 200 Hz and truncated to remain within a predefined interval
between measurements. A measurement of the dynamic load
types is exemplarily shown in Figure 4. The shaft rotating
speed is also set to be constant per measurement and takes on
a random value from a stationary uniform distribution within
a predefined interval between measurements. The predefined
range of values per experiment can be found in Table 2.

To avoid failure of other components, except the test bearing,
an experiment ends when the test bearing fails. Bearing fail-
ure is determined by two predetermined failure threshold cri-
teria. If one threshold is exceeded, the experiment is stopped.
On the assumption that the test bearing is in a normal state,
without previous loading history, and the ranges of speed and
force are restrained, the first criterion builds on the equivalent

energy content of the vibration data and is formulated as:

Fvibration = O · 1
m

m∑

t=1

RMS
(
v
(i)
t (1), . . . , v

(i)
t (n)

)
, (6)

where Fvibration denotes the vibration threshold value, O =
8 is a predetermined constant value, m is the number of vi-
bration signals to consider, and v(i)t (k) represents the kth in-
dex of a vibration signal v(i)t of length n. For the provided
experiments, this threshold value lies approximately between
6 g and 10 g. Since improper lubrication of the bearing race-
way leads to increased friction and subsequently to increased
temperature, the second criterion builds on the bearing tem-
perature. According to the data sheet and to avoid melting
the bearing seal made up of nitrile butadiene rubber (NBR),
the threshold value, based on the bearing housing temperature
Ftemperature, is set as 110 °C.

(a) (b)

Figure 4. Dynamic load: (a) Sinusoidal load and (b) Gaussian white noise.
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Table 2. Set range of OC for experiments.

Experiment Rotating speed [rpm] Static load [N] Dynamic load [N] Dynamic load type

B01 - B03 [2400, 3000] [3300, 3800] [500, 1400] Sinusoidal

B04 - B05 [1500, 3000] [2500, 3800] [500, 1500] Sinusoidal

B06 [1500, 3600] [3300, 3800] [750, 1700] Sinusoidal

B07 [1500, 3000] [3250, 4000] [250, 750] Gaussian noise

B08 [1500, 3000] [3250, 4000] [500, 1000] Gaussian noise

B09 [1500, 3000] [2500, 3800] [750, 1000] Gaussian noise

B10 [1500, 2700] [2000, 3250] [750, 1500] Gaussian noise

B11 - B13 [1500, 2700] 3000 1000 Gaussian noise

B14 - B15 2700 2500 [750, 1500] Gaussian noise

B16 2700 2500 [1000, 1500] Gaussian noise

B17 2700 [1500, 2500] 1500 Gaussian noise

In this paper, 17 run-to-failure experiments are utilized, with
the temperature threshold value Ftemperature being exceeded
for four experiments (B03, B07, B08, and B15) and the vibra-
tion threshold value Fvibration for others. The failure types
are not predetermined, but several single or combined failure
types, such as an outer ring raceway defect or rolling element
fault combined with an inner ring raceway defect, could occur
during an experiment. Figure 3(c) is an image of a disman-
tled test bearing with spalls on a rolling element and an inner
ring raceway defect after an experiment (B06). Due to the
proximity to the bearing and for brevity, only the horizon-
tal accelerometer (labeled A) is exemplarily considered in the
following analysis. Also, three-dimensional OC information
is considered, including peak dynamic load [N], mean abso-
lute static load [N], and mean absolute rotating speed [rpm].

3.1. Numerical Experiments

We set the bucket size for feature extraction at 20. To conduct
fair experiments, we repeat the proposed methods 17 times,
reserving one bearing for testing each time while using the
data of the remaining bearings for training. Without loss of
generality, take the jth bearing as the test bearing. The train-
ing and test data are defined as follows:

Dtrain =

{
(X

(i)
t , o

(i)
t , y

(i)
t ) : i ∈ [N ] \ {j}, t ∈ [Ti]

}
, (7)

Dtest =

{
(X

(j)
t , o

(j)
t , y

(j)
t ) : t ∈ [Tj ]

}
. (8)

We then define Xtrain as the collection of features from all
bearings in the training data. This data is normalized and fed
into the 2-means clustering algorithm. We found out that uti-
lizing only the first ten features is sufficient for clustering,
yielding stable transition times. For the sake of fair com-
parison, the same transition times are used in all three RUL
estimation scenarios. The resulting transition points lead to
the creation of a new training dataset, which consists of only
the data after the transition times, aka unhealthy points:

Dtrain
unhealthy =

{(
X

(i)
t , o

(i)
t , ỹ

(i)
t

)
: i ∈ [N ] \ {j}, t ≥ t(i)TT

}
,

(9)

where
ỹ
(i)
t =

Ti − t
Ti − t(i)TT

× 100% (10)

is the RUL percentage after the transition time.
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Different RUL estimation scenarios require different input
data, as illustrated in Figure 2. The details are provided as
follows.

• Scenario 1: For this approach, we simply use the training
data in the form

{(
X

(i)
t , ỹ

(i)
t

)
: i ∈ [N ] \ {j}, t ≥ t(i)TT

}
. (11)

• Scenario 2: Here, we utilize the training OC for PCA
and divide its one-dimensional output space into 20 bins.
This way, each o(i)t ∈ R3 is replaced with its discretized
counterpart õ(i)t ∈ [20]. Next, for each region r ∈ [20],
a distinct normalizer MinMaxr is applied to the features
with the same operating region, i.e.,

Xr
train :=

{
X

(i)
t : i ∈ [N ] \ {j}, t ≥ t(i)TT , õ

(i)
t = r

}
.

(12)
Let X̃(i)

t := MinMax
õ
(i)
t
(X

(i)
t ) be the normalized coun-

terpart of X(i)
t . The training data for this method can be

written as
{
(X̃

(i)
t , ỹ

(i)
t ) : i ∈ [N ] \ {j}, t ≥ t(i)TT

}
. (13)

• Scenario 3: We simply concatenate feature vectors and
OC to create 23-dimensional features. The training data
would be in the form
{(

[X
(i)
t ; o

(i)
t ], ỹ

(i)
t

)
: i ∈ [N ] \ {j}, t ≥ t(i)TT

}
. (14)

We made the data, as well as all the implementations, pub-
licly available on Zenodo1 and GitHub2 to encourage further
development of RUL estimation models in dynamic operating
conditions.

3.2. Results and Discussion

We employed GB and RF as models for estimating RUL. For
each test bearing, separate models were trained for every es-
timation scenario. Figure 5 compares the performance of the
three RUL estimation scenarios for two different bearings.
To mitigate random effects, model training was repeated ten
times for each test bearing and each scenario, using ten dif-
ferent random seeds for both GB and RF, and the resulting
average mean absolute error (MAE) is reported in Table 3.
Notably, the standard deviation of the MAE values was negli-
gible and, therefore, not included in the table. The best MAE
value for each bearing scenario is highlighted in bold.

The findings showcased in Table 3 shed light on the poten-
tial benefits of integrating OC information in the context of
RUL estimation. Both learning models exhibited a decrease
in MAE for more than 50% of the bearings when OC details
were taken into account (scenarios 2 and 3 combined), with
1https://doi.org/10.5281/zenodo.10805042
2https://github.com/alireza-javanmardi/bearing-RUL
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Figure 5. RUL estimation performance comparison for three
scenarios.

RF benefiting more compared to GB. It should be noted that
preprocessing steps, such as feature extraction and transition
time identification, can also affect the final outcomes. Despite
this, the primary focus here is to compare the performance of
different scenarios under fixed preprocessing steps.
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Table 3. MAE of the predictions in different scenarios.

GB RF
Bearing Total lifetime Transition time Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

B01 377 208 18.14 22.77 19.96 18.00 21.51 17.17
B02 1116 998 29.43 25.25 27.41 28.74 26.10 27.24
B03 614 562 24.05 21.52 25.83 25.24 21.90 24.17
B04 1114 452 15.23 19.25 15.02 14.90 19.56 14.07
B05 572 560 44.40 41.11 36.34 42.20 37.28 34.75
B06 12965 12853 11.73 16.00 13.55 13.50 15.64 11.85
B07 6393 6205 44.36 42.54 42.82 43.63 44.78 43.09
B08 1827 1219 15.42 17.98 15.70 18.18 19.08 17.51
B09 1813 253 20.85 23.19 17.19 21.41 22.95 19.67
B10 3224 2679 19.48 18.62 23.13 23.87 18.79 26.11
B11 1953 931 23.94 23.85 22.79 25.22 24.28 24.66
B12 767 154 15.80 17.26 17.43 16.90 16.27 16.93
B13 19417 18022 26.91 25.69 27.36 24.77 26.78 29.13
B14 12317 12050 30.71 26.75 30.10 30.14 29.10 30.36
B15 22567 21051 16.74 19.88 14.17 14.20 21.32 13.66
B16 5891 5400 20.17 21.42 24.74 20.28 18.41 21.74
B17 2733 2323 22.19 21.88 24.47 22.37 24.15 21.58

4. SUMMARY AND OUTLOOK

To address the limitation of existing studies and enhance the
relevance to practical applications, a new ball bearing run-
to-failure dataset, considering time-varying operating condi-
tions (OC), is introduced. Specifically, during an experiment,
the test bearing is subjected to a sinusoidal load or Gaus-
sian white noise superimposed on a static pre-load. Further-
more, the rotating speed takes on a random value from a sta-
tionary uniform distribution within a predefined interval be-
tween measurements. Owing to the degradation path of the
ball bearings, a 2-means clustering algorithm is employed to
partition the features extracted from raw vibration data into
two states, namely healthy and unhealthy states. To estimate
the remaining useful lifetime (RUL) for the unhealthy state,
even under such time-varying OC, three different scenarios
are considered, namely, Scenario 1, where the measured OC
are disregarded, Scenario 2, where the OC are employed for
feature scaling, and Scenario 3, where the OC serve as aux-
iliary features. Different machine learning techniques, such
as gradient boosting and random forest, are employed as the
RUL estimator for each scenario. The results of the presented
case study suggest that the usefulness of incorporating OC
information depends on the individual case: in some scenar-
ios, it is clearly advantageous, and in others, it does not yield
significant benefits.

As a future work, one may delve deeper into other ways of

incorporating OC information into RUL estimation. For in-
stance, a hybrid model consisting of a physics-based model
and a machine learning model can be an interesting exten-
sion. The physics-based model could capture the relation-
ship between the varying OC and the system state, while the
machine learning model could capture the relationship be-
tween the measured system parameters and the RUL. More-
over, more advanced learning algorithms, such as deep learn-
ing techniques, along with tools from domain adaptation and
transfer learning, can be employed on this dataset to deter-
mine whether they can enhance the results.
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ABSTRACT

For complex systems, the number of residual candidates gen-
erated by Structural Analysis could be in the order of tens
of thousands, and implementing all candidates is infeasible.
This paper addresses the residual generator candidate selec-
tion problem from a state-observer perspective. First, the
most suitable candidates to derive state-observers are selected
based on two criteria related to the state-space form and a
low number of equations. Then, a novel algorithm finds the
minimal subset of residual generator candidates capable of
detecting and isolating all faults. A procedure is introduced
to compare the fault sensitivity of the selected candidates.
This residual selection method is applied to the multi-engine
propulsion cluster of a reusable launcher to illustrate its ben-
efits.

1. INTRODUCTION

A classical model-based approach for fault detection and iso-
lation usually comprises two main steps: the residual gener-
ation and the residual evaluation (Simani et al., 2003). The
first step relies on the mathematical model of the system to
generate signals, called residuals, that contain fault informa-
tion. Then, the presence of the faults is inferred by a residual
evaluation method. Structural Analysis (SA) has been proven
to be a powerful tool for developing model-based fault diag-
nosis systems (Escobet, Bregon, Pulido, & Puig, 2019). It is
a graph-based tool that uses the model equations to build a
structural model. From the structural model, efficient algo-
rithms (Krysander, Åslund, & Nyberg, 2007) can be applied
to find residual generator candidates automatically. However,
the number of candidates increases exponentially with the

Renato Murata et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

number of sensors. For large-scale systems, the number of
residual generator candidates can be in the order of tens of
thousands. This brings a new problem to be solved: the se-
lection of the best subset of residuals that meets both fault
detectability and isolability requirements.

The residual selection problem is addressed in (Svärd, Ny-
berg, & Frisk, 2013) where algorithms are proposed to find a
minimal subset of residuals to meet the isolability constraints.
In (Jung & Frisk, 2018), the residual selection problem is
solved using convex optimization. In this case, the optimiza-
tion problem depends on recorded data to find the minimal
and most effective subset of residuals. In (Jung & Sundström,
2017), the residual selection problem is addressed by com-
bining the fault sensitivity information of the residuals with
machine learning methods. However, in all of those works,
the fault isolability constraint used is very restrictive, leading
to sub-optimal solutions with more residuals than necessary
to isolate all faults.

Here, it is proposed to use a different fault isolability con-
straint based on the fault signature. This less restrictive con-
straint is able to lead to an optimal subset of residuals with
minimal cardinality. Such an isolability constraint based on
the fault signature has been used previously in (Zhang & Riz-
zoni, 2017) for residual selection. However, the objective
was to find a subset of residuals that would produce the most
”unique” fault signature for robustness purposes.

This paper proposes a new algorithm to find the minimal sub-
set of residual generators able to detect and isolate predefined
faults. The algorithm is adapted for an observer-based resid-
ual generation technique. State observers are more robust to
modeling errors and parameter uncertainty when compared
with other model-based residual generation techniques, such
as Sequential Residual Generation (Isermann, 2005). The
idea is to select the residual generator candidates based on
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two main criteria: the candidates that can be easily written
into the state-space form and the residual generators with the
lowest number of equations. The state-space form is required
to implement the majority of observers, such as the Kalman
filter (Kalman, 1960) or Luenberger observers (Luenberger,
1964). It is preferred to have fewer equations because each
one has a degree of uncertainty and modeling errors.

Depending on the number of residual generator candidates,
it is possible to find many subsets of residuals with minimal
cardinality. In order to choose the most suitable residuals in
terms of fault sensitivity, a procedure based on the equations
of the residual generator candidates is proposed. It quantifies
the impact that a fault will have on the measured variables.

The main contributions of this paper are as follows. First,
an algorithm to find the minimal subset of residuals to detect
and isolate all faults. Second, a procedure based on the equa-
tions of the residual generators is proposed to compare the
sensitivity of the residuals for one specific fault. The paper is
organized as follows. In Section 2, basic notions of model-
based diagnosis are recalled. In Section 3, the minimal resid-
ual selection problem is described and an algorithm to solve
this problem is proposed in Section 4. Section 5 describes the
procedure that uses the residual generator equations to com-
pare the sensitivity of two residual generator candidates for a
given fault. In Section 6, the proposed algorithm is applied
in a multi-engine propulsion cluster of a reusable launcher.
Conclusions are presented in Section 7.

2. PRELIMINARIES ON MODEL-BASED DIAGNOSIS

This section recalls some model-based diagnosis notions need-
ed to formulate the residual selection problem formally intro-
duced in (Svärd et al., 2013). Those notions are used to define
necessary conditions to meet detectability and isolability con-
straints. Consider a model defined as

M = (E,X,Z, F ) (1)

whereE is the vector of ne system equations,X the vector of
unknown variables in Rnx , Z the vector of known variables
in Rnz and F the vector of fault variables in Rnf . It is as-
sumed that each fault f ∈ F affects only one equation e ∈ E.
This basic assumption is not as limiting as it may initially ap-
pear, as the equation e affected by the fault can propagate its
effect through other equations. If a fault affects simultane-
ously more than one equation in the system, the system may
be poorly modeled. Given the model (1), an ideal residual
generator is defined as

Definition 2.1 (Ideal residual generator) Consider a model
M such as (1). A system R with input Z and output r is a
residual generator forM , and r is a residual if f = 0 implies
r = 0 for all f ∈ F .

In reality, residuals slightly deviate from zero even when no

fault is present in the system due to unmodeled dynamics such
as measurement noise and parameter uncertainty. One im-
portant property of residuals is their fault sensitivity, which
defines the subset of faults that will affect this residual:

Definition 2.2 (Fault sensitivity) Let Ri be a residual gen-
erator for model M . Then Ri is sensitive to fault f ∈ F if
f ̸= 0 implies ri ̸= 0.

With a set of residual generators R ⊇ Ri, i ∈ N, the fault
signature Sf of a fault f can be defined. The fault signature
describes the subset of residuals that are sensitive to this fault:

Definition 2.3 (Fault signature) For a set of residual gen-
erators R, the fault signature Sf of a fault f contains all the
residuals Rf ⊆ R sensitive to f .

Using the fault signature, the fault isolability can be defined.
If the fault has a unique signature, i.e., a unique subset of
residuals is sensitive to it, the fault can be isolated from the
others.

Definition 2.4 (Fault signature isolability) A fault f is iso-
lable using a set of residual generatorsR if its fault signature
Sf is unique when compared to the other fault signatures.

3. MINIMAL RESIDUAL SELECTION PROBLEM

The minimal residual selection problem is formally defined
as an optimization problem. Considering all residual gener-
ators available Rall to detect and isolate nf faults, the ob-
jective is to find a minimal subset of Rall that respects the
fault signature isolability property presented in def. 2.4, i.e.,
that generates unique fault signatures Si for each fault fi, i =
1, 2..., nf . The optimization problem is formulated as

min
R⊆Rall

|R|

s.t. S = {S1, S2, ..., Snf
}̸=

S ̸= 0

(2)

where |R| is the cardinality of the subset R. An equivalent
optimization problem, using the fault signature, is introduced
in (Zhang & Rizzoni, 2017), but a solution to this problem is
not addressed.

The fault signature isolability concept is a key notion of find-
ing the minimal subset of residuals to isolate all the faults.
In previous works, such as (Svärd et al., 2013) and (Jung &
Frisk, 2018), a different fault isolability definition was used.
For instance, a fault fi ∈ F is considered to be isolable from
another fault fj ∈ f if there exists a residual Rk ∈ R that is
sensitive to fi but not to fj . Due to the fact that the isolability
is defined by pair of two faults, to isolate nf faults, it is neces-
sary to meet nf !

(nf−2)! isolability requirements. This notion of
isolability is thus more restrictive compared to the proposed
definition 2.4.

The difference between the two notions of fault isolability
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is illustrated on the following simple example. Consider a
set of three residual generators and three faults with different
sensitivities defined in Tab. 1. The symbol ∗ indicates that a
given residual ri is sensitive to a fault fj .

Rall = {r1, r2, r3} F = {f1, f2, f3}. (3)

Table 1. Fault signature matrix.

r1 r2 r3
f1 0 ∗ ∗
f2 ∗ ∗ 0
f3 ∗ 0 ∗

To isolate all three faults using the fault isolability require-
ments employed in previous works, the set of residuals should
respect six different constraints:

c1 : f1 × f2 c2 : f1 × f3 c3 : f2 × f1
c4 : f2 × f3 c5 : f3 × f1 c6 : f3 × f2

(4)

where fi × fj denotes a constraint that requires a residual
sensitive to fi but not to fj .

Analysing the fault signature from Tab. 1, all three residuals
are thus required to meet the six fault isolability constraints.
However, it is possible to find smaller subsets of Rall capable
of detecting and isolating all faults (3) using the fault signa-
ture isolability concept. The number of isolability constraints
is then divided by two:

c1 : S1 ̸= S2 c2 : S1 ̸= S3 c3 : S2 ̸= S3. (5)

It can be checked that any pair of residuals generates a unique
fault signature for each fault, respecting the constraints 5, and
is, therefore, a solution to the optimization problem (2).

4. MINIMAL RESIDUAL SELECTION ALGORITHM

A new algorithm to solve the optimization problem (2) is pro-
posed. First, the minimal number of residuals needed to iso-
late nf faults is calculated. Assuming that each residual ri
has only two states: ri = 0 when Fi = 0 and ri ̸= 0
when Fi ̸= 0, where Fi is the vector of faults that affects
ri. The lowest number of residuals nmin necessary to isolate
nf faults must follow the inequality:

2nmin ≥ nf + 1. (6)

It must be highlighted that nmin represents the theoretical
lowest number of residuals necessary to generate nf different
fault signatures. The existence of such subset will depend on
the sensitivity of each residual.

For instance, to isolate the three faults from Eq. (3), at least
two residuals are required to generate three different fault sig-

natures, considering that the fault signature (0, 0) is excluded
because it is equivalent to the fault-free state. For compar-
ison, the solution proposed in (Jung & Frisk, 2018) based
on optimization finds a subset of six residuals to isolate four
faults.

The main idea behind the proposed algorithm consists in tak-
ing all possible combinations of nmin at a time of residual
generators in R and checking if this subset of R generates a
different fault signature for each residual. Assuming that the
total number of residual generators is nR, the number of all
possible combinations is defined as

nc =
nR!

(nR − nmin)!nmin!
(7)

From Eq. (7), if the number of residual generators is too big,
it would be impossible to test the isolability properties of all
possible subsets of R. For example, to isolate thirty faults
(nf = 30) using sixty residual generators (nR = 60), it is
necessary to have at least five residuals (nmin = 5), and there
are more than five million possible combinations of residuals
to be tested (nc > 5× 106).

To restrict the number of residual generators, two new con-
cepts are introduced:

• Detectability class: for each fault f ∈ F , list every
residual sensitive to this fault Rdf ∈ Rall;

• Undetectability class: for each fault f ∈ F , list every
residual that is not sensitive to this fault Ruf ∈ Rall.

The idea is to select the most suitable residual generator for
each detectability and undetectability class. The criterion for
selecting that residual generator will depend on the residual
generator method. In this work, the observer-based residual
generation method is used. Two criteria are defined to choose
the most suitable residual generator from a state-observer point
of view:

1. Choose the residual generators composed of Ordinary
Differential Equations (ODEs) or Differential Algebraic
system of Equations (DAE) of index 1.

2. Select the residual generators with minimal ”state cardi-
nality,” which means the residual with a minimal number
of equations, which is equivalent to the state dimension
of the corresponding observer.

The first criterion is related to the observer theory, which is
mostly based on ODE systems. DAE systems of index one
are also included because they can be easily transformed into
an ODE by taking the derivative of the algebraic equations
(Campbell, Linh, & Petzold, 2008).

The second criterion is related to model uncertainty. Each
equation has a level of uncertainty due to modeling errors. It
is thus suitable to choose the residuals with fewer equations
to minimize the combined level of uncertainty.
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Finally, the union of all residuals that meet both criteria for
each detectability and undetectability class is used to test all
possible combinations to verify the fault isolability require-
ments. The formal description of the process to find the mini-
mal subset of residual generators is described in Algorithm 1.
It can be divided into two main loops. The first loop takes the
set of residual generator R and filters it using the two criteria
defined above. The isolability properties of the filtered sub-
set of residuals Rf are inspected. If the isolability properties
are not met, a flag to relax the filtering constraints (rCons)
is activated. The second loop tests all possible subsets of Rf

based on the minimal number of residuals (nmin) needed. If
no subset of Rf containing nmin residuals is capable of de-
tecting and isolating the faults F , the minimum number of
residuals nmin is increased, and the search restarts. The pro-
cedure returns a list Rmin containing all subsets with nmin

residuals that can detect and isolate all faults. The other pro-
cedures used in Algorithm 1 are described below.

• DETECTABILITYCLASS(R,F ) for each fault f ∈ F ,
lists all residuals from R that are sensitive to this fault.
Returns nf subsets of residuals corresponding to each
fault.

• UNDETECTABILITYCLASS(R,F ) for each fault f ∈ F ,
lists all residuals from R that are not sensitive to this
fault. Returns nf subsets of residuals corresponding to
each fault.

• FILTERRESIDUALS(d, u, rCons) for each detectability
class d and undetectability class u, filter the residuals
considering cardinality and equations structure criteria.
If the flag rCons is activated, the cardinality criteria are
relaxed. Returns the list of residuals Rf that fits all fil-
tering criteria.

• CHECKISOLABILITY(R,F ) checks if a group of resid-
uals R generates unique fault signatures for each fault
f ∈ F . Returns 1 if true and 0 if false.

• COMPUTESUBSETS(R,nmin) compute all possible com-
binations of residuals from R separated into groups of
nmin residuals. Returns a list containing all possible
combinations.

5. RESIDUAL EVALUATION PROBLEM

The Algorithm 1 presented in Sec. 4 returns all possible
combinations of residuals with minimal cardinality capable
of isolating the predefined faults. In example (3), there are
three different pairs or residuals that could be used to iso-
late the faults. A method to compare the residual generators
is presented here. The objective is to quantitatively measure
whether one residual is more sensitive than another.

Assuming that state observers will generate the residual by
measuring the difference between the output estimated by the
state observer ŷ and the measured output y, the idea is to

Algorithm 1 Residual Selection Algorithm
Inputs: Set of residual generators R, List of faults F
Output: Subsets of R with minimal cardinality Rmin

procedure RESIDUALSELECTION(R,F )
d← DETECTABILITYCLASS(R,F )
u← UNDETECTABILITYCLASS(R,F )
rCons← 0
isol← 0
while isol = 0 do

Rf ← FILTERRESIDUALS(d, u, rCons)
if CHECKISOLABILITY(Rf ,F ) then

isol← 1
else

rCons← rCons+ 1
nmin ← COMPUTENUMMINRES(F )
while Rmin = Ø do

RS ← COMPUTESUBSETS(Rf ,nmin)
k ← 0
for all Ri ∈ RS do

if CHECKISOLABILITY(Ri, F ) then
Rmin(k)← Ri
k ← k + 1

if Rmin = Ø then
nmin ← nmin + 1

return Rmin

quantify the ”innovation” that the fault will have on the mea-
sured states of the residual generator. Taking ybf as the mea-
sured output before fault and yaf the measured output after
fault, the innovation is defined as

In = ybf − yaf . (8)

In theory, the innovation brought by the fault is important to
better the sensitivity of the residual generator to this fault.
This procedure is illustrated on the same simple example used
in (3). Consider a linear time-invariant system composed of a
chain of integrators:

e1 : ẋ1 = k1x2 e2 : ẋ2 = k2x3 e3 : ẋ3 = k3(u+ f3)

e4 : y1 = x1 + f1 e5 : y2 = x2 + f2 e6 : y3 = x3
(9)

where the unknown variables are x = {x1, x2, x3}T , the out-
puts are y = {y1, y2, y3}T , the input is u, the fault vector is
F = {f1, f2, f3}T , and ki, i ∈ [1, 3] are known constants.

Thee residual generators candidates can be extracted from (9)
using structural analysis, where three MSOs are computed
and taken as residual generators. They are composed of the
following equations

r1 = {e2, e3, e5} r2 = {e1, e4, e5, e6}
r3 = {e1, e3, e4, e6}

(10)

the fault signature of the residuals (10) are illustrated in Tab. 1.
It has been shown previously that any pair of (10) is enough
to isolate the three faults. However, the impact of the faults is
different for each residual.
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For instance, let us compare the sensitivity of r1 and r2 when
f2 is injected using the procedure described above. For r1,
the relation between the fault f2 and the output is direct be-
cause the output of r1 is y2. For r2, the measurement of y2
is first used to estimate ẋ1, which is then used to estimate the
output y1. The innovation brought by f2 in r1 and r2 can be
summarized as

Inr1,f2 = f2 Inr2,f2 = k1f2. (11)

If the known constant k1 is bigger than one, this empirical
analysis indicates that r2 will be more sensitive to r1 to de-
tect f2. Repeating this analysis to the other faults and residu-
als, an efficient subset of residual generators concerning fault
sensitivity can be found.

6. APPLICATION EXAMPLE

The algorithm presented in Section 4 is used to find a list
of minimal subsets of residuals capable of detecting and iso-
lating a predefined list of faults in a multi-engine propulsion
cluster of a reusable launcher.

6.1. Multi-Engine Propulsion Cluster Description

The propulsion cluster considered here is composed of three
main parts: propellant tanks, feeding lines, and liquid-propellant
rocket engines. The tanks are where the propellant is stored,
and the feeding lines connect the propellant tanks with the
rocket engines, where the thrust is generated. The propulsion
cluster considered is composed of three rocket engines. The
rocket engines use liquid oxygen (LOX) and liquid hydrogen
H2 as propellants (Pérez Roca, 2020). A simplified scheme
of the LOX part of the multi-engine cluster is illustrated in
Fig. 1. The feeding lines architecture with one main line
splitting into secondary lines is optimal for minimum mass
and pressure drop values (Miquel, 2020).

LOX tank

Feeding lines
1

2

3

Enginesfen Ren

f f LPull

PsT

qm

PC1

PC2

PC3

qos2

Ps2

Ps1

qos1

Ps3

qos3

Figure 1. Multi-engine propulsion cluster scheme

The cluster operation can be summarized as follows: the rocket
must follow a predefined trajectory. The trajectory is con-
verted into thrust reference (Ren) and then given to the en-

gines. Each engine has its control law that uses the control
valves to meet the references. The valve position defines how
much mass flow (qoi) is used by the engine and, therefore,
defines the mass flow that goes out of the tank through the
feeding lines. The outlet pressure of the feeding lines (Psi)
is imposed as the input pressure of the engines. Psi also de-
pends on the tank’s outlet pressure PsT . The tank’s outlet
pressure is defined by the tank’s ullage pressure (Pull) and
the rocket acceleration aL. The acceleration depends on the
thrust generated by each motor, which is directly related to
the engines’ combustion chamber pressure PCi. The index
.i ∈ {1, 2, 3} denotes the respective rocket engines.

The state vector is composed of the following variables

x ={PsT , Pm, Psi, qm, qsi, qGHi, qCHi, qTHi, qTOi,

PCi, PGi, PTHi, PTOi, ωHi, qGOi, qCOi, ωOi}T
(12)

where PsT is the output pressure of the LOX tank, Pm/qm
are the output pressure/mass flow of the main line, Psi/qsi
are the output pressure/mass flow of the i-th secondary line,
qGHi/qGOi are the gas generatorH2/LOX mass flow, qCHi/qCOi

are the combustion chamber H2/LOX mass flow, qTHi/qTOi

are the turbine H2/LOX mass flow, PCi/PGi are the com-
bustion chamber/gas generator pressure, PTHi/PTOi are the
H2/LOX turbine intake pressure, and ωHi/ωOi are theH2/LOX
pump rotating speed.

The vector of known variables z is composed of input vari-
ables u and output measurements y, z = {u, y}

u = {VGOi, VGHi, VCOi, VCHi, VZi}
y = {PH , Pull, Pm, Psi, PCi, PGi, ωHi, ωOi,

RMCi, RMGi}T
(13)

where V GHi/VGOi are the gas generator H2/LOX control
valves, VCHi/VCOi are the combustion chamberH2/LOX con-
trol valves, VZi is the valve that directs the gas generated by
the gas generator to the turbines, PH is the outlet pressure
of the H2 line, Pull is the ullage pressure at the LOX tank,
and RMCi/RMGi are the combustion chamber/gas genera-
tor mixture ratios.

The mixture ratios are the relation between the LOX and H2

mass flows:

RMCi =
qCOi

qCHi
RMGi =

qGOi

qGHi
. (14)

The fault vector f is composed of the following faults:

f ={fqCOi, fV CHi, fV GHi, fωHi, fRMCi}T (15)

where fqCOi is a external LOX leakage in the combustion
chamber, fV GHi is a blockage in VGHi, fV CHi is a blockage
in VCHi, and fωHi/fRMC are bias faults in the sensors of
ωHi/RMCi respectively.
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All the equations that describe the relations between states,
inputs, and faults are listed in Appendix 7.

Considering that each engine is identical, only the measure-
ments and faults from engine one are considered to simplify
the implementation of the algorithm and avoid unnecessary
computational. However, all results obtained for engine one
can be automatically extended to the other two engines.

The first step is to find all residual generator candidates R.
This step is performed using the Fault Diagnosis Toolbox
(Frisk, Krysander, & Jung, 2017). In total, considering the
equations and measurements of only engine one, the system
is composed of fifty-three equations, and the degree of redun-
dancy is eight. The residual generator candidates are obtained
by computing all the Minimally Structurally Overdetermined
(MSO) sets. Each MSO is a subsystem with a degree of re-
dundancy one, i.e. it has one more equation than the num-
ber of unknown variables. All MSOs can be solved indepen-
dently and are, therefore, residual generator candidates.

6.2. Algorithm implementation

The computation of all residual generators results in 24433
candidates that can possibly be used to detect and isolate five
faults. From (6), at least three residuals are used to detect and
isolate five faults.

The first loop of Algorithm 1 finds a subset of 16 residuals
that meet both cardinality and state-observer criteria.

Rf = {r166, r167, r170, r710, r711, r713, r1000, r1001,
r1006, r1085, r1320, r1321, r1326, r1408, r1593, r1838, }.

(16)

The fault sensitivity of the selected residuals is expressed in
Table 2. It shows that the selected residuals 16 are enough to
detect and isolate all faults considered.

The second loop of Algorithm 1 takes the selected residuals
Rf from equation (16) and tests all possible combinations us-
ing the minimum number of residuals and selects the combi-
nation that generates unique fault signatures for each fault. In
the first iteration of the loop, the minimum number of resid-
ual generators is three, and from (6), there are 560 possible
combinations to be tested. However, there are no subsets of
three residuals capable of isolating all faults. In the second
iteration, the minimum number of residuals is increased by
one, resulting in 1820 possible combinations of four residu-
als. The Algorithm 1 returns 40 combinations, each one con-
taining four residuals from (16) that can isolate all faults. For
comparison, the algorithm proposed in (Svärd et al., 2013)
returns a subset of at least seven residuals to isolate the same
five faults.

Two possible subsets of residuals are chosen for further anal-

Table 2. Fault signature matrix.

fV GH1 fV CH1 fqCOi fωHi fRMCi

r166 0 0 0 ∗ 0
r167 0 0 ∗ ∗ ∗
r170 0 0 ∗ ∗ ∗
r710 ∗ ∗ ∗ ∗ ∗
r711 ∗ ∗ 0 0 0
r713 ∗ ∗ 0 0 ∗
r1000 0 ∗ ∗ ∗ ∗
r1001 0 ∗ ∗ ∗ ∗
r1006 0 ∗ ∗ ∗ ∗
r1085 0 ∗ ∗ ∗ ∗
r1320 ∗ 0 ∗ ∗ ∗
r1321 ∗ 0 ∗ ∗ ∗
r1326 ∗ 0 ∗ ∗ ∗
r1408 ∗ ∗ ∗ ∗ ∗
r1593 ∗ 0 ∗ ∗ ∗
r1838 ∗ ∗ ∗ ∗ ∗

ysis:
R1 = {r166, r170, r713, r1001}
R2 = {r166, r170, r713, r1321}

(17)

both subsets in (17) have almost the same structure; the only
difference is the last residual generator. To compare those
residual generators, the empirical residual evaluation method
presented in Section 5 is used. The residuals are composed of
the following variables:

• r1001

x1001 = {qGO1, qCH1, ωH1}
z1001 = {Ps1, PH , PG1, PC1, RMC1, RMG1,

ωO1, ωH1, VCH1, , VGO1}
(18)

• r1321

x1321 = {qGH1, qCO1, ωH1}
z1321 = {Ps1, PH , PG1, PC1, RMC1, RMG1,

ωO1, ωH1, VCO1, , VGH1}
(19)

the residuals have a very similar structure, having three states
and the same output ωH . One difference is when the fault
fRMC1 is injected. In r1001,RMC1 is used to estimate qCO1,
on the other hand, in r1321, RMC1 is used to estimate qCH1.
When fault fRMC1 is injected, the estimation of the mass
flows will be given by

r1001 : qCO1 = (RMC1 + fRMC1)qCH1

r1321 : qHC1 =
qCO1

RMC1 + fRMC1
.

(20)

For residual r1321, the influence of fRMC1 is directly ob-
served in the output ωH1 because the evolution of ωH1 de-
pends on qHC1. Residual r1001 is not directly influenced be-
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cause qCO1 is not used to estimate ωH1. The fault fRMC1

will first impact the state qGO1 which then will influence the
estimation of qGH1 and affects ωH1. During those steps, the
fault magnitude fRMC1 is divided by a constant bigger than
one, attenuating the effect of the fault in the output. This
makes the residual r1321 more suitable to detect fRMC1. The
same analysis can be extended to faults fqCO1 and fωO1,
where the magnitude of the faults is attenuated before affect-
ing the output of residual r1001.

6.3. Simulation results

To test the performance of the residuals (17) in simulation,
an Unscented Kalman Filter (UKF) was calculated for each
residual. This state estimator can deal with any type of non-
linearities and gives accurate estimations up to the third order
of Taylor expansion (Wan & Van Der Merwe, 2000). The
unscented transformation parameters were set at the default
values, which gives an optimal solution for Gaussian distri-
butions, with α = 0.001, κ = 0, and B = 2. The multi-
engine cluster model was implemented using Simulink, and
measurement noise was added. It is a white noise with zero
mean, and the standard deviation varies according to the sen-
sor specifications. For the rotational frequency of the turbop-
umps ωOi, ωHi, the Standard Deviation (SD) is 0.1% the ro-
tational frequency when the engine at its nominal operating
point. For the low-pressure values (Psi, PH , Pull), the SD
is 0.1%, the nominal pressure value. For the high pressures
(PGi, PCi) the SD is 0.2% the nominal value. The mixture
ratios RMCi and RMGi have a standard deviation of 0.3%,
the nominal value. The measurement noise covariance ma-
trix R of the UKF was defined according to the standard
deviations. The model parameters are considered perfectly
modeled, so the process noise covariance matrix Q is pro-
portionally defined ten times smaller thanR. To simulate the
behavior of the system in closed-loop when a fault is injected,
three PIDs were designed for each engine using the classical
configuration (Pérez Roca, 2020). The PIDs use the valves
to control the outputs yPID = [RMCi, RMGi, PCi]. The
closed loop system has a settling time to the step response of
two seconds without overshooting.

Five faults are simulated in rocket engine 1, and each fault
stays active for two seconds. The fault injection time and
parameters are presented in Tab. 3.

The residuals generated by the UKFs are the difference be-
tween the output estimated by the state observer and the mea-
sured output, they are illustrated in Fig. 2. The UKF cal-
culated from residual generator r166 is denoted UKF166, etc.

From Fig. 2, the theoretical fault signature matrix of the
residuals defined in Table 2 is observed in simulation. The
exception is residual r1001 where the faults fqCO, fwO and
fRMC are attenuated by the residual’s equations, and the im-
pact of those faults cannot be seen when measurement noise

Table 3. Fault parameters

Fault Time Effect
fV GH1 12s-14s Blockage 50% VGH1

fV CH1 16s-18s Blockage 10% VCH1

fqC1 20s-22s LOX Leak. of 0.8% nominal qCO1

fwO1 24s-26s Bias of 1% nominal ωO1 value
fRMC1 28s-30s Bias of 5% nominal RMC1 value
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Figure 2. Residuals

is added. From simulation results, it is confirmed that the
subset R2 from (17) is more suitable for fault detection and
isolation due to the higher sensitivity of r1321 when compared
with r1001.

7. CONCLUSION

A novel algorithm to find all possible subsets of residual gen-
erator candidates capable of detecting and isolating all faults
with minimal cardinality has been presented. The minimal
cardinality is achieved using a less restrictive isolability con-
straint based on the fault signature. Since the algorithm can-
not be applied to a large number of residual generator candi-
dates due to combinatorial explosion, two criteria to decrease
the number of residual candidates were established. Those
criteria take into account the residual generator method based
on state observers, i.e. the reduced sensitivity to uncertainty
when the number of state equations is minimal per residual.
A procedure was presented to evaluate the selected residuals
and compare the subsets with minimal cardinality returned by
the algorithm. The proposed methods were applied in a model
of a multi-engine propulsion cluster where five different faults
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were considered. From 24433 residual generator candidates,
the algorithm found 40 subsets, each one containing four dif-
ferent residual generators, that were capable of detecting and
isolating the five faults. Two of those subsets of residual
generators were implemented using Unscented Kalman Fil-
ter. Simulation results showed that the subsets can be used to
detect and isolate all faults, and as a result the effectiveness of
the proposed selection algorithm and quantitative sensitivity
evaluation.
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APPENDIX

The Liquid-Propellant Rocket Engine models are all derived
from (Pérez Roca, 2020). All variables used in the equations
that are not states (12), inputs and outputs (13) or faults (15)
are known constants. Only the equations of the oxygen side
are presented. The equations of the hydrogen side have the
same structure. The only difference is the index .O is replaced
by .H on the hydrogen side. The effect of the faults in the
dynamic equations of the cluster is highlighted in red.

The pressure at the output of the oxygen turbopump PpOi is
given using manufacturer data:

PpOi =

(
apO
ρO

+ROGC

)
(qCOi + qGOi)

2

+ bpO(qCOi + qGOi)ωOi + cpOρOω
2
Oi. (21)

The evolution of the oxygen mass flow that enters the com-
bustion chamber qCOi and the gas generator qGOi are derived
from conservation of the momentum equation:

q̇GOi =
1

IGO
[Psi + PpOi − PGi

−
(

1

2ρO(VGOi + fV GOi)2
+ROG +ROGC

)
q2GOi ]

(22)

qCOi has the same structure, where the subscript .G is re-
placed by .C .
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The hot gases mass flows are given by

q̇THi =
1

ITH
(PGi − PTHi)− kyTHRoutG

TG
PGi

q2THi (23)

q̇TOi =
1

ITO
(PGi − PTOi)− ZriRoutGG

TG
PGi

q2TOi (24)

where Zri is the equivalent resistive coefficient of the valve.
The combustion chamber pressure PCi evolution can be ap-
proximated by first order Taylor expansion

ṖCi = k1C(qCHi+qCOi−fqCOi)−k2C
√
TCPCi. (25)

The oxygen turbine pressure PTOi is defined as

ṖTOi = k1TOTGqTOi − k2TO

√
TGPTOi. (26)

Finally, the rotational speed’s evolution is given by manufac-
turer data

ω̇Oi =
1

JO
[TTOi −

acO
ρO

(qCOi + qGOi)
2

− bcO(qCOi + qGOi)ωOi − ccOρOω2
Oi] (27)

where the motor torque TTOi is given by TTOi = ST.Wi

with ST the specific torque and Wi the work provided by the
turbine pressure PTOi.

For the feeding lines model, the evolution of the mass flow
q and outlet pressure P in one rigid pipe, considering the
effects of the fluid inertia, dynamic compressibility and ne-
glecting the fluid thermal expansion, can be described by the
momentum and mass balance equations:

q̇ =
S

L

(
Pin − P −

frL

2ρS2D
q2
)

Ṗ =
α2

V
(q − qo)

(28)

this pair of equations must be repeated for each pipe to model
the feeding lines illustrated in Fig. 1.

The governing equations of pressurization of a propellant tank
are obtained from (Majumdar & Steadman, 2001). The out-
put pressure of the tank is defined as

PsT = Pull + ρO[aL + g cos(b)]Hd (29)

Considering that a cylinder can approximate the shape of the
tank, the gravitational head Hd is defined as

Hd =
VLOX

πr2
, VLOX = VLOX0 −

∫ t

0
qmdt

ρ0
(30)

The rocket’s acceleration aL can be approximated by a bivari-
ate quadratic function total thrust T generated by the engines
and the mass of the rocket mR:

aL = k1a + k2aT + k3amR + k4aTmR + k5am
2
R (31)

Finally, the mass of the rocket mR can be calculated as:

mR = mR0
− ∫ qmdt− ∫ qH dt (32)

where qH = qCH+qGH is the total hydrogen mass flow used
by the three engines, andmR0

is the initial mass of the rocket.
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ABSTRACT

The accurate and robust prediction of remaining useful life
(RUL) is critical for enabling the proactive mitigation of fault
effects rather than reacting to them. For RUL prediction, one
must model nominal and faulty system behaviors and how
different faults progress over time. Complex data-driven ma-
chine learning (ML) models may capture both nominal and
fault progression by updating the model parameters at dif-
ferent stages. As new data are observed, these model pa-
rameters can be updated to keep the system model always
accurate. However, complete retraining of these models is
both data- and computation-intensive and unsuitable for dy-
namic, fast-changing environments requiring quick recalibra-
tion. This calls for efficiently adapting the model to new oper-
ating conditions or the system’s current state. One such effi-
cient way to recalibrate model parameters to newly observed
data using Jacobian feature regression (JFR) is presented in
Forgione, Muni, Piga, and Gallieri (2023), where a recurrent
neural network (RNN) models the current behavior of the dy-
namic system. Then, any subsequent deviation of observed
measurements and the RNN model is attributed to an “un-
acceptable degradation of the nominal model performance.”
To update the RNN model, Forgione et al. (2023) propose
augmenting the current model with additive correction terms
learned by implementing JFR on observed “perturbed sys-
tem” data. In this paper, we propose an automated online
framework to adapt the model efficiently to always reflect the
system’s current state and use it for accurate RUL prediction
and select JFR as one such adaptation technique. We extend
the implementation of JFR-based model adaptation to hybrid
models and demonstrate JFR to be more sustainable than the
other retraining methods. Finally, we showcase the applica-
tion of this approach to the oil and gas industry. A testbed that
simulates a digital synthetic oilfield is used to show the effec-
tiveness of this adaptation-based RUL prediction technique.

Prasham Sheth et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

1.1. Motivation

The accurate and robust prediction of remaining useful life
(RUL) is one of the most critical functions of prognostics and
health monitoring for assets. RUL is the time before a sys-
tem can no longer function nominally. Knowing how much
useful time a system has can help prevent having to react to
such a failure and plan steps to mitigate its effects, e.g., plan-
ning maintenance and repair, thereby supporting the seamless
operation of the facility.

Predicting RUL is a well-explored problem and can be imple-
mented using (1) model-based or science-based approaches,
(2) data-driven approaches that use available data but com-
pletely agnostic of scientific domain knowledge, or (3) hybrid
approaches that combine scientific theory with available data.
For accurate RUL prediction, a model must capture the nom-
inal behavior of the system as well as the progressively de-
graded behavior. In model-based approaches, multiple mod-
els can be developed for nominal and degraded system behav-
ior for different possible faults. A single, sufficiently com-
plex data-driven or hybrid model may capture both nominal
and degraded system behavior. One approach to building a
single model is to periodically update or adapt the model to
new system observations so as to reflect reality accurately.
Many possible ways are available in the literature that enable
this updating or adaptation of the model, such as retraining
of machine learning (ML) models, recalibration of model pa-
rameters based on some initially collected field data, and so
on. However, many of these approaches are computationally
expensive, have intense data requirements, and are unsuitable
for dynamic, fast-changing environments that need quick re-
calibration requirements.

1.2. Related Work and Their Challenges

Wang, Zhao, and Addepalli (2020) provide a well-structured
summary of the increasing interest in using deep-learning ap-
proaches, such as autoencoders, deep belief networks, recur-
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rent neural networks (RNNs), and convolutional neural net-
works for RUL prediction. The authors present conventional
model-based as well as hybrid RUL prediction approaches
and provide an excellent summary of the scope of the research
development undertaken regarding RUL prediction.

To highlight a few works that focus on predicting RUL, Lei
et al. (2016) propose an approach that contains two modules:
(1) indicator construction, which fuses the information from
multiple features and constructs a health indicator that they
referred to as weighted minimum quantization error to corre-
late the machinery degradation, and (2) RUL prediction block
that uses a particle-filtering-based algorithm. Ma and Mao
(2021) propose a convolution-based long short-term memory
(CLSTM) for predicting the RUL of bearings. By showcas-
ing the ability of the CLSTM architecture to predict RUL ef-
fectively, they validate the effectiveness of using the spatial
and temporal features. Y. Zhang, Xiong, He, and Liu (2017)
showcase the use of an LSTM-RNN based method for pre-
dicting the RUL of lithium-ion batteries, highlighting the ap-
proach’s capability to capture the long-term dependencies of
capacity degradation in batteries.

A major challenge of the existing RUL prediction approaches
is that they are system-state-dependent; i.e., their effective-
ness in predicting RUL accurately is hinged on the assump-
tion that the system model accurately reflects the current and
future (degraded) system states. However, collecting data
representing the system in all possible scenarios is impossible
for many systems in real life, especially when these systems
are never allowed to degrade sufficiently. The data collec-
tion process for such a wide range of possibilities is also ex-
tremely expensive. Therefore, the availability of training data
for such models is a big bottleneck, and as soon as the sys-
tem goes into a level of degradation that is not represented
in the data, the chances of the model effectively predicting
RUL degrades exponentially. In such scenarios, having a dy-
namic model that adapts based on the system’s state becomes
necessary. Researchers have focused on developing different
approaches by using techniques such as transfer learning, do-
main adaptation, and modeling the degradation process. This
does not represent the exhaustive list of techniques but just
highlights the major approaches being explored.

Transfer learning is one technique for adapting the model to
use the previous learnings to improve generalization about
the new task. In the case of the RUL prediction, the task
remains the same but differs as the underlying data distri-
bution changes; hence, the model has to be “transferred” to
this new set of data points that belong to the new distribu-
tion. The change in distribution, as mentioned earlier, could
result from different operating conditions or different states
of the system because of the degradation or upgrades to the
equipment of the system. Domain adaptation falls within the
umbrella of transfer learning, wherein the main focus is to

help the model adapt from one or more sources of domains
to a target domain. Ding, Ding, Zhao, Cao, and Jia (2022)
introduce a multisource domain adaptation network for RUL
prediction of bearing under varying conditions. Their domain
adaptation strategy functions in two stages where the domain-
specific distribution is integrated with regressor adaptation.
A fusion of LSTM and domain adversarial neural networks
(DANN) to extract temporal information from the time-series
data and learn the domain-invariant features, thereby success-
fully addressing the challenge of distribution shifts in data
domains resulting from the different states of the systems is
proposed in da Costa, Akçay, Zhang, and Kaymak (2020).
Si, Hu, Chen, and Wang (2011) present an approach to pre-
dict RUL using a Wiener process with a nonlinear and time-
dependant drift coefficient. It, in particular, involves design-
ing a state-space model and using Bayesian filtering to up-
date the drifting function parameter. The method is signifi-
cant because of its potential application in online prediction,
which is one of the critical requirements for such an RUL
prediction framework. With different dynamics of the under-
lying system, determining the frequency of the updates is a
critical task. L. Liu, Guo, Liu, and Peng (2019) introduce
a data-driven framework for RUL prediction that integrates
sensory anomaly detection and data recovery and improve
RUL prediction by detecting sensory anomalies, recovering
data, and using this recovered data for more accurate pre-
dictions. Huang, Xu, Wang, and Sun (2015) focus on ad-
dressing nonlinear degradation trajectories and heterogeneity
in practical systems. They combine a nonlinear Wiener pro-
cess with an adaptive drift feature. Y. Zhang, Yang, Xiu, Li,
and Liu (2021) present an integrated technique that combines
the Wiener process for degradation modeling and an LSTM
network for forecasting degradation increments by learning
the long-term dependencies of the offline degradation model
and online observed degradation. Cheng et al. (2023) focus
on predicting the RUL of the machinery under varying work-
ing conditions. Their proposed approach uses dynamic do-
main adaptation by integrating dynamic distribution and ad-
versarial adaptation networks to predict RUL effectively. Pan,
Li, and Wang (2022) propose combining LSTM and particle
filter to predict the RUL for lithium-ion batteries under dif-
ferent stress conditions. They particularly leveraged transfer
learning to update the LSTM model to ensure generalizability
and then particle filter to capture the uncertainty. Siahpour,
Li, and Lee (2022) introduce consistency-based regulariza-
tion into the DANN training process. Consistency-based reg-
ularization helps to remove the negative impact of missing
information. Sun et al. (2019) present a deep transfer learn-
ing network based on spare autoencoder. They incorporate
three strategies — weight transfer, feature transfer learning,
and weight update — to improve adaptability and prediction
accuracy. Also, they showcased the network’s capability to
be trained on one tool and then being transferred to another
tool under operation for online RUL prediction. The use of
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bi-directional LSTM (BLSTM) neural networks and trans-
fer learning for RUL estimation is explored in A. Zhang et
al. (2018). They address the challenges of insufficient fail-
ure progression samples in data-driven prognostics by train-
ing the model on different but related datasets and then fine-
tuning it with the real target domain dataset. J. Liu, Saxena,
Goebel, Saha, and Wang (2010) present an adaptive recur-
rent neural network (ARNN) model for predicting the RUL
of lithium-ion batteries. The model employs a dynamic state
forecasting approach using a neural network architecture that
adapts by optimizing the model’s weights using the recursive
Levenberg-Marquardt method.

1.3. Proposed Solution and Contributions

A better way to recalibrate model parameters to match model
predictions to the newly observed data using Jacobian fea-
ture regression (JFR) is presented in Forgione et al. (2023).
An RNN is used to model the dynamic system using avail-
able measurements. Then, as the system dynamics change,
it causes the nominal model to be inaccurate for predicting
the observed measurements in the presence of the perturbed
system dynamics. The core idea of their approach is to adapt
an existing RNN model, which was trained on data from a
nominal system, to perturbed system dynamics, not by re-
training the model from scratch, but by including an additive
correction term to the nominal model’s output. This correc-
tion term is designed to account for the discrepancies between
the nominal system and the perturbed system. In other words,
as an “unacceptable degradation of the nominal model per-
formance” occurs, Forgione et al. (2023) propose a transfer
learning approach to improve the performance of the nom-
inal model in the presence of perturbed system dynamics,
where the nominal model is augmented with additive correc-
tion terms that are trained on observed perturbed system data.
These correction terms are learned through JFR “defined in
terms of the features spanned by the model’s Jacobian con-
cerning its nominal parameters.” Efficient model adaptation
is achieved by using the JFR in the feature space defined by
the Jacobian of the model with respect to its nominal param-
eters. Forgione et al. (2023) also propose a non-parametric
view that uses the Gaussian process. This could be useful to
provide flexibility and efficiency for very large networks or
when only a few data points are available.

The contributions of this work are significant because they
offer a more efficient and effective way to keep data-driven
and hybrid models accurate when applied to dynamical sys-
tems that experience changes over time. We address some of
the challenges described in Section 1.2 by building upon the
method introduced in Forgione et al. (2023) as follows:

1. We present an automated approach to use adaptation tech-
niques for predicting RUL while ensuring system-state-
dependency of the models. Although JFR is used as the
model-adaptation technique in this paper, JFR can be re-

placed by any other model-adaptation algorithm without
any loss of generalizability.

2. We extend the implementation of JFR-based model adap-
tation to hybrid models that combine physics and data-
driven models. This is important (and even necessary)
as the representation of systems using data-driven mod-
els can become a bottleneck if the training data are lim-
ited, and there could be no guarantee that the data-driven
models follows the physics of the system behaviors in all
possible scenarios.

3. We highlight the lower carbon footprint of the JFR-based
adaptation technique instead of retraining the model com-
pletely using the standard transfer learning.

4. We modify the offline adaptation approach into an online
adaptation approach, which becomes critical to the PHM
systems, especially in RUL prediction. To enable online
adaptation, we use the anomaly detection output in order
to trigger the model-adaptation.

5. Finally, we also discuss the application of our JFR-based
model adaptation approach to assets relevant to the oil
and gas industry. In particular, we discuss the results
of applying the technique to a testbed that simulates a
digital synthetic oilfield.

1.4. Organization

The remainder of this paper is organized as follows. Section 2
formulates the RUL prediction problem, and our approach to
solve this. Section 3 includes the experimental setup and re-
sults, and finally, Section 4 concludes the paper and provides
directions for future work.

2. PROBLEM SETUP AND APPROACH

To set up the problem, let us denote a system by S, that typ-
ically takes in some inputs from discrete timesteps 1 to k,
i.e., x1:k, and has measured outputs y1:k. Let us assume that
M denotes a model representing this system S that takes in
the same inputs x1:k and outputs simulated measurements de-
noted by ŷ1:k. Due to differences between a model and re-
ality, such as modeling error, and measurement noise, y1:k

and ŷ1:k are seldom exactly the same, but a “good” model M
would generate ŷ1:k that is very close to the real outputs y1:k.
We define a threshold function T : ŷκ → {true,false}
that partitions the operational state of the system into nonfail-
ure and failure states based on observed measurements, such
that T (yκ) returns true when the system is in a failure state,
and false otherwise. If the time of prediction is denoted by
kP , then typically, we define end-of-life (EOL) predicted at
time kp as EOL(kP ) = inf{k′ : k′ ≥ kP and T (ŷk)}, and
RUL at time kP is defined as RUL(kP ) = EOL(kP )− kP .
To make EOL and RUL predictions, the model M is fed hy-
pothesized future inputs xkP :∞, also denoted by xfuture.

The modelM can be defined/trained using model-based, data-
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Figure 1. The workflow describing how the adaptation technique could adapt the model trained in the controlled setting
(nominal model) to predict RUL after the degradation in the system is detected.

driven, or hybrid (model-based + data-driven) approaches.
We use standard techniques to train or build such a model M
and train it to the input-output signals using the M .fit()
algorithm. Typically nominal x and y combinations can be
used to build M . Once the model is trained, it is deployed,
and the M.predict() algorithm passes new x through M
to generate new predicted y. M.predict(), when fed with
hypothesized future inputs x̂future, can predict estimated fu-
ture outputs ŷfuture which is then fed to the RUL Estimator
which passes ŷfuture through a threshold function T to com-
pute the RUL of the system.

Now, ideally, if there is no degradation in the system, the M
model would forever be able to correctly predict the future
observations of the system. However, this is never the case
as all engineered systems eventually encounter some sort of
degradation or failure. Also, there is no guarantee that the
operating conditions will remain constant throughout the sys-
tem’s life. One way to adapt to this changing system dynam-
ics would be to retrain the model for every new pair of x and
y; however, that process is computationally wasteful. Hence,
to intelligently call the model update, we develop and de-
ploy an M.drift detector() algorithm that compares
the predictions from M , and the sensors obtained from the
real system to see if there is a statistically significant drift be-
tween the predicted and observed sensors. If yes, then while
there are many reasons for which this drift could occur, we
attribute this drift to degradations in the system that are not
captured by the deployed model M anymore, and the param-
eters of this model need to be re-calibrated or adapted to the
newly observed sensors. If that is the case, then we call the
M.adapt() that helps us adapt the model to the new dynam-
ics using the newly observed data. We denote this adapted
model as Madapted. In our case, the JFR-based model adap-
tation algorithm is used to adapt the model to new data ob-
served. Madapted now replaces the model M , and the pro-

cess continues until a significant deviation is again detected
in the sensor readings predicted by M and the observed sen-
sor readings from the system. Figure 1 presents an overview
of the overall workflow.

As established, the data from the controlled environments
could be used to configure and train different models that
represent the system. Over time, as the system’s behavior
changes, the model becomes stale and its predictions are in-
consistent with the system’s behavior. As the system operates
in real life, different measurements are collected and stored in
some database. Using the designed approach, there are two
choices for model adaptation.

Condition-Based Model Adaptation (CBMA): The data are
continuously collected from the deployment environment in
this setting. The model and the system are constantly moni-
tored, and any kind of deviations are detected and tagged. If
the deviation is above the threshold, all the past information
collected before the deviation happens is used for adapting
the model. It is an offline adaptation technique as not all the
incoming information is directly used for adaptation. Rather
the adaptation is triggered based on the output of anomaly de-
tection. From an implementation perspective, for condition-
based model adaptation, we use data from a window com-
prising of ∆t time steps before and after the time at which
degradation was detected, where ∆t is a design choice. The
timeline at the bottom of Figure 1 visually depicts this.

Continuous Model Adaptation (CMA): In this scheme of
adaptation, there is no dependency on the anomaly detection
process. As and when a new measurement is recorded it is
used for adapting the model. This helps in the continuous
utilization of the incoming information.

While both CBMA and CMA methods enable the efficient
use of the incoming data to update the model continuously,
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these two model adaptation methods have their pros and cons.
Specifically, CMA requires high computing power as the mod-
els are continuously adapted. Furthermore, observing a sin-
gle outlier can result in a deviation from the model’s behav-
ior, whereas it is not a persistent thing for the physical sys-
tem. On the other hand, CBMA requires dependencies on
the anomaly detectors and the storage systems where the data
needed for model adaptation are stored. CBMA also enables
us to quantify the model’s behavior change which could be
reflected based on the differences between the predictions of
the nominal model that is trained using the data from a con-
trolled setting, and the predictions of the adapted model that
is adapted using incoming data predictions.

Our proposed adaptation approach can be used for either CMA
or CBMA. Further, we have extended the offline model adap-
tation approach presented in Forgione et al. (2023) to hybrid
models that represent the dynamics of a system by leverag-
ing both first-principles domain knowledge and data-driven
ML approaches. Karpatne, Watkins, Read, and Kumar (2017)
presents physics-guided neural networks (PGNN), one such
example of a hybrid modeling approach. PGNN uses the first
principles model parallel to the data-driven components (e.g.,
RNNs). It could be helpful to directly use the first princi-
ple model even if it is not tuned and calibrated to the best
quality. Such developed hybrid models for the specific sys-
tems could be further coupled with the adaptation technique
to help us have a model that is always in close alignment
with the physical system. A model that is always closely
aligned with the physical system enables seamless deploy-
ment of different applications such as optimization, control,
forecasting, prognostics and health management, automation,
and decision-making, among others.

3. EXPERIMENTAL SETUP AND RESULTS

Digital Synthetic Oilfield Testbed Setup: Our testbed’s de-
sign is particularly chosen to mimic real-life oilfields. The
test bed has three DC motor pumps attached to three flowme-
ters. Each DC motor pump pumps the water (used in place
of oil) from the well to the eventual storage. The flowme-
ters measure the flow exiting the pumps. We also attached
a fourth flowmeter to calculate the aggregated flow from the
three pumps. Single and persistent faults are injected into
each of the pumps to represent the loss of efficiency. The
EOL condition for each pump is defined as the state when any
pump’s output flow dips below 0.15 units. The controllable
input in the case of each pump is the pump speed, and the
output measurement from the flowmeter would be the flow
rate. Since the input voltage determines the pump speed, the
voltage is considered the equivalent input variable for each of
the pumps. Figure 2 represents the internal structure of the
DC motor pump1.

1https://ctms.engin.umich.edu/CTMS/?example=
MotorSpeed\&section=SystemModeling

Figure 2. The electric equivalent circuit of a DC motor.

Based on the internal structure of each pump, the state-space
model was designed for the testbed, considering the rota-
tional speed and electric current as the state variables. Af-
ter defining the established conditions to represent the system
parameters, this state-space model for the testbed was used
to simulate the operation of the three pumps in the oilfield.
Equations (1a–1f) summarize the representation of this digi-
tal synthetic oilfield testbed. In this setup, (Vp for pump p ∈
[1, 2, 3]) represents the voltage and hence the controlled pump
speed for each pump respectively (controllable inputs); (yp =
ωp, p ∈ [1, 2, 3]) represents the flow rate of each pump re-
spectively (system measurements); and the hidden state vari-
ables include (ωp, p ∈ [1, 2, 3]) that represents the angular
momentum of each pump respectively, (ip, p ∈ [1, 2, 3]) that
represents the current drawn for each pump respectively. The
inductance Lp, resistance Rp, and back electromotive force
constant kp for pump p ∈ [1, 2, 3] are the system parameters.

dω1

dt
=

1

L1
(V1 −R1i1 − k1ω1) (1a)

di1
dt

=
1

J1
(k1i1 −B1ω1) (1b)

dω2

dt
=

1

L2
(V2 −R2i2 − k2ω2) (1c)

di2
dt

=
1

J2
(k2i2 −B2ω2) (1d)

dω3

dt
=

1

L3
(V3 −R3i3 − k3ω3) (1e)

di3
dt

=
1

J3
(k3i3 −B3ω3) (1f)

There are multiple ways to model such systems. Neural state-
space formulation is one such approach that could be used to
model the system. This approach uses a couple of neural net-
works (NNs) to model state-transition and state-observation
models. The same could be represented using Equations (2a–
2b) where the function f represents the state-transition model
and function g represents the state-observation model. In this
neural state space formulation, once the model is trained, we
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Observation ModelState Transition Model

Figure 3. Schematic representation of neural state space
model to model each component independently using just the
inputs and hidden variable that affect it.

Observation ModelState Transition Model

Figure 4. Schematic representation of neural state space
model to model each component independently using all the
inputs and hidden variables from the entire system.

utilize the forward Euler method to walk forward and make a
closed-loop prediction for the next steps. Also note we are de-
noting the controllable inputs to the system by x, the hidden
state variables by h, and the observed system measurements
by y. The subscript t represents the time step to which these
values correspond.

ht = f(xt−1,ht−1) (2a)
yt = g(xt,ht) (2b)

Based on the described system for the testbed, we have a sce-
nario where we have three pumps as the system’s core com-
ponents. For each of these three pumps, we have one con-
trollable input and one measurement (output), and then inter-
nally, we have two state variables. Three major combinations
were used for these different variables in our experiments.
The summary and the description of why the particular selec-
tion was considered are described below.

1. One controllable input, one measurement, and three state
variables: This setting enables us to represent each pump
independently. Figure 3 represents this setting.

2. Three controllable inputs, one measurement, and seven
state variables: In this setting, we model each pump’s
measurement independently but still consider all the in-
put and underlying state variables. Figure 4 represents
this setting. This enables us to consider all system dy-
namics together and learn the dependence of each pump’s
output on the entire system.

3. Three controllable inputs and three measurements: As
shown in Figure 5, in this setting, we model the entire
system using a single model that considers all the input
variables and tries to learn the entire system by itself.

Figure 5. Schematic representation of the model when the
entire system is modeled using the inputs and measurements.

In the first two settings, since we are able to use the avail-
able information for the state variables, the neural state space
approach is used to model the system. There are existing
approaches (e.g., Sheth, Roychoudhury, Chatar, and Celaya
(2022)) that model the state-transition and state-observation
function separately using two independent networks and in a
joint setting where two networks are connected to each other.
In this setting, these functions are represented using a NN. We
also consider the measurement to be an unknown hidden state
variable that needs to be estimated. In such a functional way,
the state observation model becomes a passthrough function
to select the state variable representing the measurement. He-
nce, the state-observation function could be omitted as repre-
sented in Equation 3. This particular method helps us condi-
tion the model in such a way that it has to produce the correct
combination of the state variables as well as the measurement.
By penalizing the wrong predictions, the model is regularized
to adhere to the internal relations between state variables and
the measurements. This could also be thought of as the state
variables providing the regularization to the original model
that is penalized for any sort of inconsistencies between the
state variables and the measurement.

ht ∪ yt = NN(xt,ht−1,yt−1) (3)

The first two settings differ in the variables used by the NN
to represent the state-space formulation. Equations 4 and 5
represent the two settings, respectively. The superscripted i
represents the pump number to which different values corre-
spond.

hi
t ∪ yi

t = NN(xi
t,h

i
t−1,y

i
t−1);

i ∈ {1, 2, 3} (4)

hi
t ∪ yi

t = NN(x1
t ,x

2
t ,x

3
t ,h

1
t−1,h

2
t−1,h

3
t−1,y

i
t−1);

i ∈ {1, 2, 3} (5)

In the third setting, since the system is modeled as a whole,
we utilize an LSTM network to model the system, and all the
time dependence is captured through the LSTM network and
can be represented as shown in Equation 6.

y1
t ,y

2
t ,y

3
t = LSTM(x1

t ,x
2
t ,x

3
t ) (6)

For all three settings, online and offline adaptation techniques
have been integrated to adapt the model. Since the faults are
injected independently into the pumps of the testbed, the sum-
mary table for the experimental results has four rows, one for
the nominal setting and the remaining three for settings cor-
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Table 1. Summary of experimental results (data-driven models). The metrics for all three pumps are shown separately under
the columns for RMSE and R2.

Scenario Fault Number of RMSE before RMSE after R2 before R2 after
Number Setting Models Adaptation Adaptation Adaptation Adaptation

1

Nominal 3 [0.01, 0.01, 0.05] - [0.99, 0.99, 0.50] -
Fault in Pump 1 3 [0.06, 0.01, 0.05] [0.01, 0.00, 0.01] [-0.54, 0.99, 0.50] [0.98, 0.99, 0.99]
Fault in Pump 2 3 [0.01, 0.06, 0.05] [0.00, 0.01, 0.01] [0.99, -0.60, 0.50] [0.99, 0.98, 0.99]
Fault in Pump 3 3 [0.01, 0.01, 0.02] [0.00, 0.00, 0.00] [0.99, 0.99, 0.78] [0.99, 0.99, 0.99]

2

Nominal 3 [0.01, 0.01, 0.02] - [0.98, 0.96, 0.92] -
Fault in Pump 1 3 [0.07, 0.01, 0.02] [0.00, 0.00, 0.01] [-0.98, 0.96, 0.92] [0.99, 0.99, 0.98]
Fault in Pump 2 3 [0.01, 0.07, 0.02] [0.00, 0.01, 0.01] [0.98, -1.22, 0.92] [0.99, 0.99, 0.98]
Fault in Pump 3 3 [0.01, 0.01, 0.05] [0.00, 0.00, 0.01] [0.99, 0.99, -0.04] [0.99, 0.99, 0.98]

3

Nominal 1 [0.01, 0.02, 0.04] - [0.96, 0.95, 0.7] -
Fault in Pump 1 1 [0.06, 0.02, 0.04] [0.01, 0.01, 0.01] [-0.49, 0.95, 0.7] [0.96, 0.99, 0.97]
Fault in Pump 2 1 [0.01, 0.05, 0.01] [0.01, 0.01, 0.01] [0.96, -0.14, 0.7] [0.99, 0.96, 0.97]
Fault in Pump 3 1 [0.01, 0.02, 0.03] [0.01, 0.01, 0.01] [0.97, 0.95, 0.53] [0.99, 0.99, 0.95]

Table 2. Summary of performance of physics-based model.
The metrics for all three pumps are shown separately under
the columns for RMSE and R2.

System Setting RMSE R2

Nominal [0.04, 0.04, 0.01] [0.81, 0.83, 0.99]

responding to the faults in three pumps, respectively.

Table 1 summarizes the results from the experiments to model
the system, where each model’s performance is evaluated us-
ing the root mean square error (RMSE) andR2 metrics, where

RMSE =

√∑N−1
i=0 (yi − ŷi)2

N
,

and
R2 = 1− sum squared regression (SSR)

total sum of squares (SST)
.

For the sake of simplicity, the aggregated results from the on-
line experiments are shown. Figure 6 shows the plots de-
picting the nominal model’s prediction, predictions from the
adapted model, and the actual system behavior when the fault
was present in Pump 1. It also shows the threshold value,
which could be used to predict RUL. Essentially, the time
when the flow value for any pump goes below the threshold
could be considered as the RUL for the system.

(Karpatne et al., 2017) introduced PGNN that enables us to
couple the physics-based model with an NN. The core idea
behind the coupling is to allow the NN to overcome the re-
gions where the physics-based model might make errors be-
cause of the lack of generalizability introduced by the poorly
estimated parameters. (Sheth et al., 2022) have successfully
demonstrated the advantages of integrating the PGNN with
neural state-space models. Figure 7 represents the original

structure of the PGNN and Figure 8 represents the modified
structure of PGNN for the neural state-space model as de-
signed in (Sheth et al., 2022)

Inspired by these works and the ensuring need for the gener-
alizability and scientific accuracy of the models representing
the system, we have implemented all three scenarios using
hybrid models that combine physics-based models with data-
driven models. Since we designed the testbed, we can access
the actual physics model used to collect the data. However,
to mimic the scenarios we have in real life where the exact
physics model is unavailable, we decided to use the functional
form of the original physics model. We estimated the parame-
ters after introducing some random noise to the recorded mea-
surements. In doing so, we estimated the parameters of the
physics model, which were not completely aligned with the
underlying system model. This mimics the scenario of hav-
ing a physics-based model that is not well-calibrated. Table
2 summarizes the performance of the physics-based model in
the nominal setting.

Based on the description of our neural state-space model and
the PGNN architecture, there are two major ways in which
the output from the physics model could be used:

1. Using the output estimate from the physics model as an
input to the data-driven model. This strictly represents
the PGNN architecture described in Figure 7. Figure 9
represents the same in our scenario.

2. Treating the output estimate from the physics model as
one of the state-transition variables in the neural state-
space formulation. This way, the output estimate from
the physics model is integrated into the state-transition
part of the neural state-space model. The output esti-
mate from the physics model from the previous timestep
is considered while predicting the actual output for the
current timestep. Also, the model is penalized for pre-
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Table 3. Summary of experimental results (physics-regularized data-driven models). The metrics for all three pumps are shown
separately under the columns for RMSE and R2.

System Setting RMSE RMSE after Adaptation R2 R2 after adaptation
Nominal [0.01, 0.02, 0.02] - [0.99, 0.94, 0.90] -

Fault in Pump 1 [0.06, 0.02, 0.02] [0.01, 0.01, 0.01] [-0.71, 0.94, 0.90] [0.98, 0.99, 0.99]
Fault in Pump 2 [0.01, 0.08, 0.02] [0.01, 0.01, 0.01] [0.99, -1.46, 0.90] [0.99, 0.99, 0.99]
Fault in Pump 3 [0.01, 0.02, 0.06] [0.01, 0.01, 0.02] [0.99, 0.94, 0.38] [0.99, 0.99, 0.90]
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(a) Prediction done at time 102. The data before time 102 is used to adapt the models.
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(b) Prediction done at time 152. The data before time 152 is used to adapt the models.
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(c) Prediction done at time 221 (End of the simulation). The data before time 221 is used to adapt the models.

Figure 6. Flow estimates for the three pumps of the system representing the oilfield using the data from different timesteps
to adapt the model. The blue dotted line represents the estimates from the nominal model, the red dashed line represents the
estimates from the model after adaptation, and the black solid line represents the actual system behavior when the fault has
been introduced in Pump 1. The green dashdot horizontal line represents the threshold that could be used to determine the RUL
of the system. The vertical gray dashed line represents the present time till which the data from the system are observed.

dicting the wrong value for the output estimate from the
physics model. Thus, the output estimate for the physics
model works both as a signal for predicting the system’s

output from the model and provides a regularization ef-
fect for the model to be grounded to the physical relation-
ships captured by the physics model. We refer to this set-
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Figure 7. Structure of PGNN (Karpatne et al., 2017).

Figure 8. Schematic representation of PGNN for neural state-
space model as shown in (Sheth et al., 2022).

ting as physics-regularized neural network (PRNN) and
is shown in Figure 10. The predicted physics model esti-
mate is compared with the actual physics model estimate.
It is added to the loss function for training, and in the in-
ference phase, we can ignore this output.

In our experiments, we evaluated both techniques and we
coupled the physics model with the neural state-space mod-
els that we have for the second scenario. Table 3 summa-
rizes the results from the experiments for the PRNN model
corresponding to the second setup where the output of the
physics model is used as a regularization condition. Figure
11 showcases the prediction estimates when the nominal ver-
sion of the PRNN model is used for forward Euler simulation
to generate the predictions for all timesteps in the closed loop
setting and the prediction estimate for the same system state
with the adapted PRNN model. Conducting experiments with
PRNNs in this particular setting validates how the adapta-
tion technique has been integrated into the neural state-space
model, thus enabling the adaptation of hybrid models repre-
senting the system. Similar to the neural state-space model,
the estimates of the physics-based model could be integrated
into the list of controllable inputs for the LSTM model. When
experiments for this particular setting were conducted, simi-
lar to the neural state-space model, positive results were ob-
tained.

Based on the presented results in Table 1 and Figure 6, it is ev-
ident that the adaptation technique helps robustly adapt to the
fault scenario. Further, it helps slightly reduce the errors due
to the noise in measurements for the components without any
faults, thus improving the overall prediction. Comparing the
performance of the nominal model learned using the physics
with the PRNN (first row of Table 2 and Table 3), it could
be seen that the PRNN helps improve the performance over

Figure 9. Schematic representation of PGNN for neural state-
space model for our testbed.

Figure 10. Schematic representation of PRNN for neural
state-space model for our testbed.

the model learned just using the physics by eliminating the
error resulting from the suboptimally estimated parameters
from the physics-based model. Comparing the performance
of the data-driven model and PRNN from Table 1 and Table
3, it could be observed that the PRNN model helps ensure
the model follows the underlying physics and, hence, could
help improve the performance of the data-driven model. The
difference in the performance of nominal models for Pumps
1 and 2 between the data-driven model and PRNN is not sig-
nificant due to the simplicity of the components. However,
the improvement is evident in the case of Pump 3, which
was set slightly differently to drop its performance instanta-
neously after 3 minutes and then behave normally again. In
this case, the data-driven model’s performance degrades as
this noisy instance hurts the model’s training. However, since
the PRNN obtained the signal from the physics model, it was
able to stay on track with the training process. Further, based
on Table 3, and Figure 11, it is clear that the adaptation tech-
nique successfully adapts the learned PRNN model to faulty
scenarios.

To estimate the amount of Carbon Dioxide (CO2) produced
by the cloud or personal computing resources used to execute
the code, one may use the Code Carbon2 library. It helps
us track the carbon emissions for any computational process
by considering the region where the machine is located, the
amount of CPU and GPU consumed, the power used to run
the particular process, and the overall machine’s power con-
sumption. By tracking all of this, the library can compute an
estimate of the carbon intensity and energy consumption, thus
resulting in the final number representing the CO2 emissions.

Based on this library, Table 4 summarizes the power used as
well as the CO2 emissions in the process to train the model,
retrain it using the standard transfer learning approach, and
the adaptation of the model using the JFR method. For con-
ducting this study, experiments were hosted to the Google
Cloud Platform so as to have an accurate track of the com-
pute resources as well as the carbon intensity. Using the local
computer, the variables such as the particular power source

2https://codecarbon.io/
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Figure 11. Flow estimates for the three pumps of the system representing the oilfield. The estimates are derived after running
the forward Euler simulation on the PRNN model. The blue dotted line depicts the estimates derived using the model before
adaptation (i.e.) in the nominal state. The red dashed line represents the estimates from the model after adaptation, and the black
solid line represents the actual system behavior when the fault has been introduced in Pump 1. The green dashdot horizontal
line represents the threshold that could be used to determine the RUL of the system.

being used and other local factors can skew the results.

Table 4. Summary of carbon emissions and power usage.

Phase Carbon Emissions Energy Consumed
Training 1.70× 10−4 2.84× 10−3

Retraining 1.70× 10−4 2.8× 10−3

Adaptation 1.37× 10−6 2.28× 10−5

From the results in Table 4, it is evident that the process of
adaptation results in far lower levels of carbon emissions as
well as less power usage. This is a clear advantage of using
the adaptation technique instead of the standard retraining-
based transfer learning as the carbon emissions are reduced,
improving the sustainability aspects of the developed solu-
tion; the duration for which both processes are run is also
much different where adaptation is approximately 10 times
faster and uses far less computational resources.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an automated online model adap-
tation framework for robust RUL prediction. We showcased
the JFR-based adaptation technique to adapt the models rep-
resenting the system for online RUL prediction and also ex-
tended this technique to adapt the hybrid ML approaches that
provide robust system representation. The results indicate
that this approach is much more computationally efficient than
retraining a data-driven model based on standard transfer learn-
ing methods. In the future, we would like to continue mod-
ifying the algorithms to relax some of the assumptions. We
would also like to extend this approach to switched hybrid
systems that combine discrete modes along with continuous
system dynamics in each discrete mode.
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ABSTRACT 
Remaining useful life (RUL) prediction of rolling element 
bearings is a complex task in the frame of condition 
monitoring which brings cost benefits to the industry by 
reducing unexpected downtimes and failures. Data-driven 
approaches based on deep learning have demonstrated 
exceptional performance in estimating RUL effectively. 
Nevertheless, challenges such as data scarcity for model 
training and varying operating conditions add more 
complexity to prognostic tasks using these methods. This 
study proposes a methodology for simulating the vibration 
signals during the degradation process of bearings in order to 
mitigate the need for historical data for training the models. 
Simulations are realized using a phenomenological model 
whose free parameters are adapted based on real 
measurements so that the simulated run-to-failure datasets 
are under the same influence of speed as the real dataset with 
almost the same degradation rate. The simulated dataset is 
used for model training. Moreover, the proposed 
methodology is able to react to the shaft speed and be flexible 
at the predictions when the speed of the bearing varies. The 
proposed model can take extra information regarding the 
operating speed and the sequential ordering of the 
measurements to be aware of the working conditions and the 
dynamics of the damage progression. The positive effect of 
the extra information is shown in the results. Model training 
is based on an unsupervised domain adaptation approach to 
reduce domain discrepancy between the simulated and real 
feature space. The effectiveness of the proposed method is 
examined according to bearing run-to-failure tests under 
varying operating conditions. 

1. INTRODUCTION 

Improving the accessibility of industrial assets is a crucial 
factor in boosting productivity and efficiency, leading to cost 
benefits for industries. This is achieved by exploiting the full 
life of components and avoiding premature replacements. 
Rolling element bearings, being the key component of rotary 
equipment in the industry, are prone to failures due to their 
frequent operation in harsh and demanding conditions, 
including high temperatures, heavy loads, and contaminated 
surroundings, which increase the possibility of unexpected 
failures. Failures could spread to the entire machine and lead 
to unplanned downtimes (Buzzoni et al., 2020; Tajiani & 
Vatn, 2023).  

RUL estimation techniques can be employed to determine the 
remaining time until the failure occurs. Failure is defined as 
a state in which a health indicator crosses a predefined 
threshold such that the component is no longer able to operate 
in the desired way (Lei et al., 2018). Numerous methods can 
be employed to achieve this objective. However, data-driven 
approaches, particularly those based on deep learning, have 
recently demonstrated outstanding results due to their 
capability of modeling processes with high complexity like 
degradation process in bearings (Fink et al., 2020). The main 
bottleneck of using deep learning methods is the necessity of 
having a large amount of labeled pre-recorded run-to-failure 
data for training the models. This process is time-consuming, 
labor-intensive, and crucially, in industrial settings, failures 
may be infrequent, and maintenance is usually performed 
before failures (Arias Chao et al., 2022), which makes it hard 
to have a perfect dataset for training the models, since for 
model training, datasets should cover the whole life of 
bearings until the point of failure, and the degradation process 
is normally a long process that could take months or even 
years (Chen et al., 2023). Additionally, labeled data from 
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different bearings or machines operating under different 
conditions may be insufficient due to different deterioration 
trajectories and conditional probabilities. As a solution, 
leveraging simulated datasets for training deep learning 
models has surfaced as a practical approach to mitigate the 
constraints imposed by the limited availability of real labeled 
datasets. This approach enhances the overall performance of 
the models by providing a broader and more diverse set of 
training data (Hosseinli et al., 2023). Gryllias and Antoniadis 
(2012) generated artificial signals by a phenomenological 
model for different types of localized faults in bearings and 
then trained a Support Vector Machine (SVM) model using 
them. The real samples were then classified using the trained 
SVM model. Cui et al. (2020) proposed a method based on a 
5-DOF dynamic model of bearings coupled with surface 
topography excitation to create a dictionary of many different 
degradation processes. Then, based on the similarity of the 
tested bearing and the simulated ones, the RUL of the tested 
bearing can be estimated based on the life label of the most 
matched sample. Deng et al. (2023) developed a 5-DOF 
dynamic model of bearings and generated a large amount of 
samples. Then, a particle filter-based dynamic calibration 
method was used to calibrate the parameters of the model 
based on observations. The simulated dataset was further 
used to train a deep learning model and estimate the RUL of 
real samples. Ai et al. (2023) utilized a phenomenological 
model to create a dataset for three types of fault: ball, inner 
race, and outer race for fault diagnosis. A deep learning 
model based on the transfer learning approach was then 
trained to remove the gap between the distributions of the real 
and simulated signals for fault classification of the real 
dataset. 

Moreover, varying operating conditions, which can be seen 
in industrial cases such as wind turbines, servo motors, 
compressors, etc., pose another challenge for estimating the 
RUL of bearings. Developing a RUL prediction method that 
can respond to the operating conditions is of high importance 
since the developed models based on the assumption of 
steady operating conditions could not have satisfying 
performance under varying operating conditions (Chi et al., 
2022; Liao & Tian, 2013). (Wang et al., 2021) developed a 
model-based method for RUL estimation by considering the 
joint dependency of degradation rate and time-varying 
operating conditions. The parameters of a system state 
function and an observation function were then estimated to 
model the degradation process of the system and predict the 
RUL of bearings. (Li et al., 2019) developed a state-space 
model for systems working under varying operating 
conditions. The model considered two effects of the varying 
operating conditions: changes in degradation rates and jumps 
in degradation signals. By estimating the underlying system 
state and the remaining time until it reaches a failure 
predefined threshold, the RUL of tested bearings was 
estimated. Zhang et al. (2022) proposed a normalization 
method that recalibrates the upward and downward abrupt 

jumps of sensor readings at the operational conditions change 
points. Then, the normalized sensor features and operating 
condition features were fed to a gated recurrent unit (GRU) 
to estimate the RUL of the aircraft turbofan engine dataset 
provided by NASA. 

Motivated by the observation that the literature lacks a 
comprehensive exploration of RUL estimation under varying 
operating conditions using deep learning, in this paper, the 
proposed methodology consists of different steps including 
data simulation as a way of mitigating the influence of data 
scarcity and then a deep learning model based on a domain 
adaptation approach which gets the raw vibration signals as 
input as well as supplementary information on working 
conditions in which the signals are acquired in order to make 
the model aware of varying operating conditions. The rest of 
the paper can be summarized as follows: 

1. Utilize a phenomenological model that simulates the 
general vibration signals of the bearings under 
different fault modes: ball, inner race, and outer race 
defects. 

2. Adapt the phenomenological model based on the 
healthy real signals to tune the dynamic parameters 
of the model and also identify the effect of varying 
speed conditions on the amplitude of vibration 
signals. 

3. Separate the effect of speed from the peak-to-peak 
health indicator so that it only indicates the 
degradation process which is void of the influence 
of speed and realizing anomaly detection based on 
this new health indicator (normalized peak-to-peak). 

4. Realize curve-fitting on the normalized peak-to-
peak after the anomaly to find out how fast the 
damage is progressing and then generate many 
synthetic run-to-failure data under the same 
influence of speed and damage progression as the 
real data to create a big training dataset for training 
a deep learning model. 

5. Train a deep learning model according to the 
domain adversarial method to decrease the 
discrepancy between the unlabeled real data and the 
labeled simulated data. The deep learning model 
takes two additional inputs: speed information and 
sequence information in order to better understand 
the working conditions and the sequential 
relationship between each measurement. 

6. Estimate the RUL of the real measurements using 
the trained deep-learning model. 

In other words, the proposed methodology, as shown in 
Figure 1, is a digital twin (DT) that requires no historical data 
and is able to adapt itself to different rotating speeds, fault 
modes, and degradation rates of bearings.  
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Figure 1. Pipeline of the proposed methodology

Peak-to-peak values are used here as a reference health 
indicator to tune the digital twin, since the EoL criterion is 
assumed to be defined on the peak-to-peak, and the synthetic 
dataset needs to be created under the same definition as the 
real dataset’s EoL to be able to mimic historical datasets for 
training. Moreover, a few unlabeled real data that comes after 
the anomaly detection are used for unsupervised domain 
adaptation. They are unlabeled because their corresponding 
RULs are not known at this stage. 

The rest of the paper is organized as follows. First, the 
fundamental theoretical background used in the proposed 
methodology is shortly introduced in Section 2. Moreover, 
the proposed approach to adapt the DT and predict the RUL 
is introduced in Section 3. Furthermore, a run-to-failure 
dataset captured under varying speed operating conditions is 
presented in Section 4, the methodology is applied, and the 
effectiveness of the proposed approach is demonstrated. 
Finally, Section 5 provides the conclusion of the paper. 

2. THEORETICAL BACKGROUND 

2.1. Phenomenological model 

The phenomenological simulation of bearing vibration 
signals involves replicating the actual vibration signals of a 
real bearing. The simulation method achieves this by 
comparing the entire bearing and its supporting structure to a 
single-degree-of-freedom (SDOF) vibration system and 
introducing consecutive impulses to excite the structure, 
mirroring the effects of localized faults within the bearing. 
This approach allows for a representation that emulates the 
characteristics of real-world bearing vibration signals. The 
initial idea was proposed by McFadden and Smith (1984) and 
then it was improved by Antoni (2007) in order to have a 
more realistic spectral analysis. The simulated vibration 
signal can be generated by the following formula: 

𝑥𝑘(𝑡) = 𝑆(𝑘) . 𝐷(𝑘) ∑ ℎ(𝑡 − 𝑖𝑇 − 𝜏𝑖)𝑞(𝑖𝑇)𝐴𝑖 + 𝑛(𝑡)

+∞

𝑖=−∞

 (1) 

where 𝑆(𝑘) and 𝐷(𝑘) are the amplitude modifiers regarding 
the speed and damage influence on the amplitude of the 

signals, respectively, for the k-th simulated signal in a 
degradation process. ℎ(𝑡)  is the impulse response of the 
equivalent SDOF system. 𝑇  is the time between two 
consecutive impacts. 𝑖 is the index of the 𝑖-th impact due to 
the fault, 𝑛(𝑡) accounts for the possible noise presented in the 
signals, and 𝑞 is the amplitude modulating function due to the 
load distribution. 𝐴 and 𝜏 are the parameters in order to take 
into account the randomness of the impact intensities and the 
moments that the impacts occur, respectively. According to 
(Antoni, 2007): 

𝐸{𝜏𝑖𝜏𝑗} = 𝛿𝑖𝑗𝜎𝜏
2 

(2) 
𝐸{𝐴𝑖

2} = 1 + 𝛿𝑖𝑗𝜎𝐴
2 

where 𝜎𝜏  and 𝜎𝐴  are the standard deviations, and 𝛿𝑖𝑗  is the 
Kronecker symbol. The time period between two consecutive 
impacts depends on the rotational speed of the inner race of 
the bearing, and the mean value of the time interval Δ𝑇 is 
expressed by: 

𝐸{Δ𝑇} =
𝐸{∆𝜃}

2𝜋𝑓𝑟

 (3) 

where 𝑓𝑟  is the inner race rotational speed and ∆𝜃  is the 
angular distance between two consecutive impacts which its 
mean value is expressed by: 

𝐸{∆𝜃} =
2𝜋

𝑂𝑖𝑚𝑝

 (4) 

where 𝑂𝑖𝑚𝑝 is the characteristic fault order, and it is defined 
as follows for different types of faults: 

Outer race 
𝑛

2
(1 −

𝑑

𝐷
cos(𝛽)) 

(5) 

Inner race 
𝑛

2
(1 +

𝑑

𝐷
cos(𝛽)) 

Rolling element 
𝐷

2𝑑
(1 − (

𝑑

𝐷
cos(𝛽))

2

) 

Cage 
1

2
(1 −

𝑑

𝐷
cos(𝛽)) 
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where 𝑛 is the number of rolling elements in the bearing, 𝐷 
is the pitch circle diameter, 𝑑 is the bearing roller diameter 
and 𝛽 represents the contact angle. 

2.2. Domain adaptation 

Acknowledging that simulated signals are derived from a 
simplistic model, incapable of capturing all aspects of faulty 
bearings or the degradation process, a distribution mismatch 
between real and simulated signals arises. This mismatch 
poses challenges in generalization when deploying trained 
models on real datasets. To tackle this issue, a domain 
adaptation method is employed to enhance generalization by 
transferring knowledge acquired from the source domain 𝒟𝑆, 
where simulated signals originate, to the target domain 𝒟𝑇, 
representing real-world datasets (Pan & Yang, 2010). This 
facilitates improved performance and adaptability of trained 
models. In this case, the marginal probability distributions of 
source and target domains, 𝑃(𝑥𝑆) and 𝑃(𝑥𝑇), are assumed to 
be different due to the simplicity of the simulations, but their 
conditional probability distributions, 𝑃(𝑦𝑆|𝑥𝑆)  and 
𝑃(𝑦𝑇|𝑥𝑇), are assumed to be the same due to the fact that in 
the preprocessing steps, the digital twin is tuned based on the 
real data in terms of the type of fault, the influence of speed, 
and the dynamic characteristics of the bearing. 

This paper employs a Domain Adversarial Neural Network 
(DANN) to tackle the abovementioned domain shift problem. 
The network, illustrated in Figure 1, comprises three key 
components: a feature extractor 𝐺𝑓  a domain classifier 𝐺𝑑 , 
and a label predictor or regressor 𝐺𝑟 . The feature extractor 𝐺𝑓 
is typically a deep neural network responsible for learning 
high-level representations from input data. It transforms input 
samples into a latent representation encoding valuable 
features for subsequent layers. The domain classifier 𝐺𝑑  is 
another neural network component that predicts the domain 
of input samples based on extracted features, aiming to 
differentiate between the source and target domains. During 
training, the domain classifier seeks to maximize its 
accuracy, while the feature extractor aims to minimize this 
accuracy by gradient reversal. This adversarial training 
process results in the domain classifier being unable to 
distinguish features from different domains, indicating that 
the feature extractor can extract domain-invariant features. 
Additionally, the label predictor or regressor layer 𝐺𝑟  utilizes 
these domain-invariant features to estimate the output, 
contributing to the overall goal of addressing the domain shift 
problem (Ganin et al., 2016). The objective function of the 
model is: 

ℒ(𝜃𝑓 , 𝜃𝑟 , 𝜃𝑑) =
1

𝑛
∑ ℒ𝑟

𝑖 (𝜃𝑓 , 𝜃𝑟)

𝑛

𝑖=1

 

      −𝜆 (
1

𝑛
∑ ℒ𝑑

𝑖 (𝜃𝑓 , 𝜃𝑑)

𝑛

𝑖=1

+
1

𝑛′
∑ ℒ𝑑

𝑖 (𝜃𝑓 , 𝜃𝑑)

𝑁

𝑖=𝑛+1

) 

(6) 

where 𝑛 and 𝑛′ are the number of samples presented in the 
source domain and the target domain datasets respectively, 
and 𝜆 is a hyperparameter that controls the trade-off between 
the regression loss and the domain adversarial loss during 
training. ℒ𝑟 and ℒ𝑑 are defined as: 

ℒ𝑟
𝑖 (𝜃𝑓 , 𝜃𝑟) = ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑥𝑖; 𝜃𝑓); 𝜃𝑟), 𝑦𝑖) 

(7) 
ℒ𝑑

𝑖 (𝜃𝑓 , 𝜃𝑑) = ℒ𝑑(𝐺𝑑(𝐺𝑓(𝑥𝑖; 𝜃𝑓); 𝜃𝑑), 𝑑𝑖) 

where 𝜃𝑓, 𝜃𝑟, and 𝜃𝑑 are the trainable parameters of the 𝐺𝑓, 
𝐺𝑟 , and 𝐺𝑑 respectively. 

 
Figure 2. DANN architecture for regression task 

3. PROPOSED APPROACH 

To create a synthetic run-to-failure dataset by the digital twin, 
at first the dynamic characteristics of the phenomenological 
model should be tuned based on the real data. Then, the 
modifier functions 𝑆(𝑘) and 𝐷(𝑘), introduced in Section 2, 
are determined. 

3.1. Dynamic characteristics 

Given the fact that rolling element bearings vibrate even in 
healthy conditions due to the waviness of the surfaces and 
other sources of imperfections (Harsha et al., 2003; Jawad & 
Jaber, 2022), the resonance frequency of the structure can still 
be seen in the frequency content of the vibration signals 
(Ghafari et al., 2010). Therefore, by considering the Fast 
Fourier Transform (FFT) of the healthy signals, the dominant 
natural frequency of the structure, 𝜔𝑛, can be found and then 
used in the phenomenological model as an equivalent SDOF 
system. Moreover, the logarithmic decrement can be used to 
see at which rate the amplitude of the impact responses, 𝑥, in 
real measurements is decreasing in order to determine 𝜁. 

ℎ(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛 (√1 − 𝜁2𝜔𝑛𝑡) 

(8) 𝜁 =
𝛿

√4𝜋2 + 𝛿2
 

𝛿 = 𝑙𝑛 |
𝑥1

𝑥2

| 
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3.2. Influence of speed, 𝑺(𝒌) 

The real signals before the detection of the anomaly can be 
used to recognize the influence of speed on the amplitude of 
the vibration signals. Figure 3 (a) shows a speed profile and 
its effect on the peak-to-peak amplitude of the vibration. The 
important point here is to consider the possibility of the 
structure resonance when speed is varying. In other words, 
increasing speed does not necessarily result in an increasing 
amplitude. Figures 3 (b) and (c) show two possible behaviors 
that can be seen in speed-varying scenarios. Increasing 
amplitude with increasing speed can be a sign of crossing no 
resonance frequency in that specific speed range (Salunkhe 
& Desavale, 2021). 

 
Figure 3. (a) Varying speed effect on the peak-to-peak 
amplitude of the signals, (b) in case of no resonance 

crossing, (c) in case of crossing a resonance frequency 

Corresponding to each operating speed, a constant parameter 
𝑐 can be found to create a link between the rotating speed and 
the vibration amplitude or the peak-to-peak: 

𝑃𝑗 = 𝑐𝑗  .  𝑟𝑝𝑚𝑗   (9) 

where 𝑃 is the peak-to-peak of real signals, 𝑐 is a constant 
parameter, 𝑟𝑝𝑚 is the operating speed, and 𝑗 is the index of 
measurements. In this way, any non-linearity between speed 
and vibration due to the frequency response of the structure 
can be captured (Figure 4). 

 
Figure 4. Capturing the complex relationship between speed 

and vibration amplitude in real measurements 

It should be noted that these analyses must be done based on 
a few measurements at the beginning of the operation of the 
machine to be far from the influence of bearing faults. After 
the detection of the anomaly, when the synthetic run-to-
failure dataset should be created, a speed profile should also 
be provided so that the digital twin can generate signals 
accordingly. Since a random speed profile might be desired 
at this stage, an interpolation would be needed to find the 
correct value of 𝑐 while dealing with unseen speed values. 
Then, the modifier function 𝑆(𝑘) in equation 1 will be: 

𝑆(𝑘) = 𝑐𝑘  .  𝑟𝑝𝑚𝑘  (10) 

3.3. Normalized health indicator 

By knowing the relation between speed and vibration, the 
effect of speed can be removed from the peak-to-peak 
amplitude of the vibration signals by equation 11, meaning 
that any changes in the health indicator that are not associated 
with speed can manifest itself more clearly. This method will 
be used to find anomalies. The Normalized peak-to-peak 
amplitude, 𝑃𝑁, is constructed as follows: 

𝑃𝑁,𝑗 =
𝑃𝑗

𝑐𝑗  .  𝑟𝑝𝑚𝑗

 
 

(11) 

Obviously, for the healthy samples before the detection of the 
anomaly, 𝑃𝑁~1. Figure 5 (b) shows the normalized peak-to-
peak amplitude whose mean and standard deviation in the 
time interval [𝑡0, 𝑡1] , which is at the beginning of the 
measurements, can be used as the threshold for anomaly 
detection. 𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦  is used to refer to the k-th signal in the 
degradation process where the anomaly occurs. As shown in 
Figure 5 (b), the fluctuations caused by the varying speed 
profile no longer exist in the normalized peak-to-peak 
amplitude.  

 
Figure 5. (a) Peak-to-peak amplitude of real data, (b) 
anomaly detection by the normalized peak-to-peak 

3.4. Influence of damage, 𝑫(𝒌) 

After the anomaly, a limited number of signals will be used 
for curve fitting in order to estimate the degradation rate of 
the real bearing so that the digital twin will be able to generate 
a synthetic run-to-failure dataset with almost the same 
degradation rate as the real bearing. As shown in Figure 6 (a), 
curve fitting is done based on the normalized peak-to-peak 
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amplitude because the effect of speed has been removed, and 
it is only the degradation process that plays a role. The 
modifier function 𝐷(𝑘) in equation 1 can be modeled by an 
exponential function to approximate the degradation 
trajectory of the normalized peak-to-peak amplitude: 

𝐷(𝑘) = 𝑒𝑎(𝑘−𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦) (12) 

where 𝑎 is a constant parameter that defines the degradation 
rate. By introducing slight variations in the parameter 𝑎 in 
function 𝐷(𝑘), various degradation trajectories can be built 
in order to have a big synthetic run-to-failure dataset. The 
variations are such that the time difference between the 
synthetic EoLs is limited to the Simulation range as shown in 
Figure 6 (b). This figure shows the typical degradation 
trajectories of the peak-to-peak amplitude of the synthetic 
dataset generated by equation 1. Domain adaptation is also 
done using a few real unlabeled available measurements after 
the detection of the anomaly. 

 
Figure 6. (a) Curve fitting according to the normalized peak-

to-peak amplitude, (b) peak-to-peak amplitude of the 
synthetic dataset 

3.5. Encoding 

In order to encode the speed and sequence label of each 
measurement, which will be fed into the deep learning model, 
this paper adopted one of the well-known methods of 
information encoding from the natural language processing 
(NLP) research domain. Positional encodings are used to 
make the transformers aware of the relative or absolute order 
of the words inside a sentence (Vaswani et al., 2017). To 
encode the positional information, sine and cosine functions 
with different frequencies can be used: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄
) 

(13) 
𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (

𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄
) 

where 𝑝𝑜𝑠  is the position of the word, 𝑑𝑚𝑜𝑑𝑒𝑙  is the 
dimension of the word embeddings, and 𝑖  represents the 
dimension of the positional encoding. Unique encoding for 
each position is achieved by using sine and cosine functions 
with varying frequencies, making the model able to 
distinguish the sequential order of measurements. It is 
important to highlight that each positional encoding with 
offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘 can be described as a linear function of the 

positional encodings 𝑃𝐸𝑝𝑜𝑠 , this characteristic enables the 
model to readily learn the relative dependencies between 
different positions, contributing to the model's ability to 
capture sequential information and relationships effectively 
(Vaswani et al., 2017). 

The concept of positional encoding can be transferred to the 
prognosis research domain. The sequential order of vibration 
signals obtained from a bearing holds significant importance 
in prognosis, serving as an indicator of how the damage 
progresses over time. Moreover, equation 13 can be utilized 
for encoding speed information. While this encoding method 
might lack a direct physical interpretation, it serves the 
purpose of making the neural network aware of distinctions 
among vibration signals working in different conditions. 
Each operating condition should have a unique encoding by 
which the raw vibration signals are accompanied while 
feeding to the model. 𝑑𝑚𝑜𝑑𝑒𝑙  is a hyperparameter that will be 
determined in section 4.1, and the value of 𝑝𝑜𝑠 is an integer 
number that starts from 1, representing the sequential order 
of each measurement. The same way is followed to encode 
the speed information. For example, 𝑝𝑜𝑠 = 1 is used for the 
lowest rotational speed. For each 𝑝𝑜𝑠, the value of 𝑖 starts 
from 0 and ends in 𝑑𝑚𝑜𝑑𝑒𝑙

2
, forming a vector of length 𝑑𝑚𝑜𝑑𝑒𝑙 . 

For each 𝑖 there are two values, one from 𝑠𝑖𝑛𝑒 function and 
the other from 𝑐𝑜𝑠𝑖𝑛𝑒 function. For example, the encoding 
for 𝑝𝑜𝑠 = 1 is [𝑃𝐸(1,0), 𝑃𝐸(1,1), … , 𝑃𝐸(1,𝑑𝑚𝑜𝑑𝑒𝑙−1)] which is a 
one-dimensional vector. 

3.6. RUL curve for varying speed scenario 

One of the most important outcomes of the proposed 
methodology is to see how the speed is influencing the RUL. 
Obviously, for higher speeds, lower RUL is expected, and 
vice versa. To the best knowledge of the authors, no paper 
has taken into account the effect of speed on the RUL curve.  

 
Figure 7. (a), (b) Remaining revolutions and remaining time 
after the detection of anomaly, (c) the corresponding speed 

profile 
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The proposed idea is to estimate the remaining revolutions 
until the end-of-life, and in the post-processing step, the 
number of revolutions can be transferred to the remaining 
time by simply dividing it by the operating speed. Figure 7 
shows the remaining revolutions and the RUL for a 
measurement campaign which has been done under varying 
speed operating conditions. Equation 14 is used to calculate 
the total number of revolutions after the detection of anomaly 
which are then used as the labels in the model training. 

𝑅𝑒𝑣𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑟𝑝𝑚𝑖 . Δ𝑡

𝑁

𝑖=𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦

 
 

(14) 𝑅𝑒𝑣𝑛 = 𝑅𝑒𝑣𝑇𝑜𝑡𝑎𝑙 − ∑ 𝑟𝑝𝑚𝑖+𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦
. Δ𝑡

𝑛

𝑖=1

 
 

𝑅𝑈𝐿𝑛 =
𝑅𝑒𝑣𝑛

𝑟𝑝𝑚𝑛+𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦

  

where 𝑅𝑒𝑣𝑇𝑜𝑡𝑎𝑙 is the total number of revolutions after the 
detection of anomaly, 𝑁 is the number of samples in the run-
to-failure experiment, Δ𝑡 is the length of each measurement. 
𝑅𝑒𝑣𝑛  and 𝑅𝑈𝐿𝑛  are the remaining revolutions and the 
remaining time until the end-of-life for the n-th sample, 
respectively. 𝑅𝑒𝑣𝑛 is used as the labels for model training. 

The important point is that the slope of the RUL curve is -1 
as long as the speed is constant, as shown in Figure 7 (b) by 
the orange line, preserving the most useful property of the 
RUL curve. 

3.7. Deep-learning model 

As mentioned in Section 2.2, a deep learning model based on 
the DANN model is used to estimate the RUL of the real 
bearings. Two supplementary information, speed and 
sequential ordering of the measurements, have been encoded 
and will be fed to the model as extra inputs in addition to the 
raw vibration signal. As shown in Figure 8, Convolutional 
Neural Network (CNN) is used to extract the local 
information and deep features automatically from the raw 
vibration signals. The extracted features are concatenated by 
two encoded inputs to form a bigger 1-D vector which is 
followed by two parallel Fully Connected (FC) layers, a 
domain discriminator, and a source regressor. The loss 
function of the regressor part is the mean squared error and 
the loss function of the discriminator part is the binary cross 
entropy which is expressed as follows: 

ℒ𝑑 = −𝑦. 𝑙𝑜𝑔(�̅�) − (1 − 𝑦). 𝑙𝑜𝑔(1 − �̅�) (15) 

where 𝑦 ∈ {0, 1} is the domain label and �̅� is the predicted 
value between 0 and 1. Table 1 and Table 2 show the network 
parameters in detail. As depicted in Figure 8, the gradient 
reversal layer (GRL) with the trade-off parameter 𝜆 = 0.1 is 
also added as the first layer of the discriminator part to 
reverse the gradient in the backpropagation process. 

Table 1. Network parameters of the feature extractor 

Layer Type Filter/ 
Kernel/Stride 

Activation 
function 

1 1D CNN 4/128/16 ReLU 

2 Max Pooling -/8/8 - 

3 1D CNN 16/16/8 ReLU 

4 Max Pooling -/8/8 - 

Table 2. FC parameters in the regressor and the 
discriminator 

Regressor part Discriminator part 

Layer Units/Activati
on function Layer Units/Activati

on function 

1 64/ ReLU 1 64/ ReLU 

2 32/ ReLU 2 32/ ReLU 

3 1/ ReLU 3 1/sigmoid 

 
Figure 8. The architecture of the proposed model 

It is important to emphasize that the length of the input signal 
must be sufficiently long to encompass an adequate number 
of impacts resulting from faults in the bearing. Notably, the 
number of impacts due to a ball defect in one revolution of 
the shaft is lower compared to other types of faults. Using 
equation 16, the number of data points needed to cover at 
least 1 impact due to the ball defect can be calculated. This 
number will cover more than one impact if a different type of 
defect is present at any speed (Hosseinli et al., 2023). 

𝐿𝑐 =
𝐹𝑆

𝐵𝑆𝐹
 (16) 

where 𝐿𝑐 is the critical length of the signal, BSF is the ball 
spin frequency at the lowest shaft speed, and 𝐹𝑆  is the 
sampling frequency. 
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4. APPLICATION OF THE METHODOLOGY AND RESULTS 

4.1. Case study 

Smart Maintenance (SM) dataset provided by Flanders Make 
(Ooijevaar et al., 2019) consists of accelerated life tests where 
indentations were deliberately created on the inner races (IR) 
of bearings using a Rockwell-C indenter with a force of 100 
kg before the tests started to run. The radial load is 9 kN and 
the rotational speed follows a periodic stepwise profile 
starting from 1000 rpm to 2000 rpm, each step is 100 rpm and 
is maintained for 60 seconds. The type of test bearings is 
6205-C-TVH from FAG. The sampling rate frequency is 50 
kHz, and a peak-to-peak amplitude of 15g is considered the 
end-of-life criterion in this study. Figure 9 shows the peak-
to-peak amplitude and the speed profile of one of the 
measurement campaigns. Table 3 shows the specifications of 
all the bearings used in this study. 

Table 3. Bearing information in the SM dataset 

Bearing Test duration Anomaly detected at Fault 

A148 142.5 min. 112.6 min. IR 

A150 197.5 min. 169.1 min. IR 

A153 229.3 min. 207.8 min. IR 

A154 126.0 min. 98.8 min. IR 

A155 369.3 min. 348.6 min. IR 

A156 251.3 min. 224.0 min. IR 

Referring to equation 16, a signal of 25000 data points is set 
as the input to make sure that at least 20 impacts will be 
covered in the critical scenario for the Smart Maintenance 
dataset. The length of the encodings, 𝑑𝑚𝑜𝑑𝑒𝑙  in equation 13, 
should be kept lower than the length of the deep features after 
the Flatten layer. This ensures that subsequent layers can 
effectively learn the deep features by maintaining a lower 
dimensionality for these encodings compared to the deep 
features, the model can efficiently process and integrate 
additional information without overwhelming the learning 
process or introducing unnecessary complexity. For the 
architecture described in Table 1, the length of the deep 
features for the input length of 25000 is 112. 

Table 4. Length of the inputs of the proposed architecture 

Input No. Length 

Input 1 (raw signal) 25000 

Input 2 (time encoding) 24 

Input 3 (speed encoding) 24 

 

 

 
Figure 9. Bearing A148, peak-to-peak amplitude and speed 

profile 

4.2. Results and discussions 

Before the anomaly occurs, the relation between speed and 
vibration amplitude is analyzed. After the anomaly, curve 
fitting is done based on the available data, as shown in Figure 
12. 10 minutes of measurements are used at this stage. This 
few unlabeled available real data is also used for domain 
adaptation while model training. It should be highlighted that 
the unlabeled past samples will be labeled in the inference 
stage. Despite the passage of time, labeling the past samples 
is still valuable, since it indicates what were the predictions 
from a few moments ago which can be used for decision-
making. Figure 10 shows the result of anomaly detection and 
the corresponding speed profile for bearing A148.  

 
Figure 10. Bearing A156, (a) Peak-to-peak amplitude, (b) 
Normalized peak-to-peak amplitude, (c) Corresponding 

speed profile 
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Figure 11. Bearing A148; (a) Comparison between the real 

and generated signals, (b) envelope spectrum of the real 
signal, (c) generated signal 

Figure 11 shows one of the examples of the generated signals 
for bearing A148 after the anomaly. The results of the 
proposed method for anomaly detection are mentioned in 
Table 3.  

After adapting the digital twin in terms of the speed influence 
and degradation rate, 6 trajectories are generated as shown in 
Figure 12. Their corresponding raw vibration signals will be 
the input of the deep learning model for training. The 
Simulation range is chosen to be 40 minutes. The synthetic 
run-to-failure dataset is used to train 5 models. A simple CNN 
model that neither includes the discriminator part of the 
architecture nor encodings, a DANN model without 
encodings, proposed model 1 with CNN and only speed 
encodings, proposed model 2 with CNN and only sequence 
encodings, and proposed model 3 with DANN and both speed 
and sequence encodings. Table 5 shows the superior 
performance of the proposed model 3 which in all cases can 
improve the root mean squared error, RMSE, of the RUL 
predictions compared to the DANN and CNN model. As 
discussed before, the important point of feeding the operating 
condition and the sequential information to the models is to 
make the model aware of the working environment and any 
other information that influences the physical behavior of the 
assets. This fact is perfectly shown in Figure 13 where by 
using the t-distributed stochastic neighbor embedding (t-
SNE) technique the feature distribution of the second to the 
last fully connected layer in the regressor part of the proposed 
model is visualized. This layer outputs a 32-dimensional 
feature space that t-SNE can reduce the dimension to a lower 
one such as a 2-dimensional  feature space which is easier to 
visualize. Figure 13 shows how the extra information fed to 
the model helps to distinguish between different speeds, 
resulting in better predictions. More importantly, 
supplementary information fed to the model makes the model 
more robust against the major changes in the speed profile. 
For example, bearing A156 underwent two major changes in 

operating speed after the detection of the anomaly. As 
depicted in Figure 14, abrupt speed changes from 2000 rpm 
to 1000 rpm in a short time interval led the CNN and DANN 
models to have a higher error in the predictions. Proving that 
these models have less control over the predictions when 
speed plays an impactful role. The proposed model makes 
satisfying predictions at the moment of abrupt speed changes 
and the predicted RUL is not too far from the ground truth, 
showing that the proposed model understands the 
relationship between rotating speed, vibration, and 
degradation severity thanks to the encodings. Most 
importantly, the estimated RUL is reactive to the operating 
speed. Higher speeds lead to lower RUL and vice versa. This 
property of the proposed method makes it applicable to real 
industrial cases where a varying speed profile is used. 

 
Figure 12. Bearing A148; (a) several trajectories by curve 

fitting on the real normalized peak-to-peak, (b) peak-to-peak 
of the generated signals by digital twin 

Table 5. RMSE of the predicted RUL of the SM bearings in 
minutes 

Bearing CNN DA
NN 

Proposed 
model 1 

Proposed 
model 2 

Proposed 
model 3 

A148 6.6 7.8 7.3 5.7 5.8 

A150 7.6 7.9 6.5 5.7 5.7 

A153 4.2 3.8 2.8 2.5 2.4 

A154 6.2 6.0 5.2 2.7 2.7 

A155 5.5 5.3 4.7 3.7 2.9 

A156 7.4 7.0 4.5 3.6 2.7 

 

 
Figure 13. t-SNE visualization of the second to the last layer 
of the regressor part, the size of circles is proportional to the 

RUL, bearing A156, (a) CNN, (b) Proposed model 3 
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Figure 14. Predicted RUL of the bearing A156, (a) CNN, (b) DANN, (c) Proposed model 3 

5. CONCLUSION 

The objective of this study is to create a digital twin based on 
the simple physical knowledge of the fault progression 
phenomena. Utilizing a phenomenological model to generate 
synthetic signals helps to have a big synthetic run-to-failure 
dataset under varying speed operating conditions for training 
the machine learning models. On the other hand, leveraging 
the phenomenological model and simulated signals enhances 
the cost-effectiveness of the proposed approach by 
minimizing the reliance on historical run-to-failure datasets. 
The proposed methodology shows how the synthetic dataset 
should be adapted while facing varying speed scenarios. 
Additionally, the proposed model facilitates the integration 
of supplementary information regarding the working 
conditions and sequential ordering of measurements in a 
deep-learning model for prognosis and demonstrates that 
using extra information in the architecture of the DANN 
model enables the model to gain knowledge about both the 
operating conditions and the dynamics of damage 
progression. Moreover, a few unlabeled measurements from 
the real dataset after anomaly are used for domain adaptation 
in an adversarial way to reduce the gap between the feature 
distribution of the real and simulated dataset. Encoding the 
extra information, despite the lack of physical meaning, can 
aid the network in distinguishing signals from different 
operating conditions and identifying their relative 
relationships. Experimental results on the SM dataset 
demonstrate that the proposed model achieves improved 
RUL estimation accuracy, particularly in scenarios involving 
abrupt speed changes, and delivers more reliable predictions. 
The estimated RUL can also react to the operating speed 
which is a must in prognosis and decision making. Thanks to 
the t-SNE technique, the model's ability to discriminate 
between different operating conditions has been validated. 
The flexibility of the proposed method in recognizing the 
speed influences on the amplitude of the signals makes it 
applicable to the various speed profiles including random 
profiles, and also different speed ranges, whether or not they 
cross the resonance frequency of the structure. Experimental 

results have shown the capability of the proposed method 
compared to the models that do not utilize encodings. 
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ABSTRACT 

Wind energy plays a vital role in meeting the sustainable 
development goals set forth by the United Nations. 
Performance of wind energy farms degrades gradually with 
aging. For deriving maximum benefits from these capital-
intensive projects, these degradation patten should be 
analyzed and understood. Variations in the capacity factor 
over the years could be an indication of the age-related 
degradation of the wind farms. In this study, we propose a 
novel data-driven model to estimate the capacity factor of 
wind farms, which could then be used to estimate its age-
related performance decline. For this, a 1-dimensional 
convolutional neural network (1-D CNN) is developed with 
a soft ordering mechanism under this study. The model was 
optimized using Huber loss to counteract the effects of 
outliers in data. The developed model could perform very 
well in capturing the underlying dynamics in the data as 
evidenced by a normalized root mean squared error 
(NRMSE) of 0.102 and a mean absolute error (MAE) of 
0.035 on the test dataset. 

1. INTRODUCTION 

The United Nations and its member states have set forth the 
sustainable development goals (SDGs), in which SDG 7 
outlines a commitment towards “ensuring access to 
affordable, reliable, sustainable, and modern energy for all” 
(Sachs, Kroll, Lafortune, Fuller, & Woelm, 2022). Five key 
targets have been identified towards attaining this goal. 
Targets 7.1 and 7.2 are of particular interest (Goal 7: 
Affordable and clean energy, 2024):  

• Universal access to affordable and clean energy sources 
prioritizing the transition to renewable energy and 
energy-efficient technologies by 2030 (Target 7.1).  

• Increasing the share of renewable energy in the global 
energy mix, encouraging the adoption of cleaner and 
greener alternatives to fossil fuels by 2030 (Target 7.2). 

Wind energy, with its meteoric growth in recent years, will 
play a significant role in contributing towards these targets. 
For example, the share of wind energy in the global energy 
mix has increased from 342 TWh in 2010 to 2, 125 TWh in 
2022 (International Energy Agency, 2023). With many large-
scale wind projects in various stages of development, this 
trend is expected to continue in the coming years as well.  

Wind turbines in a farm are often exposed to complex and 
harsh operational environments which adversely affects its 
health conditions and thereby its life expectancy. The average 
lifetime of wind turbines varies from 20 to 25 years, 
depending on the design features and operational 
environment (Adedipe, & Shafiee, 2021; Ziegler, Gonzalez, 
Rubert, Smolka, & Melero, 2018). During this period, wind 
turbines undergo gradual degradation in performance owing 
to the mechanical wear and tear over the years (Hamilton, 
Millstein, Bolinger, Wiser, & Jeong, 2020; Pan, Hong, Chen, 
Feng, & Wu, 2021), or the reduction in aerodynamic 
efficiency due to material erosion over the blade tips 
(Mathew, Kandukuri, & Omlin, 2022; Ravishankara, 
Ozdemir, & Weide; Sareen, Sapre, & Selig, 2014). It is 
estimated that, in Europe, nearly half of the wind turbines in 
operation will reach their end of designed life by 2030 
(Windeurope Asbl/Vzw, 2024). Thus, estimation of the long-
term performance of wind turbines in a farm is essential for 
identifying the possible system degradations over the years 
and thereby to plan   the maintenance strategies and end-of-
life decision support.  

Manuel S Mathew et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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Figure 1. Age-related decline in capacity factor as reported by different studies. 
 

Despite the significance of understanding the health status of 
wind turbines through its performance degradation during its 
lifetime, most of the earlier studies   on condition monitoring 
focus solely on component level system reliability and 
availability (Staffell, & Green, 2014).  

Wind turbines have several components integrated within the 
system and several of such turbines work together with 
mutual interactions in a wind farm. Hence, an analysis at 
turbine and farm level would help in giving a wholistic 
picture of the degradation issues. With the extensive 
deployment of supervisory control and data acquisition 
(SCADA) systems, time series performance of wind turbines 
and farms can be analyzed using data-driven models. Further, 
the degradation pattern in wind turbines over their life span 
is highly site-specific in nature (Mathew et al., 2022). Thus, 
data-driven models can help in estimating the performance 
degradation in wind turbines accurately and accounting for 
site-specific factors leading to their degradation. The authors 
have earlier developed a site-specific degradation estimation 
model for a wind turbine operating in Norway (Mathew et al., 
2022). It was found that the reduction in performance of a 
wind turbine can be estimated using SCADA data and data-
driven models. Further, it was estimated that on average, the 
performance of the wind turbine under study declined 0.64% 
every year of its operation. Similar studies have been carried 
out for turbine-level estimation of performance degradation 
at Irish, and Italian sites (Astolfi, Byrne, & Castellani, 2021; 
Byrne, Astolfi, Castellani, & Hewitt, 2020), showing 
degradation estimates of 8.8% and 1.5% over 12 years of 
operation. Such wide variation in the performance 
degradations of wind turbines further strengthens the 
argument for their site-specific analysis. 

At a wind farm level, age-related decline in efficiency is 
quantified using the plant capacity factor (Cf), which is the 
ratio of the actual energy produced by the wind farm to the 
maximum possible energy it could have produced if it were 
operating at full capacity over the same period. In one of the 
earliest studies in estimating the wind farm level performance 

degradation, Hughes (2012) calculated the monthly capacity 
factor of wind farms operating in the UK and Denmark using 
10 years of operational data, which was used to estimate the 
decline in performance of 13% in the UK and 4% in Denmark 
over the course of its operation, respectively. Similar results 
were reported by several studies (Germer, & Kleidon, 2019; 
Hamilton et al., 2020; Hughes, 2012; Olauson, Edström, & 
Rydén, 2017; Staffell, & Green, 2014) in the literature as 
illustrated in Figure 1. In the figure, the age-related decline in 
performance of wind farms estimated using capacity factor is 
normalized to per year values as reported in these studies. 

These studies help in understanding the age-related 
performance decline in wind farm level and reiterate the 
regional and site-specific nature of the degradation 
phenomenon. However, most of these studies are based on 
cumulative data from different windfarms collected from 
public databases. Additionally, they depend on modelling the 
capacity factor based on meteorological reanalysis data and 
manufacturer’s power curve (MPC) of the wind turbine. 
Hence, these studies are not based on the data measured from 
the specific wind farm site under study. The site-specific 
dynamics play a significant role in the age-related 
performance degradation of wind turbines, and the 
performance estimated using MPCs generally differ 
significantly from field performance of the turbines (Veena, 
Manuel, Mathew, & Petra, 2020). This could adversely affect 
the accuracy of these analyses. A more systematic and 
accurate analysis of the wind farm level performance 
degradation can be achieved through models based on the 
site-specific data, derived from the SCADA systems. 

In this paper, we propose a deep neural network-based model 
to estimate the capacity factor of wind farms which can 
further be used for identifying the age-related performance 
degradation in wind farms. Apart from using the realistic data 
derived from SCADA for the site-specific analysis as 
discussed above, another novelty of the study is the use of 
convolutional neural network (CNN) model with the soft 
ordering mechanism. The remainder of the paper is organized  
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Figure 2. Schematic representation of modelling. 

as follows: Section 2 starts by explaining the rationale behind 
using CNNs. In Section 2.1, the theoretical framework behind 
CNNs is briefly explained. The soft ordering mechanism 
employed in order to transform the input data into appropriate 
inputs to the CNNs is introduced in Section 2.2. Section 2.3 
briefly discusses the 1-D CNN architecture and Section 2.4 
describes the methodology followed in training, validating, 
and testing this model. The results from this study are detailed 
in Section 3 and finally Section 4 concludes this work and 
traces the next steps in this ongoing study. 

2. METHODOLOGY 

The performance of wind turbines in a wind farm is 
significantly influenced by the high spatial and local 
correlation of wind speed at each of the turbines through site-

specific wake effects. But these correlations are further 
complicated due to the directional and stochastic nature of 
wind, making it harder for a straightforward analysis. Owing 
to their capability to extract salient feature representations 
from data with inherent spatial and local correlations, CNNs 
are a compelling approach to be explored. The overview of 
the methodology in estimating the capacity factor is shown in 
Figure 2. 

2.1. Convolutional Neural Networks 

The model for estimating the capacity factor in this study is 
based on CNN. CNNs are inspired by the natural vision in 
mammals and were popularized by Lecun et al. (1989) 
particularly for image recognition tasks. Even though the 
theoretical framework for CNNs predates this work, they 
used this architecture for automated extraction of features for 
vision related tasks. 

Convolutional layers are the fundamental building blocks in 
CNN. They serve as the feature extractors exploiting local 
connectivity, and spatial locality (Kiranyaz et al., 2021; 
Rawat, & Wang, 2017). In convolutional layers, a learned 
kernel convolves with the input producing a feature map. The 
property of local connectivity arises from the fact that each 
element in the feature map is connected to a local subset of 
neurons in the previous layer or the input pixels. Spatial 
locality, on the other hand, is the result of the high correlation 
between the local subset of input to the convolutional layer. 
The feature map element at (i, j) in the kth feature map of the 
lth layer can be calculated as: 

 𝑧𝑖,𝑗,𝑘
𝑙 = 𝒘𝑘

𝑙 𝒙𝑖,𝑗
𝑙 + 𝑏𝑘

𝑙  (1) 

where 𝒘𝑘
𝑙  and 𝑏𝑘𝑙  are the weight vector and bias term of the 

kth filter of the lth layer, respectively. 𝒙𝑖,𝑗𝑙  is the local subset of 
input to the convolutional layer centered at (i, j). However, 
when used for tabular dataset, convolutional layers expect 
spatial and local correlation between the features. Non-
linearity is generally introduced after convolution by using 
elementwise non-linear activation functions such as rectified 
linear unit (ReLU). ReLU outputs the input values as such if 
the input is positive and zero if the input value is negative. 

 𝑎𝑖,𝑗,𝑘
𝑙 = 𝑚𝑎𝑥(0,  𝑧𝑖,𝑗,𝑘

𝑙 ) (2) 

where 𝑎𝑖,𝑗,𝑘𝑙  is the activation at position (i, j, k) in layer l after 
applying ReLU function. 

Pooling layers are an optional layer in CNNs which introduce 
shift-invariance to the feature maps produced by 
convolutional layers. Shift-invariance is achieved by 
reducing the resolution of the feature maps through average 
pooling or max-pooling depending on the task. The average 
pooling operation is given by: 
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Figure 3. Architecture of the proposed 1-D CNN with soft ordering mechanism.

where A is the activation map from layer (l-1), N is the 
number of elements in the pooling window Ri, j of dimension 
(m, n), and 𝑎𝑚,𝑛,𝑘𝑙−1  is the activations from the pooling layer 
within the pooling window. 

Several convolutional and pooling layers are stacked in a 
CNN to extract higher level feature representations. Further 
one or more fully connected (FC) layers are used to achieve 
higher level reasoning in CNNs (Simonyan, & Zisserman, 
2014). The output layer is the final layer that uses task 
appropriate activation functions (e.g., sigmoid for 
classification or ReLU for regression). 

However, a key challenge is that CNNs are designed to work 
with data presented in a uniform grid-like structure akin to 
images. The wind speed input from the wind farm cannot be 
fed directly to the CNNs assuming each point as a “pixel” in 
the pseudo-image, as generated from the wind farm layout. 
This is because the layout of wind turbines in a wind farm is 
non-uniform, often dictated by the availability of wind and 
other external factors such as terrain, land use regulations etc. 

One solution for the irregular layout of wind farms is to pad 
the layout with zeros to make it a uniform grid like structure, 
which results in sparseness in the data. Sparseness in data 
may result in slowing down of training, reduction in model 
performance, and loss of spatial resolution.  

To overcome these limitations, in this study, we propose a 
novel application of soft ordering mechanism for CNNs in 
estimation of the capacity factor. Under this method, the wind 
data, which is in tabular form, is   reshaped into a multi-
channel image format. The advantage of this method is that 
the spatial or sequential relationships of the data are 
preserved without the need for following a rigid order. This 
makes the proposed method unique and more suitable for 

modelling wind farms, which normally have nonrigid 
geometries.  The proposed soft ordering 1-D CNN consists of 
two parts: a soft-ordering mechanism, and a 1-D CNN. 

2.2. Soft ordering mechanism 

Soft ordering is a technique to rearrange the data to introduce 
or preserve spatial or sequential relationships without 
following a rigid order. In this work, soft ordering is achieved 
by using an FC layer. The FC layer maps the input features 
into another higher dimensional feature space. This 
transformation helps in providing enough pseudo-pixels for 
the convolutional layers as well as to reorganize the features 
such that it mimics the spatial or sequential relationships in 
the data. The FC layer is followed by a non-linear activation 
function, ReLU in this work, for ensuring that the 
transformation can effectively learn a non-linear mapping.  

Finally, the newly rearranged features are reshaped into 
multi-channel pseudo-images. Thus, the convolutional layer 
extracts the features from a rearranged non-linear 
transformation of the original data, and the model learns to 
effectively rearrange the features adaptively. Thus, the entire 
model can be trained in an end-to-end manner without 
significant preprocessing steps. 

The soft ordering mechanism is shown in Figure 3, which 
takes in the input features and transforms them into non-
linear higher-dimensional representations of size 32768. 
These representations are then reshaped into 128 channels 
with a signal size of 256 to be fed into the 1-D CNN. 

2.3. 1-D CNN Architecture 

As opposed to CNNs used for image tasks, where the 
convolution is applied to a 2-D tensor, a 1-D convolutional 
layer takes in a single dimensional signal and applies a 
convolutional kernel of similar dimensionality, typically 
smaller than the signal. This makes it suitable for applications 

 𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑨)𝑖,𝑗,𝑘 =
1
𝑁⁄ ∑ 𝑎𝑚,𝑛,𝑘

𝑙−1

𝑚,𝑛∈𝑅𝑖,𝑗

 (3) 
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like natural language processing, audio signal processing, 
and time series analysis. 

In this work, the representations from the soft ordering 
mechanism are fed into the 1-D CNN. The 1-D CNN 
architecture is also shown in Figure 3. The first convolutional 
layer increases the number of feature channels to 256 while 
maintaining the size of each feature map at 256 by applying 
a convolution kernel of size 5. Subsequent adaptive average 
pooling layer reduces the feature map resolution to 128 x 1. 
The next three convolution layers apply a kernel of size 3 
with a stride of length 1 and output 64 channels of feature 
maps of size 128. A skip connection is also added from the 
output of the second convolutional layer to the output of the 
fourth convolutional layer as shown in Figure 3 to solve the 
problem of vanishing gradients and hence network 
degradation (He, Zhang, Ren, & Sun, 2016). A second 
average pooling layer further reduces the size of the feature 
maps while ensuring enough receptive fields to facilitate 
learning. Finally, the output from the average pooling layer 
is flattened and fed into a fully connected layer which makes 
the capacity factor estimations. ReLU activation function is 
used throughout the network to introduce non-linearity 
except to the outputs of the FC layer in the soft ordering 
mechanism, where continuously differentiable exponential 
linear unit (CELU) activation (Barron, 2017) has been used. 
CELU ensures that non-linearity introduced is smooth and 
continuous for all values and helps in capturing the negative 
values effectively avoiding dying ReLU problem (Lu, Shin, 
Su, & Karniadakis, 2019). 

Batch normalization has also been implemented to help the 
model learn faster and make training more stable by reducing 
internal covariate shift (Ioffe, & Szegedy, 2015). Further, 
weights normalization is also implemented to counteract 
vanishing or exploding gradients and improving 
generalization by preventing the weights from growing too 
large or too small (Salimans, & Kingma, 2016). 

2.4. Network Training 

The model was trained on a wind farm dataset operating at a 
Norwegian site, by collecting 13 years of operational data. 
Each of the twenty pitch-controlled wind turbines has a 2 
MW rated capacity. The turbines have cut-in, rated, and cut-
out velocities of 3 m/s, 18 m/s, and 25 m/s, respectively. The 
turbines had a rotor diameter of 82.4 m and were installed at 
a hub height of 70 m. The SCADA data from these turbines 
had a temporal resolution of 10 minutes (Under the non-
disclosure agreement, the data cannot be shared with this 
paper). The wind speeds and power generated by these 
turbines were collected from the data and cleaned for missing 
data and outliers. The initial four years of data from 2007 to 
2010 was used to train the model. 

The capacity factor of the plant was calculated which served 
as the target variable and the individual wind speeds served 
as the features. The data was divided into training, validation, 

and testing sets in the ratio 3:1:1. Huber Loss was used to 
calculate the losses for back propagation. Huber Loss is given 
by: 

𝑙(𝑦, 𝑥) =

{
 
 

 
 1

𝑁
∑0.5

𝑁

𝑛=1

(𝜖)2, 𝑖𝑓 |𝜖| < 𝛿

1

𝑁
∑𝛿

𝑁

𝑛=1

(|𝜖| − 0.5𝛿), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

where 𝜖 = 𝑦𝑛 − 𝑥𝑛 , is the residual, 𝛿  is the threshold for 
switching between the δ-scaled L1 and L2 losses, and 𝑦𝑛 is 
the model’s estimation of 𝑥𝑛 . The advantage of the Huber 
Loss is that it combines the benefits of both L1 loss (absolute 
error) and L2 loss (squared error) reducing the penalty for 
residuals less than the threshold and thereby making the 
model less sensitive to outliers than L2 loss. The Huber loss 
is sensitive to the threshold (δ) and was set as two times the 
standard deviation of the residuals from a basic regression 
model developed initially using inlier data. Additionally, L1 
losses and L2 losses across the training epochs were 
monitored to ensure that the model’s improvement on Huber 
loss is translated into real world improvement in the 
estimation of the model performance. Adam optimizer was 
used in this study for updating the parameters with 𝛽1 = 0.8 
and 𝛽2 = 0.999. The learning rate (LR) for the optimizer was 
empirically set to 8 × 10−4, with an exponential LR decay 
with 𝛾 = 0.9, meaning the LR would decay after each epoch 
gradually. This helps in having higher adjustments to the 
parameters in the beginning and relatively smaller ones 
towards the end of training. The model was trained over 200 
epochs implementing an early stopping mechanism that 
monitors the validation losses with a patience of 25 to avoid 
overfitting. Further, L2 regularization was implemented to 
reduce the chances of overfitting. While dropout layers were 
investigated for better generalization, it was found that the 
performance of the model was worse, and convergence was 
very slow. In the next section, we discuss the results of this 
experiment in detail. 

3. RESULTS AND DISCUSSIONS 

The various losses tracked during the training and validation 
phases are shown in Figure 4: (a) Huber loss, (b) L1 loss, and 
(c) L2 loss. As expected, the losses are high initially then 
quickly declining to a more gradual and stable loss condition. 

The validation losses in all three of the metrics show high 
variability across the initial epochs as the model begins to 
learn from the training data quickly stabilizing showing 
improvements in generalizability of the model. The best 
performing model was detected at the 94th epoch with a 
training and validation loss (Huber loss) of 3.1 × 10−3and 
1.6 × 10−3, respectively. The higher training loss observed  
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Figure 4. Various losses tracked during training: (a) Huber 

Loss, (b) L1 Loss, and (c) L2 Loss. 
across the epochs are a result of the regularization methods 
applied during training. The corresponding MAE and mean 
squared error (MSE) for the training and validation phase can 
be seen in Table 1. 

Table 1. Performance of the best model in training, 
validation, and test datasets. 

Loss Training Validation Test 

Huber loss 3.1 × 10−2 1.6 × 10−3 1.7 × 10−3 

MAE 5.6 × 10−2 3.5 × 10−2 3.5 × 10−2 

MSE 1.4 × 10−2 8.5 × 10−3 1.0 × 10−2 

 

 
 Figure 5. Comparison of the model predicted capacity 

factor to the measured capacity factor. 
The model thus finalized, was tested with test data, which 
was not used in the training or validation phases to measure 
the generalizability of the model. Figure 5 shows the 
performance of the model on the test dataset. The blue scatter 
indicates the model prediction compared to the calculated 
values and the distance of these points from the red line 
indicates the residuals of the prediction model. The training 
curves (Figure 4) and the comparison in Figure 5, highlight 
the generalizability of the model to new data and performance 
of the model on new data, respectively. 
The different error metrics in Table 1 quantifies this 
performance with a slightly higher Huber loss in predicting 
new datapoints. The normalized root mean squared error in 
predicting the capacity factor for the test dataset was 0.102. 
With only 0.363% of the test dataset having a residual value 
of more than 0.2, the model is found to be effective in 
capturing the plant capacity factor.  

Figure 6 shows the actual and predicted power over different 
months in a year. It is evident that the predictions and the 
calculated values are in close agreement with each other. The 
yearly capacity factor of the farm was calculated as 0.298 
against which the model prediction was 0.305. These results 
further support the argument that the model performs 
exceptionally well in predicting the wind farm capacity 
factor. 

In previous studies on the age-related performance decline of 
windfarms, instead of the real data collected from the sites,  

(a) 

(b) 

(c) 
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Figure 6. Comparison of actual and predicted power over 

different months in a year. 
the wind estimates from the numerical weather prediction 
(NWP) models are used for estimating the capacity factors. 
Though the errors due this approximation are not specified in 
these studies, obvious differences between the NWP wind 
predictions and the real velocities available for the turbines 
could bias the model and thereby adversely affect the 
reliability of the results. In contrast, real wind measurements 
are used in the present work which resulted in accurate 
capacity factor predictions as evident from the low errors 
values. Similarly, while comparing with some CNN based 
studies for wind farm performance predictions (Chen et al., 
2021; Kazmi, Gorgulu, Cevik, & Baydogan, 2023; Liu et al., 
2021), the proposed soft ordering approach could improve the 
performance of the capacity factor estimations. 

4. CONCLUSION 

Wind turbines operating in a farm are exposed to complex 
operational conditions, causing degradation in their 
performance over the years of their operation. This age-
related performance decline, if quantified at a wind-farm 
level, could contribute towards making efficient decisions at 
their end-of-life. As a first step towards this objective, we 
developed an intelligent algorithm for the estimation of wind 
farm capacity factor in this paper. 

To predict the capacity factor of a wind farm, a 1-dimensional 
convolutional neural network has been trained exploiting the 
local connectivity inherent in wind farms. However, to 
sidestep the irregularity in wind farm layouts, while still 
using CNNs to model their performance, a soft ordering 
mechanism is used. The soft ordering mechanism in addition 
to the 1-D CNN, was able to effectively capture the inherent 
spatial dynamics in the wind farm as evidenced by the results 
discussed in the previous section. The model developed in 
this paper has a normalized root mean squared error of 0.102. 
This indicates that the errors in the model predictions are 
approximately 10.2 % of the range of the target values. This 
indicates that the proposed method could predict the capacity 

factor of the wind farm with high accuracy. Further, the 
performance of the model on previously unseen dataset 
(MAE: 0.035, MSE: 0.010), shows that the model can 
generalize well to newer data coming from the wind farm 
even though it was trained on data from earlier.  

For developing the proposed model, high quality SCADA 
data are required, which may limit its applications in farms 
which do not have such systems in place.  Nevertheless, most 
of the contemporary wind farms have implemented the 
SCADA systems and with the availability of the required 
data, the soft ordering 1-D CNN model developed under the 
study could further be used to estimate the age-related 
performance degradation in wind farms. This will be 
demonstrated by the authors through their ongoing research 
where logs on the turbine maintenance will also be 
considered. 
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ABSTRACT 
In recent industry, hybrid vehicles are gaining more 

recognition as a practical means for future transportation due 
to the longer distance, reduced charging time, and less 
charging stations dependency. The batteries in the hybrid 
vehicles, however, undergo more complex operation of 
charge depleting and sustaining modes alternately, which 
may need more accurate battery state estimation. In this 
study, a model based method is explored for the Li-ion 
batteries in the hybrid electric vehicles to estimate State-of 
Charge (SOC) and State-of-Health (SOH) accurately. While 
there have been widespread studies for this topic in the 
batteries research, not many are found that have investigated 
hybrid operation modes. Also the estimations are mostly 
limited to normal batteries or shallow degradation with the 
SOH higher than 90%. In this study, an algorithm based on 
the dual extended Kalman filter (DEKF) and enhanced self-
correcting (ESC) model is developed for the simultaneous 
estimation of the SOC and SOH. Degradation data for plug-
in hybrid vehicle (PHEV) are taken for the study, which 
undergo the deep degradation of 30%.  In order to maintain 
the accuracy such that the root mean square error (RMSE) of 
the SOC is within 5% over the entire degradation cycles, two 
practical methods are proposed: First, the SOH is estimated 
separately during the battery charging, and is used as a 
constant in the SOC estimation in the discharging cycles. 
Second, battery modeling is conducted and the parameters are 
reset in every intermittent cycles at which the SOH is reduced 
by 10% initially and by 5% thereafter. 

1. INTRODUCTION 

Lithium-ion batteries have been applied extensively in 
various fields, including portable electronic devices, road 
transportation, and power supply systems, expecting their 
future role in energy sustainability (Zubi et al., 2018). As 
battery-powered vehicles such as pure electric and hybrid 
electric vehicles gain popularity, the development of battery 
management systems (BMS) estimating the state-of-charge 
(SOC) and state-of-health (SOH) of the batteries becomes 
crucial to ensure reliable and efficient battery operation 
(Mishra et al., 2021). In the BMS research, most SOC and 
SOH estimators have been developed for pure electric 
vehicles that primarily operate in charge-depleting (CD) 
mode. However, there is an increasing demand for hybrid 
vehicles that can handle higher loads and longer distances, 
which involves switching between CD and charge-sustaining 
(CS) mode during the operation. This can make the SOC 
estimation more difficult than those in the CD mode alone. 
Therefore, SOC and SOH estimation under combined mode 
is necessary for improved accuracy (Yoo et al., 2023).  

Fundamentally, it is impossible to measure the SOC and SOH 
of batteries directly, thus methods are designed for estimating 
them based on measurable data such as current, voltage and 
temperature. Among the many achievements, Kalman Filter-
based algorithms, which belong to the model-based 
approach, have proven their effectiveness and account for 
more than half of the SOC estimation methods (Shrivastava 
et al., 2019). Nevertheless, it is a challenge to estimate SOC 
for degraded batteries, which requires the SOH estimation as 
well (Hannan et al., 2017). Investigations into the 
simultaneous estimation of SOC and SOH, in view of both 
the effectiveness and efficiency, have remained relatively  

 

Min Young Yoo et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
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insufficient (Wang et al., 2021). Even in the simultaneous 
estimation of SOC and SOH, substantial portion have 
targeted normal batteries (Campestrini et al., 2016; H. Guo et 
al., 2017; R. Guo & Shen, 2022; Hossain et al., 2022; C. Hu 
et al., 2012; Lee et al., 2008; Plett, 2004, 2006; Shrivastava 
et al., 2022; Ye et al., 2023; Zhang et al., 2016)  

Model-based SOC and SOH estimation for aged battery can 
be categorized into two groups. The first involves updating 
the model's parameters to account for battery aging (Li et al., 
2019; Sepasi et al., 2014; Shrivastava et al., 2019; Xu et al., 
2022). While it is possible to update the model through 
optimization, using which the SOC is estimated, it comes at 
the cost of high computational burden. Additionally, there is 
a challenge in determining an appropriate updating period. 
The second approach involves co-estimation of the states and 
parameters of a battery model (X. Hu et al., 2018; Ma et al., 
2022; Wassiliadis et al., 2018; Wu et al., 2019; Xiong et al., 
2014). While this can be achieved using the dual filter 
algorithms (Yoo et al., 2023), it presents a significant 
challenge due to the substantial number of parameters in the 
model. This is further compounded by the fact that the only 
directly measurable output is the voltage under the given 
currents. Consequently, only a few parameters such as the 
capacity, i.e., the SOH,  and internal resistance are estimated, 
while the others are held at fixed values. However, this 
approach may result in a less accurate model of aged battery. 

 Upon the survey of relevant literature, it follows that the 
approaches on the co-estimation of SOC and SOH by the dual 
filters need a comprehensive discussion in various aspects: 

battery model, type of filters, specific settings of these filters, 
initial values of state and parameters, and the level of 
degradation. Regarding the battery model, used models are 
Thevenin model with first-order (1RC) (Xiong et al., 2014) 
or second-order (2 RC) (Wassiliadis et al., 2018; Wu et al., 
2019), or fractional second-order model (X. Hu et al., 2018; 
Ma et al., 2022). While the extended Kalman filter (EKF) is 
usually used, other filters such as adaptive extended Kalman 
filter (AEKF) or unscented Kalman filter (UKF) have 
sometimes been used, and there is a case where a dual filter 
has different time intervals considering the characteristics of 
state and parameter. Regarding the settings of filter (such as 
error, noise and measurement covariance), many did not 
specify values and conditions, except (X. Hu et al., 2018; 
Wassiliadis et al., 2018).This may make the results less 
trusted in terms of practical  application. In view of the 
degradation levels, only one paper (Wassiliadis et al., 2018) 
has explored capacity fade over 50%, but the results are given 
without confidence intervals. As a result, despite the 
abundance of literature, these limitations pose challenges in 
adopting a practical approach to BMS development. Table 1 
summarizes the representative papers in terms of model, 
methods, results of estimation, and level of degradation. 

This study presents a more practical methodology to co-
estimate the SOC and SOH by the dual Kalman filter for the 
batteries undergoing hybrid operations. Two key insights are 
applied for this research. First, it is observed that the co-
estimation of SOC and SOH may yield inaccurate results due 
to the poor observability of the capacity. To mitigate this, a 

Table. 1. Literature using model-based SOC and SOH estimation with aged battery data. 

Author Year Battery Model Methods 
(SOC-SOH) 

Estimation 
Factor 

Results of 
Estimation 

Level of 
Degradation 

R. Xiong 2014 1 RC model EKF-EKF 
(multi-scale) 

SOC, 
All 

Parameters 

SOC, 
Capacity 

100%, 82.6%, 
82.1% and 

72.1% 

N. Wassiliadis 2018 2 RC model EKF-EKF SOC, 
Capacity, 
Resistance 

SOC, 
Capacity, 
Resistance 

100%, 97%, 
85%, 78% and 

49% 

J. Wu 2019 2 RC model AEKF-KF SOC,  
Resistance 

SOC 96.5%, 93.9%, 
and 92.4% 

X Hu 2018 fractional second-order 
model 

EKF-EKF SOC, 
Capacity, 
Resistance 

SOC, 
Capacity, 
Resistance 

86.1%, 81.7% 
and 74.5% 

L. Ma. 2022 fractional second-order 
model 

MIUKF-UKF 
(multi-scale) 

SOC,  
Capacity,  
Resistance 

SOC,  
Capacity 

98.1%, 94.7%, 
and 91.5% 
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practical solution is developed by separating the SOC and 
SOH estimation, namely, estimating the SOC using the Dual 
Extended Kalman Filter (DEKF) in the discharging phase 
while estimating the SOH using the Fixed-Point Iteration 
Method (FPIM) in the charging phase. The reason is that the 
capacity estimation during the charging process is generally 
standardized and exhibit less dynamics as opposed to the 
discharging process. Second, when the batteries degrade by 
more than 10% in capacity, even the performance of this 
approach falls below acceptable level. Therefore, remedial 
action is applied by updating the parameters of battery model 
periodically.  

The approach is validated by utilizing thirty battery cell 
datasets. These datasets are obtained through tests conducted 
under three distinct dynamic profiles representing plug-in 
hybrid electric vehicles (PHEVs), captured at ten points 
throughout the cycles ranging from 0% to 30% of capacity 
fade. Section 2 outlines the experimental method to measure 
temperature, voltage and current, and three types of dynamic 
profiles in charging phase. In Section 3, two battery models: 
Thevenin and Enhanced Self-Correcting (ESC) are 
addressed, which is to estimate voltage from the measured 
data. Section 4 explains the procedure of SOC and SOH 
estimation by the DEKF and FPIM respectively. An 
overview of the key methodology proposed in this paper can 
be found in Figure 1. Finally, key findings are summarized in 
Section 5, providing comprehensive insights and limitations. 

2. BATTERY CELL TEST 

In this study, the same battery cell and equipment described 
in the literature (Yoo et al., 2023) are used for the test, which 
is a Samsung SDI, 18650-35E lithium-ion battery cell with 
nominal capacity of 3.5 Ah and a nominal voltage of 3.7 V. 
The battery is operated by a DC electronic load (Kikusui, 
PLZ1004W), a DC power supply (Kikusui, PWR800L) and a 
charge-discharge system controller (Kikusui, PFX2512) as 
shown in Figure 2. The test profiles are divided into dynamic 
test and aging test. The dynamic profiles comprise of three 

scenarios of Plug-in Hybrid Electric Vehicles (PHEV) as 
shown in Figure 3: City, Highway, and High-speed. City and 
Highway profiles consist of charge-depletion (CD) mode and 
charge-sustaining (CS) mode, while High-speed has CD 
mode only. 

 
Figure 2. Experimental setup 

 
Figure 3. Voltage response to the current profiles adopted: 

(a) City, (b) Highway, and (c) High-speed 

Figure 1. An overview of the core methodology 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 773



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

4 

Aging test is performed to acquire aged battery data, by 
repeating charging and discharging cycles up to the capacity 
degradation of 30% as shown in Figure 4. Once the battery 
cell exhibits a noteworthy degree of capacity fade, three 
different dynamic profiles are applied. Before proceeding the 
aging test, static test is conducted to obtain the relation 
between the open circuit voltage (OCV) and SOC as shown 
in Figure 5. In the aging test, 2100 cycles are used to make 
capacity fade of 30%.  Dynamic tests are conducted at 10 
time points with the intervals of every 100 cycles during the 
period from the initial to the 300th cycles, and with the 
intervals of every 300 cycles from the 300th to the end of the 
cycles, which is depicted in Figure 6. The failure threshold 
for SOH is given at the 80% of initial capacity as shown in 
the dotted horizontal line in the figure. The capacity 
decreases mostly in linear fashion, except from 1200 to 1500 
cycles where it is constant. The dynamic test data at each 
cycle, which are 0, 300, 1200 and 2100 cycles, are presented 
in Figure 7. For each cycle, three dynamic profiles are applied 
with the initial SOC set at approximately 0.9 (90%). As the 
degradation proceeds, each profile exhibits an abrupt 
termination because the cutoff voltage is reached earlier, 
indicating that the capacity has faded. 

 
Figure 4. Aging test profiles 

 
Figure 5. OCV-SOC relationship 

 
Figure 6. Capacity degradation in the aging test 

 

 
(a) 

 

 
(b) 

 

 
(c)  

Figure 7. Voltage response to the current profiles adopted at 
each cycle: (a) City, (b) Highway, and (c) High-speed 

3. BATTERY MODEL 

In this study, Thevenin and Enhanced Self-Correcting (ESC) 
models are reviewed to select a suitable battery model based 
on the gathered test data. The Thevenin model, one of the 
most widely utilized equivalent circuit models (ECMs) for 
model-based estimation of batteries, describes battery 
behavior by accounting for voltage drop through a resistor 
element and time-varying polarization voltages through one 
or more parallel resistor-capacitor (RC) elements. 
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The ESC model, proposed by Plett (2015), extends the 
Thevenin model by incorporating a hysteresis term to 
describe the hysteresis voltage of batteries with empirical 
modeling. Its configuration is shown in Figure 8, where 𝑣𝑇 is 
terminal voltage, 𝑣𝑜𝑐  is open-circuit voltage, 𝑧  is 𝑆𝑂𝐶 , 𝑖  is 
current (current bias ib is ignored in this study) flowing 
through 𝑅0  (ohmic resistance), 𝑖𝑅  is the current flowing 
through 𝑅𝑗  and 𝐶𝑗  (polarization resistance and capacitance), 
h is hysteresis, 𝑀  is maximum hysteresis voltage, 𝑀0  is 
instantaneous hysteresis voltage, and s is sign function of 𝑖. 

 
Figure 8. Circuit schematic for the ESC model which is the 

same as the Thevenin model except the addition of 
hysteresis voltages (in blue) 

This study considers cases with 1 or 2 RC pairs for both the 
Thevenin and ESC models, denoted as Thevenin 1RC/2RC, 
and ESC 1RC/2RC. In order to estimate the model 
parameters, method by Plett, (2015) and Yoo et al., (2023) is 
employed, using the dynamic data for each cycle. 
Consequently, the models enable calculation of terminal 
voltage under the given current. The performance of each 
model is summarized in Figure 9 by the root mean square 
error (RMSE) between measured and estimated voltage. It is 
noteworthy that the ESC model outperforms the Thevenin 
model consistently for all the collected data. This superiority 
becomes more remarkable as the battery is aged. It is found 
that the hysteresis term in the model is useful to describe 
aging of the battery. Another observation is that the 
incorporation of additional RC pairs primarily yields a 
positive effect in the case of the Thevenin models, whereas it 
does not in the ESC model. This is from the fact that the 
hysteresis term diminishes the relative influence of additional 
RC pairs in the ESC model. This observation supports that 
adding the hysteresis term is better than adding the number 
of RC pairs. Therefore, the ESC 1RC model is chosen in this 
study. However, it is important to note that even the 
performance of the ESC model experiences accuracy loss in 
the aged batteries, which means that the model error increase 
is inevitable as the battery ages. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Modeling performance of each model:  
(a) City, (b) Highway, and (c) High-speed 

4. SOC AND SOH ESTIMATION 

In this section, the procedure of SOC and SOH estimation by 
the DEKF and FPIM are outlined along with the 
corresponding result. The initial step involves the application 
of a general DEKF as reviewed in Section 1, based on the 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 775



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

6 

ESC 1 RC model as determined in Section 3. Subsequently, 
the inherent weak observability of capacity in the DEKF 
algorithm is identified. To address this, the FPIM, a capacity 
estimation technique, is integrated into the DEKF framework. 
However, despite this integration, there exsists a decline in 
estimation performance for deep degraded battery cells. 
Therefore, remedial solution is proposed: an initial parameter 
estimation update is recommended after a 10% capacity loss 
to enhance estimation performance. Estimation results are 
summarized in each step of this process. In summary, the 
contribution of this study is to improve and validate 
methodologies to estimate SOC and SOH for test datasets 
with various dynamic profiles, including hybrid operation 
modes, and various degradation levels, up to 30% of capacity 
loss of battery cells. 

The dual extended Kalman filter (DEKF), one of the 
approaches to generalize the extended Kalman filter (EKF) 
for simultaneous estimation of state and parameters, 
comprises of two filters: one for estimating the state and the 
other for estimating the parameters (Plett, 2005, 2015). Each 
filter executes the steps, and they are linked by exchanging 
information during the time update sequence. In this research, 
we propose a hybrid approach incorporating the DEKF and 
the capacity estimation technique to overcome the inherent 
weak observability of the capacity in the DEKF algorithm 
(Wassiliadis et al., 2018). The capacity estimation is 
implemented by the fixed-point iteration method (FPIM) 
during battery charging, and the estimated capacity value is 
used as a known value in the DEKF during the battery 
discharging (Sung & Lee, 2018). 

At first, the DEKF is applied for the co-estimation of SOC 
and SOH, and the results are evaluated by the RMSE in the 
case of SOC and the last estimated value in the case of SOH 
in each dynamic profile, whose true values were obtained 
through coulomb counting of current during the conducted 
profiles and capacity testing after the profiles, respectively. 
Then, our proposed approach is applied, where the SOH 
estimation is separated from the DEKF and is made by the 
FPIM during the charging cycle.  

Estimation Results of SOC and SOH using DEKF 

By applying the DEKF based on the ESC 1RC Model to all 
30 datasets, estimation results are obtained for SOC and 
SOH. Regarding the SOC, the RMSE for each profile and 
cycle is illustrated in Figure 10. It was observed that prior to 
600 cycles, the estimation performance exhibits RMSE of 
less than 3% for all datasets. However, beyond 600 cycles, a 
significant degradation in estimation performance become 
evident. As the degradation progresses, it can be observed 
that the error in the initial SOC gradually increases.  

Involving OCV-SOC tests at specific time intervals and 
subsequently updating the battery model can mitigate 
inaccuracies in estimation. Nevertheless, static tests for 

acquiring OCV-SOC lookup tables are time-consuming, and 
selecting suitable test time points poses a challenge. 

 Figure 10. Estimation results of SOC using DEKF 

In this paper, a methodology is explored to mitigate 
inaccuracies in estimation without additional static tests. 
Hence, the inaccurate initial SOC estimation due to the 
battery aging remains as an inherent error in estimation 
without updating the battery model.  

In the SOH estimation, it was observed that, except for the 
early degradation stage, the capacity generally does not 
satisfy the acceptable level of performance. Figure 11 depict 
the results of SOH estimation as the battery ages for each 
profile. It is observed that the capacity has low observability, 
and its estimation depends on the specific profile. This may 
be due to the fundamental issues in estimating various states 
and parameters based on limited measurement data. 
Meanwhile, for internal resistance, overall estimation 
performance was found to be superior when compared to the 
reference values. It is noted that the internal resistance has 
high observability compared to the capacity. Thresholds for 
failure based on each SOH were established at 80% of the 
initial capacity and twice the initial value for the internal 
resistance. Reference values of internal resistance were 
derived from battery modeling results rather than obtained 
through power tests. In this investigation, capacity was 
regarded as the indicator of SOH since the true capacity was 
measured at each time point. Consequently, the failure point 
of the battery is estimated to occur around 1,000 cycles, 
coinciding with the battery's capacity dropping below 80% of 

Table. 2. Initial SOC estimation of each dataset 
Cycle City Highway High Speed 

0 0.88 0.88 0.88 
100 0.88 0.88 0.88 
200 0.87 0.88 0.88 
300 0.87 0.87 0.87 
600 0.85 0.85 0.85 
900 0.84 0.83 0.83 

1200 0.81 0.82 0.82 
1500 0.81 0.82 0.83 
1800 0.79 0.80 0.80 
2100 0.79 0.78 0.78 
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its initial capacity, as shown Figure 12. This failure point 
couldn't be accurately predicted due to the low observability 
of capacity in this estimation algorithm. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Capacity estimation results of PHEV datasets  
(a) City, (b) Highway and (c) High-speed 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Resistance estimation results of PHEV datasets 
(a) City, (b) Highway and (c) High-speed 

 

Estimation Results of SOC and SOH using DEKF and FPIM 

SOH Estimation 

 To overcome the low performance in capacity estimation, we 
have applied capacity estimation techniques separately using 
the charging profile data. Among various techniques, fixed-
point iteration method (FPIM) was selected to estimate 
capacity during charging. Since there is only one type of 
profile in the charging, we can obtain a single capacity 
estimation result, as shown in Figure 13.  

 
Figure 13. Results of the SOH estimation. 

The  estimation error was confirmed to be within 3%, 
indicating a significant improvement in estimation 
performance compared to the DEKF methodology, which 
estimates simultaneously from each profile. 
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SOC Estimation 

Utilizing the estimated capacity during charging as a fixed 
value for SOC estimation using DEKF, the performance of 
SOC estimation is depicted in Figure 14. Unfortunately, 
despite improvements in capacity estimation performance, 
there is no corresponding enhancement observed in SOC 
estimation. It is observed that the performance significantly 
deteriorates with RMSE exceeding 5% after 600 cycles.  

 
Figure 14. Estimation results of SOC using DEKF and 

FPIM 

The everlasting decrease in the performance of SOC 
estimation as battery ages, despite the capacity being so close 
to the true value, can be attributed to several factors. These 
encompass the initial SOC estimation error and inaccuracies 
in model assumptions, as previously mentioned. 
Additionally, nonlinearities in the battery behavior and 
limitations in the estimation algorithms employed contribute 
to this phenomenon. Moreover, the interaction among these 
factors can exacerbate the complexity of the estimation 
process, further impeding the accurate SOC estimation. In the 
battery modeling of Figure 9, it has been observed that the 
ESC 1RC demonstrates sufficient capability to simulate the 
behavior of aged batteries. Consequently, there is an 
expectation that the SOC estimation would perform well if 
the parameters were estimated to optimal values. However, 
the challenge arises when attempting to simultaneously 
estimate the states and parameters to their optimal values 
within the filter algorithm, especially based on the limited 
measurement data. To address them, the initial parameter 
estimation values were set as the last parameter estimation 
values from the former dataset for each profile. This approach 
aimed to leverage the previous dataset's knowledge and fine-
tune the initial parameter values for improved estimation 
accuracy in subsequent cycles. By initializing the parameters 
with values derived from the previous dataset, it was 
expected that the model could benefit from the accumulated 
insights and trends observed in earlier profiles, thereby 
enhancing the robustness and reliability of the estimation 
process. However, while it has been noted that  internal 
resistance exhibits high observability in the estimation 
algorithm, the majority of parameters display low 
observability. Furthermore, unlike capacity or internal 
resistance, there is no discernible trend for each parameter 

during degradation. This lack of observable trends makes the 
efforts useless in the estimation process. 

Estimation Results of SOC using DEKF, FPIM and initial 
parameter estimation update 

SOC Estimation 

 To address the issue of deteriorating SOC estimation 
performance despite the improvement in SOH estimation 
through separate estimation, a method was applied to conduct 
the battery model at specific time points and reset the initial 
parameter estimation values. 

Based on the degradation threshold of 20% capacity loss as 
the failure point for SOH, the battery modeling was 
conducted using dynamic profiles at intervals of 10% 
capacity loss initially, and 5% capacity loss subsequently. 
This method involved conducting the battery model at 600, 
1200, and 1800 cycles to reset the initial parameter values. 
As a result, the SOC estimation performance was improved 
to within RMSE 5% after 600 cycles. The SOC estimation 
performance and the SOC estimation errors at 0, 600, 1200, 
and 2100 cycles are illustrated in Figure 15. Internal 
resistance estimation showed no significant impact compared 
to the previous method, as confirmed in Figure 16.  

 
Figure 15. Estimation results of SOC using DEKF, FPIM 

and initial parameter estimation update 

 
(a) 
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(b) 

 
(c) 

Figure 16. Resistance estimation results of PHEV datasets 
(a) City, (b) Highway and (c) High-speed 

5. CONCLUSION 

In this study, a methodology is investigated to estimate SOC 
and SOH of the battery  whose capacity degraded from 0 to 
30%. A hybrid approach is proposed that the DEKF and the 
capacity estimation technique are incorporated to overcome 
the inherent weak observability of the capacity in the DEKF 
algorithm. The capacity estimation is implemented by the 
fixed-point iteration method (FPIM) during the battery 
charging, and the resulting estimated capacity value is held 
constant in the process of DEKF during battery discharging. 
However, we observed a decline in estimation performance 
beyond a 10% capacity loss, prompting us to propose an 
initial parameter estimation update to address this issue. As a 
result, the proposed methodology achieves an accurate and 
reliable co-estimation of SOC and SOH, even in the battery 
aging with SOC estimation error lower than 5% and SOH 
estimation error lower than 3%, even for a battery cell with a 
capacity fade of 30% for three profiles including hybrid 
operation modes. 
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ABSTRACT

Prognostics and Health Management (PHM) is a framework
that assesses the health condition of complex engineering as-
sets to ensure proper reliability, availability, and maintenance.
PHM can be used to determine how long a machine can func-
tion before failure by predicting the Remaining Useful Life
(RUL). Neural networks have been used for RUL prediction,
but these data-driven models rely solely on data to explic-
itly integrate knowledge. Recently, authors have proposed
physics-informed neural networks (PINNs) to address this
limitation. PINNs are neural networks that incorporate ex-
pert knowledge and physics in different ways (observational,
inductive, and learning bias). Despite their significance, these
models tend to be case-dependent and challenging to config-
ure. In this work, we propose statistical neuron units that can
be integrated into any neural network. The proposed neuron
units extract features from raw data using various statistical
functions. Importantly, these modules can be located in dif-
ferent parts of the neural network, and they can be optimized
automatically by backpropagating the modules’ weights dur-
ing training. In a study involving bearing degradation behav-
ior, we compare a classical neural network with our modular
version. Our proposed RUL estimation model outperformed
the baseline, with a reduction of 13% in the root mean square
error and a reduction of 7% in the mean absolute error. We
also observe an increase of 40% and 21% for the α − λ ac-
curacy metric for an α equal to 0.1 and 0.2 respectively. Our
code is available publicly on Github.

Keywords: Feature extraction, knowledge integration, opti-
mization of parameters, interpretability, accuracy, modularity,
neural network

Thomas Pioger et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Prognostics and Health Management (PHM) is a critical as-
pect of modern industrial systems, enabling the early detec-
tion of faults and the implementation of timely maintenance
and repair strategies. One of the key components of PHM
is the prediction of the Remaining Useful Life (RUL), which
estimates the time until a system or component fails. Accu-
rate RUL prediction is essential for optimizing maintenance
schedules, reducing downtime and costs (Ramezani et al.,
2019). To predict the RUL, multiple approaches have been
developed, which can be classified as physical models, data-
driven methods, and hybrid methods (Hasib et al., 2021; Fer-
reira & Gonçalves, 2022).

Recently, models infused with domain expertise have received
much attention, such as physics-informed neural networks
(PINNs), a subfield of neural learning that incorporates ex-
plicit prior knowledge (Nguyen et al., 2019). This knowledge
can come from two sources: scientific knowledge and expert
knowledge (Willard et al., 2022; Kang et al., 2021). Scientific
knowledge spans a broad spectrum of domains and engineer-
ing disciplines, such as empirical equations (J. Wang et al.,
2020) or high-resolution bearing dynamic simulations serv-
ing as a method for training the model (Sobie et al., 2018).
Expert knowledge refers to knowledge obtained through ex-
perience that can be used for various purposes during the pro-
cess of selecting and developing features.

Despite some successful cases of knowledge integration in
data-driven models, some limitations persist (Dourado & Viana,
2020; Nascimento & Viana, 2019). Typically, knowledge in-
clusion is predetermined and fixed, so it cannot be optimized
during training. Another challenge is the interpretability of
the model, which remains an issue. The lack of explainability
power of neural networks makes it difficult to understand how
certain models use knowledge in their predictions (Faroughi
et al., 2022).

1
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Figure 1. A generic diagram of how one neural network model incorporating the neuron units works. At first, a portion of the
vibration signal is fed to the neural network model. This vibration signal is then passed to the different neuron units, which first
weight the data received by their own weight and then extract the features needed. The different features extracted are then fed
to the dense layers, which are then used to predict the RUL. During training, the neural network model optimizes the weights
through backpropagation.

This paper proposes the concept of “knowledge-infused statis-
tics” neuron units for neural networks. These modular units
aim to make the structure of neural networks more accurate.
Our proposed approach allows the model to train and opti-
mize statistical knowledge during the training stage. Impor-
tantly, our proposed neuron units incorporate knowledge that
can be fine-tuned and optimized. Since they are modular,
these neuron units can be located/ positioned at various lo-
cations within the neural network, providing flexibility and
adaptability. This novel approach improves neural network
performance by optimizing knowledge-infused statistics neu-
ron units.

We investigate the impact of 21 novel neuron units in a bear-
ing case study. Bearings play a crucial role in machinery and
mechanical systems, enabling smooth rotation, friction reduc-
tion, and support for heavy loads, ensuring operational effi-
ciency and reliability. Our proposed neuron units aim to op-
timize (improve/enhance) feature extraction during training.
The bearing case study is sourced from FEMTO1 University
(Nectoux et al., 2012).

In the implementation of 21 neuron units, we explore the im-
pact of three novel neuron configurations: Single Feature
Extraction (SFE), Multiple Feature Extraction (MFE), and
Weighted Multiple Feature Extraction (WMFE). The SFE type
extracts only one feature, while the MFE type extracts multi-

1FEMTO = Franche-Comté Électronique Mécanique Thermique et Optique

ple features simultaneously. The WMFE layer extracts multi-
ple features and computes/weights the importance of the ex-
tracted output features.

The contribution of this paper can be summarized as follows:

• Modular knowledge-infused statistics Integration: In-
troduction of 21 modular and statistical neuron units within
a neural network for predicting bearing residual life.

• Accuracy: By incorporating these neuron units, we im-
prove the network’s ability to extract the features in an
optimized way, which, in this case study, led to an im-
provement in RUL predictions.

In Fig.1, we present a diagram of how our proposed approach
works. First, a window of vibration values is given as input
to the neural network model. These data are used by the dif-
ferent neuron units to extract features. Each neuron unit has
input and output weights (as well as bias) that are used to cap-
ture and measure the importance of the features (Fast Fourier
transform, skewness factor, maximum amplitude, etc.). The
neuron output is given to the dense layers, which then pro-
ceed to predict the RUL. The model updates all the weights
automatically (by backpropagation) to obtain a better RUL
prediction.

The remainder of this paper is organized as follows: Section
2 provides a review of the literature in PHM and the different
modeling approaches. Section 3 describes the methodology

2
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employed in this study and the evaluation metrics. Section 4
presents the case study used in this paper in more detail. Sec-
tion 5 presents the results obtained and their interpretation.
Finally, Section 6 concludes the paper and outlines directions
for future research.

2. RELATED WORK

Prognostics and Health Management (PHM) is a significant
area of research that has gained attention in recent years. One
of the primary goals of PHM is to predict the Remaining Use-
ful Life (RUL) of engineering systems and components. This
is important because it helps to ensure the safety and reli-
ability of these systems, reduce maintenance costs, and op-
timize maintenance schedules (Guo et al., 2019). To predict
the RUL, multiple approaches have been proposed: physics of
failure (PoF), data-driven (DD) and hybrid approaches (L. Liao
& Köttig, 2014).

The PoF approach in PHM employs mathematical representa-
tions that describe the underlying physics of the system under
study (Cubillo et al., 2016). To improve the precision of the
remaining useful life (RUL) estimate, Q. Wang et al. (2021)
proposed a linear mapping technique that directly relates the
degradation characteristics of the bearing with its remaining
useful life. However, when a linear algorithm is not feasible
due to nonlinearities, an alternative approach is needed.

For example, the Extended Kalman Filter (EKF) can be em-
ployed to transform the nonlinear problem into a linear one.
Singleton et al. (2014) applied an EKF to predict the RUL.
However, linearization can lead to unstable filters if the as-
sumption of local linearity is violated, affecting the accu-
racy and reliability of the estimation process. The unscented
Kalman filter (UKF) is also used for RUL prediction (Cui et
al., 2019). While prognostics methods based on Kalman fil-
tering approaches can provide precise predictions of the RUL,
they typically assume perfect knowledge of the failure sys-
tem, which is not feasible in most cases.

Another type of algorithm used for physics of failure are par-
ticle filters (PF). PF are a type of sequential Monte Carlo
method that can effectively handle nonlinear and non-Gaussian
degradation processes (Y. Wang et al., 2021). They represent
the state of a system using a set of weighted particles, which
are updated with new measurements (Elfring et al., 2021).
Cai et al. (2020) proposes a similarity-based particle filter
method for remaining useful life prediction with improved
performance by incorporating historical knowledge and pro-
viding probabilistic RUL estimates.

The DD approach relies on the historical data of a system to
predict its future state. According to Kefalas et al. (2019),
data-driven approaches rely mainly on statistics or machine
learning. Statistical models rely on statistical parameters to
make predictions (Si et al., 2011). Xiao et al. (2018) proposes

a modified duration-dependent hidden semi-Markov model
for online machine health prognostics. Jia & Zhang (2019)
presented a Bayesian model to reduce model uncertainty for
the prediction of RUL.

Artificial Neural Networks (ANN) have been used to estimate
RUL (See a review in Ge et al., 2021). Kang et al. (2021) used
the Principal Component Analysis (PCA) for data preprocess-
ing and a Multi-Layer Perceptron (MLP) for the prediction of
RUL in production lines. Zhao et al. (2019) utilized a recur-
rent neural network (RNN) to capture temporal dependencies
in the degradation process. They first evaluated the trend fea-
tures to feed their model with the best trends. Zhang et al.
(2018) introduced a method to predict RUL of lithium ion
batteries using an LSTM.

The dependency on historical run-to-failure (RTF) data is a
common issue when implementing DD approaches for RUL
prediction. The availability of RTF data is limited, espe-
cially for critical components (Hakami, 2024). This limita-
tion poses a significant challenge, as the effectiveness of pre-
dictive maintenance, condition-based monitoring, and other
DD methods is highly dependent on this historical informa-
tion. Without comprehensive data on past failures, models
may struggle to accurately predict and prevent future break-
downs in crucial equipment.

To overcome the limitations of physical and DD approaches,
(hybrid) machine learning models integrating knowledge have
been developed (Karniadakis et al., 2021; Dash et al., 2022).
This knowledge can be incorporated by transforming the in-
put data, the loss function, or the model. We designate this
observational bias, learning bias and inductive bias respec-
tively (Karniadakis et al., 2021). Chao et al. (2022) presents
a novel hybrid framework that combines information from
physics-based performance models with deep learning algo-
rithms for prognostics. Chen et al. (2022) proposes a model
that integrates the knowledge of natural degradation of me-
chanical components, which is monotonic throughout the life
of the bearings and is characterized by temperature signals.
Y. Yu et al. (2020) introduced a physics-guided Recurrent
Neural Network (RNN) for structural dynamics simulation,
where they integrate the underlying physics of structural dy-
namics into data-enabled machine learning models for the
training and prediction of ML models. Xiong et al. (2023)
proposed a hybrid framework that combined the controlled
physics-informed data generation approach with a deep learning-
based prediction model for prognostics.

Physics-Informed Neural Network (PINN), have also been
proposed as a way to implement knowledge inside a neu-
ral network. X. Liao et al. (2023) introduces a self-attention
mechanism into the architecture of the neural network, allow-
ing the mapping of raw data to a hidden state space. Dourado
& Viana (2020) presented a PINN modeling approach for
the estimation of bias in the prognosis of corrosion fatigue.

3
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The physics-informed layers embed well-understood physical
phenomena, and the data-driven layers are used to implement
the physical processes that are difficult to model.

Despite the introduction of knowledge within the model, lim-
itations persist (Huang & Agarwal, 2023). Although hybrid
models offer the advantage of incorporating knowledge into
the learning process, the interpretability of the learned rep-
resentations and the basis for predictions can still be limited.
This lack of transparency can cause problems, especially in
critical domains. Neural network interpretability is crucial,
as it allows one to explain how and why a neural network
produces specific outputs, enhancing trust and understanding.
Various methods aim to provide interpretability by visualiz-
ing activations, weights, or features and generating textual
explanations (Linardatos et al., 2020; Fan et al., 2021).

In the context of Artificial Neural Networks (ANNs), a Mod-
ular Neural Network (MNN) can be decomposed into subnet-
works based on its connectivity pattern, allowing for a more
granular understanding of the network’s behavior (Kirsch et
al., 2018). Amer & Maul (2019) classified modularization
techniques into four main classes (domain, topology, learn-
ing, and output), where each class represents the attribute of
the neural network manipulated by the technique to achieve
modularity. Understanding the modular structure of neural
networks can provide insight into their inner workings, mak-
ing them more interpretable.

This study introduces novel (modular) neuron units that inte-
grate statistical knowledge for neural network training. The
concept behind these “neuron units” is their ability to ex-
tract essential characteristics (features) from the model during
training. Importantly, this feature extraction is automatically
optimized by the network. Using these modular layers, we
can also visualize the significance of different parts of the in-
put signal (in this case a vibration signal) to predict the RUL.

3. METHODOLOGY

The subsection 3.1 presents our hypothesis for our research
framework. Subsection 3.2 describes our approach that we
used to test our hypothesis. Subsection 3.3 presents the fea-
tures that we used to train the models and subsection 3.4
presents how we evaluated the different models.

3.1. Research Hypothesis

We investigated the following research question:

How can we develop (modular) knowledge-infused statis-
tics neuron units for the prediction of RUL?

And with this question, we have the following hypothesis:

A neural network incorporating knowledge-infused statis-
tics neuron units will present an improvement in RUL
prediction accuracy.

The use of these “knowledge-infused statistics” neuron units
is intended to improve the model at the level of accuracy (and
interpretability). By incorporating these novel neurons into
the neural network architecture, we aim to facilitate the inte-
gration of feature extraction within the model, allowing it to
optimize feature selection.

In this paper, we infuse statistical knowledge into the neuron
units. We develop 21 neuron units, each incorporating a dif-
ferent and specific statistical feature. With these neuron units
we can better understand the contributions of each neuron to
the overall prediction performance, enabling more informed
decision-making and model refinement. In addition, we can
reuse these neuron units in different tasks (Castillo-Bolado
et al., 2021). The statistical knowledge that is implemented
is generic (max, min, Fourier transform, etc.). We can posi-
tion the neuron units in different locations within the neural
network which can result in multiple model configurations.

We evaluate our hypothesis on the PRONOSTIA bearing data
provided by FEMTO (Nectoux et al., 2012). This dataset con-
stitutes a prognostics case study for bearings based on labo-
ratory RTF vibration signals. The PRONOSTIA dataset is
explained in more detail in Section 4.

3.2. Modular Approach

In this study, we use a Multi-Layer Perceptron (MLP), a type
of neural network widely used in artificial intelligence (Park
& Lek, 2016). The connections between neurons are defined
by weights, and the output signals are determined by the sum
of the inputs to the node, adjusted by a nonlinear transfer
function known as the activation function.

To train an MLP, features are extracted from the data and then
fed to the model. In this paper, we do feature extraction inside
the network, by designing modular neurons units. By orga-
nizing the feature extraction process into modular units, we
aimed to enhance the MLP’s capacity to learn and extract rel-
evant features effectively for RUL prediction. Each modular
unit acts as a neuron within the MLP, focusing on capturing
specific characteristics present in the input data.

For example, we have developed modular neuron units to ex-
tract fundamental features such as peak-to-peak amplitudes,
frequency domain features, and vibration characteristics. In
addition, we incorporated modular neuron units to extract
multiple features simultaneously, allowing a more compre-
hensive representation of the features.

This modular design facilitates the integration of statistical
knowledge into the model architecture. The neuron units are
called modular because their architecture allows them to be
placed in different parts of the model. As these modules are
responsible for feature extraction, they are placed after the
input layer, and their output is then fed into the hidden layers
for further processing. Fig.2 illustrates how these modular
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neuron units are implemented within the MLP.

Each neuron unit has input- and output trainable weights that
are optimized during the training process. The input weights
equal the input size. In this case, we fed an input with 500
vibration values. We have chosen 500 for computational ef-
fectiveness. The neuron unit have 500 trainable weights. We
initialize the weights with ones as values.

The neurons multiply the inputs by the weights and extract
the features from these weighted inputs. We have three types
of neuron unit: single feature extraction (SFE), multiple fea-
ture extraction (MFE) and weighted multiple feature extrac-
tion (WMFE).

The SFE neuron unit extracts one feature and performs a sin-
gle extraction operation. For example, to extract features
from the frequency domain, the vibration raw dataset is fed
to the Fast Fourier transform neuron units and then given to
the other neuron units to extract features. As this type of neu-
ron unit performs a single extraction or operation, we call it
Single Feature Extraction (SFE).

The MFE neuron unit integrates multiple features inside of it
and extracts an array of features. In this case, there are two
variants: one in which the features are then fed to the dense
layers and one in which the feature arrays are multiplied by
a weighted array. This array modifies the values of the fea-
tures in a way that allows the model the possibility to choose
which one was more impactful for RUL prediction. We desig-
nate the first version Multiple Feature Extraction (MFE), and
the second one is presented as Weighted Multiple Feature Ex-
traction (WMFE).

The first type of module (SFE) is the most simple, as the
weights are updated only to extract one feature or perform one
operation. In contrast, in the second one (MFE), the weights
are updated to extract multiple features efficiently. The third
option (WMFE) is the most complex. We created these three
modules to extract multiple features classified into fundamen-
tal, frequency, and vibration features.

In this work, we focused on the integration of features inside
the model; thus, we did not do feature selection. We used
the model to optimize feature extraction by itself, where the
implementation of trainable weights could help the model do
feature selection. However, as they are modular, adding or
removing features in the model can be done in a flexible way.
These neuron units were not built with the integration of an
activation function, as we did not want to force non-linearity
on the features extracted. Instead, the dense neurons use the
ReLu activation function.

In this paper, we did not study the impact of modular neu-
ron units as the output layer. However, the output layer can
be changed to adapt to any necessary prediction. For exam-
ple, it is possible to implement a modular neuron unit that ex-

Figure 2. An MLP model without our proposed neuron units
on the left and an MLP model with them on the right. The
two models have the same number of dense layers with the
same number of neurons. The inputs given to the model are
different. In the left side model, we feed the model with the
features extracted from the vibration signal, while on the right
side, we give the model a raw vibration signal.

tracts the minimum as the last layer if the desired prediction is
the minimum RUL remaining. The topic of which activation
function to use remains a research question for our group.

Table.1 shows the different groups and features used. Fig.3
shows the architecture of the model incorporating SFE, MFE
and WMFE neuron units.

3.3. Feature Selection

We utilize multiple features to predict the Remaining Use-
ful Life (RUL). Initially, we implemented classical statistical
features, which were extracted from the raw time series data
of the vibration signal. These features were termed funda-
mental because of their general nature. Subsequently, we im-
plemented features in the frequency domain. Initially, we uti-
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(a) SFE model (b) MFE and WMFE model

Figure 3. Figure (a) details how a Single Feature Extraction (SFE) neuron units work inside a MLP. Each SFE has its own
weights that they multiply by the inputs received. Figure (b) shows how a Weighted Multiple Feature Extraction (WMFE) and
Multiple Feature Extraction (MFE) work. As in the SFE, each neuron unit has its own weights that they multiply on the inputs.
However, they extract multiple features in one neuron unit, features that are weighted in a WMFE.

lized the Fast Fourier Transform (FFT) to extract frequency
features. Then, we computed the magnitude by taking the
absolute value of the FFT. Following the magnitude calcu-
lation, we were able to compute the Power Spectral Density
(PSD) and the Power ratio of Maximum defective frequency
to Mean (PMM) (J. Yu, 2011). From the PSD, we extracted
the maximum, sum, mean, and the variance. The final feature
type was signal features, encompassing general signal-based
statistical metrics applicable to any type of signal, including
vibration signals (Khlaief et al., 2019). Table 1 displays all
the features used. These features were selected because they
are usually used for vibration case studies (Riaz et al., 2017).

3.4. Evaluation Methodology

Since we are dealing with a small dataset, we applied a leave-
one-out (LOO) strategy to evaluate the models. In the LOO
strategy, we remove one of the bearings from the training set
and use it as a test set, leaving us with the remaining bearing
vibration signals for the training and validation sets. We em-
ployed three widely used metrics in the evaluation: the root
mean square error (RMSE), the mean absolute error (MAE)
and the α−λmetric. These metrics provide valuable insights
into the accuracy and precision of the models’ predictions.
The equations for RMSE and MAE are described in Eqs.1
and 2.

√√√√
n∑

i=1

(xi − yi)2 (1)

n∑

i=1

|xi − yi| (2)

The third assessment method was the α-λ metric, which is
a binary measure determining if a prediction at a given time
tλ falls within the α bounds. This metric measures how well
predictions remain within an accuracy cone that narrows over
time. We split the total time interval into 10 equal time inter-
vals and calculated the percentage of predictions that fell be-
tween the α = 0.1 and α = 0.2 bounds. We have chosen two
strict α to evaluate which models predictions were the most
accurate, as a higher percentage of predictions inside the cone
indicates a more accurate and reliable RUL prediction model.

4. CASE STUDY

To verify the effectiveness of the proposed methodology, we
use the PRONOSTIA bearing dataset. PRONOSTIA is an
experimentation platform dedicated to testing and validating
bearing fault detection. Fig.4 presents an overview of PRONOS-
TIA.

The PRONOSTIA dataset was part of the IEEE PHM 2012
Prognostic Challenge. PRONOSTIA comprises three main
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Table 1. Features used and their formula

Fundamental Frequency Vibration
Name Formula Name Formula Name Formula

Maximum max(x) Maximum max(x) Peak to Peak |max(x)−min(x)|

Minimum min(x) Sum
∑n

i=1 xi Cress Factor max(x)√
1
n

∑n
i=1 x2

i

Mean
∑n

i=1 xi

n Mean
∑n

i=1 xi

n Shape Factor
√

1
n

∑n
i=1 x2

i
1
n

∑n
i=1 |xi|

Variance
∑n

i=1(xi−x̄)2

n Variance
∑n

i=1(xi−x̄)2

n Impulse Factor max(x)
1
n

∑n
i=1 |xi|

Standard deviation
√

1
n

∑N
i=1(xi − x)2 PMM max(x)∑n

i=1
xi

n

Clearance Factor max(x)√
1
n

∑n
i=1

√
|xi|

2

Root mean square
√

1
n

∑n
i=1 x

2
i Skewness

∑n
i=1 (xi−x̄)3/n

s3

Kurtosis
∑N

i=1(xi−x̄)4/n

s4

parts: a rotating part, a degradation part, and a measurement
part:

• The rotating part. The asynchronous motor is the actua-
tor that allows the bearing to rotate through gearing and
different couplings. The rotation motion of the motor
is transmitted through a gearbox, allowing the motor to
reach a speed of 2830 rpm. The human-machine inter-
face of PRONOSTIA allows the operator to change the
operating condition.

• The degradation part. A radial force is applied to the
test ball bearing, thus reducing the bearing’s life dura-
tion. This radial load is generated by a force actuator in
a pneumatic jack.

• The measurement part. The measurement part acquires
the bearing’s operation condition and the bearing’s degra-
dation. The bearing’s degradation is based on two types
of sensors: vibration and temperature. The acceleration
measures are sampled at 25.6 kHz, and the temperature
measures are sampled at 10 Hz.

The dataset consists of three different operating conditions,
with a total of seventeen run-to-failure vibration signals given,
including six training datasets and eleven testing datasets.
The dataset is small, and the life duration of a bearing is rel-
atively large (from 1h to 7h) for the sampling rate. In Fig.5,
we present two vibration signals. We did not include all six
vibration signals to improve clarity.

Figure 4. Overview of PRONOSTIA.

5. RESULTS AND DISCUSSION

We can confirm our hypothesis: A neural network incorpo-
rating knowledge-infused statistics neuron units will present
an improvement in RUL prediction accuracy. We see in
Table.4 and Table.5 on the first bearing that the implemen-
tation of MFE neuron units, helped achieve the best α − λ
score. The MFE model achieved the best RMSE and MAE
for the first bearing, according to Table.2. We can see the
predictions made by the different models for the first bearing
in Fig.6. We can see clearly that the MFE model prediction
is the closest one to the true RUL, followed by the baseline
model, and then by the SFE and WMFE models.

For the third bearing, despite the baseline model performing
better than the other model on the end-of-life, the SFE model
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(a) Bearing 1 (b) Bearing 6

Figure 5. Vibration raw signals of the different bearings.

still performs better on the α− λ score. With an α = 0.2 the
SFE model scores a total α − λ score of 29 ± 42 while the
baseline model scores a total α−λ score of 22±21. However,
the baseline, has the lowest RMSE and MAE.

If we compare the mean RMSE and MAE values obtained by
the different models, we see that the SFE model obtains the
lowest values, as seen in Table.3, whereas the baseline is the
second best, the WMFE the third one, and the MFE the last
one. For the α− λ we achieves the best score with the model
incorporating the SFE neuron units, while the MFE model
is the second best for a small α while the baseline performs
better than the MFE model on a higher α.

The results demonstrate that the implementation of knowledge-
informed statistics neuron units present an improvement in
RUL prediction accuracy, as we have the MFE outperforming
the different models in the first bearings and the SFE perform-
ing well on the other bearings. These neuron units leverage
statistical properties in the model to enhance the RUL predic-
tion.

By adding these knowledge-infused statistical neuron units,
we expect to improve interpretability, as we can study the
weight evolution during training. The weight evolution can
guide us regarding how the model optimizes the feature ex-
traction to predict the RUL. As we know, the model gives a
weight to each vibration value given as input. We could then
evaluate which part of the signal is more essential for extract-
ing the features needed for an accurate RUL prediction.

6. CONCLUSION

The objective of this study was to develop a set of novel neu-
ron units for the classical multi-layer perception (MLP). We
have evaluated the importance of having these knowledge-

informed neuron units inside a neural network aimed at Re-
maining Useful Life (RUL) prediction. The neurons were in-
fused with statistical knowledge. Concretely, we have imple-
mented 21 neuron units that capture time domain, frequency
domain, and time-frequency domain statistical knowledge.
Examples of this type of knowledge are the Fourier transform
and kurtosis/skeweness.

By using the proposed neuron units, one can create a neural
network that incorporates knowledge in an easy and modu-
lar way. To test our methodology, we used our network on
a bearing case, PRONOSTIA, to predict the RUL. We have
demonstrated that these statistical neuron units improve the
model prediction compared to a baseline model with classi-
cal feature extraction.

Our results showed that the best overall model was the one
that incorporated the single feature extraction (SFE) neuron
units. This model was able to outperform the baseline on
the overall RMSE, MAE and on α − λ accuracy. Regarding
the α− λ accuracy metrics, the SFE model obtained the best
overall accuracy. In contrast, the multiple feature extraction
(MFE) obtained the second-best score for a strict α (0.2) and
the best α− λ accuracy metric for the first bearing.

Despite the good performance of MFE on the first bearing,
this approach failed to replicate this performance on the re-
maining bearings. Importantly, the WMFE obtained the best
score at the End-of-Life. However, this model did not achieve
good accuracy in the previous time intervals.

One potential reason for the underperformance of the mod-
els incorporating MFE and WMFE neuron units could be at-
tributed to their architectural design. As they include more
features inside of them, their optimization is more challeng-
ing. Another reason is that the selection of the features in-
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Table 2. RMSE and MAE results for the predictions made on the different bearings by the different models. WMFE stands for
Weighted Multiple Feature Extraction, MFE for Multiple Features Extraction, and SFE for Single Features Extraction.

Bearings Model with MFE Model with WMFE Baseline Model with SFE
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

1 4039 3252 8871 7529 10861 7956 6474 5642
2 11909 9078 5601 4873 4177 3460 4660 3638
3 7806 6745 8306 7447 3730 2636 2890 2369
4 11316 9651 7243 5229 4728 3783 7079 5513
5 16642 15659 9445 9103 6996 5514 2724 2365
6 14876 13180 9562 8503 6305 5531 8036 7103

Table 3. Mean and std of the RMSE and MAE for the different models. WMFE stands for Weighted Multiple Feature Extraction,
MFE for Multiple Features Extraction, and SFE for Single Features Extraction.

Model with MFE Model with WMFE Baseline Model with SFE
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

11098 ± 4211 9594 ± 4047 8155 ± 1378 7114 ± 1568 6133 ± 2405 4813 ± 1757 5310 ± 2036 4438 ± 1776

Table 4. Percentage of predictions within the α = 0.1 bound. The interval 10 represents the farthest distance from the bearing
failure, whereas the interval 1 represents the last interval before failure. WMFE represents the model with Weighted Multiple
Feature Extraction units; SFE represents the model with Single Feature Extraction units; B represents the baseline model; and
MFE represents the model with Multiple Feature Extraction units.

Bearings
1 3

Interval WMFE MFE B SFE WMFE MFE B SFE

10 0.00 0.00 0.00 0.00 0.00 0.00 8.70 13.04
9 0.00 0.63 0.00 0.00 1.09 1.09 5.98 66.85
8 0.00 2.83 0.00 0.00 0.00 0.00 5.98 45.11
7 0.00 75.16 44.65 0.00 0.54 0.00 9.78 49.46
6 0.00 83.02 3.93 8.49 0.00 0.00 19.13 0.00
5 0.00 20.60 0.00 19.18 0.00 0.00 31.15 0.00
4 0.00 37.42 0.00 1.26 0.00 0.00 5.46 0.00
3 0.00 0.00 0.00 0.47 0.00 0.00 1.09 0.00
2 0.00 0.00 2.68 0.00 0.00 0.00 0.00 0.00
1 6.14 2.20 4.88 3.62 0.00 0.00 0.00 0.00
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(a) Baseline model (b) SFE model

(c) WMFE model (d) MFE model

Figure 6. Prediction of the different models for the first bearing. The interval represented in light gray is the α bond interval,
for α = 0.1. Predictions inside this interval are considered correct. The numbers on top represent the correct percentage of
prediction inside the α bound for each interval. We compare the baseline prediction with the Single Feature Extraction (SFE),
the Weighted Multiple Feature Extraction (WMFE), and the Multiple Feature Extraction (MFE). For clarity of the prediction
trend, we are showing here their moving average.
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Table 5. Percentage of predictions within the α = 0.2 bound. The interval 10 represents the farthest distance from the bearing
failure, whereas the interval 1 represents the last interval before failure. WMFE represents the model with Weighted Multiple
Feature Extraction units; SFE represents the model with Single Feature Extraction units; B represents the baseline model; and
MFE represents the model with Multiple Feature Extraction units.

Bearings
1 3

Interval WMFE MFE B SFE WMFE MFE B SFE

10 0.00 0.00 0.00 0.00 2.72 0.00 15.76 22.28
9 0.00 23.90 0.00 0.00 7.07 4.35 36.41 97.28
8 0.00 34.75 0.00 0.00 0.00 0.00 20.11 89.13
7 0.00 100.00 58.18 5.66 1.09 0.00 20.65 79.89
6 0.63 100.00 9.59 20.13 0.55 0.00 49.46 0.00
5 0.00 27.52 1.10 30.97 0.00 0.00 31.15 0.00
4 0.31 65.88 0.00 2.99 0.00 0.00 16.94 0.00
3 0.00 0.00 0.00 0.94 0.00 0.00 1.64 0.00
2 0.16 0.00 3.46 0.00 0.00 0.00 0.00 0.00
1 13.54 9.61 4.57 6.77 0.00 0.00 1.09 0.00

Table 6. Total mean and std of predictions within the α bound for the models.

α WMFE MFE Baseline SFE
0.1 1.51 ± 2.21 4.50 ± 8.88 3.59 ± 3.00 5.03± 6.35
0.2 3.50 ± 5.41 7.76 ± 14.20 7.92 ± 7.13 9.59 ± 10.35

cluded in them was made arbitrarily. A way to improve this
type of neuron unit is to have a neuron unit composed of all
the features instead of splitting them into three different neu-
ron units. This will be researched in future work. The differ-
ence between the performance of the MFE and WMFE can
be explained by the weights implemented on the feature out-
put array. As the dense layers already have their own weights
that are multiplied by the inputs they receive, in this case the
feature array, having a weight that does the same operation in
the WMFE can be counterproductive.

The proposed models (SFE, MFE and WMFE) were con-
structed using a typical neuron unit (dense) from TensorFlow,
which limits their ability to retain information from prior raw
vibration signals and updates the weights solely for a par-
ticular time during the bearing’s lifespan. As a result, these
neuron units might struggle to capture complex patterns in
the vibration data. Another limitation of these neuron units is
that they need to adhere to the forward and backward propa-
gation mechanisms, which can restrict the complexity of the
extracted features.

Another area of optimization can be the placement of neuron
units in different locations of the model. In this study, the
neuron units were only added at the beginning of the model,
after the input layers but before the hidden layers. We can also
study the impact of our neuron units at the output layer. For
example, because we are predicting the RUL, the minimum

neuron unit can be used as the output layer, as the model is
attempting to predict the minimum value of the RUL from the
values provided as input.

More research is needed to determine whether the implemen-
tation of memory-based modular neuron units can achieve
better results. Moreover, given that we are dealing with time
series data, changing the model architecture could be bene-
ficial for both the baseline and the proposed models. For in-
stance, incorporating long-short term memory (LSTM) layers
could improve the model’s ability to capture temporal depen-
dencies and patterns in the data. Additional research may
impose constraints on the neuron units trainable parameters,
forcing the model to extract features in a manner that differs
from the existing neuron units. Given their modular nature,
we might consider incorporating them not only after the input
layer but also in other parts of the model architecture.

Lately, this model was trained offline, and future research can
also focus on how to train these neuron units in an online case
study where the data will be fed continuously to the model.

Although the primary focus of this study has been on im-
proving prediction accuracy, we recognize the importance of
interpretability and aim to leverage knowledge-infused neu-
ron units as a stepping stone towards more transparent and
explainable RUL prediction models. Future research efforts
will explore techniques to further enhance the interpretability
of these models, for example, by the implementation of dif-

11

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 791



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

ferent neuron units, tracking the weights value during train-
ing, or by creating different neurons units that can replace the
usual dense layers.

The contribution of this research is the proposal of knowledge-
informed neuron units infused with statistical knowledge. These
neuron units implement a novel method of extracting statis-
tical features and feeding them to a model, in which the net-
work optimization by backpropagation has a greater impact
on the statistical features extracted than if they were directly
fed to the model.
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ABSTRACT

This paper presents SurvLoss, a novel asymmetric partial loss
and error calculation function for survival analysis and re-
gression, enabling the inclusion of censored samples. An ob-
servation in a dataset for which the complete information re-
garding an event of interest is not available is called censored.
Censored samples are ubiquitous in the industry and play a
crucial role in Prognostics and Health Management (PHM)
by providing a realistic representation of data, improving the
accuracy of analyses, and supporting better decision-making
in various industries and the healthcare sector. The proposed
approach can effectively equip the conventional regression
loss functions such as Mean Absolute Error (MAE), Mean
Squared Error (MSE), or Root Mean Squared Error (RMSE)
with the ability to process censored samples. This can impact
the field hugely by providing a more accessible usage of neu-
ral network models in survival analysis. The proposed sur-
vival loss incorporates censored samples by penalizing pre-
dictions outside the censoring region and skipping them oth-
erwise. Then, it uses weighted averaging to aggregate the
loss from censored samples with the loss from event samples.
Unlike many other methods in the field, the proposed model
distinguishes itself by avoiding superficial assumptions and
exclusively relies on the available information, considering
the entirety of the data.

We compared the proposed loss function with its baseline
on two publicly available datasets. The first dataset, called
C-MAPSS, is from NASA Turbofan Jet Engines simulation,
and the second is a recently published real-world dataset from
SCANIA trucks. The goal of both datasets is to predict the re-
maining useful life (RUL) of the machines. The experimental
results show that optimization algorithms for training deep
neural networks like Adam can effectively utilize the pro-

Mahmoud Rahat et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

posed loss function to calculate gradients, update the model’s
weights, and reduce training and test errors. Moreover, the
proposed model outperformed the baseline by taking advan-
tage of the censored samples. The proposed loss function
paves the way for the employment of advanced architectures
of neural networks with bigger training sizes in survival anal-
ysis.

1. INTRODUCTION

This paper deals with the problem of time-to-event predic-
tion. Specifically, the prediction of time until a component
fails or, in other words, the component can no longer perform
its intended functionality. The literature has three main direc-
tions for tackling this problem. The remaining useful life pre-
diction (Revanur, 2020; Altarabichi, 2020; Karlsson, 2023),
risk classification (Rahat, Pashami, Nowaczyk, & Kharazian,
2020), and survival analysis (Wang, Li, & Reddy, 2019). While
each of these directions has benefits and drawbacks, a shared
challenge among all three approaches is dealing with the cen-
sored samples. While some methods, like Cox proportional
hazards (Cox, 1972), consider them using the partial likeli-
hood function, most methods simply ignore censored sam-
ples. Nonetheless, censoring is an inherent aspect of time-to-
event prediction, especially in long-term studies. Censored
samples refer to data points for which the event of interest
(such as death or failure) has not been observed by the end of
the study or at the time of analysis. Censoring can happen,
for instance, when the exact time of the event is unknown;
typically, since the event has not occurred yet, the subject has
been lost to follow-up, or the study finishes before we observe
the event. With the censored samples, we have incomplete in-
formation about the individual, i.e., we don’t know when the
event happened. Still, we know the event has not occurred
during a specific period.

Generally, three types of censoring are recognized in survival
analysis (Kleinbaum & Klein, 1996). The right censoring
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where the event of interest has not happened for some individ-
uals by the end of the study, but it may occur at an unknown
time in the future. In other words, the event time for these
individuals is known to be longer than the observed follow-
up time. The left censoring happens when we know that the
event of interest happened before a specific time, but we don’t
know precisely when, i.e., the survival time is shorter than the
study’s start time. Finally, we have interval censoring, where
we only observe the event that has happened within a spe-
cific time window, but again, we don’t know precisely when.
Right censoring is considered the most common type; hence,
it is regarded as the primary focus of this paper. It is worth
mentioning that although we only looked at the right censor-
ing, the proposed loss function can be generalized similarly
to all three types.

Censoring is prevalent in the industry for many reasons, such
as the long life of components or changes in the conditions of
the equipment, like the expiry of a warranty period. In real-
world industrial applications, it is common to access much
more censored samples than those that fail. Depending on
the cases, the ratio of censored to death varies, but this ratio
can reach, for instance, 30 censored samples per 1 death or
more. Most available methods in the field struggle with con-
suming censored samples and end up ignoring these samples.
This means that they essentially ignore a significant portion
of their available data.

An exception to this general rule is methods based on survival
analysis designed to take advantage of the censored informa-
tion. However, survival analysis is much more common in
clinical studies than in industry due to its practical limita-
tions, such as the inability to process big data sizes or their
shortage in handling temporal information, like sequences of
observations from the same individual over time. Addition-
ally, they mostly rely on the Cox proportional assumption,
which is known to be naive and not genuine in many real-
world cases. On the other hand, there is no way to validate
the survival functions produced by these models as we only
have access to the time of the event, and the actual degra-
dation curves are unknown. That is why, in many industrial
applications, we rely on the median or the mean point of the
survival functions. Concordance index (C-index) (Harrell,
Califf, Pryor, Lee, & Rosati, 1982) is the typical survival
analysis evaluation metric which only considers the order of
the events and is known to be biased (Hartman, Kim, He, &
Kalbfleisch, 2023; Alabdallah, Ohlsson, Pashami, & Rögn-
valdsson, 2024). Most survival datasets are clinical records
of patients with a very small number of data points (around
1000) and features (around 10), and there are limitations re-
garding the proportion of censored data compared to event
instances. In most studies, clinical researchers maintain this
percentage below 50%.

Additionally, specific constraints are related to applying neu-

ral networks within the survival analysis domain. While a
handful of methods have been proposed to merge the capa-
bilities of neural networks with survival analysis (Katzman et
al., 2018; Kvamme, Borgan, & Scheel, 2019), the prediction
accuracy for deep learning methods remains comparable to
the classical methods such as Cox and Random Survival For-
est (Ishwaran, Kogalur, Blackstone, & Lauer, 2008) in many
datasets. It is shown that the performance gain using deep
learning or neural network-based approaches is often around
0.02 to 0.03 in concordance index (Chen, 2020). This is pri-
marily due to various underlying assumptions made by meth-
ods, such as the constant ratio of risk over time or the small
sizes of the standard survival analysis datasets. On the other
hand, the neural network field is growing rapidly, and it is cru-
cial to search for new ways to employ their incredible com-
putational power in fields such as time-to-event prediction.

This paper contributes to the mentioned challenge by intro-
ducing a new loss function called survival loss, which essen-
tially enables conventional neural networks to process cen-
sored samples along with the standard event samples. The
idea is to penalize the model in accordance with the infor-
mation available. For the event samples, the survival loss
performs similarly to an ordinary loss by considering the dis-
tance between the model predictions and actual values. For
the censored samples, the survival loss only penalizes the
model if the predicted value falls outside the censoring time
interval. As an example for the right censored samples, the
model gets penalized only if its prediction is below censoring
time (which we already know the event has not happened in
that period). On the other hand, if the model’s prediction is
larger than the censoring time, the proposed survival loss ef-
fectively ignores that sample in the loss calculation as there
is no evidence of the precise event time. Ultimately, the final
loss value will be reported as a weighted average of the error
values from censored and event samples. The weighting of
the two error values takes place in accordance with the num-
ber of considered samples in each part. The following section
defines the proposed loss function in more detail.

2. METHODOLOGY

We first visually explain the intuition behind the proposed
survival loss and later define it mathematically. Figure 1 de-
scribes how the proposed survival loss function calculates
the amount of error for an event sample, right-censored sam-
ple, left-censored sample, and interval-censored sample. The
follow-up region (represented in red) indicates the period where
we monitored the individual, and we know that the event of
interest has not occurred inside it. The censoring region (rep-
resented in green) displays the period where the event has
happened or will happen inside it, but we don’t know pre-
cisely when. Finally, the red-dotted region represents the time
in the future after the event has occurred.
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Figure 1. Visual explanation of the proposed loss function.

The loss calculation for an event sample is straightforward.
The distance between prediction and actual event time indi-
cates the amount of error. Here, we can use any loss calcula-
tion formula like mean absolute error (MAE), mean squared
error (MSE), root mean squared error (RMSE), etc. For the
sake of simplicity, this paper primarily focuses on the MAE,
but any other mentioned error measurement functions can in-
terchangeably be employed.

Unlike the event samples, the proposed loss uses an asym-
metric error calculation algorithm for the right censored sam-
ple. If the prediction falls within the follow-up region (i.e.,
the outside of the censoring region), we penalize the predic-
tion according to its distance from the censoring time. Note
that this error partially captures the whole error of the predic-
tion as the event happens sometime after censoring time, and
the actual error is greater than the proposed partial one. Since
calculating the exact error for these samples is impossible, we
resort to partial penalization. This partial error from the cen-
sored samples can help the optimization algorithm calculate
gradients more accurately. Conversely, if the prediction falls
within the censoring time, the amount of error is set to null.
Note that a null error differs from a zero error since, in the for-
mer, we remove the sample from the total number of samples
in the batch and, therefore, from the denominator of the av-
eraging function. Finally, a similar logic can also handle the
left-censored and interval-censored samples. Again, for the
sake of simplicity, we primarily focus on the right censored
samples and mean absolute error. Still, the method can be
generalized to all censoring types and error calculation func-
tions.

Figure 1 also provides some example prediction points and
their associated error values for varying conditions. The er-
rors for prediction A, B, C, and D are respectively T2 − T1,
T3−T2, ∅, and T5−T4, where ∅means we ignore the sample
in the loss calculation.

Assume (X, t, δ) represents a random survival data point where
X ∈ Rd is a d-dimensional covariate vector and δ ∈ {0, 1}
is an event indicator such that δ = 1, if we observed the event

and δ = 0 in case of censoring. Moreover, t = min(y, c) is
the observed time, where y ∈ R+ is the actual event time
and c ∈ R+ is the censoring time.

In the context of PHM and without loss of generality, we de-
fine the set of failed samples where the event of failing hap-
pened for them (i.e., δi = 1) as:

(Xi, yi)
NFailed

i=1 (1)

and similarly the set of censored samples (i.e., δi = 0) as:

(
X̃j , cj

)NCensored

j=1
(2)

which means we divide the samples into two groups of failed
(aka event) and censored samples where the total number of
samples is N = NFailed + NCensored. Then, for a given
predictive model f , we define ŷi = f(Xi) and similarly, ĉj =
f(X̃j) as the output of the predictive model for the failed and
censored samples. Note that we have access to the ground
truth values for f(Xi), but ground truth values for f(X̃j) are
unknown, and the only information we have regarding them
is that the actual event time is greater than cj . This means
that we can only penalize the model if the prediction of the
model ĉj is less than cj ; otherwise, we ignore the sample in
our loss calculation. Note that ignoring a sample in the loss
calculation is different from having an error equal to zero for
that sample since by ignoring the sample, we do not consider
it in the total number of samples in the denominator of the
loss function.

The new survival loss function is defined as a weighted sum
of the error for the censored and failed samples:

E =
NFailed × EFailed +NCensored′ × ECensored′

NFailed +NCensored′
(3)

where Censored′ represents the set of samples for which the
model predicts a survival time less than the censoring time,
i.e., ĉj < cj and is defined as follows:

NCensored′ =
∥∥∥
(
X̃j , cj

)
given ĉj < cj

∥∥∥ (4)

this means that NCensored′ ≤ NCensored since:

{
(
X̃j , cj

)
given ĉj < cj} ⊆ {

(
X̃j , cj

)
} (5)

Then, equations 6 and 7 represent the standard calculation of
the mean absolute error for the two groups of Failed and
Censored′.
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EFailed =
1

NFailed
×

NFailed∑

i=1

|yi − ŷi| (6)

ECensored′ =
1

NCensored′
×

NCensored′∑

j=1

|cj − ĉj | given ĉj < cj

(7)

and if we plug in equations 6 and 7 into equation 3, we get
Equation 8 that defines Survival Mean Absolute Error (S-
MAE). Equation 8 can easily be modified for Mean Squared
Error (MSE) and Root Means Squared Error (RMSE). Note
that in the extreme cases of very high censoring ratio, the de-
nominator of the Equation 8 can become zero. To avoid such
cases, we recommend reducing the censoring ratio by ran-
domly skipping some of the censored samples or increasing
the batch size of the gradient descent algorithm.

3. EXPERIMENTAL RESULTS

We first provide some general information about the experi-
ments and the two datasets used in section 3.1. This is fol-
lowed by the experimental results and discussion for the first
dataset in section 3.2, and that of the second dataset in section
3.3.

3.1. Experimental Setup

For the experiments, we used two public run-to-failure datasets,
one on lab-simulated data and the other on real-world data
from the field. The first dataset is the well-known NASA
Commercial Modular Aero-Propulsion System Simulation,
also known as C-MAPSS (Saxena, Goebel, Simon, & Eklund,
2008). It is a widely used benchmark dataset in prognostics
and health management (PHM) developed by NASA to sup-
port research in aircraft engine health monitoring and prog-
nostics and to estimate the remaining useful life. The dataset
consists of simulation measurements from turbofan jet en-
gines with multiple subsets, each corresponding to different
operating conditions and engine fault modes. It includes sen-
sor measurements collected from various sensors installed on
the engine, along with information about the engine’s health
and remaining useful life. The C-MAPSS dataset contains
temporal information in the form of multiple observations
during time from each engine.

The C-MAPSS dataset originally did not contain censored
samples as it is a simulated dataset, and the actual failing
time for all the engine cases is provided. Since the goal of
this paper is to study the effect of having censored samples
in the dataset, we used the algorithm introduced in (Rahat,
Kharazian, Mashhadi, Rögnvaldsson, & Choudhury, 2023) to
transform the dataset into survival settings by defining a spe-
cific study period and labeling all the failed samples after the

end of the study as censored.

The second dataset is the recently published SCANIA Com-
ponent X Dataset (Kharazian, Lindgren, Magnússon, Stein-
ert, & Reyna, 2024; Lindgren, Steinert, Andersson Reyna,
Kharazian, & Magnússon, 2024). This dataset is collected
from an unknown engine component (called component X)
of a fleet of trucks. We refer to the second dataset as the Sca-
nia dataset. This dataset contains sensor measurements from
21278 censored trucks and 2272 instances of trucks where
their component X failed. We define the censoring ratio for
a dataset as the percentage of censored samples to the total
samples, i.e., the number of censored samples divided by the
total number of samples. Therefore, in this dataset, the cen-
soring ratio is 90%, which is way beyond the common censor-
ing ratios in the survival analysis domain. Looking at the lit-
erature, it is very rare to see a dataset that contains more than
50% censored samples. Similar to C-MAPSS, this dataset
includes temporal measurements from trucks. The only dif-
ference compared to C-MAPSS is that in C-MAPSS, the in-
tervals between the observations are the same, but here they
vary.

The predictive model used for the experiments is a multilayer
Perceptron neural network that contains an input layer fol-
lowed by five dense layers, each containing 14 neurons, fol-
lowed by a single neuron as the output, where all layers use
the ReLU activation function. The purpose of the network is
to predict the remaining useful life of a piece of equipment
according to the covariate features received as input. All the
networks are trained using the Adam optimization algorithm,
and the batch size for all experiments is 32.

There is no need to spend too much time optimizing the neu-
ral network’s architecture, as both the baseline and the pro-
posed model use the same architecture in terms of fairness of
the comparisons. We also tweaked the network’s architecture
and confirmed that the proposed loss function is not sensi-
tive to the architecture and can perform robustly regardless
of its structure. Two models are compared in the following
sections. The first model uses the mentioned neural network
architecture with S-MAE as the loss function and is referred
to as the proposed model. Due to the use of S-MAE, the
proposed model can consume censored samples. The second
model also uses the mentioned neural network architecture.
The only difference is using the standard MAE loss function,
which makes the second model unable to render censored
samples as there are no ground truth target values associated
with them in the dataset. We refer to the second model as the
baseline model. The code is implemented in Python using
Keras running on a TensorFlow backend. A code implemen-
tation of the S-MAE function in TensorFlow is also provided
in the appendix section.
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ES−MAE =

(∑NFailed

i=1 |yi − ŷi|
)
+ (
∑NCensored′

j=1 |cj − ĉj | given ĉj < cj)

NFailed +NCensored′
(8)

3.2. SCANIA Dataset

We used the SCANIA dataset for the first experiment. Here,
the number of censored to failed samples is enormous, which
means most of the components did not fail during the study
period. As mentioned before, the ratio of censored vehicles is
90%. In other words, we have around 9 censored vehicles per
failed one. Including all censored samples in the experiments
is technically impossible, as this will cause the loss to become
zero for almost all batches, and consequently, the gradients
will become NaN. We randomly down sample censored in-
stances to 500 vehicles. We also include all 2272 instances
of failed trucks. The resulting dataset has a censoring ratio
of 18%. Additionally, we ignored the temporal information
and randomly picked one observation per truck for this ex-
periment. The number of independent features in this dataset
is 105, and the goal is to predict the remaining useful life of
component X.

The objective of the experiment is to investigate how the in-
clusion of censored samples impacts a model employing the
proposed survival loss function compared to a standard loss
function. We conducted two experiments with the model out-
lined in the experimental setup. In the first experiment, the
model is equipped with the ability to incorporate censored
samples through the proposed S-MAE loss function. Con-
versely, the second iteration excludes censored samples from
the training data, as the model employs a conventional loss
function, making it unable to process partially observed in-
stances. Both models are trained for 10 epochs. The test data
used for evaluating both models contains both censored and
failed cases, and the S-MAE loss function is used to report
the models’ performance.

Figure 2 represents the five-fold cross-validation results for
the Scania dataset. The two models’ average training and test
curves across five folds are presented using lines. The shaded
confidence bands visualize the respective standard deviations
of the test data across five folds. The green curves represent
the model’s performance using S-MAE, and the red curves
represent the conventional MAE loss function. The y-axis
shows the value of error using S-MAE. Similar to the stan-
dard MAE, the lower values of S-MAE indicate better perfor-
mances. As you can see in the figure, the model that used the
proposed S-MAE consistently outperforms the conventional
MAE. Furthermore, the standard deviation of both models de-
creased during the training epochs.

Figure 2. Five-fold cross-validation results for Scania dataset.

3.3. C-MAPSS Dataset

In the second experiment, we performed an assessment sim-
ilar to the first experiment but with the C-MAPSS dataset.
We used the dataset related to the first operational setting
(FD001) representing condition one (Sea Level) with 14 co-
variate features and the remaining useful life of the equip-
ment as the target. The train and test trajectories each con-
tain 100 units, and a varying number of readouts is available
in the dataset for each unit. We merged the train and test
units from the original dataset to get a dataset with 200 units
and reduced the samples by randomly picking 20 readouts
from each engine unit. Again, we employed a 5-fold cross-
validation approach to evaluate the performance of the pro-
posed method and compare it to our baseline model. Both
models are trained for 15 epochs. To simulate censoring, we
used the technique described in (Rahat et al., 2023) and set the
end-study parameter to 200 in this experiment. The simula-
tion resulted in 1140 event (failed) samples and 646 censored
samples with a censoring ratio of 36%.

Figure 3 displays the train (shown with a dashed line) and test
(shown with a solid line) learning curves for the baseline and
the proposed models. The green curves show the proposed
model learning curves, while red is used for the baseline. The
shaded area around the test curves represents the standard de-
viations between the results from the five folds. The stan-
dard deviations of the training curves are not visualized to
avoid overcrowding and maintain readability. The models are
trained until the learning curves flatten after about 15 epochs.
As can be seen, the proposed model outperforms the baseline
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Figure 3. Five-fold cross-validation results for C-MAPSS
dataset.

Table 1. The final performance of two models on the test data
averaged over 5 folds.

Scania Dataset C-MAPSS Dataset
S-MAE 50.32 ± 0.85 29.49 ± 2.64
MAE 60.77 ± 1.31 39.14 ± 2.13

by a significant margin.

Table 1 compared the final performance of two models on the
test data averaged over five folds. The proposed loss func-
tion significantly outperforms the standard mean absolute er-
ror with a margin of 10.45 units in the Scania dataset and with
a margin of 9.65 units for the C-MAPSS dataset. There is no
need to run statistically significant tests as the standard devi-
ation of the models compared to the net improvement level is
little.

4. CONCLUSION

We presented a novel loss and error calculation method that
partially considers censored samples in the context of survival
analysis and remaining useful life prediction. The proposed
loss function can be used with any standard regression error
function and can handle right, left, or interval-censored sam-
ples. To assess the algorithm, we tested it using a flat regres-
sor on two public industrial datasets to predict the remaining
useful life of engine equipment. The results indicated that
the proposed loss function can significantly reduce the model
loss on the test data compared to the baseline. The exper-
iments only looked at the mean absolute error function and
right censored samples. The application of other regression
loss functions with varying censored settings is left for future
work. Another suggested future work is to use the proposed
loss function on advanced types of neural networks, such as

long short-term memory networks (LSTM) or Gated recur-
rent units (GRU), to incorporate temporal information in sur-
vival analysis.
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APPENDIX

SurvLoss Mean Absolute Error (S-MAE) implementation in
Python using TensorFlow. Note that S-MAE receives three
values as input, ground truth observed times, predictions, and
censoring flag that is either True or False.

1 import tensorflow as tf
2

3 def SurvLoss_MAE(y_true, y_pred,
censore_flags):↪→

4 y_true_event = y_true[censore_flags]
5 y_pred_event = y_pred[censore_flags]
6 y_true_censored =

y_true[˜censore_flags]↪→

7 y_pred_censored =
y_pred[˜censore_flags]↪→

8 y_pred_event =
tf.squeeze(y_pred_event)↪→

9 count1 = y_true_event.shape[0]
10 error1 = tf.reduce_mean( tf.abs(

y_true_event - y_pred_event ) )↪→
11 error1 =

tf.where(tf.math.is_nan(error1),
tf.zeros_like(error1), error1)

↪→
↪→

12 y_pred_censored =
tf.squeeze(y_pred_censored)↪→

13 mask = tf.cast(y_true_censored >
y_pred_censored, tf.float32)↪→

14 count2 = tf.reduce_sum(mask)
15 error2 = tf.reduce_mean( tf.abs(

tf.multiply( mask,
(y_true_censored -
y_pred_censored) ) ) )

↪→
↪→
↪→

16 error2 =
tf.where(tf.math.is_nan(error2),
tf.zeros_like(error2), error2)

↪→
↪→

17 survloss_mae = (error1 * count1 +
error2 * count2) / (count1 +
count2)

↪→
↪→

18 return survloss_mae
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ABSTRACT

Wind energy plays a crucial role in the energy transition.
However, it is often seen as an unreliable source of energy,
with many production peaks and lows. Some of the drivers of
uncertainty in energy production are the unexpected wind tur-
bine (WT) failures and associated unscheduled maintenance.
To support an effective health management and maintenance
planning of WTs, we propose an integrated data-driven frame-
work for Remaining Useful Life (RUL) prognostics and in-
spection planning of WTs. We propose a Long-short term
memory (LSTM) neural network with Monte Carlo dropout
to estimate the distribution of the RUL of WTs, i.e. we de-
velop probabilistic prognostics. Different from existing stud-
ies focused on prognostics for single components, we con-
sider the simultaneous health-monitoring of multiple compo-
nents of the WTs, thus seeing the turbine as an integrated
system. The obtained prognostics are further included into
a stochastic planning model which determines optimal mo-
ments for inspections. For this, we pose the problem of WT
inspections as a renewal reward process. We illustrate our
framework for four offshore WTs which are continuously mon-
itored by Supervisory Control and Data Acquisition (SCADA)
systems. The results show that LSTMs are able to estimate
well the RUL of the WTs, even in the early phase of their
usage. We also show that the prognostics are informative for
maintenance planning and are conducive to conservative in-
spections.

1. INTRODUCTION

The current global environmental crisis has prompted the ac-
tive shift towards renewable energy solutions. For this, as out-
lined in the European Green Deal, the primary objective set
forth by the Global Wind Energy Council is to actively con-

Davide Manna et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

tribute to meeting, by 2030, no less than 20% of the world-
wide demand for electricity through the utilization of wind
energy. Furthermore, the overarching ambition extends to re-
alizing a fully decarbonized electricity supply by 2050, po-
sitioning wind energy at the forefront of renewable sources
(Apunda & Nyangoye, 2017).

The focus on wind energy is motivated by the fact that wind
is a clean, sustainable and inexhaustible source of energy, it
has low operational costs, and that WTs can be installed in
various locations, including remote areas where higher wind
speeds can result in a higher energy production. Wind en-
ergy is, however, perceived as an unreliable source of energy,
with many production peaks and lows. Some of the main
drivers of uncertainty in energy production are the amount of
unexpected failures and associated unscheduled maintenance
(Letcher, 2023).

Horizontal Axis Wind Turbines (HAWTs), currently the most
promising global wind energy technology (Rezamand et al.,
2020), often face accelerated degradation due to their place-
ment in regions with harsh and variable meteorological condi-
tions (Astolfi, Pandit, Terzi, & Lombardi, 2022). Exposed to
variable aerodynamic loads and mechanical stress (Tchakoua
et al., 2014), WTs necessitate continuous health monitoring
and dynamic maintenance planning to achieve reliable oper-
ations (Yang, Tavner, Crabtree, Feng, & Qiu, 2014; Tautz-
Weinert & Watson, 2017).

In general, a HAWT integrates several essential subsystems,
including aerodynamic rotor blades, a central hub for energy
transfer, a gear reducer (Tong, 2010) (typically spur, helical
(Errichello & Muller, 1994), or planetary (Ragheb & Ragheb,
2010)), an electrical generator for power conversion (Wagner,
2020), a nacelle housing all critical machinery, a yaw sys-
tem enabling optimal wind alignment and a towering struc-
ture (Griffith et al., 2016). The subsystems with the highest
fault rates for onshore wind farms are towers, gearboxes, and
rotor blades, while for offshore wind farms, the most affected
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components are gearboxes, rotor blades, generators, and tow-
ers (Rezamand et al., 2020). Generally, the most critical com-
ponents of WTs are the gearbox, the main bearing, and the
blades (Yang, Court, & Jiang, 2013).

To boost the reliability of WTs, recent studies have developed
diagnostics and prognostics for components of WTs, focusing
particularly on critical components such as gearboxes, main
bearings, and blades. Given the increasing availability of
condition monitoring measurements, a large fraction of these
studies develops data-driven approaches for diagnostics and
prognostics using machine learning. For data-driven diagnos-
tics of WTs, frequent approaches are clustering algorithms,
Principle Component Analysis (PCA), and Neural Networks.
For example, in (Kim et al., 2011), a data-driven, unsuper-
vised clustering algorithm, together with PCA is developed
for diagnostics of gearboxes of WTs. Anomalies due to gear-
box failures are identified based on measurements related to
rotor speed and power production. In (Zaher, McArthur, In-
field, & Patel, 2009), a multilayer neural networks is pro-
posed to detect anomalies of the WT gearbox. The main in-
put of the neural network is the temperature of the gearbox.
In (Garan, Tidriri, & Kovalenko, 2022), the authors estimate
whether the WT will fail or not within the next 60 days using
a decision tree. Here, the focus is on optimizing the data pre-
processing and feature selected steps of the methodology. A
regression mode is proposed in (Orozco, Sheng, & Phillips,
2018) to detect anomalies of gearboxes.

For data-driven Remaining Useful Life prognostics using ma-
chine learning, which is also the case of our analysis, ex-
isting studies have focused on supervised neural networks.
Frequently, vibration and/or Supervisory Control and Data
Acquisition measurements are considered as input for these
neural networks. Table 1 gives an overview of the main data-
driven machine learning approaches, as well as the perfor-
mance achieved. We note that all these studies focus on spe-
cific WT components when developing prognostics. The main
components considered for prognostics development are the
gearbox and the bearings. Neural networks are a frequently
employed approach, which achieves accurate prognostics at
various prognostics horizons (e.g., months/days before the
actual failure). A recent study (Rajaoarisoa, Randrianandraina,
& Sayed-Mouchaweh, 2024) develops a recurrent neural net-
work to estimate the RUL of WTs, following the identifica-
tion of faults using autoencoders. Completementary to this
work, in this paper we propose a Long-short term memory
(LSTM) neural network that directly estimates the RUL of
the WTs. Here, the health monitoring and generation of RUL
prognostics is performed at system level, i.e., the wind turbine
is seen as an integrated system. Moreover, existing studies do
not consider the development of maintenance planning mod-
els for WTs based on prognostics, e.g., predictive inspection
planning for wind turbines. To the best of our knowledge,
we propose for the first time a maintenance planning model

for WTs based on RUL prognostics that are developed using
actual measurements and machine learning models.

In this paper, we propose a LSTM neural network for RUL
prognostics of WT. As datasets, we consider the recordings
of the SCADA systems of the EDP Wind Farm open-source
dataset (EDP, 2023). Different from existing studies, our ap-
proach involves the simultaneous health monitoring of mul-
tiple WT components such as the transformer, the gearbox,
the generator, the hydraulic system. Consequently, we define
the end-of-life of the WT as the occurrence of the first failure
among its components. We use a LSTM neural network to
estimate RUL prognostics for the WT seen as an integrated
system, i.e., we determine system-level prognostics. By ap-
plying Monte Carlo dropout in the testing phase of the LSTM,
we quantify the uncertainty associated with these prognos-
tics, i.e., we determine probabilistic RUL prognostics. These
prognostics are updated over time, as more measurements be-
come available. The results show that the LSTM network is
effective in accurately predicting the RUL of the WTs, even
in the early stages of usage. Last, taking into account the ob-
tained probabilistic RUL prognostics, we pose the problem
of WT inspections as a renewal reward process and develop
a planning model for inspections. The results show that the
RUL prognostics support a conservative planning of inspec-
tions. This inspection planning is adjusted over time, as prog-
nostics are themselves updated with newly acquired measure-
ments.

The remainder of the paper is as follows. Section 2 introduces
the open-source dataset considered for prognostics develop-
ment. Subsequently, in Section 3.1, the importance of these
features is quantified based on their SHAP values, and the
most important features are selected for prognostics develop-
ment. Section 3 proposes a LSTM neural network with Monte
Carlo dropout for system-level probabilistic RUL prognos-
tics for WT. Section 4 proposes a stochastic planning model
for WT inspections, which integrates the probabilistic RUL
prognostics obtained. Numerical results for WT system-level
RUL prognostics and WT inspection planning are presented
in Section 5. Last, conclusions are provided in Section 6.

2. DATA DESCRIPTION

We consider the Energias de Portugal (EDP) open-source dataset
consisting of time-series of sensor measurements recorded for
five offshore WT located in the West African Gulf of Guinea
in the period 1st January 2017 - 31st December 2017. The
information available in the EDP dataset consists of SCADA
measurements, meteorological recordings, and the logs of the
WT component failures, see also the complete list of mea-
surements (EDP, 2023). The capacity of the each WT is
10MW. The measurements are recorded every 10min. For
WT09, the logs recorded concern the Gearbox noise and Pitch
position error, which does not indicate a proper fault/damage.
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Table 1. Overview of data-driven prognostics for WT components, where ANFIS = Adaptive Neuro-Fuzzy Inference System,
(K)ELM = (Kernel) Extreme Learning Machine, NN = Neural Network, SVM= Support Vector Machine; ACC = Accuracy,
MA(P)E = Mean Absolute (Percentage) Error, NE = Normalized Error, PRC= Precision, (R)MSE = (Root) Mean Squared
Error, SSE= Sum Squared Error.

Reference Component Method Achieved Performance
(Li, Xu, Lei, Cai, & Kong, 2022) Gearbox NN RMSE = 0.0025
(Merainani, Laddada, Bechhoefer, Chikh, & Benazzouz, 2022) Bearing NN RMSE = 0.0025
(Kramti et al., 2021) Bearing NN graphs available
(Elasha, Shanbr, Li, & Mba, 2019) Gearbox NN SSE=661.98
(Pan, Hong, Chen, Singh, & Jia, 2019) Gearbox ELM RMSE=0.91, MAE=0.734, ACC=95.4%
(Carroll et al., 2019) Gear bearing NN; SVM ACC=72%; ACC=60%
(Cao, Qian, & Pei, 2018) Bearing SVM RMSE=16.4, MAPE=42.9%
(Herp, Ramezani, Bach-Andersen, Pedersen, & Nadimi, 2018) Bearing NN, GP 0.5 ≤PRC≤1
(Kramti, Ali, Saidi, Sayadi, & Bechhoefer, 2018) Bearing NN MSE=0.0023
(Teng, Zhang, Liu, Kusiak, & Ma, 2016) Bearing NN NE= 12.78%
(Chen, Matthews, & Tavner, 2013), Pitch system ANFIS ACC≥ 78%, prognostic horizon =21days,
(Chen, Matthews, & Tavner, 2015) ACC≥ 80%, prognostic horizon =14days

ACC≥ 86%, prognostic horizon =7days
(Zhao, Liu, Jin, Dang, & Deng, 2021) Bearing KELM 4.68% <NE<458.14%

As such, for our analysis, we consider the remaining four
WTs (WT01, WT06, WT07, WT11).

Preliminary feature selection

Feature engineering from existing studies on prognostics and
diagnostics for WTs (see also Table 1), indicate temperature-
related features, production power, the generator and rotor
speed rotation as parameters with a high explainability power
for failures. In this line, we make a preliminary selection
from the available parameters, leading to the following 31
features to be analysed for RUL prognostics: Average Tem-
perature Hydraulic Oil (◦C), Max/Min/ Average/STD Gen-
erator RPM (rpm), Average Temperature Bearing/ Bearing2
(◦C), Average Temperature Generator Phase 1/2/3 (◦C), Av-
erage Temperature Gearbox Oil (◦C), Average Temperature
Gearbox Bearing (◦C), Average Temperature Nacelle (◦C),
Max/Min/Average Rotor RPM (RPM), Average Temperature
High Volt Transformer Phase1/2/3 (◦C), Average Tempera-
ture Grid Inverter Phase1 (◦C), Average Temperature Con-
troller Top (◦C), Average Temperature Controller Hub (◦C),
Average Temperature Controller VCP (◦C), Average Temper-
ature Controller VCP Chokcoil (◦C), Average Temperature
VCP Cooling Water (◦C), Average Temperature VCP Cool-
ing Water (◦C), Average Temperature Spinner (◦C), Latest
Production Total Active Power (Wh), Average Temperature
Generator Slip Ring (◦C), Average Temperature Grid Rotor
Inverter Phase1/2/3 (◦C).

3. SYSTEM-LEVEL RUL PROGNOSTICS FOR WIND TUR-
BINES

We consider a WT consisting of multiple components. The
health of each component is monitored continuously by mul-
tiple sensors. We say that the system-level RUL of the WT is
the remaining time until the first failure of any one of these
components. We are interested in estimating the system-level

RUL of the WT based on the sensor measurements recorded.
At time step d (dth day), we have available the following mea-
surements for WT i, i ∈ {1, 2, . . . , n},

xid = {xi1,d, xi2,d, . . . , xim,d}, (1)

where m is the total number of considered features and xij,d
is the measurement corresponding to feature j, 1 ≤ j ≤ m
recorded on day d for WT i.

Then, the actual system-level RUL of WT i at time d is:

RULa(WTi) = min{τ(ci1)− d, τ(ci2)− d, . . . , τ(cin)− d},
(2)

where τ(cij), 1 ≤ j ≤ n is the time of failure of component
cij of WT i, and n the total number of components of WT i.

We are interested in estimating the system-level RUL of the
four WTs in the EDP dataset at various moments (k) in time.
Table 2 shows four Cases when each of the WT is the testing
set, while the datasets of the remaining three WTs constitute
the training and validation sets. The failure of three out of
the four WTs is due to a failure of the Hydraulic group. The
remaining WT fails due to a failure of the Transformer.

3.1. Feature importance using SHAP values

In Section 2, a total of 31 features has been considered. In
this section we quantify the importance of these features for
WT system-level RUL estimation using the Shapley additive
explanations (SHAP) values (Lundberg & Lee, 2017). SHAP
values quantify the impact of a feature on the RUL prognos-
tic. SHAP values are determined as follows:

ϕi =
∑

S⊆Fi

|S|!(|F | − |S| − 1)!

|F |! |f(S ∪ {i} − f(S))|, (3)
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Table 2. Overview of data used for testing, training and validation - EDP dataset for WT health monitoring.

Case 1 Case 2 Case 3 Case 4
Testing WT06 WT07 WT11 WT01
Training WT01, WT07 WT01, WT06 WT06, WT07 WT06, WT07
Validation WT11 WT11 WT01 WT11
First fault Hydraulic Group Hydraulic Group Hydraulic Group Transformer
Actual Lifetime 8 months 6 months 4 months 8 months

with F the set of all features considered for RUL prognostics,
S ⊆ F a subset of features obtained from the set F except
feature i, and f(S) the expected algorithm output given by
the set S of considered features. The SHAP value quantifies
the magnitude of the impact, i.e., how much a specific fea-
ture value contributes to the accurate estimation of the RUL.
A large SHAP value for a given feature indicates a large im-
portance of this feature for the RUL estimation.

For each of the four Cases, we select the 60% most impor-
tant features of the the total of 31 features, i.e., we select
20 features with the highest SHAP value, see Figures 1-4.
The results show that, although the WTs have various com-
ponents that trigger the failure of the entire system, i.e., either
the hydraulic group or the transformer, the average RPM of
the generator is the feature with the highest importance for all
four WTs. These confirms the findings of existing literature
(see also Table 1), that the health condition of the generator
is crucial for the overall operation of WTs. Most importantly,
these results show that regardless of the failure mode, the WT
can be seen as a system and the available measurements can
support the development of system-level prognostics.

3.2. Long-short term memory (LSTM) for probabilistic
RUL prognostics

Given the long-term dependencies in the measurements, as
well as the high nonlinearity of the features, we propose a
Long-short term memory (LSTM) with Monte Carlo dropout
(Hochreiter & Schmidhuber, 1997) to estimate the distribu-
tion of the RUL (probabilistic RUL prognostics) of the WTs
in each of the four Cases.

We consider a LSTM consisting of L layers, each consisting
of N neurons, and LeakyReLu activation layers (Graves &
Graves, 2012). The last layer of the LSTM is a Dense layer,
for which a ReLu activation function is assumed. The input
gate it, the output gate ot, and the forget gate ft of the LSTM
are defined as follows. The forget gate ft determines whether
to consider or not the previous state ct−1, i.e,

ft = σ(Wf · [ht−1, xt] + bf ) (4)

where xt is the current input, ht−1 is the previous hidden
state, Wf is a trainable weight, bf is bias. The input gate
determines whether to update the state of the LSTM using

the current observation, using a sigmoid layer:

it = σ(Wi · [ht−1, xt] + bi). (5)

where xt is the current input, ht−1 is the previous hidden
state, Wi is a trainable weight, bi is the bias. The output gate
ot determines whether the hidden state ht is passed to the next
iteration, i.e.,

ot = σ(Wo · [ht−1, xt] + bo). (6)

where xt is the current input, ht−1 is the previous hidden
state, Wo is a trainable weight, bo is the bias. Table 3 shows
the hyperparameters of the considered LSTM.

Table 3. Hyperparameters tuning - LSTM.

Number Layers 4
Neurons Layer 1 128
Neurons Layer 2 64
Neurons Layer 3 64
Neurons Layer 4 64
Dropout rate 0.5
Epochs 40
Batch size 32
Window length 3

Monte Carlo dropout for probabilistic RUL prognostics

Commonly, Monte Carlo dropout is applied in the training
phase of the neural networks to avoid overfitting. To obtain
the distribution of the RUL, i.e., to obtain probabilistic RUL
prognostics, we also apply Monte Carlo dropout in the testing
phase of the LSTM. In this line, (Gal & Ghahramani, 2016)
shows that such a neural network with Monte Carlo dropout
approximates a Bayesian neural network representing a deep
Gaussian process.

Let X be the samples in the training set of the LSTM, and
let Y be the corresponding RUL values. In a Bayesian neural
network, we aim to estimate the posterior distribution p(y|x,X, Y ):

p(y|x,X, Y ) =

∫
p(y|x, ω)p(ω|X,Y )dω (7)

with ω the weights of the neural network, p(y|x, ω) the prob-
ability that the RUL is y, given the test sample x and the
weights ω, and p(ω|X,Y ) the posterior distribution of the
weights, given the training samples X and Y .
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Figure 1. Case 1: WT06 - SHAP values of features.

Figure 2. Case 2: WT07 - SHAP values of features.
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Figure 3. Case 3: WT11 - SHAP values of features.

Figure 4. Case 4: WT01 - SHAP values of features.
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It is computationally expensive to analyze the posterior dis-
tribution p(ω|X,Y ) exactly (Gal & Ghahramani, 2016). As
such, we approximate p(ω|X,Y ) with a distribution q(ω)∗

that minimizes Kullback–Leibler divergence KL with the true
posterior distribution p(ω|X,Y ), i.e. (Blei, Kucukelbir, &
McAuliffe, 2017):

q∗(ω) = argminq(ω){KL(q(ω|p(ω|X,Y )))}. (8)

Using q(ω)∗, we approximate the posterior distribution of the
RUL of a test sample by:

q(y|x) =
∫
p(y|x, ω)q∗(ω)dω (9)

where q(y|x) is the approximation of p(y|x,X, Y ).

Lastly, we approximate the expected value ŷ of the RUL of a
test sample by:

ŷ = Eq(y|x)(y) =
1

M

M∑

1

ŷj(x, ω
j) (10)

where M is the number of forward passes through the neural
network, ωj are the weights of the neural network belonging
to the j-th forward pass (i.e., where some neurons are dropped
out), and ŷj(x, ωj) is the resulting RUL prediction from the
j-th forward pass through the neural network. For the distri-
bution of the RUL, we give each individual RUL prediction
ŷj(x, ω

j) a probability 1
M .

Performance metrics for RUL prognostics

To evaluate the ability of the LSTM model to predict the RUL,
we consider the Mean Absolute Error (MAE), the Root Mean
Square Error (RMSE), and the Continuous Ranked Probabil-
ity Score (CRPS), which are defined as follows.

MAE =
n∑

i=1

|RULa
i − ¯RUL

p
i |

n
, (11)

RMSE =

√√√√
n∑

i=1

(RULa
i − ¯RUL

p
i )

2

n
, (12)

with n the number of days over which predictions are made,
and ¯RUL

p
i the mean predicted RUL at day i, 1 ≤ i ≤ n.

Since we estimate the distribution of the RUL, to be able to
quantify the fitness of these distributions relative to the ac-
tual RUL (a point value), we consider the Continuous Ranked
Probability Score (CRPS) and the Weighted CRPS (CRPSW ).
Here, CRPS evaluates whether the estimated RUL distribu-
tion is centered around the actual RUL of the WT and whether
the variance of this distribution is low (a high sharpness of the
RUL prognostic) (Mitici, de Pater, Barros, & Zeng, 2023).
The Weighted CRPS applies a (larger) penalty β when over-

estimating the RUL then when underestimating the RUL. This
is of particular importance when planning the inspections of
the WTs - planning too late inspections (after the actual fail-
ure of the wind turbine) does not make effective use of the
prognostics to timely identify and act upon anticipated fail-
ures of the WTs.

CRPS is defined as follows (Gneiting & Katzfuss, 2014),

CRPS =
1

n

n∑

i=1

CRPSi, (13)

CRPSi =

∫ ∞

−∞
(Fŷi

(x)− I{yi ≤ x})2dx (14)

with I{yi ≤ x} =
{
1 if yi ≤ x
0 if yi > x.

The weighted CRPS (CRPSW ) is defined as follows (Gneiting
& Katzfuss, 2014):

CRPSW =
1

N

N∑

i=1

CRPSW
i , (15)

CRPSW
i = (2− β)

∫ yi

−∞
(Fŷi

(x))2dx (16)

+ β

∫ ∞

yi

(Fŷi
(x)− 1)2dx, 0 ≤ β ≤ 2.

4. INSPECTION PLANNING OF WIND TURBINES USING
PROBABILISTIC RUL PROGNOSTICS

In this Section we pose the problem of WT inspections as a
renewal reward process (Tijms, 2003), which integrates the
probabilistic RUL prognostics developed in Section 3.2. We
aim to determine optimal times for WT inspections.

We consider a renewal reward process {Nt} where the pro-
cess regenerates when a wind turbine is inspected, i.e., our
knowledge about the actual health condition of the wind tur-
bine is reset upon an inspection. At day k during the life
of the WT, we are interested in determining an optimal time
k + t∗k to inspect the WT. At day k, using the measurements
recorded up to day k and a LSTM with Monte Carlo dropout
(see Section 3.2), we estimate the probability that the RUL of
the WT is i days, i ≥ 0. Let ϕk(i) denote the probability that
the WT, after being used for k days, has a RUL of exactly i
days. To determine an optimal time to inspect the WT, we
consider the expected cost per unit of time:

[Expected cost over the current inspection cycle]
[Expected current inspection cycle]

. (17)

At day k, we are interested in finding an optimal time for
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inspection t∗k such that:

t∗k := argmintk>0
E[C(k, tk)]
E[L(k, tk)]

, (18)

with C(k, tk) the cost of inspecting the WT at day k + tk,
given that this WT has already been used for k days, and
L(k, tk) is the length of the inspection cycle of the WT.

If the WT is scheduled for inspection at day k + tk, then a
cost cr is incurred. If, however, the WT fails at some day
j, k < j < k + tk before an inspection is planned, then a
failure cost cf is incurred (corrective maintenance).

With this, the expected cost over the current inspection cycle
of the WT is:

E[C(k, tk)] = cf

tk−1∑

i=0

ϕk(i) + cr(1−
tk−1∑

i=0

ϕk(i)). (19)

Also, the expected current inspection cycle is:

E[L(k, tk)] = k +

tk−1∑

i=0

iϕk(i) + tk(1−
tk−1∑

i=0

ϕk(i)). (20)

Eq. (18) is solved using a numerical grid search. The estimate
ϕk(i) after every day k is obtained using a LSTM and the
methodology in Section 3.2.

5. NUMERICAL RESULTS

In this Section we illustrate the results obtained for the proba-
bilistic RUL prognostics and inspection planning for the four
WTs for which measurements are available at (EDP, 2023).

5.1. Probabilistic RUL prognostics for wind turbines

Table 4 shows the performance of the system-level RUL prog-
nostics for the WTs in the four Cases considered.

Table 4. Performance - RUL prognostics using LSTM.

MAE RMSE CRPS CRPSW

β = 1.9
Case 1: WT06 12.72 15.52 9.98 2.51
Case 2: WT07 11.30 13.65 7.86 9.16
Case 3: WT11 9.40 11.80 6.93 6.88
Case 4: WT01 19.35 22.42 14.68 3.11

The results show that the lowest MAE and RMSE are ob-
tained for WT11, while the highest MAE and RMSE are
obtained for WT01. However, when considering the prognos-
tics as input for inspection planning, we are interested in not
missing the failures. This may, however, occur when we over-
estimate the RUL and, based on these overestimates, we plan
late inspections. The Weighted CRPS captures the tendency
of the prognostics to overestimate the RUL. We consider a

large penalty for RUL overestimation (β = 1.9), given our
ultimate goal of planning inspections for WTs based on prog-
nostics. In this line, we are interested in planning inspection
timely, to anticipate the actual failures of the turbines rather
than missing these failures.

Figure 5. Case 1 - RUL estimation, WT06.

Figure 6. Case 2 - RUL estimation, WT07.

The results show that WT07 has the highest CRPSW =
9.16, despite having a relatively low MAE and RMSE.
This indicates that the RUL is predominantly overestimated
and a conservative inspection planning should be considered,
despite the low MAE and RMSE. The results also show
that WT06 has the lowest CRPSW = 2.51, despite having a
relatively high MAE and RMSE among all four turbines.
This indicates that the prognostics have the least tendency
to overestimate the RUL. These make the prognostics suit-
able for inspection planning, despite their high MAE and
RMSE. Overall, the results show that considering MAE
and RMSE alone when aiming to use prognostics for main-
tenance planning is not sufficient. Additional metrics such
as CRPSW , through their ability to evaluate whether the
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RUL is over/under-estimated, are particularly informative of
the suitability of the prognostics for maintenance planning.

Figure 7. Case 3 - RUL estimation, WT11.

Figure 8. Case 4 - RUL estimation, WT01.

The RUL prognostics obtained over time are shown in Fig-
ures 5 - 8. The RUL of WT06 and WT01 are predominantly
underestimated. The RUL of WT07 and WT11 are predomi-
nantly overestimated.

Figures 9 - 11 show the distribution of the RUL for WT06
(Case 1) at {202, 102, 2} days before the actual failure of the
WT. The results show that the sharpness of the estimated dis-
tribution increases closer to the time of failure of the WT.

5.2. Inspection planning for wind turbines using proba-
bilistic RUL prognostics

For inspection planning, we consider cf = 100.000 and cr =
100. Every day k (or equivalently after k days of usage),
based on the measurements collected up to this day, we de-
velop RUL prognostics, i.e., the prognostics are updated ev-

Figure 9. Estimated distribution of RUL, 202 days before the
actual failure of WT06.

Figure 10. Estimated distribution of RUL, 102 days before
the actual failure of WT06.

Figure 11. Estimated distribution of RUL, 2 days before the
actual failure of WT06.

ery day. Based on these prognostics, every day k we deter-
mine an optimal time t∗k to plan a WT inspection.

Figures 12 -15 show the results for the optimal inspection
times of the four WTs relative to the actual RUL and the mean
estimated RUL. For Case 1 - WT06, although the MAE and
RMSE are relatively high, the fact that CRPSW is low,
i.e., the overestimation of the RUL is low, is reflected in the
inspection planning - timely planning that does not miss the
failure of the WT. In fact, in the last phase of the monitoring
of this WT, it is consistently indicated that an optimal action
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Figure 12. Case 1: WT06, Optimal time inspection.

Figure 13. Case 2: WT07, Optimal time inspection.

Figure 14. Case 3: WT11, Optimal time inspection.

is to plan an inspection immediately.

For Case 2 - WT07, theCRPSW is the highest, i.e., the prog-

Figure 15. Case 4: WT01, Optimal time inspection.

Table 5. Optimal time for WT inspection.

RULa k ¯RUL
p

t∗k
Case 1: WT06

200 27 193.82 139
100 127 96.62 67
50 177 49.96 27
25 202 33.18 6

Case 2: WT07
150 14 135.44 101
100 64 94.11 68
50 114 38.61 37
25 139 26.5 24

Case 3: WT11
100 12 86.72 53
75 37 70.28 43
50 62 61.64 39
25 87 29.64 13

Case 4: WT01
200 18 192.69 118
100 118 74.69 59
50 168 28 4
25 193 8.46 0

nostics have the tendency to overestimate the RUL, which is
expected to delay the planning of the inspections leading to a
potential miss of the failure. This is reflected in the inspection
planning, particularly in the last phase of the monitoring of
the WT, see also Figure 13. For Case 3 - WT11, theCRPSW

is high, i.e. the prognostics have a tendency to overestimate
the RUL. As a result, delayed inspections are planned in the
last phase of the monitoring of the WT. For Case 4 - WT01,
despite the lowest achieved MAE and RMSE, a moderate
CRPSW is reflected in the inspection planning - timely in-
spection planning, particularly in the last phase of the WT
monitoring, when an immediate inspection is consistently in-
dicated as an optimal action (see also Figure 15). Overall,
for all four cases, the planning of the inspections is conserva-
tive, where timely inspections are indicated as being optimal
actions.
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Table 5 shows in detail several moments throughout the mon-
itoring of the WTs when inspections are planned (t∗k), relative
to the actual RUL (RULa), the usage of the WT (k), and the
mean estimated RUL ( ¯RUL

p).

6. CONCLUSIONS

This paper proposes a machine learning approach for system-
level probabilistic RUL prognostics for WTs. In contrast with
existing studies, which develop component-based prognos-
tics, we see the WT as an integrated system and develop
system-level RUL prognostics. These prognostics are fur-
ther employed to determine optimal moments for inspections
of the WTs, in anticipation of failures. To the best of our
knowledge, this is the first study that proposes a maintenance
planning model for WT based on data-driven prognostics. A
LSTM with Monte Carlo dropout is developed to estimate the
distribution of the RUL of the WTs, i.e., we develop proba-
bilistic RUL prognostics. By using dropout in the test phase
of the LSTM, the uncertainty associated with the RUL prog-
nostics is quantified. To plan inspections for the WTs, a
renewal reward process is proposed, which integrates these
probabilistic RUL prognostics.

We illustrate our approach for four offshore wind turbines lo-
cated in the West African Gulf of Guinea, and which have
been monitored in the period 1st January - 31st December
2017. The results show that the proposed LSTM estimates
well the RUL of the WTs, with a Mean Absolute Error rang-
ing between 9.40 days to 19.35 days when considering all
four wind turbines. Based on these RUL prognostics, inspec-
tions are planned conservatively, well ahead of the actual day
of failure. The results show that, although imperfect, prog-
nostics are informative for maintenance and support an effi-
cient planning of inspection tasks.

As future work we aim to improve our RUL prognostics by
considering additional features such as attention mechanisms
integrated into the neural networks.
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ABSTRACT

We present an investigation of how topological data analysis
(TDA) can be applied to condition-based monitoring (CBM)
of wind turbines for energy generation.
TDA is a branch of data analysis focusing on extracting mean-
ingful information from complex datasets by analyzing their
structure in state space and computing their underlying topo-
logical features. By representing data in a high-dimensional
state space, TDA enables the identification of patterns, anoma-
lies, and trends in the data that may not be apparent through
traditional signal processing methods.
For this study, wind turbine data was acquired from a wind
park in Norway via standard vibration sensors at different lo-
cations of the turbine’s gearbox. Both the vibration acceler-
ation data and its frequency spectra were recorded at infre-
quent intervals for a few seconds at high frequency and fail-
ure events were labelled as either gear-tooth or ball-bearing
failures. The data processing and analysis are based on a
pipeline where the time series data is first split into intervals
and then transformed into multi-dimensional point clouds via
a time-delay embedding. The shape of the point cloud is an-
alyzed with topological methods such as persistent homol-
ogy to generate topology-based key health indicators based
on Betti numbers, information entropy and signal persistence.
Such indicators are tested for CBM and diagnosis (fault de-
tection) to identify faults in wind turbines and classify them
accordingly. Topological indicators are shown to be an in-
teresting alternative for failure identification and diagnosis of
operational failures in wind turbines.

Simone Casolo et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The global demand for renewable energy sources has seen a
significant rise in recent decades, with wind energy emerg-
ing as a prominent contributor to sustainable power genera-
tion (Q. Wang, Dong, Li, & Wang, 2022). Wind turbines,
pivotal in harnessing wind energy, operate under diverse en-
vironmental conditions and mechanical stresses, making their
maintenance and monitoring crucial for optimal performance
and longevity. Condition-based monitoring (CBM) has emerged
as a proactive approach to monitor the health of wind tur-
bines, aiming to detect faults and predict potential failures
before they escalate, thus minimizing downtime and mainte-
nance costs (Stetco et al., 2019).
Traditional CBM methods often rely on spectral signal pro-
cessing techniques to analyze sensor data for anomaly detec-
tion and fault diagnosis. Signal analysis techniques are com-
monly used for fault diagnosis and typically apply tools such
as Fourier or wavelet analysis of frequency signatures from
accumulated time series generated from sensors installed on
wind turbines. Where possible, machine learning techniques
are then used to identify early signatures of failure in the data
and alert engineers as soon as the equipment’s health starts
deteriorating. However, frequency-based methods often re-
quire accumulating signals for a significant time before pro-
cessing them successfully, making it an ideal method for ana-
lyzing failures after they occur. Online fault detection is much
more challenging, and together with inherent complexity and
non-linearity in wind turbine data, pose challenges for con-
ventional analytical approaches.
To address these challenges, alternative data analysis tech-
niques have gained attention for their ability to extract mean-
ingful insights from complex datasets. Among those, topo-
logical data analysis (TDA) has recently risen as a possible
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Figure 1. Overview of how the gearbox vibration data are
processed by means of topological data analysis.

alternative. TDA is a branch of data analysis that focuses on
revealing the the underlying structure of datasets by analyzing
their shape: particularly their topology in high-dimensional
state spaces. By representing data as multidimensional point
clouds and leveraging mathematical tools from algebraic topol-
ogy, TDA enables the identification of intricate patterns, anoma-
lies, and trends that may not be discernible through traditional
signal processing methods alone (see Fig.1).

In this study, we explore how TDA techniques can be em-
ployed to analyze vibration data collected from wind turbines
at a wind park. Vibration sensors placed strategically in dif-
ferent locations of the turbine’s gearbox provide high-frequency
data capturing both vibration acceleration and frequency spec-
tra.By employing a systematic data pipeline, including time-
series segmentation and time-delay embedding, we transform
the raw sensor data into a multidimensional point cloud and
then, process it via topological analysis.
The primary objective of this research is to evaluate how topo-
logical indicators derived from TDA, such as Betti numbers,
information entropy, and signal persistence can be used or
complement more traditional spectral analysis as key health
indicators for CBM and fault diagnosis in wind turbines.

2. DATA DESCRIPTION

For this analysis, we use vibration data collected from two
wind turbine gearboxes from a wind park located in Norway.
The data sets are proprietary, owned by the wind park op-
erator ANEO (www.aneo.no) and this work is the first pub-
licly available analysis of the data. The data was collected
using accelerometers, located at various positions in the gear-
box. For the analysis, we focused on sensors that were phys-
ically closest to the known failure positions and most corre-
lated with the time of failure of the gearbox. The consid-
ered sensors are located at the gearbox high-speed stage front
(GbxHssFr), at the gearbox intermediate stage (GbxIss), at
the gearbox planetary stage (Gbx1Ps), and at the non-drive
end of the generator (GnNDe). The left panel in Figure 2

show a 0.05 s example of vibrations recorded from GbxHssFr.
The vibration / acceleration data were sampled at 25.6 kHz
for 10 seconds at infrequent intervals. The two cases have re-
spectively 23 and 21 samples of 10 s length with a sampling
rate of 25.6 kHz. The data is collected at infrequent intervals
over approximately a year until the time when failures hap-
pened, and the equipment was stopped for maintenance. In
the first case, data were acquired from 2022-10-28 to 2023-
10-11 and data ended with a ball bearing failure (BBF) at the
non-drive end of the generator. In the second case, data was
recorded from 2022-05-24 to 2023-06-21 ended with a gear
tooth failure (GTF) at the planetary stage section of the gear-
box.

3. METHODS

In this section, we delineate the methodologies employed for
analyzing complex data structures, focusing particularly on
spectral analysis and topological data analysis (TDA). Spec-
tral analysis, rooted in the principles of linear algebra and
signal processing, extracts valuable insights from data by de-
composing it into its constituent frequencies. Conversely,
topological data analysis, drawing from the field of algebraic
topology, examines the shape and connectivity of data through
the lens of persistent homology, providing a holistic under-
standing of its underlying structure.
Both spectral analysis and TDA offer distinct yet complemen-
tary approaches to understanding complex datasets. While
spectral analysis emphasizes frequency-based decomposition,
TDA highlights the intrinsic topological features of the data.
By comparing and contrasting these methodologies, we aim
to elucidate their respective strengths, limitations, and appli-
cability in various analytical contexts. This comparative anal-
ysis serves as a foundation for our subsequent exploration and
interpretation of results, contributing to a comprehensive un-
derstanding of the dataset under investigation.

3.1. Spectral analysis

Spectral analysis, a fundamental technique in signal process-
ing and data analysis, provides a powerful framework for de-
composing complex data. Rooted in the principles of Fourier
series, spectral analysis offers invaluable insights into the un-
derlying structure and dynamics of various data types across
diverse domains, including engineering, physics, biology, and
finance.
At its core, spectral analysis aims to characterize the fre-
quency content of a signal or dataset. By representing data
in the frequency domain, analysts can identify dominant pat-
terns, periodicities, and trends that may not be readily ap-
parent in the time or spatial domain. This decomposition fa-
cilitates the extraction of meaningful information, enabling
researchers to discern underlying patterns, detect anomalies,
and make informed predictions.
Spectral analysis is a common tool for condition monitoring
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in wind turbines (Z. Zhang, Verma, & Kusiak, 2012; Xiao et
al., 2020). Vibration data are typically collected from sensors
placed in correspondence to moving elements in turbine gen-
erators and gearboxes, subject to wear and mechanical failure.
Data are analyzed to identify anomalies and expose drift and
changes in the data that can be associated with a degradation
of the system health and, inturn, lead to its mechanical failure
(Tchakoua et al., 2014; Q. Wang et al., 2022; Stetco et al.,
2019).
One of the key advantages of spectral analysis lies in its abil-
ity to unveil hidden relationships and structures within data.
Through techniques such as Fourier transform, wavelet anal-
ysis, and singular value decomposition (SVD), analysts can
disentangle complex signals into simpler components, each
representing a distinct frequency or mode of variation. This
spectral decomposition forms the basis for a wide range of ap-
plications, including signal filtering, noise reduction, feature
extraction, and system identification.

3.2. Topological data analysis

Topological data analysis allows the interpretation of the spa-
tial arrangement of data. This approach has been developed
in the last decade and successfully applied to the analysis of
data in several fields of engineering, fluid mechanics (Casolo,
2022), physics and biology (Wasserman, 2018). Here we will
present a brief introduction to the topic: for a full exposition
of this approach, we recommend the excellent articles from
Perea and Harer (Perea & Harer, 2015), Chazal et al. (Chazal
& Michel, 2021) and Smith et al. (Smith, Dłotko, & Zavala,
2021).
A common assumption in data analysis is the hypothesis that
there exists a suitable space of parameters where data happen
to form a manifold. In this case, it would be fair to assume
that the shape of such a manifold would contain information
about the data. TDA is one of the tools that can be used to
interpret such information. Univariate time series of a scalar
signal is not immediately suitable to be analysed with TDA.
The signal is therefore embedded with a time-delay approach
to form a high-dimensional space via a procedure known as
Takens embedding(Takens, 1981). This method embeds a
time signal into a vector without loss of information, by defin-
ing two parameters: the time-delay τ and the embedding di-
mension d. Then, the time series x(t) is sampled in d-points,
each separated by a time τ . The embedded d-dimensional
vector is then built as:

x(t) = {x(t), x(t− τ), . . . , x(t− dτ)} (1)

As the time series evolves in time, it can be sampled repeat-
edly to build a series of vectors, which are accumulated to
form a point cloud in d-dimensions. This cloud samples the
manifold on which the data lays.
Once the data are represented in the d-dimensional space of
the embedding, this can be analyzed by using algorithms de-

veloped in algebraic topology. To build the manifold, it would
be required to connect each vector, i.e. point in the cloud
within a given radius around each point, to form a network
or a cell complex. This process is performed by connecting
points lying within a given radius via the creation of Vietoris-
Rips complexes: a simplicial (cell) complex representing the
connectivity between data points in a dataset. To encode the
complexity of the point cloud, we then compute a nested se-
ries of complexes that are formed at every point increasing
the value of the radius in a process known as filtration. The
construction of the complex involves considering all possible
subsets of data points and connecting those that are within a
specified distance threshold. Overall, the point cloud gener-
ated from the time series is a sampling of the shape of the
data, and the filtration process generates several simplicial
complexes which are the computational descriptions of the
shape of the data. As the filtration parameter increases, the
Vietoris-Rips complex captures increasingly complex topo-
logical features, ranging from individual points to higher–
dimensional structures such as loops and voids. Typically,
these features are unique to the data manifold (Attali, Lieu-
tier, & Salinas, 2011) and are the topological structures we
consider when analyzing the data.
The presence of loops, voids, etc. is encoded in the concept of
homology. Persistent homology analyze the development of
data sets by considering the evolution of topological features
across different scales. It quantifies the persistence of these
features as they emerge, merge, or disappear, providing a ro-
bust framework for capturing and characterizing the essential
topological structure of complex datasets. Each structure then
has a birth and a death value at a given radius of the filtration
process, which can be recorded in a diagram known as a per-
sistence diagram, unique for the analyzed shape. Each point
in the diagram corresponds to a topological feature per each
dimension (connected components in dimension 0, loops in
dimension 1, voids in dimension 2, etc.) with its coordinates
indicating the scale at which the feature is born and dies (see
Figure 2 for an example of a persistence diagram). The per-
sistence of a feature is measured as the difference between its
death (d) and birth (b) scales. Naturally, persistence diagrams
are non-empty only above the diagonal as the death of a fea-
ture would occur only after its birth, and the more ’persistent’
a feature is, the further this would lay from the diagonal line.
By analyzing persistence diagrams, it is possible to identify
persistent features that are robust across multiple scales and
distinguish them from transient noise or artefacts in the data.
Topological indicators in each homology dimension Hk can
be extracted from persistence diagrams and used to analyze
data.
While TDA can be applied to uncover the shape of the data
manifold for a signal of an arbitrarily long time, it can also
be applied to a sequence of short time windows, sliding for-
ward in time and partially overlapping (Perea & Harer, 2015).
This sliding windows approach can be used to uncover the lo-
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cal structure of data and their evolution and it has been used
successfully to study the dynamics of mechanical systems.

3.3. Topology of vibration signals

Topological methods are expected to work particularly well
for analyzing periodic time signals and their changes. Math-
ematically, it can be shown that periodic signals which can
be approximated with a trigonometric function of a given
frequency, can be embedded into a point cloud of elliptical
shape, hence in a loop that should be detected by a high per-
sistence signal of dimension 1 (H1) (Perea & Harer, 2015).
When the signal is instead composed of combinations of more
frequencies these give rise to more complex manifolds such
as tori and higher dimensional structures (Perea, 2016).
In the case of oscillating systems, according to the Arnol’d-
Liouville theorem in dynamical system theory, systems of n
harmonic oscillators give rise to trajectories on a n-dimensional
torus. This phenomenon emerges due to the conservation
of action variables, which characterize the system’s motion
in phase space. In a system of harmonic oscillators, each
oscillator contributes a set of action-angle variables, repre-
senting the oscillation’s amplitude and phase in each dimen-
sion. These variables remain constant over time, preserv-
ing the system’s dynamics. As a consequence, trajectories in
phase space form closed loops, tracing out toroidal surfaces
(Arnol’d, 1989). This behaviour stems from the periodicity
of harmonic motion, enabling the system’s state to return to
its initial configuration after completing a cycle. The toroidal
topology of these trajectories reflects the periodicity and con-
servation of action variables, illustrating a fundamental prin-
ciple of dynamical systems theory.
When a vibrating mechanical system such as the gearbox of a
wind turbine oscillates, it is reasonable to expect, accounting
for deviation and noise, a behaviour similar to that of a har-
monic oscillator, hence a trajectory in phase space spanning
a manifold similar to a torus. In this case, it would be reason-
able to expect some homology signatures that should be visi-
ble from the persistence diagrams, making persistent homol-
ogy a good candidate method for characterizing the dynamics
of vibrations at the gearbox and, hopefully, spotting the ap-
pearance and evolution of abnormal behaviour from sensors’
time series.

3.4. Analysis strategy

In this work, we have chunks of high-frequency data sparsely
collected, each a few weeks or months apart. Every chunk of
data is sampled with 25.6 kHz for a period of 10 s, allowing
for spectral, spectral-temporal or topological data analysis.
We assume that any changes happen on time scales of days
or weeks, and hence the data is stationary over each of those
10 s segments. Therefore, the main strategy of our analysis
focuses on finding trends between time segments as we get
closer to the failure time.

The key challenge in this work is the lack of ground truth,
as we do not know the onset of the damage that eventually
led to the failure of the gearbox. Therefore, we use the early
stages of data as a baseline, assuming that the damage de-
veloped later. In other words, we are looking for system-
atic deviations from the early state which is assumed to be
healthy. Topological data analysis was performed with the
Giotto-TDA code suite (Pérez, Hauke, Lupo, Caorsi, & Das-
satti, 2021). Time series from vibration sensors were embed-
ded using Takens embedding with the optimal time delay and
embedding dimension chosen by the built-in standard heuris-
tics based on mutual information (Fraser & Swinney, 1986;
Abarbanel, Kennel, & Brown, 1992). Persistence diagrams
D were then compiled from the Vietoris-Rips complexes ob-
tained from the filtration and used to compute the following
topological indicators:
The maximum persistence, defined as the infinity norm for
each homology dimension:

PHk
∞ (DHk

) = max
{b,d}∈D

|d− b| (2)

This is a useful shape indicator as noise gives rise to points in
D with a short lifetime, while relevant features of the points
cloud (e.g. loops) are expected to have high persistence.
The normalized persistence entropy is another measure of
complexity (Atienza, Gonzalez-Diaz, & Rucco, 2019; Atienza,
Gonzalez-Dı́az, & Soriano-Trigueros, 2020), EHk

(D), expressed
as a measure of the distribution of points along the diagram
based on Shannon’s entropy formula:

EHk
(D) = − 1

log2 S(D)

∑

{b,d}∈DHk

|d− b|
S(D)

log2

( |d− b|
S(D)

)

where the amplitude S(DHk
) for a given dimension is defined

as:
S(DHk

) =
∑

{b,d}∈D

|d− b| (3)

Betti curves are another informative topological indicator,
which measures the amount of k-dimensional topological fea-
tures i.e. the Betti number, βk (Hatcher, 2002), at each value
of the filtration parameter. In practice, these ”count” the num-
ber of k-dimensional holes of a space: β0 represents con-
nected components, β1 circles, β2 voids, etc. As an exam-
ple, for a two-dimensional circle the set of Betti numbers
{β0, β1, β2} are {1, 1, 0}, for a filled disk {1, 0, 0}, a hollow
sphere {1, 0, 1}, for a filled ball {1, 0, 0}, for a torus {1, 2, 1},
etc.
Other indicators are the f -family of indicators defined here,
as proposed by Adcock et al. (Adcock, Carlsson, & Carls-
son, 2016) and used in TDA for the anomaly detection in ro-
tating equipment for manufacturing (Yesilli, Khasawneh, &
Otto, 2022b; Khasawneh & Munch, 2016) as they combine
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Figure 2. Left to right: Raw time-series signal, embedded point cloud and persistence diagram for GbxHssFr sensor at normal
operation state. Note the toroidal point cloud, resulting from the embedding of the periodic time series. The loop structure
is revealed in the persistence diagram as a point (yellow) far from the diagonal, where points created by signal noise tend to
accumulate.

Figure 3. Fourier transform (normalised to counts) of the sig-
nal recorded on 2023-10-28 for GnNDe-BBF and GbxHssFr-
BBF. The vertical lines indicate the frequency intervals
for which the most dominating peaks are investigated for
GbxHssFr.

the highest persistence with amplitude information:

f1 =
∑

i bi · (di − bi)

f2 =
∑

i(dmax − di)− (di − bi)

f3 =
∑

i b
2
i · (di − bi)4

f4 =
∑

i(dmax − di)2 − (di − bi)4

(4)

4. DATA ANALYSIS

No data cleaning or pre-processing has been performed to the
signal prior to the analysis described in Section 3, hereafter
addressed as ’raw data’.

4.1. Bearing Failure

The bearing failure was reported at the non-drive end of the
generator, corresponding to the location of the sensor labelled
as ”GnNDe” and the signal was recorded sporadically be-
tween October 2022 and the failure on November 11 2023.
Each time series records acceleration data for the sensor and
the corresponding frequency spectrum is computed from the

Figure 4. Peak height (left axis, circles) and width (right axis,
crosses) for three frequency signatures (most dominant peak
in the frequency ranges [1000, 1800], [1800, 2300], [2300,
3000] Hz) for GbxHssFr in the bearing failure case.

raw signal through a Fast Fourier Transform (FFT) approxi-
mation. Figure 3 shows the spectrum for the signal recorded
at the GnNDe (blue) and at the earliest available timestamp,
28-10-2023. We assume this to correspond to a state of ”nor-
mal operations”.
Topological analysis shows the point cloud corresponding with
GnNDe is not describing a torus, but rather a semi-uniform
ball, indicating non-periodic or very noisy behaviour. As a
consequence, the H0 persistence can only be interpreted as a
measure of how much clustered or diffused the data are in the
parameters space, while H1 and higher-dimensional homol-
ogy signals are expected to be low and not significant. Indeed,
the only noticeable trend in the topological indicators is a de-
crease in H0 persistence and an increase in entropy, typically
as a consequence of a progressively less structured and more
noisy signal. At a closer look, other sensor signals seem more
suitable for analysis. In particular, the intermediate and high-
speed stage sensors (GbxIss and GbxHss, respectively) show
a more periodic and regular behaviour. Indeed the high-speed
front (GbxHssFr) sensor shows a clear oscillating signal and
a frequency spectrum dominated by a peak at around 1400Hz
and its multiples (orange spectrum in Figure 4). The embed-
ded signal clearly shows a toroidal shape, a ”filled” torus con-
sisting of one main loop induced by the main frequency com-
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Figure 5. Topological indicators computed for the signal
GbxHssFr in the bearing failure case. Highlighted the most
significant anomaly, dated 2023-10-08.

ponent, and the direction orthogonal to the loop blown up by
the noise. The corresponding persistence diagram then shows
a high persistence point for H0 and one at H1 corresponding
to the loop and proportional to its size.
The analysis of the evolution of the GbxHssFr signal is not
trivial. Figure 3 shows the time development of the most
dominant peak in each of the three frequency bands shown
in Figure 4. We found that the frequencies do not shift sig-
nificantly until the time of the failure (not shown). The cor-
responding peak heights and widths show a larger spread, es-
pecially at the lowest frequency. We also measure the evo-
lution by computing the mutual distance between the vectors
containing Fourier coefficients for each time series. This dis-
tance becomes more evident between the signal in the early
timestamps (i.e. normal operations) and signals in a few spe-
cific days close to the failure, in particular at 2023-10-08 and
2023-10-10, one and three days from the failure, especially
for the components included from 0 to 1800Hz.
We observe a similar behaviour in the skewness and kurtosis
of the raw signal, which show a slow decreasing trend, with
a very high spike in the latter at the timestamp 08-10-2023, 3

Figure 6. Topological indicators obtained by averaging the
results of several sliding windows of 5ms, computed for each
of the chunks for GbxHssFr in the bearing failure case. The
most significant anomaly is dated 2023-10-08.

days from the point of failure, which was not evident from the
spectra alone. The monitoring of kurtosis in the early detec-
tion of bearing failures is well-known in the literature and it
is likely to be a good indicator in this case as well (H. Zhang,
Chen, Du, & Yan, 2016; Chauhan et al., 2024; Sawalhi &
Randall, 2004).

The development of TDA indicators over time are shown
in Figure 5 for GbxHssFr. Indeed most indicators show a
sharp change around 08-10-2023, particularly the indicators
that include the maximum persistence in dimension 1, e.g.
PH1∞ , f2(H1) and f4(H1). When applying the sliding win-
dows approach of TDA and focusing on the short-term dy-
namics of the signal, the topological indicators are computed
for short time windows (5ms) across one signal and then av-
eraged (Figure 6). This deep dive allows us to expose the
dynamics of the signal, how the topology of the point cloud
changes on short timescales and, in turn, whether the signal
frequencies are finely modulated. The sliding window anal-
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Figure 7. Left to right: Raw time-series signal, embedded point cloud and persistence diagram for GbxHssFr sensor recorded
at 2023-10-08. Comparing the point and the persistence diagram with Figure 2 the loop structure of the point cloud has
disappeared, together with the high persistence H1 point in the diagram.

ysis is in perfect agreement with the Fourier analysis and the
kurtosis signal, where a sharp change is visible on 2023-10-
08. The change in the TDA results can be ascribed to a change
in the average frequency of the signal, leading to a shrinkage
of the toroidal point cloud to the point of almost closing the
’hole’ of the torus (see Figure 7). This leads to a temporar-
ily abrupt decrease in the persistence of the H1 feature, and
an increase in its entropy (entropy scales inversely with the
smoothness of the manifold). There is also an apparent am-
plitude modulation of the raw signal which is hard to capture
with TDA, but has been linked before with bearing failures in
wind turbines (Jiang, Zhang, Xiang, Yu, & Xu, 2023).

4.2. Gear-tooth failure

A gear tooth damage event was reported on a different wind
turbine in the same wind park in July 2023. The signal recorded
for the sensor located closest to the failure, Gbx1Ps, has a
frequency spectrum fairly similar to that of the high-speed
sensor, GbxHssFr: dominated by few isolated frequency con-
tributions. The only significant feature we could identify in
the data is a drift in the peak width, similar to the case of the
bearing fault, starting around May 2023 (see Figure 8).
Interestingly, when integrating the spectrum in the frequency

range recommended by standard ISO 10816-3 (hereafter de-
noted Gbx1Ps.ECU2 where the signal is demodulated between
500-2kHz with the RMS broadband value between 1-150Hz).
it appears more evident that a sudden jump in the signal of
about 50% occurs between April and May 2023, as shown in
Figure 8.
Following the same process as for the bearing fault, we fo-
cus on the high-speed gear sensor GbxHssFr, which shows a
more regular oscillation pattern (see Figure 9). We apply both
the Fourier and TDA analysis to uncover any possible failure
signature in the data. Analogously to the bearing fault case,
skewness and kurtosis show a drop, associated with an in-
crease in the signal’s median, starting from around May 2023.
The topology of the data is again that of a ”filled” torus (Fig-

ure 9), which is topologically equivalent (homotopy equiva-
lent) to a circle in 2 dimensions. This means that it should be
possible to reduce the dimensionality of the Takens embed-

Figure 8. Selection of health indicators for the gear-tooth
failure from sensor Gbx1Ps. FFT distance is the geomet-
ric distance between the average of the first three spectra in
the dataset and each individual spectrum in the range [1800,
3000] Hz. Gbx1Ps.ECU2 is the indicator from standard ISO
10816-3. Peak 2 width and height are the characteristics of
the dominating peak in the range [1800, 2300] Hz. Kurtosis
is the kurtosis of the raw vibrations. All quantities have been
normalised to their maximum value in the time interval.

ding to 2, without loss of information. We, therefore, focused
on this reduced model for our analysis. The sliding windows
processing for the GbxHssFr signal reveals a change in most
of the topological indicators (PH0,1

∞ , EH0,1 , SH0,1), etc.) at
the same timestamp in April, and again more sharply only 2
days before the failure in July 2023, as visible from Figure
10. Close to the failure there is an increase in the persistence
and a decrease in the entropy, signalling a change in the size
of the loop when averaged across the 10 s of the signal at a
given timestamp, but not in its shape as the Betti number in-
dicator for dimension 1 remains stable.
In TDA, periodic functions get embedded in loops of a size
proportional to the size of the sliding window (Perea & Harer,
2015), therefore, a change in the size of the torus loop should
correspond to changes in the period of the gearbox vibrations
or some kind of frequency modulation, close to the failure
event. By looking at spectrograms for the GbxHssFr signal
(Figure 11) it is possible to recover some of the dynamics of
the peaks in the spectrum. On one hand, at timestamps far
from the failure, the spectra shift only slightly across the 10 s
of the recorded signal, and mostly the peaks tend to change
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Figure 9. Left to right: Raw time-series signal, embedded point cloud and persistence diagram for GbxHssFr sensor in the
gear-tooth failure case. Note the toroidal point cloud, resulting from the embedding of the periodic time series.

width with a timescale of a few seconds. On the other hand,
close to the failure it appears that the two main peaks at 1350Hz
and 2700Hz ”jump” as their relative height tends to oscillate
on a 3-4 Hz timescale, i.e. about 40 times across the measure-
ment duration in a jittering fashion. This frequency modula-
tion should also be noticeable in the TDA results, as the size
of the loop in the point cloud should change as well. Indeed,
this becomes evident when looking at the maximum persis-
tence in dimension 1 (PH1∞ ) and in particular to the radius of
gyration (Rgyration) for the point cloud, defined as:

Rgyration =

√√√√ 1

N

N∑

i=1

(ri − rCM)2 (5)

where N is the total number of points in the point cloud, ri
represents the position vector of the i-th point, rCM denotes
the position vector of the centre of mass of the point cloud.
The gyration radii for the data farther and closest in time to

the gear tooth failure are shown in Figure 12 and manifests
as a rapid oscillation in the gyration radius. This rapid mod-
ulation could indeed be a signature of imminent equipment
failure. Interestingly, we notice this kind of modulation is
common in other engineering disciplines, such as metal turn-
ing and machining, where is a signature of ”chattering”, a
pathological resonance in the turning process (W.-K. Wang,
Wan, Zhang, & Yang, 2022). Unsurprisingly, TDA has been
successfully applied to chatter detection and it was shown
to be useful in the early detection and the machine learning
identification of such anomalies is several industrial settings
(Khasawneh, Munch, & Perea, 2018; Yesilli et al., 2022b;
Khasawneh & Munch, 2016; Yesilli, Khasawneh, & Otto,
2022a).

5. CONCLUSION

In this study, we have explored the application of topologi-
cal data analysis (TDA) in conjunction with spectral analysis
for condition-based monitoring (CBM) of wind turbines. Our
investigation focused on analyzing vibration data aiming to
detect and diagnose potential faults in gearbox components.

Through TDA, we transformed raw vibration data into multi-
dimensional point clouds and leveraged topological indica-
tors such as Betti numbers, persistence diagrams, and en-
tropy to characterize the underlying structure of the data. We
compared TDA with traditional spectral analysis methods and
observed that TDA offers complementary insights, particu-
larly in identifying complex patterns and anomalies that may
not be apparent through conventional signal processing tech-
niques alone.
Our analysis revealed promising results in using TDA for
fault detection and diagnosis. In the case of bearing fail-
ure, we observed significant changes in topological indica-
tors, particularly in persistence and entropy, preceding the
failure event. Similarly, for gear-tooth failure, TDA high-
lighted distinct changes in the structure of the point cloud,
indicating the onset of damage. Furthermore, by integrating
spectral analysis with TDA, we were able to uncover addi-
tional dynamics in the data, such as frequency modulation,
which could serve as early indicators of equipment deteri-
oration. These findings suggest the potential of TDA as a
valuable tool for CBM in wind turbines, offering a comple-
mentary approach to monitoring and diagnosing faults and
to proactive maintenance strategies in renewable energy gen-
eration. While TDA is only slightly more computationally
demanding than the more traditional spectral analysis meth-
ods, it offers additional visual support by providing a mani-
fold representing the data. Changes in the manifold of data in
phase space correspond to changes in the vibration dynamics
of the system, as is well known from dynamical system the-
ory and therefore changes in the system’s health may be more
easily inferred by analyzing the shape of the data in addition
to its spectral features.
Future research could explore the integration of TDA with
machine learning techniques for more robust fault detection
algorithms. Additionally, incorporating real-time monitoring
capabilities could enhance the practical applicability of TDA
in industrial settings.
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Figure 10. Topological indicators obtained by averaging the
results of several sliding windows of 5ms, computed for each
of the signal GbxHssFr in the gear tooth failure case.
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NOMENCLATURE

Note that this section is optional.

TDA Topological Data Analysis
CBM Condition Based Monitoring
Gbx Gearbox
SV D Singular value decomposition
BBF Ball bearing failure
GTF Gear Tooth Failure
RMS Root-Mean-Square

Figure 11. Spectrogram of first and second to last data point
before failure.

Figure 12. Radius of gyration from GbxHssFr vibration data
recorded at the first data point (blue) and the last data point
(red) before the failure event.
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ABSTRACT 

Many articles have been published utilizing machine learning 
algorithms for condition-based maintenance through the 
analysis of vibration signals. One extensively researched 
topic is the classification of fault types in rolling bearings. 
There is a fairly widespread problem in the evaluation of 
these learning algorithms, where the separation of examples 
between the test and training sets is incorrect, leading to an 
optimistic conclusion about the algorithm's performance even 
when it is not the case. In this article, we will review this issue 
and explain how the data should be properly divided between 
the test and training sets to avoid this occurrence. 

1. INTRODUCTION 

Condition-based maintenance of rotating machinery, through 
the analysis of vibration signals, can significantly reduce 
maintenance costs and also help prevent catastrophic 
accidents (Matania et al., 2024; Randall, 2021). Over the 
years, a wide variety of machine learning algorithms have 
been developed to enhance traditional signal processing 
methods for vibration analysis (Lei, 2017) .  
 
One of the topics extensively explored in the field is the 
classification of fault types in bearings using machine 
learning algorithms (Lei et al., 2020). In this task, the 
algorithm is required to predict the fault type from four 
possibilities for a given input record: healthy condition (i.e., 
no fault), fault in the inner race, fault in the outer race, or fault 
in the rolling element. To achieve this, the algorithm is 
provided with examples of input records with various fault 

types during the training phase, and it predicts the fault type 
for new input records during the testing phase.  
 
A wide variety of machine learning algorithms have been 
applied to this task. The first type comprises classical 
machine learning algorithms, where a domain expert extracts 
correlated features related to the fault, and the learning 
algorithm learns the relationship between these features and 
the fault type (Shalev-Shwartz & Ben-David, 2014c). The 
second type, developed later during the third wave of deep 
learning, utilizes deep neural networks to address this 
problem. Unlike classical algorithms, the neural network 
autonomously learns features that connect the vibration 
signals to the fault type, essentially eliminating the need for 
a domain expert (Goodfellow et al., 2016). In both types of 
learning algorithms, many studies incorrectly split the 
training set and the test set, leading to significant test-training 
leakage (Kapoor & Narayanan, 2023) that results in 
inaccurate, overly optimistic performance evaluations of the 
examined algorithms (Hendriks et al., 2022). 
 
The first type of test-training leakage, which is also the more 
problematic of the two, involves splitting the same input 
record into different segments and randomly distributing 
them between the test set and the training set. Figure 1 
illustrates this type of splitting. This splitting is 
fundamentally flawed, as many features in the same input 
may be unrelated to the fault type, causing the learning 
algorithm to inadvertently learn them. Often, when 
disassembling the test rig to change the tested bearing, there 
is a change in the vibration signature unrelated to the fault 
type at all. For example, researchers from the SKF group 
found evidence of this phenomenon in a study on fault 
severity assessment (Liefstingh et al., 2021). They 
demonstrated that the learning algorithm learned features 
from the vibration signature related to the transfer function of 
the test rig instead of information related to the fault. In such 
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a case, when segments from the same record are divided 
between the training and test sets, the learning algorithm may 
seem to predict the fault type well, although it actually relates 
the segments from the same records based on the 
characteristics of the transfer function. 

 
Figure 1. Illustration of random split of segments between 

the training and test sets. 

The second type of test-training leakage involves the random 
separation of different records of the same fault type with the 
same fault shape precisely between the test and training sets. 
Figure 2 illustrates this type of improper separation. Each 
fault type can exhibit a wide variety of shapes. For example, 
a fault in the outer race can manifest in numerous different 
shapes and sizes, potentially even an infinite number. In 
practice, the likelihood that the exact shape of the fault in a 
real-world scenario matches one of the faults the algorithm 
learned from in the training set is very low. Many datasets 
record each fault multiple times. Randomly distributing these 
records between the test and training sets is incorrect and 
does not represent reality. In such a scenario, the algorithm 
may learn features related to the shape of the fault rather than 
its type, leading to overly optimistic evaluated performances. 
Furthermore, in some cases, the records of the same fault 
shape do not include the assembly of the test rig. 
Consequently, the algorithm may learn features from the 
vibration signature related to the transfer function of the test 
rig rather than information related to the fault, similar to the 
previous case of random segment split. 

 
Figure 2. Illustration of random split of records between the 

training and test sets. 

Figure 3 illustrates the correct splitting for evaluation 
learning algorithms: all records of each fault shape are either 
sent to the test set or to the training set. Following this 
separation, each record can be further divided into smaller 
segments if necessary. In this approach, to achieve an 
accurate estimation of performance, it is recommended to use 
K-fold testing. For example, in this study, performance 
evaluation in the test is implemented using the leave-one-out 
procedure, which is an extreme form of K-fold testing. 

 
Figure 3. Illustration of split by fault shape between the 

training and test sets. 

Section 2 will discuss the datasets analyzed in the article, and 
Section 3 will cover the learning algorithms. Section 4 will 
demonstrate that indeed, both segment split and record split 
lead to optimistic results compared to the correct way of fault 
shape split. Section 5 will summarize the article and present 
the conclusions. 

2. TESTED DATASETS 

Two datasets that are frequently used for evaluating machine 
learning algorithms for fault classification in rotating 
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machinery are discussed in the article. The first dataset, Case 
Western Reserve University dataset (CWRU), is accessible 
via the link (Case Western Reserve University Bearing Data 
Center Website, n.d.) and is extensively described in the work 
by Smith and Randall (Smith & Randall, 2015). It is 
important to note that this dataset has several issues, as 
explained by Smith and Randall, yet for unknown reasons it 
is still widely utilized. The CWRU test rig is illustrated in 
Figure 4. The CWRU dataset comprises a total of 416 distinct 
records, but in practice, only 12 truly different faults exist. 

 
Figure 4. CWRU dataset test rig. Reproduced from (Case 
Western Reserve University Bearing Data Center Website, 

n.d.). 

The Paderborn University (PU) dataset also serves for the 
evaluation of various learning algorithms and is extensively 
described in the study of Lessmeier et al. (Lessmeier et al., 
2016). Our review of this dataset led to the conclusion that it 
also has several issues, such as unclear sources of 
interferences in the spectrum. In total, the PU dataset contains 
2493 recordings, with 26 truly distinct faults in practice.  
Figure 5 depicts the experimental setup. 

 
Figure 5. PU dataset test rig. Reproduced from (Lessmeier 

et al., 2016). 

3. TESTED ALGORITHMS 

In the current section, two learning algorithms will be 
described, which are used to demonstrate the effect of test-
training leakage. The first is K-nearest neighbors (KNN) 
(Shalev-Shwartz & Ben-David, 2014a) and the second is 
Random Forest (Shalev-Shwartz & Ben-David, 2014b). All 
tested algorithms used the following features: mean, 
variance, kurtosis and absolute mean. 
 
KNN operates by determining the class of a data point based 
on the majority class among its k-nearest neighbors within 
the feature space. The algorithm computes the distance 

between the given data point and its neighbors. The 
parameter K, denoting the number of neighbors taken into 
account, is a crucial factor that can significantly influence the 
model's performance. Small K values may result in 
overfitting, while large K values may lead to inadequate 
fitting of the training data. In the current study, K was set to 
1 to prevent additional issues with training-validation 
splitting. Figure 6 provides a visualization of the KNN 
process for classification. 
 

 
Figure 6. Illustration of KNN. 

Random Forest stands out as a robust ensemble learning 
algorithm widely applied in machine learning for 
classification tasks. It generates numerous decision trees 
during training and outputs the mode of the classes. The key 
innovation of Random Forest lies in its incorporation of 
randomness—each tree is trained on a random subset of the 
data, and during each split, a random subset of features is 
taken into consideration. This randomness aids in mitigating 
overfitting and enhancing the model's generalization 
performance. Furthermore, for classification, the predictions 
from multiple trees are consolidated through majority voting, 
resulting in a resilient and accurate final prediction. In the 
current case, the number of trees was set to 300. This is a 
standard number of trees intended to prevent overfitting. 
Once again, this parameter was not set based on the validation 
set to avoid additional issues with training-validation 
splitting. Figure 7 provides a visualization of the random 
forest process for classification. 
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Figure 7. Illustration of random forest. 

4. RESULTS 

The results of KNN and random forest on the two tested 
datasets, CWRU and PU, are depicted in Figure 8 for the 
three types of splitting: segment split, record split, and fault 
shape split. The results of the segment and record splits were 
determined using a 10-fold cross-validation technique to 
calculate the average accuracy. The fault shape split results 
were obtained through a leave-one-out procedure. 
Furthermore, to compare the performance with a degenerated 
algorithm, two lines were added to the figure representing 
predictions of the test examples in the fault shape splitting for 
CWRU and PU, based on the most prevalent label in the 
training set. This degenerated algorithm disregards the 
features and, for any new unseen examples, returns the mode 
of the classes from the training set. 

As can be seen from the figure, for the CWRU dataset, when 
changing from segment split to record split, the accuracy 
significantly decreases. For both datasets, when the correct 
splitting method is utilized, namely the fault shape split, the 
results are significantly worse. In the case of CWRU, they are 
even lower than the accuracy of the degenerated algorithm, 
which predicts the training mode constantly. 

These results demonstrate that incorrect random splitting 
leads to overly optimistic conclusions. For the CWRU 
dataset, based on segment split, it seems that the very 
straightforward approach of using simple signal features and 
classic machine learning algorithms like KNN and random 
forest enable achieving good accuracy, close to 90%. 
However, when the record split is applied, the results are 
much less optimistic, and when the correct method is applied, 
the results are worser than constantly predicting the training 
mode, indicating that both algorithms probably learn nothing 
related to the fault type. For PU datasets, even when record 
split is utilized, the results are still optimistic, and only when 

the correct splitting of fault shape is utilized can we again 
conclude that the algorithm did not learn too much 
information related to the fault type. 
 

 
Figure 8. Accuracy score for bearing fault type classification 
on CWRU and PU datasets by KNN and random forest for 

different split approaches. 

5. CONCLUSION 

Many machine learning algorithms have been suggested for 
vibration analysis of rotating machinery for condition-based 
maintenance. As demonstrated in this paper, improper 
splitting of data between the training and test sets may lead 
to test-training leakage and, consequently, to an overly 
optimistic evaluation of the machine learning algorithm 
performances. 

In the current study, this problem was tested on the prevalent 
task of fault type classification in rolling bearings. It was 
shown that when improper segment splitting is utilized, 
overly optimistic conclusions can be drawn regarding a 
simple approach that combines straightforward signal 
features with basic machine learning algorithms, as they 
achieve accuracy close to 90%. However, when the right 
splitting is utilized, reflecting the real scenario in which 
records of the exact same fault shape should not be present in 
both the training and test sets, the results are very poor and, 
in some cases, worser than constantly predicting the training 
mode, indicating that the algorithms have not learned 
anything. 

Three further comments regarding machine learning studies 
in the vibration analysis field are worth discussing. First, 
most of the currently available datasets, such as CWRU and 
PU, contain many contaminated records. The research 
community would benefit greatly from newer datasets 
without contaminated records, which would also encompass 
a broader range of fault shapes. Second, it is not clear why so 
many papers attempt to solve the problem of fault type 
classification in bearings, as classic approaches in signal 
processing are adept at solving it (Randall & Antoni, 2011). 
We recommend that future papers focus on addressing fault 
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severity and estimating remaining useful life tasks (Matania 
et al., 2023), or alternatively, focus on fault classification of 
components that currently lack well-established classic 
approaches. Another option is to examine cases where the 
signal-to-noise ratio is so low that signal processing 
algorithms are unable to classify the fault type. The last 
comment worth noting is that a maintainer or operations 
manager doesn’t really care if a bearing has a ball, inner, or 
outer race fault – as they will probably replace the entire 
bearing regardless. The more important issue is fault 
detection, determining whether the bearing is healthy or not. 
Fault classification is more interesting if it helps to better 
estimate severity or remaining useful life. 
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ABSTRACT

This study focuses on a critical aspect of implementing prog-
nostics and health management (PHM) for assets: the creation
of a descriptive dataset. In real-world applications, dealing
with sparse and unlabelled big data is common, particularly in
industries like production lines where complex subprocesses
are monitored by multiple sensors. Moreover, selective appli-
cation of quality control means that much of the data lacks
information about end properties, making datasets provided
by manufacturers unsuitable for PHM frameworks. This work
aims to bridge the gap between raw production data and PHM
frameworks, focusing on steel manufacturing management.
In the context of steel manufacturing, compromised surface
quality, characterized by thicker oxide layers chipping during
milling, has been observed. We propose inferring compro-
mised coils by analyzing temperature profiles directly before
the coiling station to address this. Deviations from the goal
temperature profile can indicate compromised surface quality,
eliminating the need for tedious oxide layer thickness mea-
surements, which are not feasible for continuous hot strip
milling processes. The available dataset comprised multiple
years of production, with no direct indication of the surface
quality. Exploratory clustering analysis was the first step in
the lack of labels. Even though indicative of the underlying
pattern of the healthy/damaged coils distinction, three short-
comings were identified. Clustering was solely based on the
similarity between the temperature profiles of the coils, so
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no domain knowledge was included regarding the goal tem-
perature profile. Additionally, since different steel grades
have different goal profiles, the model needs to be specifically
trained for each grade. Also, a soft classification between
healthy and damaged can provide more detailed information
about the surface quality. Coils with low-confidence classifi-
cations can be identified and treated accordingly, thereby im-
proving PHM framework performance by providing a dataset
with only high-confidence samples. To tackle these issues, an
expert-knowledge-based normalization technique and feature
engineering, paired with synthetic labelling, contributed to
the creation of a soft neural network classifier. This study
presents the reality of handling real-world data for PHM ap-
plications and highlights the need for careful and informed
feature extraction. This ensures the seamless integration of
PHM frameworks into real-world systems, ultimately enhanc-
ing production yield by improving end-product quality.

1. INTRODUCTION

The 4th industrial revolution led to a skyrocketing increase in
the available data in production and manufacturing lines. Sen-
sors were developed and installed throughout the processes,
and computer-operated regulating devices were retrofitted to
production equipment. This not only meant that the manu-
facturing process could be guided by preset rules that were
constantly tailored to the real measurements of the system
but also that an enormous amount of data became available.
Manufacturers, suspecting these data’s value, made sure to
gather and store them in databases. However, the vast majority
of the available data are unstructured and unlabelled, leading
to their under-utilization.
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The unstructured nature of big data gathered from multiple
sources during production is one of the main challenges of
applying prognostic health management (PHM) frameworks
(Zio, 2022). Data quality greatly affects performance, espe-
cially for fault detection (FD), which is usually the first task
during a PHM framework. The need to identify anomalies and
deviations from the normal operating condition of the asset
arises, but data are usually high-dimensional with non-smooth
distribution densities. This makes their reconstruction and, in
turn, the distinction between healthy and abnormal, challeng-
ing.
In order to tackle the high-dimensionality of the data, the chal-
lenge of informative feature extraction (FE) arises (Jardine,
Lin, & Banjevic, 2006), in the hope of projecting the data into
manifolds of lower dimensionalities, where the underlying
classes become distinguishable. Traditional pre-processing
techniques include statistical feature extraction in the time
domain (Caesarendra & Tjahjowidodo, 2017), fast fourier
transform (Z. Wang, McConnell, Balog, & Johnson, 2014),
discrete wavelet transform (Z. Wang et al., 2014), continuous
wavelet transform (Kankar, Sharma, & Harsha, 2011), mor-
phology operators (Gush et al., 2018) and principal component
analysis (Choi, Lee, & Lee, 2005). Adding to that, in the lat-
est years, due to the ever-increasing applications of machine
learning (ML) and deep learning (DL) in computer science,
numerous successful applications for FE for PHM frameworks
have been demonstrated. Categorical adversarial autoencoders
(Liu et al., 2018), stacked autoencoders (Y. Wang, Yang, et al.,
2020), generative adversarial networks (Jiang, Hong, Zhou,
He, & Cheng, 2019; Xia et al., 2022), deep convolutional net-
works (Wu & Zhao, 2018) and deep belief networks (Y. Wang,
Pan, Yuan, Yang, & Gui, 2020), are examples of ML and DL
frameworks to extract lower dimensionality representations of
big data.
However, it becomes apparent that DL does not provide a
universal solution to FE (Zhao et al., 2019). Great effort and
resources are associated with designing and training a suc-
cessful DL model, and usually, the impressively performing
but complex architectures make the DL networks task- and
domain-specific. In this work, presented with a big real-world
dataset from steel manufacturing, a data science and funda-
mental approach for feature extraction is followed. The aim is
to showcase that even highly complex datasets with high vari-
ability, can be handled with expert-driven analysis, proving the
discriminating power of informative features. The following
sections will describe the issue under consideration and the
available dataset (Section 2), followed by an overview of the
applied methods (Section 3), the findings (Section 4), and a
concluding discussion (Section 5).

2. PROBLEM STATEMENT AND DATASET DESCRIPTION

Steel strips are being widely used for numerous applications
across multiple domains, such as the automotive industry, the

aerospace industry, chemical equipment and light manufactur-
ing, all of which, among others, have increasing demands con-
sidering surface quality. However, surface defects can appear
during manufacturing, which significantly diminishes the end
surface quality of the manufactured steel strips. Known root
causes of surface quality defects are material defects, process
defects and corrosion defects (Z. Wang, Wang, & Chen, 2020).
Material and process defects can be more easily mitigated by
tailoring the material’s composition and manufacturing pro-
cess (i.e. rolling forces, timely inspection and replacement of
rollers). Unfortunately, corrosion defects are, by nature, more
challenging. The low stability of the typical three-layer oxide
composition of steel (hematite Fe2O3, magnetite Fe3O4 and
wustite Fe1−yO) at the low coiling temperatures, the pres-
ence of other elements in low-carbon steel, the presence of
inclusions, the continuous cooling conditions, the temperature
gradient across the width of the strip, the absence or lack of
oxygen in the centre regions, all affect the oxide evolution
(Chen & Yuen, 2001; Deng et al., 2017). The extensive study
of Min K. et. al. (Min, Kim, Kim, & Lee, 2012) revealed a
correlation between the thickness of the oxide layer and the
surface quality. This is attributed to the fact that a thicker
oxide scale is more brittle and, thus, more prone to chip off.
As demonstrated by Min K. et al. (Min et al., 2012), measur-
ing the oxide layer thickness during production is not feasible.
Production must be halted, and the oxide layer formation must
be frozen (i.e., by spraying molten glass on the surface). This
process can quickly become costly and counterproductive for
a real-world application. This fact, combined with the fact
that practical scale differs from lab-grown (Deng et al., 2017),
led our team to try to develop a way to infer it indirectly from
production measurements.
The first step towards achieving this goal is creating a labelled
dataset from historical data containing coils with deteriorated
and pristine surface quality. We theorize that, by observing the
steel strip’s coiling temperature (CT) profile, major deviations
from the goal temperature and, more importantly, rapid fluctu-
ations, can indicate a chipped-off oxide layer. The reasoning
behind this is that when the oxide layer chips off, some parts
of exposed steel appear on the surface that have drastically
different emissivity than the oxides, throwing off the pyrome-
ter temperature measurements. Thus, the need to distinguish
faulty cases from normal ones from sequential data arises.
The dataset in hand consists of the process parameters, the
CT profiles and the material properties of the manufactured
steel strips from the hot strip milling (HSM) process of Tata
Steel Europe ©. Due to the great variability in the CT pro-
files as well as the goal temperatures, a single steel grade was
chosen, considering its observed troublesome behaviour dur-
ing milling (the details of which will not be disclosed due to
confidentiality). After data cleaning, the remaining dataset
consists of 3768 CT profiles, that will in turn, be used for the
development of the classification algorithm.
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3. METHODS

Given the dataset’s unlabelled nature, an exploratory cluster-
ing analysis was the first step towards processing the dataset to
discover the expected underlying pattern of healthy and dam-
aged coils. Afterwards, a domain-specific normalization was
introduced to the sequential data to assist towards creating a
universal framework independent of the steel grade. This is of
high importance since a great number of different steel grades
are produced. Therefore, if the developed framework is grade-
specific, it will need to be trained for each grade specifically,
making it counter-productive. Two different FE techniques
were realized and contrasted: a domain-agnostic one and an
expert-knowledge-based one. Finally, synthetic labels were
created to facilitate the training of a neural network (NN) soft
classifier to discriminate the produced coils into healthy and
damaged ones (meaning with chipped-off oxides and pristine
surface quality, respectively).

3.1. K-means with Dynamic Time Wrapping

Clustering analysis is one of the first steps in processing unla-
belled data, due to its ability to uncover underlying patterns
and connections in the dataset without requiring any prior
knowledge. A well-known and established clustering algo-
rithm is the k-means algorithm (Lloyd, 1982). The k-means
algorithm strives to partition the n available observations into
k clusters, where each observation belongs to the cluster with
the nearest mean, referred to as the centroids. The original al-
gorithm works by minimizing the squared Euclidean distances
between the centroids and the observations. An immediate
issue can be observed when the algorithm is tasked with clus-
tering sequential data. The Euclidean distance between two
points A and B can be calculated by Eq. (1), with δ being the
distance between the elements.

D(A,B) =
√
δ(a1, b1)2 + · · ·+ δ(aT , bT )2 (1)

If A and B are sequences with A = ⟨x, y, x, x⟩ and B =
⟨x, x, y, x⟩, their Euclidean distance according to Eq. (1), will
be great, even though intuitively, they sequences are similar.
This is attributed to the inability of the Euclidean distance to
capture similarities that are shifted in time. For that reason,
the dynamic time wrapping (DTW) metric is introduced. Its
main attribute is that it can capture similarities between se-
quences independently of the velocity (Sakoe, 1971). The
way to achieve this is by aligning the coordinates inside the
sequences by minimizing Eq. (2), whereAi is the subsequence
⟨a1, . . . , ai⟩.

D(A,B) = δ(ai, bi) + min




D(Ai−1, Bj−1)
D(Ai, Bj−1)
D(Ai−1, Bj)



 (2)

Even though DTW can effectively find the optimal alignment
between sequences and provide a single score for similarity,
k-means requires the calculation of a cluster prototype (the
centroid), which is the average of the assigned observations.
Petitjean et al. (Petitjean, Ketterlin, & Gançarski, 2011), pro-
posed the DTW barycenter averaging (DBA) algorithm, which
iteratively calculates the barycenter of a set of sequences for
the k-means algorithm. Later on, a differentiable function
for computing the soft minimum of all of the alignment costs
increases performance and reduces arithmetic complexity, re-
ferred to as soft-dtw algorithm (Cuturi & Blondel, 2018). For
the aforementioned reasons and considering the large size of
the dataset, the soft-dtw algorithm is chosen.

3.2. Domain-specific Normalization

One of the main issues with the given application for the
distinction between good and bad coils is the great difference
between the goal CT profiles for different steel grades. The
difference lies not only in the temperature but also in the shape
of the wanted goal CT profile. Some steel grades require a
coffin-shaped CT profile where the head and the tail of the coil
are hotter than the middle section. Adding to that, steel strips
that belong to each coil are not manufactured equally. The
manufacturer provides a range of properties for each grade,
and thus, the final goal CT profile depends on the exact needs
of the specific order. This inevitably leads to the inability to
generalize any realized framework since it would need to be re-
designed and explicitly trained for each available steel grade.
The authors try to alleviate this dependency by normalizing
the CT profiles with the goal CT. Let traj1 = ⟨t1, t2, . . . , tF ⟩
and its respective goal CT goalct = ⟨g1, g2, . . . , gF ⟩. The
normalized CT profile is calculated with the following:

traj1
j
norm =

tj − gj
gj

, j = [1, F ] (3)

For the remaining of the analysis, the normalized trajectories
trajnorm will be used.

3.3. Feature Extraction

For the good/bad coil distinction, a NN classifier will be uti-
lized (as explained in Sec. 3.5). NNs are generally unable
to handle and interpret sequential data as inputs, excluding
recurrent NNs (RNN) (Amari, 1972). RNNs come with their
own set of limitations with lengthy sequential data, namely the
high computational complexity, the vanishing gradient prob-
lem and the often-required tedious hyper-parameter tuning. To
partially tackle said limitations, one can choose to split the
sequential data into overlapping windows, but the choice of
the length and overlap of the windows adds to the complexity
of choosing optimal hyperparameters. For the aforementioned
reasons, traditional fully connected layers (FC) will be used,
and thus, the CT profiles need to be represented with fea-
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tures. Two different techniques for FE are being contrasted:
A domain-agnostic approach where a plethora of features is
being extracted (statistical, temporal and spectral) and filtered
automatically, and an expert-knowledge-based one.

3.3.1. Domain-Agnostic FE

Given sequential data, a domain-agnostic FE refers to the
process where a variety of features are extracted without con-
sidering the nature of the data in the hope of capturing as many
characteristics as possible. In this study, the features extracted
were:

• Statistical: max, absolute max, min, kurtosis, standard
deviation, variation, mean, median, min, quantile, sum
of values, length, variance, variation coefficient, count
of values above/below mean value, first location of min
and max, length of longest strike above/below mean, root
mean square, sum of reoccurring values,

• Autocorrelation values (Yentes et al., 2013) for lag =
(1, 2, . . . , 10) and descriptive statistics on the aggregation
function (mean, variance, median, standard deviation)
over the autocorrelation,

• Approximate entropy (Yentes et al., 2013) with (m =
2, r = 0.1), (m = 2, r = 0.3), (m = 2, r = 0.5), (m =
2, r = 0.7), (m = 2, r = 0.9) with m the length of the
compared run of data and r the filtering level,

• Non-linearity measure with c3 statistics (Schreiber &
Schmitz, 1997) with lag = (1, 2, 3),

• Complexity-invariant distance (CID) with and without
normalization (Batista, Keogh, Tataw, & De Souza, 2014),

• Coefficients (0, 1, . . . , 14) of continuous wavelet trans-
form with Ricker wavelet for widths = (2, 5, 10, 20)
(Mallat, 1999),

• All the coefficients (real and imaginary part, angle and
absolute) of the fast Fourier transformation (FFT),

• Statistics of the absolute FFT (mean, variance, skew and
kurtosis),

• Binned entropy of the power spectral density with the
Welch method (Welch, 1967) ,

• Friedrich polynomial coefficients (Friedrich et al., 2000)
for order of 3,

• Value of the partial autocorrelation function (Box, Jenkins,
Reinsel, & Ljung, 2015) for lag = (1, 2, . . . , 10),

• Permutation entropy (Bandt & Pompe, 2002) with
dimension = (3, 4, . . . , 7),

• Sample entropy (Richman & Moorman, 2000),
• Time reversal asymmetry statistic (Fulcher & Jones, 2014)

with lag = (1, 2, 3).

(The values chosen for the parameters of the aforementioned
features are the commonly used values since tuning their val-
ues would require domain knowledge, defeating the purpose
of a domain-agnostic framework).
After all of the features are extracted, to limit the number of ir-

relevant features, the FRESH algorithm (Christ, Kempa-Liehr,
& Feindt, 2016) is deployed. It first performs the Kolmogorov-
Smirnov test (Massey Jr, 1951) independently for every feature
and calculates the p-value. Then, the FRESH algorithm uti-
lizes the Benjamini-Yekutieli (Benjamini & Yekutieli, 2001)
procedure under correction for dependent hypotheses to de-
cide which null hypothesis H0 to reject. Only the features
for which the H0 is rejected are kept. Finally, a Pearson
correlation analysis is performed to remove features that are
correlated with a value greater than 0.6, as this would indi-
cate that they are (weakly) linearly correlated. Correlated
features will get overweighted during the training, thus creat-
ing biased models whose results and generalizability can be
compromised.

3.3.2. Expert-knowledge-based FE

Contrary to the first FE method, where a plethora of well-
known features for sequential data are automatically extracted
and filtered, for the expert-knowledge-based FE, as the name
would suggest, a closer look at the data is required. After
examining a normalized sequence for both a known good
and a known bad coil (Figure 1), it becomes evident that the
discrepancy between the two different classes is apparent in
the time domain. Thus, the features that will be extracted
are going to be limited to the time domain, meaning that no
transformations to the data will be performed. The prominent
characteristics of coils with a compromised surface quality
are that they overshoot the upper and/or lower bounds of the
accepted temperature range, that they present drifts from the
goal temperature and, more importantly, they present abrupt
peaks of high amplitude.
Based on the above observations, we choose to extract the
features presented on Table 1. On the left column, the name
of the feature is presented, while on the right are the val-
ues of the parameters that are used for their calculation. It
is worth noting that the values of 0.05 and −0.05 were cho-
sen for the threshold of the count above, count below and
number crossing m features since the acceptable tempera-
ture range for the chosen steel grade is ±5%.
The number high peaks feature was engineered by the au-
thors for this specific use case. The appearance of high-
amplitude peaks is deemed detrimental to the classification of
the coils, so a new feature is introduced to identify the peaks
that have a standard deviation larger than 2 and return their
count. The pseudo-code for the implemented feature can be
found in Appendix.

3.4. Synthetic Labelling

Classification tasks are, by nature, handled by supervised al-
gorithms. Supervised algorithms depend on labelled data to
learn the decision boundary of the multidimensional manifold
upon which the data points lie. To that end, the Tata Steel
experts provided a set of 14 sequences of the steel grade under
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Table 1. Features extracted for expert-knowledge-based FE.

Feature Parameters
abs energy -

absolute maximum -
absolute sum of changes -

cid ce normalize = False
count above t = 0.05
count below t = -0.05

skewness -
longest strike above mean -

longest strike belowe mean -
maximum -

mean -
mean abs change -

mean change -
minimum -

number crossing m m = 0.05
m = -0.05

standard deviation -

number high peaks*
n = 2
n = 5
n = 10

consideration that were identified to have low surface quality
(one of which is shown in Figure 1b). Since the amount of
labelled data is deemed inadequate to train a classification
algorithm, the need to populate them arises. Upon inspection,
and due to its use in the clustering analysis (Section 3.1), the
DTW similarity metric is utilised. An ideal coil’s CT profile
would be identical to the goal CT profile. Leaning on that idea,
the DTW similarity of each coil to the goal CT is calculated
using Eq. (2). 76 coils with the highest score (indicating the
highest dissimilarity to the goal CT) combined with the 14
expert-annotated ones comprise the bad coils labelled dataset.
The 90 coils with the lowest DTW score form the good coils
dataset.
To guide the learning of the decision boundary, aside from
providing examples of the extreme cases of both classes, we
devised a labelled dataset of an extra 20 coils with interme-
diate DTW scores, half of which are used for training and
half for testing. (this dataset will be referred to as manually
annotated). This aims to not only provide information about
the more ambiguous cases during training but also to provide a
challenging test dataset that will assist in the evaluation of the
performance of the classification algorithm. Figure 2 shows
two of these coils. In conclusion, the final training dataset is
constructed by performing an 80/20 % random split on the ini-
tial 180 coils and then adding half of the manually annotated
dataset. The test dataset consists of the remaining data.

3.5. Neural Network classifier

A simple multilayer perceptron (MLP) is employed for the
classification task. MLPs are fully connected feedforward
NNs with non-linear activation functions. For the architecture
of the model, typical design guidelines were followed. It
consists of:
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Figure 1. Normalized CT profile examples of a (a) good and
a (b) bad coil

• Input Layer: where each feature is used as input for one
input node,

• Hidden Layer: with size = 64, relu activation function
and to avoid overfitting, a dropout layer (Srivastava, Hin-
ton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) with
a dropout probability equal to 0.5,

• Output Layer: where, according to standard binary clas-
sification practice, it has size = 2 and a softmax activa-
tion function, which will output the membership proba-
bility of each sample to each class.

The simple and shallow architecture of the NN was chosen not
only due to its decreased computational cost but also to avoid
the tedious tuning and training of deep architectures.

4. RESULTS

As previously discussed, the clustering analysis is performed
on the raw data, while the classification is performed on the
features extracted from the normalized sequences as described
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Figure 2. Normalized CT profile examples of ambiguous coils.
The spike in the beginning is observed on most coils, so it’s
not an indication of bad surface quality. Thus, (a) is labelled
as good and (b) as bad (due to the peak at the end)

in Section 3.2. All of the code is written in Python, and the
NN model was developed using Pytorch. Prior to the training
of the NN, the training data are z-normalized. To avoid data
leakage, the test data are z-normalized separately from the
training data, utilizing the calculated scaling parameters of the
training data. Models are trained for 200 epochs or until there
is no improvement in the test accuracy. After the models have
converged, they are tasked with classifying the entire dataset
with all of the coils produced for the steel grade under con-
sideration. The entire dataset follows the same FE procedure
as the training set and is z-normalized with the pre-trained
scaling parameters. Coils with a membership probability of
less than 0.6 to either class are manually incorporated into
the bad coils class to enhance our confidence in the models’
predictions. Since the good/bad coil classification is the first
step towards applying a PHM framework, we can tolerate false
negatives, but we would like to avoid false positives. Since the
good coils are of no interest to the analysis, a more inclusive
bad coil class is preferred. First, the results of the clustering
analysis on the raw data will be showcased, followed by the
classification results with the introduced FE techniques.

4.1. K-means wth DTW

With the K-means algorithm, the number of cluster centres
needs to be chosen a priori. To ensure the best fit, the el-
bow method is applied utilizing the silhouette coefficient
(Rousseeuw, 1987). The results can be found in Table 2. As
expected, the optimal number of clusters is two, confirming
the prior assumption that the coils are split into good and bad
ones. Figure 3 shows the results from the clustering and the
calculated barycenters from the DBA algorithm. It becomes
apparent that the majority of the coils in cluster 1 stay inside or
close to the temperature boundaries, while bigger deviations
are observed in cluster 2. This leads to the conclusion that the
first cluster represents the good coils while the second clus-
ter, the bad ones. However, the clustering is far from perfect
since coils with high deviations and rapid fluctuations can be
observed in the first (good) cluster. Given that the clustering
analysis is the first exploratory step towards separating the
data in hand, the results are satisfactory in that the expected
underlying pattern of the data is actually observed. The high
number of miss-clustered coils and the lack of soft-assignment
capabilities means that it cannot be used as an end-to-end way
to separate the data.

Table 2. Results of elbow method for DTW k-means.

Clusters Silhouette Score
2 0.2556
3 0.1938
4 0.1844
5 0.1947
6 0.1454

4.2. Classification with domain-agnostic features

After following the procedure of the domain-agnostic FE and
filtering explained in Section 3.3.1, 111 features are left. The
mean achieved accuracy of the NN is 0.8274 over the test
data with 0.0180 standard deviation for 10 runs. The results
can be seen in Figure 4. It can be observed that while the
coils assigned in the bad class show a greater overall deviation
from the goal CT, a lot of misclassified coils can be observed
in the good class with highly fluctuating temperatures. This
performance was to be expected, considering the rather low
classification accuracy. To comprehend the low performance
of the classification model, a principal component analysis
(PCA) was performed on the extracted features with the goal
of projecting the samples in a two-dimensional space. The
calculated decision boundary is also drawn to enhance this
visualisation’s information. In order to achieve acceptable
classification performance, the different classes need to present
minimal overlap on the PCA space so that the classifier can
find a way to separate them. This visualization can be seen
in Figure 4c. A high overlap between the good and bad coils
can be seen, meaning that no possible decision boundary can
correctly separate the two classes, regardless of the choice of
the model.
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Figure 3. Clustering results with DTW K-means
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Figure 4. Classification results with domain-agnostic FE
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4.3. Classification with expert-knowledge-based features

Following the FE method described in Section 3.3.2, 20 fea-
tures are extracted. The same NN classifier architecture is
used with the only change in the number of input nodes, which
is altered to 20 to match the number of extracted features.
The mean achieved accuracy is 0.9636 over the test data with
0.0075 standard deviation for 10 runs. The results can be seen
in Figure 5. It becomes pretty apparent that the classification
of the coils is superior to all of the previously presented meth-
ods. The healthy coils present minimal deviation from the goal
temperature, with only a few coils that have a single abrupt
temperature fluctuation in their CT, attesting to the high accu-
racy of the classifier. This means that there is a very limited
number of false positive coils, which is highly important, as
discussed at the beginning of the current section. The same
visualization procedure is followed as before and presented
in Figure 5c. It can be seen that there is a clear separation
between the two classes and that the decision boundary lies
optimally between them. This clear separation of the two
classes explains the high performance of the rather simple
classification model.

5. DISCUSSION

The presented results pave the way for an important discussion
when it comes to handling real-world complex and big data.
After the clustering analysis was performed, the two expected
different classes of coils could be identified, that is, the good
and the bad class (referring to the CT profile and, in turn,
the surface quality). However informative the clustering was
in providing insight into the dataset, its performance was far
from acceptable, with a lot of misclassified (or rather miss-
clustered) coils. This is attributed to the fact that the K-means
with DTW distance metric is clustering coils strictly by com-
paring their shape to each other. No information regarding
the acceptable temperature range, the goal CT or what good
and bad coils are, is included. Adding to that, the k-means
algorithm does not provide a way to soft-assign clusters to
data points. Naturally, the next step would be to increase the
classification’s performance will achieving soft-classification
capabilities. The most obvious idea is to create a represen-
tation of the data to train a soft ML classifier. Due to the
increasing popularity of DL FE methods, a researcher would
most probably invest their time in developing complex and
computationally heavy models. These models’ task would be
to try and learn on their own latent representations of the data
that would effectively separate the different classes. With this
study, we would like to emphasize that traditional FE can be
as (if not more) effective for some datasets while reducing
the complexity, the computational load, and the overall time
invested in developing the FE method.
This is not to say that traditional FE can be applied universally,
without effort. This is the main takeaway from comparing
an automated traditional FE method that is domain-agnostic

with features that are specifically picked or engineered for
the application. For the domain-agnostic FE, a plethora of
famous and commonly used features for sequential data were
automatically extracted and filtered utilizing hypothesis tests
and correlation analysis. However, the resulting features fail
to capture the distinctive features of the data. This becomes
evident by the high overlap of the two classes presented in
Figure 4c, and is the culprit of the wrong classification of
the data. Spending the effort of manually labelling a small
fraction of coils and choosing the right features to represent
the data, successfully separates them and achieves the required
classification performance.
The next step for this framework is to verify that it works
universally for multiple steel grades, with minor or even no
modifications at all. After generating the healthy/damaged
coils dataset, the process parameters that lead to the damaged
state are intended to be identified. The end goal is to apply a
PHM framework that will be able to predict quality deteriora-
tion and provide alternative parameter settings to mitigate the
damage to the surface quality of the produced steel strips.

6. CONCLUSIONS

In this study, a real-world data set of manufactured steel strips
raises the importance and effectiveness of traditional FE, but
only if done appropriately, as described in Section 3.3.2 and
paired with manually annotated samples. Automated FE tech-
niques are deemed ineffective; thus, the extracted features
must be chosen carefully. This is achieved by keeping in mind
that they should capture the characteristics that associate them
with their corresponding class. The authors are by no means
undermining the importance of deep learning FE methods.
Their increasing popularity mainly stems from their success-
ful application in extracting latent representations of big data.
They would instead highlight that for some datasets, the effort
needed to develop them is unjustified; that is when a correctly
defined traditional FE method can solve the task.
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APPENDIX

Algorithm 1 Pseudocode of number high peaks feature

Inputs:
x (list): the input sequence
n (int): the support of the peak (a peak of support n is defined as a subsequence of x where a value occurs, which is bigger

than its n neighbours to the left and to the right)
std t (int): the number of standard deviations that the peak’s value needs to surpass

Procedure:
x reduced = x[n : −n]
res = None
for (c = 0; c < n+ 1; c++) do

result first = x reduced > numpy.roll(x, c)[n : −n]
if res = None then

res = result first
else

res += result first
end if
res += x reduced > numpy.roll(x, c)[n : −n]

end for
idx peaks = np.where(res)[0] + n
hpeaks = 0
for idx : idx peaks do

if |x[idx]| > mean(x) + std t ∗ std(x) then
h peaks± 1

end if
end for
Output:
h peaks (int): the amount of peaks of support n with maximum value higher than std t times the standard deviation of x
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ABSTRACT

The introduction of cyber-physical systems with increased
availability of sensor data creates a lot of research interest in
prognostic algorithms for predictive maintenance. Although a
lot of algorithms are successfully applied to benchmark case
studies based on simulated data and experimental set-ups, de-
ployment in industry lags behind. From a comparison between
three benchmark case studies with two real-world case stud-
ies based on prognostic metrics (monotonicity, prognosability
and trendability), two main issues are observed: 1) the lack
of run-to-failures and 2) low prognostic metrics due to a low
signal-to-noise ratio of degradation trends, as a result of un-
explained physical phenomena. To make prognostics feasible,
a hybrid framework is proposed that focuses on improving
system knowledge. The framework consists of a quantitative
diagnostic assessments, guided by (modular) system models
in which damage is induced. This quantitative damage as-
sessment provides input for prognostics based on Bayesian
filtering, enabling prognostics for assets in varying operational
conditions. Implementation and validation of the framework
requires investments, but modularity within the framework
can accelerate development for new systems.

1. INTRODUCTION

During the fourth industrial revolution, cyber-physical systems
are being introduced where sensor data communicates between
machinery and with operators (Pinciroli et al., 2023). This
sensor data can be used to find characteristics of failures within
the systems which can be used to develop models that predict
the remaining useful life (RUL) (Yan et al., 2017), giving new
opportunities for implementation of predictive maintenance.
When failures can be predicted, catastrophic accidents are

Luc S. Keizers et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

prevented, unexpected downtime can be reduced, components
are used until the end of their actual lifetime and maintenance
logistics can be optimized (Fernandes et al., 2022).

The recent increasing interest in predictive maintenance is
clearly visible by observing the amount of published scientific
papers in this field. Only the number of review papers is
already growing significantly, as the number of counts in the
Scopus database on article titles with (survey or review) and
(predictive maintenance) grew from a total of 20 published
documents up to 2020 to a total of 84 published documents up
to 2023.

The increasing number of sensors and data availability, specifi-
cally increase the interest in data-driven prognostic approaches
(Pinciroli et al., 2023). This type of approach requires suffi-
cient historical run-to-failure data. However, in safety-critical
systems (Chao et al., 2021) or when availability of assets is
more important than costs (Tinga et al., 2021), failures are
sparse and as a consequence the required historical run-to-
failure data are rarely being collected. Also for new types of
machinery, no historical data are available (Calabrese et al.,
2021). If historical data are available, they are often unlabeled
and unorganized, lacking context such as operating conditions
and maintenance recordings (Calabrese et al., 2021; Lukens et
al., 2022).

In contrast to data-driven approaches, physics-based approaches
considering Physics-of-Failure (PoF) models have less strict
data requirements. They provide a relation between usage
and degradation rates (Tinga, 2013b). This yields benefits
compared to purely data-driven approaches, specifically when
failures are rare and when future operating conditions (and
consequently degradation rates) are different from historical
operating conditions (Tiddens et al., 2023). However, these
models are expensive to develop and are component or system
specific (Elattar et al., 2016). Also, the relation between usage
and degradation rates should be known and must not be too
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complex.

To overcome issues with purely data-driven or purely physics-
based prognostics, combinations of them (i.e. hybrid ap-
proaches) are often proposed as a solution (Elattar et al., 2016;
Guo et al., 2020). Still, many hybrid methods use data-driven
models to estimate the degradation behavior (Pugalenthi et al.,
2021; Borutzky, 2020) or only use physics to improve input
parameters of a data-driven prognostic algorithm (Gálvez et
al., 2021; Chao et al., 2022). This yields improved results
compared to purely data-driven approaches, but the relation
between usage and degradation rates are generally not con-
sidered, still limiting applicability in cases of rare historical
failures and varying operating conditions.

Fernandes et al. (2022) described that in many studies, real-
world challenges are often overlooked and additional research
to address these real-world challenges is needed. This sug-
gests a gap between science and industry. This suggestion
is strengthened by a survey in 280 companies in Belgium,
Germany and the Netherlands, showing that only 11% are
actually implementing predictive maintenance techniques in
2017 (Mulders & Haarman, 2017). Although a similar survey
showed that this number increased to 17% in 2023, mainly
attributed to original equipment manufacturers (OEMs) and
sectors with large numbers of the same assets (van der Velde et
al., 2023), a large majority of developed methods is still only
being applied to experimental or simulated data sets (Ferreira
& Gonçalves, 2022) such as C-MAPSS (Saxena & Goebel,
2008).

In this paper, issues with implementation of prognostics in
two real-world cases are pinpointed. The case studies are
performed by two organizations within the Netherlands who
try to implement predictive maintenance for military assets.
The case studies are challenging, as availability of these assets
is more important than costs (Tinga et al., 2021), fleets are
relatively small and the assets operate in varying operational
and environmental conditions. Prognostic metrics defined by
Coble (2010) (monotonicity, prognosability and trendability)
are calculated for the two real-world case studies, and also for
three well-known benchmark cases to compare the potential
for application of prognostic algorithms. Based on observed
issues in the real-world cases, a possible solution is proposed
in the form of a hybrid framework.

The remainder of the paper is organized as follows. Section
2 starts with calculating prognostic metrics of features from
three benchmark cases: the Virkler crack growth data set,
the NASA milling data set and the C-MAPSS data set. Then,
metrics are calculated for features from the two real-world case
studies, concerning condition monitoring of Apache helicopter
engines and a naval main diesel engine respectively. Following
from the issues observed in the case studies, section 3 proposes
a hybrid framework for prognostics. Lastly, section 4 discusses
the results and concludes the paper.

2. PROGNOSTIC POTENTIAL OF CASE STUDIES

2.1. Prognostic Metrics

Coble (2010) developed three metrics to assess the suitability
of features as input for a (data-driven) prognostic algorithm.
The suitability is evaluated based on monotonicity (M ), prog-
nosability (P ) and trendability (T ). The range of the scores
is from 0 (unsuitable) to 1 (perfectly suitable). The weighted
sum of the three metrics gives the prognostic score, and fea-
tures with the highest score are most suitable to be used as
the input for a prognostic algorithm. So, data sets from which
features with high scores can be derived, have high potential
for prognostics.

The first metric is monotonicity, assessing the extent to which
run-to-failure trajectories are purely increasing or decreasing.
It is calculated as follows:

M = mean
(∣∣∣∣
N+ −N−

n− 1

∣∣∣∣
)

(1)

with N+ the number of increments in the run-to-failure trajec-
tory of the feature (i.e. ni+1 − ni > 0), N− the number of
decrements in the trajectory (i.e. ni+1 − ni < 0) and n the
number of data points in the trajectory. The absolute mean
monotonicity of all considered run-to-failure trends yields the
final monotonicity.

Prognosability estimates how similar the start values and the
values at failure are for the features when comparing different
run-to-failure trajectories. It is calculated as follows:

P = exp

(
− std(fend)

mean (|fend − f0|)

)
(2)

with fend a vector with all values of the features at failures
and f0 a vector with all values of the features at the start of the
run-to-failure trajectories. Std refers to the standard deviation.

Trendability describes similarity between the shapes of run-to-
failure trajectories. It is calculated as follows:

T = min
(∣∣ρij

∣∣) (3)

with ρ a vector with the correlation coefficients between each
run-fo-failure trajectory i and j of the feature. For trajectories
with different lengths, linear interpolation is applied such that
the lengths of the correlated trajectories match.

The final score S is calculated by:

S =Wm ·M +Wp · P +Wt · T (4)

with WM , WP and WT the weight factors for monotonicity,
prognosability and trendability respectively. In many appli-
cations they can be set identically, but in some applications
some metrics may be less relevant (Coble, 2010). In the case
studies discussed in the next subsection, the weight factors are

2

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 845



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

all set to 1
3 , yielding prognostic scores ranging from 0 to 1.

2.2. Benchmark Data Sets

2.2.1. Virkler Crack Growth

The first benchmark data set considered is the Virkler crack
growth data set. Virkler et al. (1979) performed 68 run-to-
failure fatigue tests of 2024-T3 aluminium and measured the
crack length directly. This yields the run-to-failure trajectories
as shown in Fig. 1.

The data set contains crack lengths at specific numbers of
stress cycles. As crack lengths already provide a direct indica-
tor of the damage severity, no additional features need to be
calculated and the prognostic metrics are directly calculated
on the crack length measurements. As the crack length always
increases monotonically, the monotonicity is 1. All trajectories
have the same end value (50mm) and starting value (9mm),
yielding a prognosability of 1. As all trajectories are mono-
tonically increasing, all trajectories have a perfect positive
correlation, yielding a trendability of 1. Consequently, the
total prognostic score is 1.

A direct measurement of degradation can be considered as a
perfect prognostic metric, as the nature of degradation (an irre-
versible process) makes it monotonic, a proper threshold can
be defined based on system knowledge and the monotonicity
yields also perfect trendability. As the underlying model is
well understood, the Virkler data set is perfectly suitable for
prognostic methods based on Bayesian updating (Sun et al.,
2014; Baral et al., 2023), but also data-driven methods are
well applicable (Eker & Jennions, 2012).

2.2.2. Milling Tool Wear

The Milling Data Set (Agogino & Goebel, 2007) contains data
collected from an experimental setup for tool wear estimation.
There are two operational settings for the Depth of Cut (DOC),
feed rate and material. Two experiments are performed for
each combination of operational settings, yielding a total of

Figure 1. Virkler Crack Growth Data Set Virkler et al. (1979)
(M = 1, P = 1, T = 1, S = 1)

16 experiments. Each experiment consists of a number of
runs, lasting 72s. After each run, the actual tool wear (i.e.
VB: the measured distance from the cutting edge of the tool
to the end of abrasive wear on the flank (Agogino & Goebel,
2007)) is measured with a microscope. Experiments were
terminated at a certain (not further specified) tool wear limit
(and some beyond). As measuring tool wear with a microscope
after each operation is not feasible in practical applications,
measurements are also collected from sensors that can provide
an online estimation of tool wear. A total of six sensor are
installed which measure at a sampling rate of 250Hz: AC and
DC motor current sensors of the spindle, and vibration and
acoustic emission sensors at both the spindle and the table.

The data set is shown in Fig. 2. Fig. 2a shows the offline tool
wear depth (VB) measurements. As most experiments run until
≈ 0.50−0.80mm as shown by the gray band in the figure, it is
expected that the tool wear limit is around this band. The gaps
in the trajectories in Fig. 2a are due to missing measurements
in between some of the runs. Note that only 14 out of the
16 experiments are displayed: for one of the experiments,
only one run is available, making it unsuitable to calculate
prognostic metrics. Both experiments in the corresponding

(a) All tool wear trajectories in milling data set. Each color corresponds to a set of
operational settings

(M = 0.95, P = 0.66, T = 0.78, S = 0.80)

(b) Example (AC motor current) measurements for one run in milling data set

Figure 2. Visualization of the milling data set
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operational conditions are removed from the data set, such
that seven pairs of experiments remain.

The trajectories for the VB measurements yield a monotonicity
M of 0.95, prognosability P of 0.66, trendability T of 0.78
and S of 0.80. Although perfect metrics of 1 are expected
for direct degradation condition measurements, as explained
in subsection 2.2.1, some non-monotonic behavior can be
observed in Fig. 2a (e.g. the dark green line before t = 10), re-
ducing M and T . As wear is irreversible, this non-monotonic
behavior is likely to be due to measurement errors. P is
affected by the fact that some experiments were performed
beyond the tool wear limit. Still, the prognostic metrics are
high, and can be improved by reducing measurement error and
running experiments until a fixed failure threshold.

A challenge is to estimate tool wear from the real-time sensor
data. Fig. 2b shows an example of data from the AC motor
current sensor for one run of an experiment. No clear trend
can be observed in the raw sensor data, so features need to
be calculated. As the start and run of an experiment yield no
stable signal (i.e. magnitude increase and decrease as seen in
Fig. 2b), only the stable period (defined to be 16-50s, indicated
by the vertical dashed bars in Fig. 2b) is considered for feature
calculation. For each sensor and each run, the mean, standard
deviation, maximum, minimum, absolute maximum, absolute
minimum, root mean squared and sum of values are calculated.

The standard deviation from the AC motor current measure-
ments is found to have the highest prognostic score and its
trajectories are shown in Fig. 3. M is 0.74, P is 0.57 and T
is 0.84, yielding a score of 0.72. The different operating con-
ditions clearly yield different feature values, as only the start
and end values of curves with the same operating condition
have approximately the same start- and end values (i.e. the
dark green, black, red and pink pairs). Prognostic scores can
be further improved by compensating for operating conditions,
by calculating the P and T for two experiments with the same

Figure 3. Feature with highest score from milling data set,
color-coded by operating conditions

(M = 0.74, P = 0.57, T = 0.84, S = 0.72)

operating conditions and taking the mean of the separately
calculated P and T (note that M is unaffected). It is found
that in this case, P increased to 0.78 and T increased to 0.86,
yielding a final score of 0.79, which is almost the same score
as for direct VB measurements.

This case shows that by calculating only a simple set of fea-
tures, features with high prognostic potential can already be
obtained. These characteristics make the data set applicable
for prognostics. In literature, mainly quantitative diagnostic
methods are applied, based on e.g. nearest neighbor-based
approaches (Sheng & Zhu, 2020), Recurrent Neural Networks
(Lu et al., 2022), Kernel Extreme Learning Machines (Zhou
& Sun, 2020), particle filters (P. Wang & Gao, 2016) and
Long Short-Term Memory Networks (Kumar et al., 2022).
Subsequently, prognostics can be performed (J. Wang et al.,
2015).

2.2.3. C-MAPSS

The Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) (Saxena & Goebel, 2008) is a very popular
benchmark data set due to the inclusion of sensor noise, differ-
ent operating conditions and multiple fault modes (Ramasso
& Saxena, 2014). Already in 2014, Ramasso & Saxena (2014)
published a review paper on 70 different prognostic methods
utilizing the data set. The data set is still being used and more
recently a new version of this data set (N-CMAPSS) has been
released (Chao et al., 2021). The data is generated with a sim-
ulator built in Matlab and Simulink. The operational settings
are defined by three parameters and 21 (virtual) sensors are
available.

In this paper, the FD001 and FD004 train data sets are eval-
uated. The FD001 set contains 100 degradation trajectories
in one operating condition and one fault mode (High Pressure
Compressor (HPC) degradation). The FD004 set contains 248
degradation trajectories in six operating conditions and two
degradation modes (HPC degradation and fan degradation).
As an example, Fig. 4 shows raw sensor data from one of the
sensors (Φ, a fuel flow ratio) for five run-to-failure trajectories
of FD001 and FD004. In Fig. 4a the degradation trends can
be clearly observed, which is more difficult in Fig. 4b due to
the effect of changing operating conditions on the data.

To reveal the degradation trend for the FD004 data set, a K-
Nearest Neighbors regressor is trained on the first 40 data
points to learn the (nominal) relation between the three opera-
tional settings and measurements. The regressor is built using
the sklearn Python package and uses two neighbors. Fig. 5
shows that the residuals (i.e. difference between measured and
expected measurements) reveal similar degradation trends as
was observed for the FD001 data set.

Although the raw sensor data of FD001, or the residuals for
FD004, already reveal a strong degradation trend, better prog-
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(a) Five run-to-failure trajectores
of Φ in constant operating

conditions (FD001)

(b) Five run-to-failure trajectores
of Φ in varying operating

conditions (FD004)

Figure 4. Five run-to-failure trajectories of Φ in the
C-MAPSS data set

Figure 5. Five run-to-failure residual trajectories of Φ sensor
in varying operating conditions (FD004)

nostic metrics can be found by extracting features. This is done
for both the FD001 raw measurements and the FD004 residu-
als using the Python package tsfresh (Christ et al., 2018) for
automatic feature extraction. It first creates a rolling window
over the data set and for each window, features are calculated.
The window size is a trade-off between noise reduction and
response time to signal changes, and is set to 30 by trial-and-
error. To reduce noise in the calculated features, the prognostic
metrics are calculated for each 5th data point.

The best performing feature for the FD001 and FD004 data set
are shown in 6. For FD001 the sum of Φ measurements in the
rolling window obtained the highest metrics, as shown in Fig.
6a: M=0.69,P=0.94 and T=0.84, yielding a score of 0.84. For
FD004 the root mean square of the Φ residuals gave the highest
metrics, which are significantly lower (i.e. M=0.55,P=0.80
and T=0.06, yielding a score of 0.47) compared to FD001.
This is mainly caused by some outlying trajectories (e.g. the
blue trajectory on the left in Fig. 6b) due to faulty residual
calculations (e.g. because not all operating conditions are ob-
served in the training phase of the KN-regressor). It is found
that the mean of the correlation coefficients of all trajecto-
ries is 0.97, but the fact that T is determined by the lowest

(a) Top feature of C-MAPSS FD001 data set (directly derived from sensor data)
(M = 0.69, P = 0.88, T = 0.94, S = 0.84)

(b) Top feature of C-MAPSS FD004 data set (derived from residuals)
(M = 0.55, P = 0.80, T=0.06, S =0.51)

Figure 6. Best features on CMAPSS data set

correlation coefficient between all trajectories yields the low
trendability. Therefore, higher scores can be obtained when
removing outliers and improving residual generation.

To conclude, it is found to be straightforward to retrieve fea-
tures with high prognostic metrics, mainly for the FD001 data
set. For the FD004 data set it is more challenging due to
the varying operating conditions. However, features could
be extracted which show similar run-to-failures trajectories,
although additional effort is required to remove outliers and
improve prognostic metrics further. The general characteris-
tics of the data set make it feasible for data-driven prognostics,
and methods such as Nearest-Neighbors, Random Forests,
Extreme Gradient Boosting and Multilayer Perceptrons (Alo-
mari et al., 2023), Convolutional Neural Networks-based ap-
proaches, Long-Short-Term-Memory-based approaches (de
Pater et al., 2022) and others are widely found in literature.

2.3. Real-world Case Studies

This subsection introduces two real-world case studies. De-
spite an extensive search, only two cases were found to have
sufficient measurements and meta data available to calculate
metrics of run-to-failure trajectories. Organizations often do
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not have, cannot or do not want to disclose the data necessary
for a proper analysis. The authors thank NLR and the Royal
Netherlands Navy gratefully for making these case studies
available for evaluation.

It should be noted that the case studies concern the most
complex cases for prognostics: they concern monitoring of
individual assets in varying operating conditions, where future
operating conditions can be different from historical operating
conditions. This corresponds to the highest ambition level
an organization can have, with high requirements on data
availability or system knowledge (Tiddens et al., 2023).

2.3.1. Apache ETF Monitoring

The power level of helicopter turboshaft engines decreases
over the lifetime due to wear of seals, vanes and blades or
due to faults in other components (Vos, 2019). Engine per-
formance is measured by the Engine Torque Factor (ETF),
which is the ratio between the actual engine power and the
rated engine power. If the ETF drops below 0.85, or if the
combination of the ETFs of both tail engines of an Apache
helicopter drops below 0.90, the Apache is not allowed to be
used. The Netherlands Aerospace Centre (NLR) developed
an algorithm to calculate the ETF from in-flight parameters,
rather than from time-consuming manual Max Power Checks
(MPCs) (Vos, 2019).

Vos (2019) selected the turbine gas temperature (TGT) as
health indicator, and fitted a polynomial model using data from
the Health and Usage Monitoring System (HUMS) to translate
the in-flight TGT to the TGT at the reference condition (which
in turn allowed to calculate ETF). The considered operational
parameters are gas inlet temperature, outside air temperature,
pressure altitude, speed, and engine torque.

For the development of a prognostic algorithm, run-to-failure
trajectories are required. Although the engine needs an over-
haul when the ETF reaches 85%, the data set does not contain
any trajectory running till this threshold. Therefore, to cal-
culate the prognostic metrics of trajectories, periods between
(documented) engine replacements are selected. This does not
fully represent run-to-failure, but no better option is available.

The rolling mean of these ETF trajectories is calculated over
five ETF measurements, yielding the trajectories in Fig. 7.
The calculated metrics over these trajectories are: M=0.09,
P=0.19 and T=0, yielding the extremely low score of 0.12.
This can be expected from Fig. 7, as the data are covered
in low-frequency noise which make the actual degradation
trend barely visible. This low-frequent wobbling behavior is
caused by physical phenomena not explained by the polyno-
mial model (Vos, 2019), i.e. by confounding factors. This
noise yields a low signal-to-noise ratio (i.e. degradation to
other external influences), and therefore low prognostic met-
rics.

Figure 7. All ETF trajectories considered. Each color
corresponds to the engines of a specific Apache.

(M = 0.09, P = 0.19, T = 0, S = 0.12)

Real-time estimation of the ETF offers potential to replace
expensive MPC by real-time ETF monitoring (i.e. additional
inspections can be performed when the ETF drops below the
threshold). However, the lack of actual run-to-failures and the
low signal-to-noise ratio make the step towards prognostics
extremely complicated.

2.3.2. Marine Diesel Engine Bearing Monitoring

The main diesel engine (MDE) of a naval vessel contains seven
journal bearings that support the crankshaft. Failure of one
of the bearings yields failure of the MDE and is therefore
critical for availability of the vessel. Heek (2021) developed
a monitoring method based on bearing temperature to detect
failures timely. The underlying idea is that damage increases
friction in the bearing and subsequently increases the bearing
temperature.

Because the bearing temperature is also affected by operat-
ing conditions, Heek (2021) fitted data from the Integrated
Platform Management System (IPMS) in a multiple linear re-
gression model. This model estimates the bearing temperature
in nominal conditions based on the RPM of the engine, RPM
of the turbocharger, and the lube oil temperature at the outlet,
which were found to have the highest predictive performance.
Subsequently, the residual between the measured and the pre-
dicted bearing temperature is selected as a health indicator and
is continuously monitored. Alarms can be raised when the
measured temperature is higher than expected. The complete
procedure of data selection and residual generation can be
found in Heek (2021).

Heek (2021) evaluated three case studies, from which two
concerned an actual failure. Cases 1 and 2, which concern
failure cases, are visualized in Fig 8. The regression model
is trained within the shaded areas (until t = 993 and t =
1748 respectively) and the residual monitoring is deployed
after (note that case 2 runs longer than case 1). To evaluate
prognostic metrics of these trajectories, every 10th data point is
selected and the rolling mean over 10 data points is calculated.
The calculated metrics are: M=0.06, P=0.92 and T=0.57,
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Figure 8. Trajectories of diesel engine temperature residuals
with failure at the end

(M = 0.06, P = 0.92, T = 0.57, S = 0.52)

yielding a score of 0.52.

The monotonicity of the trends is extremely low due to low-
frequency oscillations over time. According to Heek (2021),
this is caused by unobserved effects in the engines, probably
caused by “minor maintenance actions”, which again can be
considered as confounding factors. P is relatively high due
to the small difference between end values (i.e. 0.5 and 0.6
respectively), and a weak trendability is observed due to the
increase in data points near the end.

However, the actual meaning of these high metrics is dis-
putable. Heek (2021) described that in case 2, maintenance
was performed around t = 2700h, as indicated by the vertical
bar in Fig. 8. After this moment, the residuals make a jump
of 1◦C. This behavior is also visible when evaluating the third
case study in which no failure was observed, shown in Fig.
9. Similar to case 2, maintenance was performed after which
residuals make a jump (of approximately 0.6◦C) as indicated
by the vertical bar around t = 1200h.

Again, this yields a gradually increasing trend, but it is un-
related to degradation. Heek (2021) proposed to retrain the
regression model after maintenance is performed to reduce the
number of false positives, which may provide a solution for

Figure 9. Trajectories of diesel engine temperature residuals
without failures

anomaly detection. However, this way the physical relations
and meaning of the residuals is inconsistent, i.e. there is no
clear link between the residuals and the quantitative amount of
damage. This makes it difficult to isolate maintenance actions
(or other external confounding factors) from degradation, i.e.
the signal-to-noise of the residuals can be considered to be
low.

Real-time monitoring the residuals offers potential for early
fault detection. However, similar to the ETF case study, it
is still extremely complicated to implement prognostics due
to the limited number of run-to-failure trajectories and a low
signal-to-noise ratio due to limited physical understanding of
the data. An additional problem in this case, is that the lack of
physical understanding of the residuals complicate threshold
definition, and without a threshold it is impossible to estimate
the RUL.

2.4. Discussion and Conclusion Case Studies

A first observation of the case studies is that a good direct
measurement of the degradation severity (e.g. crack length)
can be considered as a perfect prognostic feature. As degra-
dation is in general an irreversible process, it is monotonic
and yields perfect trendability. Also thresholds can be defined
based on phyical knowledge, yielding perfect prognosability.
However, in practice it is complicated or impossible to obtain
direct measurements of the actual degradation severity and
real-time sensors should provide monotonic, prognosable and
trendable run-to-failure trajectories. It is found to be relatively
easy to extract such trajectories from well-defined benchmark
data sets with labeled data (i.e. milling data set (Agogino
& Goebel, 2007)) or many historical run-to-failures (i.e. C-
MAPSS (Saxena & Goebel, 2008)).

However, both real-world case studies suffered from two main
issues: 1) the number of failures is extremely low, or even
non-existent, and 2) low prognostic metrics due to a low signal-
to-noise ratio between the health indicator (i.e. the signal) and
other confounding factors such as maintenance actions and
environments (the noise). The low number of failures, with low
prognostic potential in the derived feature, make training of
data-driven prognostic algorithms infeasible. Furthermore, the
low signal-to-noise ratio makes it complicated to distinguish
nominal operating conditions from faulty behavior, such that
estimation of the onset of degradation, as well as identifying
the degradation trends are difficult.

Note that the latter issue is mainly contributed to confounding
factors affecting system behavior, originating from varying
operating conditions. This shows the main difference between
the benchmark and real-world data sets: in benchmark data
sets, either an experimental setup or a simulation is used to
generate data, in which external factors influencing system
behavior can easily be excluded (lab experiment) or by defini-
tion do not exist (simulation). However, in real-world cases
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such factors are not always well understood or measured such
that they are not included in the developed models. Note that
available prognostic algorithms can work if data requirements
are met (e.g. as found by van der Velde et al. (2023), chances
are higher for assets in large fleets, and requirements are less
strict in constant operating conditions (Tiddens et al., 2023)),
but a solution needs to be found for these complex real-world
cases in varying conditions.

3. PROPOSED FRAMEWORK

The lack of run-to-failures and the lack of physical understand-
ing of the monitored signal complicated prognostics in the
real-world case studies. Following the decision framework
proposed by Tiddens et al. (2023), two solutions are possible:
1) improving the data set or 2) improving the system knowl-
edge. Collecting more run-to-failures is not a realistic option
as the failures are critical and therefore prevented by perform-
ing preventive maintenance actions. Worldwide data sharing
may help (Coelho et al., 2022), especially for similar assets
existing in large fleets, such as industrial machinery (Peng
et al., 2022) and wind turbines (Li et al., 2021). However,
data sharing is often complicated due to standardization and
different data structures (Coelho et al., 2022). Furthermore,
the military applications bring additional challenges regarding
confidentiality of data, but also companies may not be keen
on sharing data as they can consider it as intellectual property.

Therefore, the focus in development of the framework (Fig.
10) is on improving system knowledge. System knowledge
can be improved in two ways: 1) learning the relation between
usage and the degradation rates (i.e. with PoF-models) and
2) and quantifying the relation between measured signals and
damage severities. The first part (part I in Fig. 10) is already
explored by previous work of the authors (Tinga, 2013a; Keiz-
ers et al., 2021, 2022). The second part (part II in 10) focuses
on improved quantitative diagnostics to obtain features with
higher prognostic metrics, as found to be required for the
real-world case studies discussed in section 2.

Degradation can vary heavily between assets used in varying
operational conditions (Tiddens et al., 2023), and in absence
of historical run-to-failures, the quantitative relation between
usage and degradation is essential for accurate prognostics.
Therefore, PoF-models are used in part I of the framework.
Such models are often tuned for prognostics of specific assets
with Bayesian filters (Jouin et al., 2016). However, in literature
the effect of actual loading conditions is often simplified, e.g.
by substituting loads with a constant model parameter (Zio
& Peloni, 2011). This takes away one of the main strengths
of a PoF-model, as handling the loads as a model parameter
only makes extrapolation of the latest trend possible, yielding
wrong RUL for changing future usage profiles, as was shown
in Keizers et al. (2021).

To achieve PoF-based prognostics (i.e. part I of the frame-

work) it is proposed to use the method described in Keizers et
al. (2021), taking loads as separate input for a Bayesian filter
and for prognostics. Loads are first monitored (for t ≤ tp,
with tp the time of prediction) to update the PoF-model. Then,
expected future loads (for t > tp) are substituted in the up-
dated PoF-model for prognostics (see the lower input of the
PoF-model in Fig. 10). This enables RUL prediction based on
expected future operating conditions, or adaptation of system
usage to extend the RUL.

A conceptual example can be given in the form of the Apache
ETF case: it is observed that the ETF decreases faster in sandy
environments Vos (2019), which can be explained by increased
wear of vanes, blades and seals due to the increased number
of sliding sand particles over the components. Erosive wear is
already studied for decades (Sundararajan, 1991) and can be
modeled by Archard law (Archard, 1953) or by more detailed
empirical models that also take characteristics (e.g. hardness,
size) of sand particles into account (Gülich, 2020). Such
models can be used to estimate degradation rates in specific
(and varying) operational and environmental conditions.

The update of the PoF-model requires corresponding degra-
dation measurements. In the studies described in Keizers
et al. (2021) and Keizers et al. (2022) direct condition mea-
surements (i.e. measurement of the parameter calculated by
the PoF-model) were assumed, which can be the available in
some practical applications. For example, in case of fatigue
crack growth, DC Potential Drop Methods can measure crack
lengths directly (Bär, 2020) and in case of corrosion, electro-
chemical measurements can measure corrosion rates directly
(Homborg et al., 2014). Such direct condition measurements
are preferred, as they can be considered to be a perfect prog-
nostic metric as discussed in section 2. However, in many
practical applications, such as the real-world case studies of
section 2, these types of direct condition measurements are ex-
pensive or impossible to obtain. Therefore, monitoring options
are used that measure (indirect) consequences of the actual
degradation, e.g. vibrations or temperatures.

Here, part II of the framework is introduced. It considers a
quantitative diagnostic block, linking indirect condition mea-
surements in specific operating conditions (the right-side input
of the block) to the direct condition (i.e. damage severity).
However, as illustrated by the case studies in section 2 the fea-
tures derived from the real-world data sets have low prognostic
metrics, and are unlabeled. Therefore, the relation between
measured data and degradation severity is unknown, and quan-
titative diagnostic algorithms cannot be trained. Experimental
set-ups could help to gather training data to learn this rela-
tion, but it is economically infeasible to collect data for all
fault types and locations in all possible operating conditions
(Sawalhi & Randall, 2008). Here, the second way of including
system knowledge is relevant, which is positioned below the
quantitative diagnostic block in Fig. 10. By introducing faults
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Figure 10. Proposed framework

in physics-based system models and (virtual) measuring the
system response of degradation, a better understanding of the
effect of faults with varying sizes on measured signals in dif-
ferent operating conditions can be obtained. In the conceptual
example of erosive wear in the Apache components, a system
model should reveal the efficiency loss for different amounts
of material removal. Subsequently, the required additional
power, and forthcoming turbine gas temperature, need to be
modeled in different operational conditions.

Indeed, developing such a model brings major challenges.
First, building an extensive physics-based model for each com-
ponent or system is time-consuming and expensive. Second,
damage induces responses in different physical domains (i.e.
mechanical wear yields increased temperature). For these rea-
sons, a modular modeling method that is relatively easy to
reuse, adapt and scale, and which is applicable in multiple do-
mains is proposed. Bond graphs are such models (Mkadara et
al., 2021). It will be profitable to develop models of standard
equipment (e.g. bearings) that can be easily reused in other
system models, accelerating development for new machinery.

As an example, Nakhaeinejad & Bryant (2011) showed that
different types of bearing faults and their vibration response
can be modeled using these types of models. Note that bond
graphs are proposed more often in hybrid prognostic frame-
works for determining residuals from a nominal system model
(e.g. (Medjaher & Zerhouni, 2013)) or for tracking faulty

parameters (e.g. Borutzky (2020)), but the link with an actual
PoF-model and its corresponding direct condition measure-
ment is missing, limiting prognostic capabilities in cases of
varying operating conditions.

To conclude, part II of the framework can help to create a
quantitative damage assessment, acting as an input for part I
in the likely scenario where direct condition measurements are
unavailable. Subsequently, prognostics can be performed, and
the RUL can be predicted based on assumed usage profiles.
This not only improves prognostic performance in cases of
varying operating conditions, but also offers the possibility to
adapt usage profiles to extend the RUL.

4. DISCUSSION AND CONCLUSION

The paper showed that prognostic metrics of data from real-
world data sets are extremely low compared to benchmark
data sets. The main issues observed are unavailability of
run-to-failure trajectories and low signal-to-noise ratios of
the available trajectories due to always present confounding
factors. As a consequence, developed data-driven prognostic
methods are often not applicable in practical cases.

The criticality of discussed real-world cases make it unlikely
that much run-to-failure data will be collected in the future,
so the proposed solution is defined in a framework based on
enhancing and utilizing system knowledge. The limited un-
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derstanding of measured signals in the real-world cases make
trending complicated, so system models with induced damage
are proposed to increase understanding of the effects of dam-
age on measured signals. A quantitative diagnostic algorithm
can improve the signal-to-noise ratio of measured signals, pro-
viding the input for a Bayesian filter that quantifies the relation
between usage and degradation rates. Subsequently, prognos-
tics can be performed based on expected system usage.

The framework has strict requirements on system knowledge
(i.e. PoF, load monitoring, system models with induced dam-
age), but low data requirements as no historical run-to-failures
are needed. To accelerate development for application to new
systems, usage of modular system models such as bond graphs
is proposed. The framework still needs to be implemented and
validated for a real application and the strict requirements on
system knowledge requires investments. However, it enables
better RUL predictions (or RUL extension by usage adapta-
tion) which can yield great benefits. Before moving to complex
cases such as the Apache ETF or the marine diesel engine, it
is proposed to start with relatively simple standard equipment
such as bearings to validate the benefits of the method. This
will be presented in a future publication.
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ABSTRACT

Batteries are a key enabling technology for the decarboniza-
tion of transport and energy sectors. The safe and reliable
operation of batteries is crucial for battery-powered systems.
In this direction, the development of accurate and robust bat-
tery state-of-health prognostics models can unlock the poten-
tial of autonomous systems for complex, remote and reliable
operations. The combination of Neural Networks, Bayesian
modelling concepts and ensemble learning strategies, form
a valuable prognostics framework to combine uncertainty in
a robust and accurate manner. Accordingly, this paper in-
troduces a Bayesian ensemble learning approach to predict
the capacity depletion of lithium-ion batteries. The approach
accurately predicts the capacity fade and quantifies the un-
certainty associated with battery design and degradation pro-
cesses. The proposed Bayesian ensemble methodology em-
ploys a stacking technique, integrating multiple Bayesian neu-
ral networks (BNNs) as base learners, which have been trained
on data diversity. The proposed method has been validated
using a battery aging dataset collected by the NASA Ames
Prognostics Center of Excellence. Obtained results demon-
strate the improved accuracy and robustness of the proposed
probabilistic fusion approach with respect to (i) a single BNN
model and (ii) a classical stacking strategy based on different
BNNs.

1. INTRODUCTION

Batteries are key components in the transition towards a sus-
tainable carbon-free economy. In this transition, the develop-
ment of remaining useful life (RUL) prediction of batteries
is a crucial activity. The accuracy and reliability of the RUL

Jokin Alcibar et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

prediction models is essential to build trust in the predictions
(Liu et al., 2023). In this context, robust and reliable bat-
tery prognostics models support the development of accurate
monitoring strategies and cost-effective solutions.

The estimation of the state-of-health (SOH) of batteries is a
key activity for the design of RUL prognostics models. SOH-
based prognostics models focus on capturing the run-to-failure
ageing dynamics and battery health state estimation (Toughzaoui
et al., 2022). It is frequently used to determine age-related
degradation that reduces energy capacity and rises safety risks,
including overheating and explosions (Wang et al., 2022).
Therefore, accurate SOH monitoring and forecasting are key
activities to design and operate safe, reliable and effective
battery-powered systems (H. Zhao et al., 2023).

SOH estimation is an ongoing area of research (Yang, Chen,
Chen, & Huang, 2023). SOH refers to the ratio of the current
maximum capacity relative to its original specified capacity
(X. Zhao, Wang, Li, & Miao, 2024). SOH can be quantified
through different factors, including resistance and maximum
power. However, discharge capacity is the most common def-
inition (Vanem, Salucci, Bakdi, & Alnes, 2021), and this is
adopted in this research.

Recent data-driven approaches have focused on modeling the
capacity degradation of lithium-ion (Li-ion) batteries. (Lee,
Kwon, & Lee, 2023) used convolutional neural network (CNN)
to estimate the future SOH value of Li-ion batteries, trans-
forming the capacity degradation data into two-dimensional
images. Estimates of the SOH and RUL are commonly found
together in the literature. For example, (Toughzaoui et al.,
2022) developed a CNN-LSTM architecture, and (Wei & Wu,
2023) presented a graph CNN complemented by dual atten-
tion mechanisms for the estimation of SOH and RUL of bat-
teries. However, due to the variability inherent in battery
manufacturing process, it is essential to quantify this uncer-
tainty to ensure robust and reliable prognostics predictions
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(Abdar et al., 2021; Nemani et al., 2023).

There are different sources of uncertainty present in the de-
sign, operation and maintenance of batteries (Hadigol, Maute,
& Doostan, 2015). (Y. Zhang, Zhang, Liu, Feng, & Xu,
2024) introduced a SOH assessment method that estimates
uncertainty through the quantile distribution of deep features,
which are inferred from a Residual Neural Network (ResNet)
architecture. This approach generates SOH values accompa-
nied by confidence intervals. However, the proposed ResNet
architecture lacks probabilistic layers, overlooking the uncer-
tainty inherent in the model parameters. (Che et al., 2024) de-
veloped a prognostic framework to assess battery aging, using
a CNN-LSTM Bayesian neural network. However, this ap-
proach limits the uncertainty to the final dense layers, which
are the only components modeled probabilistically.

With the aim of capturing uncertainty associated with com-
plex processes, recent studies in the broader machine learning
(ML) community have focused on ensembles of probabilistic
models. (Fan, Olson, & Evans, 2017) introduced a Bayesian
posterior predictive framework for weighting ensemble cli-
mate models. (Cobb et al., 2019) present a new ML retrieval
method based on an ensemble of Bayesian Neural Networks
(BNNs). In this scenario, the overall output from the ensem-
ble is treated as a Gaussian mixture model. However, mod-
els are equally weighted with no adaptation to the observed
data. (S. Zhang, Liu, & Su, 2022) present a Bayesian Mix-
ture Neural Network (BMNN) for Li-ion battery RUL predic-
tion. The BMNN framework incorporates a Bayesian Convo-
lutional Neural Network as feature extractor and a Bayesian
Long Short-Term Memory to learn degradation patterns over
time. However, the absence of a weighted model combination
limits the analysis of individual model contributions.

Alternatively, (Bai & Chandra, 2023) described a Bayesian
ensemble learning framework that uses gradient boosting by
combining multiple Neural Networks trained by Markov Chain
Monte Carlo (MCMC) sampling. Finally, (Dai, Pollock, &
Roberts, 2023) demonstrate the robustness of Bayesian fu-
sion by embedding the Monte Carlo fusion framework within
a sequential Monte Carlo algorithm.

In this context, inspired by the use of probabilistic ensem-
ble models to capture model uncertainty, the main contribu-
tion of this research is the development of a novel proba-
bilistic model fusion approach for battery SOH predictions.
Bayesian convolutional neural networks (BCNNs) are used
as base models for SOH prediction, and the fusion approach
integrates individual BCNN probabilistic predictions. The
fusion strategy balances between precision and reliability of
individual predictions, adopting an optimal tradeoff between
accuracy and uncertainty of predictions through the proposed
stacking approach.

The proposed approach has been compared with (i) individual

BCNN models and (ii) fusion strategies focused on stacking
of BCNN models using point prediction information. Ob-
tained results confirm that the proposed framework infers ac-
curate, well-calibrated, and reliable probabilistic predictions,
which improve predictive performance and contribute to esti-
mate uncertainty in a robust and reliable manner in complex
data-driven tasks. The proposed approach has been tested and
validated with the publicly available NASA’s battery dataset
(Saha & Goebel, 2007).

The remainder of this article is organized as follows. Sec-
tion 2 outlines our probabilistic fusion approach for robust
battery prognostics. Section 3 describes a case study to demon-
strate the application of our methodology. Section 4 presents
and analyzes the results obtained from the case study. Sec-
tion 5 discusses the implications of these findings. The article
concludes with Section 6, summarizing our main conclusions
and suggesting avenues for future work.

2. PROBABILISTIC FUSION APPROACH FOR ROBUST BAT-
TERY PROGNOSTICS

The proposed probabilistic fusion framework integrates BC-
NNs with probabilistic ensemble strategies. The main objec-
tive of the integration is to generate accurate predictions with
robust uncertainty quantification, thanks to the uncertainty
quantification of Bayesian modelling (Blundell, Cornebise,
Kavukcuoglu, & Wierstra, 2015) and the robustness and ac-
curacy of ensemble strategies (S. Zhang et al., 2022).

The approach is divided into offline and online stages. Start-
ing from a set of battery datasets, in the offline process, data
pre-processing and model training steps are completed. In
the online process, trained models are stacked in an ensemble
model according to computed weight and stacking criteria.
The outcome of the approach is a one-step-ahead probabilis-
tic capacity estimate. Figure 1 shows the high-level block
diagram of the proposed approach.

Battery Dataset

Online

Offline

Forecasting

Figure 1. High-level block diagram of the proposed approach.

The high-level concepts in Figure 1 are implemented through
the detailed model architecture shown in Figure 2.

The base models are BCNN models, which are trained (of-
fline) through a leave-one-out cross validation (LOOCV) pro-
cess. The probabilistic results of individual BCNN models
are aggregated through a stacking process that includes accu-
racy and uncertainty metrics. In the testing (online) phase,
each BCNN model weights are computed using learned mod-
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Figure 2. Block diagram of the proposed approach.

els (log-score weights) and the stacking model is designed
to combine them and generate a distribution from a mixture
model. The following subsections explain in detail the main
parts of the approach.

2.1. Offline Phase

During the offline phase, starting from a battery dataset with
different run-to-failure trajectories on the same type of bat-
teries, different base models are designed through a training
strategy which seeks diversity in the training set to develop
complementary predictive models.

2.1.1. Ensemble Base Models: BCNNs

BCNN models are a Bayesian extension of the classical CNN
models to include uncertainty associated with parameter es-
timation. This requires modification of the classical back-
propagation algorithm through Bayesian techniques that in-
volves incorporating uncertainty into the model by treating
weights as random variables, and applying variational infer-
ence to approximate posterior distributions. This results in
a more robust model that predicts the complete probability
density function (PDF).

Consequently, BCNN models have been selected to improve
the robustness and accuracy of model prediction. To this
end, BCNNs make use of probabilistic distributions to model
parameters and the uncertainty related to their training pro-
cess, and prior distributions to incorporate previous knowl-
edge, generate uncertainty estimations and mitigate over-fitting
(Blundell et al., 2015). In contrast, the classical learning mod-
els, e.g. non-Bayesian CNN models, focus on maximum like-
lihood estimation (MLE) and they overlook prior and poste-

rior distributions. This leads to increasing error and decreas-
ing model robustness in high uncertainty contexts, e.g. out-
of-distribution data or manufacturing drifts.

The proposed approach utilizes data pre-processing techniques
to standardize the length of discharge cycles through padding.
This technique involves repeating the last discharge value un-
til the desired cycle length is reached, ensuring consistent in-
put dimensions for all models. Additionally, normalization is
carried out scaling the discharge values between 0 and 1.

The architecture of the BCNN models is shown in Figure 3
defined as follows:

• Input data: the input data for the BCNN is structured in
a tensor format. The rows represent data samples of dis-
charge cycles, and columns that correspond to features,
such as the voltage and temperature over time. Notably,
the input does not include the current discharge as it re-
mains constant in this scenario.

• Convolutional 1D Reparametrization: this layer creates
a convolution kernel that is applied to the input data.
During the forward pass, kernel and bias parameters are
drawn from a Gaussian distribution. It uses the reparam-
eterization estimator to approximate distributions through
Monte Carlo trials, integrating over the kernel and bias.

• Global Average Pooling 1D: this layer performs average
pooling specifically for temporal data. It reduces the spa-
tial dimensions of the input data to a single value per
channel by calculating the average over the temporal di-
mension.

• Flatten: this layer reshapes input data into a one dimen-
sional array, enabling compatibility between Bayesian
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Figure 3. Schematic of the Bayesian convolution neural network.

convolutional layers and Bayesian dense layers.
• Dense Reparameterization: this layer implements a repa-

rameterization estimator for Bayesian variational infer-
ence. It implements a stochastic forward pass via sam-
pling from the kernel and bias distributions. This ap-
proach improves the robustness of the model, allowing
uncertainty estimation in parameter values and support-
ing probabilistic modeling in deep learning.

• Distribution Lambda: this layer is responsible for pro-
ducing the final results given the inputs and the learned
weights from the previous layers. The output layer con-
sists of two neurons representing the mean, ŷ and vari-
ance, σ̂2, in order to quantify the expected value and its
associated uncertainty. To ensure a positive variance, the
neuron is activated using an exponential function.

BCNN combines feature extraction capabilities of classical
CNN models with the uncertainty quantification of Bayesian
theory. The proposed architecture is built using the Bayesian
layers of TensorFlow Probability in Python (Dillon
et al., 2017).

2.1.2. Training for Diversity

Model diversity is a key concept for effective ensemble mod-
els (Nam, Yoon, Lee, & Lee, 2021). Accordingly, in this case,
the training set for each battery model is modified to learn
different battery aging properties. Historical capacity fading
data are used to build aging models for each battery in the
dataset.

Namely, using the LOOCV strategy, if K run-to-failure tra-
jectories are available, K diverse BCNN models are built
changing the training set in each iteration (cf. Figure 2). That
is, the model is trained on all batteries except one, which is
held as a test set. This process is repeated so that each battery
serves as a test set exactly once. Thus, all available data are
used for training, maximizing the diversity of training scenar-
ios.

Training the BCNN models through LOOCV strategy, en-
hances the ability of individual models to generalize across
different battery types and manufacturing conditions.

This stage completes the offline training process, which re-
sults in a set of BCNN models:

M = {BCNN1, BCNN2, . . . , BCNNK}, (1)

which are used in the subsequent online inference process to
build ensemble models.

2.2. Online: Stacking of Predictive Distribution

During the online phase, the proposed stacking of predictive
distribution strategy is designed and tested. The proposed ap-
proach takes as input individual base models [cf. Eq. (1)] and
monitored data up to the prediction instant t, which is used
to forecast the probability density function (PDF) of the ca-
pacity at t + 1, ŷPDF (t + 1). The objective of the stacking
process is to integrate the predictive distributions of different
base models and propagate all the information end-to-end.

For comparison and benchmarking purposes, an alternative
stacking approach is also implemented named stacking of
point prediction (cf. Subsection 3.3).

Log-Score Weights

The optimal way to combine a set of Bayesian posterior pre-
dictive distributions is by using the logarithmic score (Yao,
Vehtari, Simpson, & Gelman, 2018). This method maximizes
the average log-likelihood of the observed data, which is a
proper scoring rule used to evaluate the accuracy of prob-
abilistic forecasts. It measures the accuracy of a forecast
and penalizes overconfidence and underconfidence in the pre-
dicted probability. The logarithmic score is defined as fol-
lows:

ŵ = argmax
w

1

N

N∑

i=1

log
K∑

k=1

wkp(yi | y−i,Mk) + λreg

K∑

k=1

w2
k (2)

where N denotes the total number of data points and K de-
notes the total number of base models. The leave-one-out
predictive distribution for each model, i.e. p(yi | y−i,Mk),
is used to compute the model’s prediction for the data point
i. To avoid overfitting, a regularization term λreg is added to
the likelihood function, penalizing large weights.
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(a) Voltage variation (b) Current variation (c) Temperature variation

Figure 4. Feature variations due to an increasing number of discharge cycles in battery #5.

Stacking

Stacking is a method to average point estimates from several
models (LeBlanc & Tibshirani, 1996). In its simplest form,
it can be seen as a weighted average method. Through the
weighted average, it facilitates the construction of ensembles
that incorporate predictions from multiple models. In the pro-
posed framework, the goal of weighted average ensemble is
to leverage the predictive capabilities ofK pre-trained BCNN
models [cf. Eq. (1)]. It seeks to mitigate forecasting errors by
assigning weights to the linear combination of these models,
thereby enhancing the accuracy of predictions.

In the Bayesian framework, stacking extends beyond the lim-
itations of averaging point predictions by combining multiple
Bayesian posterior predictive distributions. This approach de-
velops a stacking model that leverages the strengths of vari-
ous predictive models, enhancing overall predictive accuracy.
The stacking of the predictive distribution enables the fusion
of uncertainties from various models into a unified predictive
framework. This approach improves the accuracy of forecasts
and offers a comprehensive evaluation of the uncertainty as-
sociated with these forecasts, providing advantages across di-
verse decision-making scenarios. The fundamental equation
governing this process is defined as follows:

p̂(ỹ|y) =
K∑

k=1

ŵkp(ỹ|y,Mk) (3)

where p̂(ỹ|y) represents the aggregate probability estimation
based on the ensemble model, ωk denotes the weight assigned
to the k-th component within the ensemble, and p(ỹ|y,Mk)
refers to the probabilistic forecast generated by each base
model, denoted as BCNNk, given the observed data y.

This probabilistic prediction indicates the likelihood of ob-
serving the predicted outcome ỹ, dependent on the specific
base model employed.

2.2.1. Forecasting

Online forecasting is computed for one-step-ahead predic-
tions. In order to forecast battery capacity at instant t + 1,
previous data until the instant t is used, plus an uncertainty
factor expressed as noise:

X (t) = {V (t), T (t), ϵ} (4)

where {V (t), T (t)} denote the values of voltage and tem-
perature at instant t, and ϵ denotes the Gaussian noise term,
N(0, σ) with σ = 0.1, that introduces variability in the pro-
gression of X over time.

The one-step-ahead capacity distribution prediction is thus
defined as follows:

ŷPDF (t+ 1) = f(X (t)) (5)

where f(.), denotes the designed ensemble model, ŷPDF (t+
1) is the distribution of the capacity estimate at t+ 1.

It is possible to perform SOH predictions for longer predic-
tion horizons through a recursive forecasting strategy. How-
ever, due to the accumulation of individual forecasting errors,
this approach may lead to decrease long-term forecasting per-
formance. Long-term SOH forecasting activities are left open
for future work.

This approach allows the model to learn continuously and
adapt to changing conditions. Online forecasting is partic-
ularly beneficial in environments that require immediate de-
cision making based on the latest available data.

3. CASE STUDY

3.1. Dataset description

The effectiveness of the proposed method has been tested us-
ing a battery dataset from the NASA Ames Prognostics Cen-
ter of Excellence (Saha & Goebel, 2007).

5
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A subset of available battery data has been selected, focusing
on batteries #5, #6, #7 and #18. Each battery is operated
under various conditions including charging, discharging, and
impedance analysis. Throughout the charge and discharge
cycles, temperature, current, and voltage were meticulously
recorded. During charging, a constant current mode at 1.5 A
was maintained until the voltage reached 4.2 V, followed by a
switch to constant voltage mode until the current dropped to
20 mA. Discharge cycles involved a constant load mode at 2
A until the voltage levels reached 2.7 V, 2.5 V, 2.2 V and 2.5 V
for batteries #5, #6, #7 and #18, respectively. The experiment
ended once the battery capacity decreased by 30%. These
batteries had a maximum capacity of 2Ah with an end-of-life
capacity set at 1.4Ah.

Figures 4(a), 4(b) and 4(c) show the evolution of voltage,
current (constant), and temperature measurements with the
increment of discharge cycles for the battery #5. Figure 5
shows variations in capacity degradation rates for identical
batteries. This is an indicator of uncertainty inherent in the
manufacturing process, which affects SOH estimates.

Figure 5. Capacity degradation data of Li-ion batteries.

3.2. BCNN structure and hyperparameters

The design of the base BCNN model structure is developed
through experimentation. The BCNN architecture for SOH
forecasting is detailed in Table 1, where ’None’ is indicative
of the batch size. The input for the model comprises 371
data points per discharge cycle, with each point aggregating
3 features: voltage, temperature, and time.

The proposed structure encompasses a total of 1300 train-
able parameters, designed to extract features from battery dis-
charge cycle data for forecasting purposes. Figure 3 details
the convolutional layer hyperparameters, which includes 16
kernels, each with a dimension of 3, adopting a Laplace dis-
tribution for the prior and employing a ReLU activation func-
tion. In addition, the model incorporates Bayesian dense lay-
ers with 16 units, Adam optimizer, a learning rate of 0.01, and
Evidence Lower Bound (ELBO) as its loss function (S. Zhang
et al., 2022).

Table 1. BCNN model architecture

Layer Description Output Shape # Param.
- Input (None, 371, 4) 0
1 Conv.1D Reparameter. (None, 369, 16) 416
2 Conv.1D Reparameter. (None, 368, 8) 528
3 Global Average Pooling (None, 8) 0
4 Flatten (None, 8) 0
5 Dense Reparameter. (None, 16) 288
6 Dense Reparameter. (None, 2) 68
7 Distribution Lambda (None,1),(None,1) 0

Total params: 1300 (5.08 KB)

3.3. Benchmarking

In order to compare the designed stacking approach with al-
ternative stacking strategies, another stacking approach has
been designed using point prediction information instead of
the full distribution.

Stacking of Point Prediction

An effective method for determining the weight of each model
in the stacking process is by minimizing the leave-one-out
mean squared error with a L2 regularization term, λreg. The
purpose of this term is to penalize large weights, thus prevent-
ing overfitting and balancing individual model contributions.
The weights are obtained through the following optimization
problem:

ŵ = argmin
w

n∑

i=1

(
yi −

K∑

k=1

wkf̂
(−i)
K (xi)

)2

+ λreg

K∑

k=1

w2
k (6)

where f̂ (−i)
K (xi) represents the predicted value of the k-th

model, when the i-th observation is left out of the training
set. The regularization parameter, λreg , controls the strength
of the regularization applied. To ensure a feasible solution,

the weights are restricted to wk ≥ 0 and
K∑

k=1

wk = 1.

Accordingly, the stacking of point prediction approach is de-
fined as follows:

ŷ =
K∑

k=1

ŵkfk(x|θk) (7)

where ŷ represents the prediction of the ensemble for the test
battery capacity, ŵk denotes the weight assigned to the k-th
battery base model, and fk(x|θk) is the prediction made by
the corresponding base model (BCNNk).

3.4. Evaluation criteria

The accuracy of the regression is measured by Mean Squared
Error, while Negative Log Likelihood assesses model perfor-
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mance by quantifying prediction probabilities. Finally, The
correctness of probability predictions is assessed through the
CRPS.

Mean Square Error (MSE) is a metric for measuring the
quality of an estimator. It is a measure of the average squared
differences between the estimated values and what is esti-
mated. MSE is calculated by taking the average of the square
of the differences between the predicted values and the actual
values (Hodson, 2022).

MSE =
1

n

n∑

i=1

(Yi − Ŷi)2 (8)

where, n represents the number of observations, Yi denotes
the actual value for the ith observation, and Ŷi signifies the
predicted value for the ith observation.

Coefficient of Determination (R2) is a metric used to assess
the goodness of fit of the model. It provides a measure of
how well the observed outcomes are replicated by the model,
based on the proportion of total variation of outcomes ex-
plained by the model (Barrett, 1974).

R2 = 1−

n∑
i=1

(Yi − Ŷ i)2

n∑
i=1

(Yi − Ȳ )2
(9)

where, n is the number of observations, Yi is the actual value,
Ŷi the predicted value for the i-th observation and Ȳ the mean
of Y . R2 of 1 implies perfect model predictions, while 0
means no explained variability.

Continuous Ranked Probability Score (CRPS) can be for-
mally expressed as a quadratic measure of discrepancy be-
tween the predicted Cumulative Distribution Function (CDF),
F (·), and the observed empirical CDF for a given scalar ob-
servation y (Zamo & Naveau, 2018):

CRPS(F, y) =

∫
(F (x)− I(x ≥ yi))2dx, (10)

where I(x ≥ yi) is the indicator function, which models the
empirical CDF.

To obtain a single score value from Eq. (10), a weighted av-
erage is calculated for each individual observation of the test
set (Gneiting, Raftery, Westveld, & Goldman, 2005):

CRPS =
1

N

N∑

i=1

CRPS(Fi, yi) (11)

where N denotes the total number of predictions.

Negative Log Likelihood (NLL) metric assesses probabilis-
tic models by using the likelihood concept, which indicates
how likely the observed data is given model parameters (Bosman
& Thierens, 2000). Likelihood (L) is the product of each
observation’s probability density function (PDF), expressed
mathematically as

L(θ | X) =
N∏

i=1

f(xi|θ) (12)

where θ denotes model parameters and X includes N data
points. NLL is preferred for optimization since minimizing
NLL is equivalent to maximizing the log-likelihood, facilitat-
ing the discovery of model parameters that best explain the
observed data, represented by

− logL(θ | X) = −
n∑

i=1

log f(xi | θ) (13)

Calibration refers to the statistical consistency between the
predictive distributions and the actual observations. It repre-
sents a joint property of forecasts and empirical data (Jung,
Jo, Choo, & Lee, 2022). Namely, it is stated that the model is
calibrated if (Kuleshov, Fenner, & Ermon, 2018):

∑T
t=1 I{yt ≤ F−1

t (p)}
T

→ p for all p ∈ [0, 1] (14)

In this expression, T refers to the total number of data points,
while the indicator function I{yt ≤ F−1

t (p)} takes a value of
1 when the condition yt ≤ F−1

t (p) is true, and 0 otherwise.
Given this condition, yt express the observed outcome at time
t, and F−1

t (p) is the inverse of the CDF for the forecast, eval-
uated at probability p. Therefore, the condition represents the
threshold below which a random sample from the distribution
would occur with a probability p.

Sharpness means that the confidence intervals should be op-
timized for minimal width around a singular value. That is,
the goal is to reduce the variance, denoted as var(Fn), of the
random variable characterized by the cumulative distribution
function Fn (Kuleshov et al., 2018; Tran et al., 2020):

sha =

√√√√ 1

N

N∑

n=1

var(Fn) (15)
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Table 2. Comparison of different ensemble strategies for different batteries used as test.

Baseline Model Benchmarking Ensemble Proposed Ensemble

MSE(↓) R2(↑) NLL(↓) CRPS(↓) MSE(↓) R2(↑) NLL(↓) CRPS(↓) MSE(↓) R2(↑) NLL(↓) CRPS(↓)
B0005 0.0007 0.9732 2.3397 0.0183 0.0002 0.9901 -1.9523 0.0145 0.0003 0.9886 -2.1001 0.0131
B0006 0.0013 0.9636 8.0947 0.0213 0.0009 0.9753 -1.8222 0.0183 0.0009 0.9741 -1.9358 0.0178
B0007 0.0005 0.9696 -0.0409 0.0149 0.0003 0.9814 -1.9755 0.0145 0.0004 0.9763 -1.9769 0.0145
B0018 0.0013 0.8943 9.0342 0.0223 0.0010 0.9183 -1.9478 0.0174 0.0010 0.9141 -1.9312 0.0178

4. RESULTS

To evaluate the proposed approach, firstly, different ensemble
strategies are compared to evaluate their strengths and iden-
tify the most suitable approach. Subsequently, a sensitivity
analysis is developed with respect to the contribution of indi-
vidual base-models to the overall ensemble.

4.1. Probabilistic Ensemble Strategies

This section focuses on the comparison between (i) the base-
line model, i.e. BCNN model trained with all available data,
(ii) ensemble of point prediction and (iii) proposed ensemble
method (cf. Figure 2) to further evaluate the improvement of
ensemble strategies over baseline model.

Table 2 presents a comparative analysis in terms of accuracy
and probabilistic metrics. This comparison highlights that,
for different test scenarios, the ensemble methodologies en-
hance the performance of the baseline model.

A notable observation from the results in Table 2 is the vari-
ance between the proposed ensemble approach (cf. Figure 2)
and the benchmarking ensemble model (cf. Subsection 3.3)
in specific scenarios. For batteries #5 and #6, the proposed
approach exhibited superior outcomes, particularly in proba-
bilistic metrics (NLL and CRPS). This suggests that within
a Bayesian framework, prioritizing likelihood maximization,
leads to accurately modelling uncertainty, and therefore, it is
more advantageous than focusing on MSE minimization (as
in Subsection 3.3).

The model optimization criterion has a direct impact on the
performance of the tested methods and on the effectiveness of
the ensemble approach. However, for batteries #7 and #18, no
significant differences were observed between the tested en-
semble approaches, which indicates that the results are asso-
ciated to the prior models. That is, it is possible that the same
prior model minimizes the MSE and maximizes the likeli-
hood at the same time.

Figure 6(a) shows the comparison between the ensemble model
generated by stacking point predictions (cf. Subsection 3.3),
Figure 6(b) shows the ensemble model generated through stack-
ing of predictive distributions (cf. Figure 2), and Figure 6(c)
shows the individual BCNN trained with the entire dataset,
e.g. for the battery #5, train with batteries #6, #7, and #18,

and test with #5.

(a) Stacked point prediction method (cf. Subsection 3.3)

(b) Stacked predictive distribution method (cf. Figure 2)

(c) Baseline model

Figure 6. Battery capacity degradation forecasting results.

It is observed that the ensemble models enhance the perfor-
mance of baseline model in terms of accuracy and uncertainty
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(a) calibration and sharpness for the benchmarking ensemble model (b) calibration and sharpness for the proposed ensemble model

Figure 7. Evaluation of calibration and sharpness for battery #5.

quantification. This is indicated by the positioning of the
ground truth (dashed lines) at the limit of the lower boundary
in Figure 6(c), which means that the uncertainty does not ac-
curately cover the observed values. That is, the uncertainty
bounds are not well-calibrated, compromising the model’s
ability to accurately represent the underlying variability in the
data and in the model compared to ensemble strategies.

Figure 6(a) shows an improvement in the prediction accuracy.
However, it simultaneously introduces a higher level of uncer-
tainty compared to the proposed ensemble method in Figure
6(b). This is reflected in the NLL and CRPS metrics, where
the stacking of the predictive distribution demonstrates supe-
rior performance (cf. Table 2). Such probabilistic metrics
indicate that the model parameters make the observed data
more probable, indicating a good fit to the observed data.

The evaluation of the shape of the PDF is a crucial aspect of
uncertainty quantification. Accordingly, the calibration and
the sharpness assessment of PDFs is performed through a
python toolbox for predictive uncertainty quantification (Chung,
Char, Guo, Schneider, & Neiswanger, 2021). Figure 7 shows
the calibration and sharpness of the analysed ensemble meth-
ods designed for probabilistic forecasting for the battery #5.

The calibration plot for the point-prediction ensemble model
[cf. Figure 7(a)] reveals a miscalibration area of 0.26, indi-
cating a gap between predicted probabilities and actual out-
comes, generally overestimating event probabilities. On the
contrary, the proposed ensemble model [cf. Figure 7(b)] shows
better calibration with a miscalibration area of 0.12, aligning
closer to the ideal, especially in midrange probabilities.

In terms of sharpness, the predictions of the point-prediction
based ensemble model have a mean sharpness value of 0.06
and are right-skewed, reflecting higher uncertainty. However,
the proposed ensemble model has a mean sharpness value of
0.05, with a slightly left-skewed distribution, indicating more
predictions with lower uncertainty and greater confidence.

4.2. Sensitivity of the Ensemble Strategy with Base-Models

To evaluate the contribution of each individual BCNN model
to the ensemble approach, a sensitivity assessment has been
performed. Namely, the performance of the different leave-
one-out iterations has been evaluated, sequentially training
with different battery datasets and testing with the leave-out
battery dataset. This has been compared with the proposed
ensemble approach results to identify individual contributions
from different models. Table 3 displays the obtained results.

Table 3. Performance evaluation of BCNN models and the en-
semble approach.

Test1 Model MSE (↓) R2 (↑) NLL (↓) CRPS (↓)

#5
BCNN [#6,#7]2 0.0005 0.9802 -1.0707 0.0135
BCNN [#6,#18] 0.0244 0.1016 19.4417 0.1411
BCNN [#7,#18] 0.0006 0.9795 -2.0774 0.0132

Ensemble 0.0003 0.9886 -2.1001 0.0131

#6
BCNN [#5,#7] 0.0011 0.9695 3.7012 0.0197
BCNN [#5,#18] 0.0147 0.5861 0.5852 0.0849
BCNN [#7,#18] 0.0018 0.9491 -0.7498 0.0252

Ensemble 0.0009 0.9741 -1.9358 0.0178

#7
BCNN [#5,#6] 0.0008 0.9543 -1.5462 0.0166

BCNN [#5,#18] 0.004 0.7704 2.1996 0.0326
BCNN [#6,#18] 0.0026 0.854 -1.5735 0.0286

Ensemble 0.0004 0.9763 -1.9769 0.0145

#18
BCNN [#5,#6] 0.0091 0.2534 14.708 0.0833
BCNN [#5,#7] 0.0041 0.6663 1.5441 0.0459
BCNN [#6,#7] 0.0013 0.8929 1.8299 0.0213

Ensemble 0.0010 0.9141 -1.9312 0.0178
1 Battery identifier used for testing.
2 BCNN [#A,#B]: BCNN trained with batteries #A and #B.

The ensemble BCNN model demonstrates significantly higher
accuracy and predictive power than individual BCNN mod-
els, as evidenced by its superior performance across multiple
metrics. It achieves the lowest MSE in every testing battery,
indicating more precise predictions, and the highest R2 score,
showing its ability to explain a greater proportion of variance.
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(a) Ensemble forecast showing the combined prediction from all models (b) Forecast from the first component model of the ensemble

(c) Forecast from the second component model of the ensemble (d) Forecast from the third component model of the ensemble

Figure 8. Capacity fade forecasting for battery #5 employing an ensemble of BCNN models.

The ensemble model also shows a notable improvement in
the NLL metric, suggesting a more reliable uncertainty esti-
mation. Additionally, by achieving the lowest CRPS, it em-
phasizes its proficiency in probabilistic forecasting and pre-
cise uncertainty quantification. Overall, the ensemble method
outperforms individual models, highlighting its effectiveness
in contexts that require high accuracy and reliability.

Figure 8 presents the forecasts generated by individual mod-
els for battery #5 (cf. Table 3). Figures 8(b)-8(d), show indi-
vidual models and Figure 8(a) shows the combined forecast
of the ensemble model.

It can be seen that the ensemble effectively combines the
characteristics of models 2 and 3, thereby improving the over-
all performance of the final forecast of the ensemble.

5. DISCUSSION

The proposed research work demonstrates that the stacking of
predictive distributions based on a Bayesian framework im-
proves the accuracy and robustness of predictions compared
with stacking of point predictions. Furthermore, it has been
observed that the use of an ensemble of BCNN models im-

proves the modeling of uncertainty when compared to rely-
ing on a single BCNN model (baseline). However, before
drawing definitive conclusions about the application of the
proposed solution in real-world applications, further work is
necessary testing the robustness, scalability, and sensitivity
with respect to noise.

Robustness

Credible intervals reflect the uncertainty associated with the
data and the model (cf. Figure 6). The robustness of the
proposed approach is therefore directly dependent on model
and data uncertainty. The reduction of credible intervals align
with the objective of increasing robustness. To this end, in-
creasing the number of observations would reduce the uncer-
tainty attributed to the model, which results in more precise
credible intervals. Additionally, employing priors like maxi-
mum entropy priors or weakly informative priors may further
tighten credible intervals, thereby improving the reliability of
the model predictions.

Scalability

To analyze larger fleets of batteries, instead of using leave-
one-out methodologies, it may be more appropriate to de-

10

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 865



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

velop generalized training methodologies. In this direction,
one approach would be to cluster batteries that exhibit simi-
lar operation and degradation conditions. This strategy would
enable capturing data diversity, which is a key property for
ensemble strategies. Alternatively, a hierarchical modelling
strategy may be adopted. This method involves a global model
for overall battery behavior, supplemented by smaller models
for specific groups, enabling precise adaptations without the
need for separate models per battery. This strategy ensures
scalability and flexibility in handling various battery opera-
tion and degradation conditions efficiently.

Noise Sensitivity

The proposed approach assumes a Gaussian noise to model
the variability of the modeled process and measurements [cf.
Eq. (4)]. To analyze the impact of Gaussian noise levels on
prediction results, a sensitivity analysis has been performed.
Figure 9 shows the obtained results.

Figure 9. Impact of Gaussian Noise on Predictive Modeling
of Battery Capacity Degradation.

Obtained results indicate that, when testing data diverges from
training data, the epistemic uncertainty increases. The in-
crease in Gaussian noise causes a greater deviation, and there-
fore, there is a significant rise in epistemic uncertainty. Analysing
the model’s behaviour in the presence of different types of un-
certainty is crucial to evaluate the robustness of the model and
determine if additional training stages are needed to enhance
its reliability. Consequently, this research adopts a noise level
of 0.1 as a trade-off decision between prediction accuracy and
uncertainty.

Application Limits

Some of the adopted practices may limit the applicability of
the proposed framework in real-world applications. The ex-
perimental setup, conducted in a controlled environment with
specified load conditions, may not entirely replicate the di-
verse sources of uncertainty present in real-world applica-
tions. Such controlled conditions could potentially skew the
understanding of uncertainty due to environmental and opera-
tional variabilities. Consequently, the predictive performance

observed in this study may differ under less predictable con-
ditions. In this direction, for controlled operation environ-
ments, the complexity of the proposed approach may be re-
duced. However, the proposed methodology complexity is
designed to capture a wide range of uncertainties found in
real operating systems.

6. CONCLUSION AND FUTURE WORK

Batteries are key components in power and energy systems
and ensuring a robust and reliable remaining useful life (RUL)
prediction of batteries is crucial to develop accurate monitor-
ing strategies, and build cost-effective solutions.

In this context, battery RUL prediction models generally fo-
cus on individual prediction models. They may be able to
capture uncertainty associated with the battery ageing pro-
cess, but the uncertainty modelling and capturing ability is
also limited to the individual model. This research presents a
probabilistic ensemble prognostics approach which combines
Bayesian Convolutional Neural Network (BCNN) models in
a probabilistic stacking strategy. The proposed framework
leverages the probabilistic predictive information of individ-
ual BCNN models, which are integrated through a probabilis-
tic stacking approach that calibrates between accuracy and
robustness of probabilistic predictions.

The proposed approach has been tested on NASA’s battery
dataset. Obtained results show that the proposed probabilis-
tic stacking approach improves accuracy and uncertainty of
predictions with respect to other ensemble strategies and in-
dividual BCNN models.

This research study contributes towards understanding and
predicting the capacity fade in Li-ion batteries. Namely, it
highlights the role of probabilistic approaches and ensem-
ble methods in modelling the uncertainties inherent in battery
manufacturing and operation.

Looking forward, there are different opportunities to expand
the scope and applicability of this work. On the one hand,
the use of a larger battery dataset, which includes diverse en-
vironmental and operational conditions, would allow for a
more comprehensive understanding of capacity fade across
various scenarios. On the other hand, it may be possible to
perform a more exhaustive comparative analysis of differ-
ent fusion strategies, including Bayesian Model Averaging,
Pseudo Bayesian Model Averaging, or Mixture Models. This
comparative will provide further insights into the optimal ap-
proaches for integrating predictive models in the context of
battery life prediction, enhancing both the accuracy and reli-
ability of capacity fade forecasts.
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ABSTRACT 

To effectively compete with other renewable energy 
sources, there remains a critical need to further decrease the 
Levelized Cost of Energy of Wind Farms (WFs). A 
promising way to achieve this objective is by minimizing 
the downtime of wind turbines (WTs) through effective 
Inspection and Maintenance (I&M) activities. 
Conventionally, I&M plans have predominantly relied on 
CM/SCADA data obtained from the physical components of 
turbines, with data analytics and machine learning (ML) 
techniques being employed to predict their performance and 
maintenance needs. However, statistics indicate that nearly 
40% of WT failures can be traced back to HFs. These 
include aspects such as skills, knowledge, communication, 
and even the broader organizational culture. This paper 
delves into the importance of integrating HFs in the I&M of 
WFs to optimize turbine performance, enhance safety, and 
reduce downtime. 

Firstly, we briefly discussed various Human Reliability 
Analysis (HRA) methods with special emphasis on 
Performance Shape Factors (PSFs). We then identify key 
human factors (HFs) that are vital for performing O&M 
tasks. For this, we have prepared a questionnaire to get 
qualitative input from technicians and also done a thorough 
literature review. E.g., some of the HFs that stand out 
include the ergonomics of tools and workspace designs 
tailored to technicians' needs, the cognitive load placed on 
operators during system monitoring and diagnostics, 
continuous training to handle evolving challenges, effective 
communication channels, and safety protocols designed 

with human behavior in mind. We then propose a novel 
framework for developing a computer vision-based 
recommendation system that can guide the technicians to 
perform the maintenance effectively thus minimizing the 
HE. 

1. INTRODUCTION 

The wind industry, driven by a commitment to green energy 
generation, is at the forefront of research, technological 
innovation, efficiency gains, and cost reductions. With 
turbine sizes and capacity factors having tripled, there has 
been a monumental shift in the wind energy sector. Since 
1990, generation costs have been reduced by 65% (KPMG, 
(2019)), underscoring the industry's dedication to 
developing sustainable and economical energy solutions for 
the future. For instance, breakthroughs in blade design and 
materials, backed by rigorous research, enable turbines to 
harness wind more proficiently, yielding higher energy 
outputs even in suboptimal wind conditions (Asim, T., 
Islam, S., Hemmati, A., & Khalid, M. (2022)). The adoption 
of various Prognostics and Health Management (PHM) 
technologies and predictive analytics has further improved 
the operation and maintenance (O&M) of (WFs), curtailing 
downtime and driving costs even lower (Haghshenas, A., 
Hasan, A., Osen, O., & Mikalsen, E. T. (2023)).  

Rinaldi et al. (Rinaldi, G., Thies, P. R., & Johanning, L. 
(2021)) performed an exhaustive survey of the latest 
strategies governing the O&M planning and CM of OWFs. 
Their review delves into the benefits and limitations of 
current practices and looks ahead to emerging trends in 
robotics, AI, and data analytics. Key opportunities 
highlighted include the integration of diverse data sources to 
refine O&M strategies, precise inventory management, 
detailed uncertainty modeling, the urgent need for 
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standardized open data frameworks, and the development of 
essential reference software. In a related study, McMorland 
et al. (McMorland, J., Flannigan, C., Carroll, J., Collu, M., 
McMillan, D., Leithead, W., & Coraddu, A. (2022)) 
highlighted the significance of various factors in O&M 
modeling for OWFs, including weather dynamics, failure, 
and degradation patterns, vessel logistics, cost estimation, 
and maintenance tactics. Besnard et al. (Besnard, F., 
Patriksson, M., Stromberg, A. B., Wojciechowski, A., & 
Bertling, L. (2009)) introduced the 'opportunistic 
maintenance' concept for OWFs, which entails the fusion of 
multiple planned corrective and preventive maintenance 
tasks, either within a similar timeframe or even during a 
single visit. By capitalizing on wind forecasts and 
synchronizing corrective maintenance with periods of low 
power generation or unexpected failures, this approach has 
proven to yield a 43% reduction in preventive maintenance 
expenses (Fast, S., Mabee, W., Baxter, J., Christidis, T., 
Driver, L., Hill, S., McMurtry, J., & Tomkow, M. (2016)) 
However, as currently practiced, the PHM approach uses 
only machine-related quantitative data available from 
CM/SCADA systems to predict and manage the 
performance and maintenance needs of WFs. The biggest 
drawback of the overreliance on machine-related (MR) data 
is its inability to capture the full spectrum of operating 
conditions under which WFs function. A frequently 
undervalued metric in this context is human-related data, 
which offers additional insights into the system environment 
(Kiassat, A.C., (2013)). 

Human technicians/operators are an essential part of the 
daily O&M activities of the WFs. It is highly probable that 
Human Error (HE), in one form or another, might infiltrate 
the design, manufacturing, operation, and maintenance 
phases of WFs. Morag et al. (Morag, I. et al. (2018)), 
identified the most common HE during a maintenance 
activity described in Table 1. 

The HE may go unnoticed due to various reasons and can 
result in catastrophic accidents leading to severe 
consequences for the environment, society, and business. 
Statistics indicate, HE as one of the major factors for 
accidents across various sectors as shown in Figure 1. For 
instance, the infamous disasters within the oil and gas sector 
namely, the Piper Alpha and the BP Deepwater Horizon 
blowout occurred due to human and operational flaws. 
Likewise, the accident investigations of multiple aircraft 
crashes (such as of a Boeing 707-321C in 1977; Boeing 
747-200, in 1992; and Airbus 380-842 Qantas Flight 32 in 
2010) also point towards technical failures, HFs, and 
regulatory shortcomings as failure causes (Mathavara, K., & 
Ramachandran, G. (2022)). These statistics serve as a 
reminder that, while the hardware aspect is undoubtedly 
important, the human dimension also has a significant 
influence on the overall health and performance of the 
system.  

Table 1. Most common causes of Human Errors  

(Morag, I. et al. (2018)) 

HE Type Description 

Communication Misunderstandings among technicians and 
operators, often stemming from inadequate 
leadership and management. 

Fatigue Tiredness due to overwork or working in 
enclosed environments.  

Tools and 
equipment 

Improper use of tools and equipment can 
augment risks and compromise worker safety. 
Additionally, the lack of proper tools may 
increase HE as workers resort to using 
unsuitable machinery for specific tasks. 

Skills and 
expertise 

The risk of HE increases in non-routine tasks 
that demand specific knowledge when 
workers assigned are unfamiliar with the 
activities. 

Bad procedures HE often arises from poor information and the 
lack of standardized procedures. 

Documentation Poor documentation handling can increase HE 
due to its impact on task performance and 
understanding of required work. 

Procedure’s 
usage 

Lengthy procedures often lead workers to 
adopt informal methods and rely on personal 
experience to complete tasks. 

Time pressures Overtime and overwork often lead to more 
mistakes by workers, as they resort to 
shortcuts and simpler work methods. 

Tool control 
and 
housekeeping 

It concerns tracking the equipment used or 
removed from machinery. 

 

 
Figure 1. Accident percentage due to HE across various 
sectors 
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In this paper, the authors have highlighted the importance of 
integrating HFs within O&M of WFs. Firstly, we have 
briefly discussed various Human Reliability Analysis 
(HRA) methods with special emphasis on Performance 
Shape Factors (PSFs). We then discuss two scenarios of 
performance maintenance in the yaw deck and the nacelle of 
a typical WT. Thereafter we propose a framework for 
developing a computer vision-based recommendation 
system that can guide the technicians to perform the 
maintenance effectively thus minimizing the HE. We also 
propose the use of an eye-tracking device to measure the 
stress level of technicians.  

2. HUMAN RELIABILITY ANALYSIS (HRA) 
2.1. General  
The origin of HRA is in probabilistic risk assessment 
(PRA), a discipline initially developed for understanding 
and quantifying the risks of serious accidents within the 
nuclear industry. HRA provides methods and tools for 
analyzing and assessing risks caused by operator's actions 
on a technical system, thus evaluating to operator's 
contribution to system reliability. The first fully developed 
HRA methods date back to the 1970s when systematic tools 
for analysis of the operator's contribution to risk were 
applied in the nuclear industry. There are now several HRA 
methods available for the nuclear sector, with some being 
adapted to other industries such as oil and gas, chemical, 
and aviation. Figure 2 illustrates the steps of a generic HRA 
process. 

 
Figure 2. Generic HRA Process  

 

2.2. HRA Methods 
It is common to distinguish between first and second-
generation HRA methods (Swain, A.D. (1990), Dougherty, 
E.M. (1990)). The list of first-generation methods is 
extensive and includes amongst others Technique for 
Human Error Rate Prediction (THERP) (Swain, A.D., 
Guttman, H.E. (1983)), the Human Cognitive Reliability 
method (HCR) (Hannaman, G.W., Spurgin, A.J., Lukic, 
Y.D. (1984)), the Human Error Assessment and Reduction 
Technique (HEART) (Williams, J.C. (1985)), Accident 
Sequence Evaluation Program (ASEP) (Swain, A.D. (1987), 
and Standardized Plant Analysis Risk – Human (SPAR-H) 
reliability analysis (Gertman, D., Blackan, H.S., Marble, J., 
Byers, J., Haney, L.N., Smith, C. (2005)). 

Hollnagel (Hollnagel, E. (1998)), and Kim (Kim, I.S. 
(2001)) provide the following list of notable characteristics 
of first-generation methods: 1) Assumption that human 
reliability is similarly describable as hardware reliability. 2) 
HRA being limited to only the human actions that are 
included in the PSA event trees. 3) Binary representation of 
human action as either success or failure to carry out a given 
task. 4) Dichotomy of errors of omission (failure to perform 
an action) and errors of commission (unintended or 
unplanned action). 5) Focus on phenomenological aspects of 
human actions. 6) Little concern about the cognitive aspects 
of human actions. 7) Emphasis on quantification of human 
errors. 8) Indirect treatment of context, as the way in which 
PSFs exert their effect on performance is not described.  

Second-generation HRA methods were developed based on 
cognitive architectures to unveil the causes of errors from a 
behavioral perspective; thus, solving the main deficiency of 
the first generation. Two basic requirements proposed by 
Hollnagel (Hollnagel, E. (1998)) are that second-generation 
approach "uses enhanced PSA event trees and that it extends 
the traditional description or error modes beyond the binary 
categorization of success-failure and omission-commission" 
(p.151). He further stresses the need for a more realistic type 
of operator model, as the approach must be explicit about 
the way in which performance conditions affect 
performance. Most authors critiquing first-generation HRA 
methods agree on the necessity of incorporating a cognitive 
model into HRA "that would enable a better understanding 
of human error mechanisms that were well described by 
Reason (Reason, J. (1990))". A Technique for Human Event 
Analysis (ATHEANA) (Cooper, S.E., Ramey-Smith, A.M., 
Wreathall, J., Parry, G.W. (1996)) and Cognitive Reliability 
and Error Analysis Method (CREAM) (Hollnagel, E. 
(1998)) are examples of well-known and widely utilized 
second-generation techniques. CREAM uses the contextual 
control model (COCOM) and provides a determination of 
the reliability of a person's performance based on an error 
taxonomy that contains both error modes and error causes. 

Although addressing the main issue of first-generation HRA 
methods, one of the highlighted weaknesses of second-
generation methods is that they do not provide sufficient 
consideration of the mutual influences between PSFs (De 
Ambroggi, M. (2011)). According to Griffith and 
Mahadevan (Griffith, C.D., Mahadevan, S. (2011)) the main 
sources of deficiencies in HRA methods include: "1) lack of 
empirical data for model development and validation, 2) 
lack of inclusion of human cognition (i.e., need for better 
human behavior modeling, 3) large variability in 
implementation (i.e., HRA parameters are different 
depending on the method used), and 4) heavy reliance on 
expert judgment in selecting PSFs, and use of these PSFs to 
obtain the HEP in human reliability analysis" (p. 1444). 

HRA experts have more recently begun to look at potential 
improvements to existing methods. As an example, the 
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HEART method has been used as a basis for domain-
specific approaches such as Nuclear Action Reliability 
Assessment (NARA) (Kirwan, B., Gibson, H., Kennedy, R., 
Edmunds, J., Cooksley, G., Umbers, I. (2004)), Controller 
Action Reliability Assessment (CARA) (Kirwan, B., 
Gibson, H. (2008)), Railway Action Reliability Assessment 
(RARA) (Gibson, W.H., Mills, A.M., Smith, S., Kirwan, 
B.K. (2013)) and Shipboard Operations Human Reliability 
(SOHRA) (Akyuz, E., Celik, M., Cebi, S. (2016)). Another 
example is a more recent article by He et al. (He, Y., Kuai, 
N.-S., Deng, L.-M., He, X-Y. (2021)), which builds on 
CREAM by adding Human Inherent Factors (HIFs) such as 
anti-fatigue ability, concentration ability, reaction ability, 
and personality traits. 

In 2006, NASA Office of Safety and Mission Assurance 
(OSMA) published a technical report evaluating 14 HRA 
methods against a list of 17 attributes to highlight methods 
that are considered suitable for use in risk and reliability 
studies of NASA space systems and missions. The 
evaluation resulted in the selection of four methods: 
THERP, CREAM, NARA, and SPAR-H. The list of 
attributes used to compare the methods included: 
Developmental Context, Screening, Task Decomposition, 
PSF List and Causal Model, Coverage, HEP Calculation 
Procedure, Error-Specific HEPs, Task Dependencies and 
Recovery, HEP Uncertainty Bounds, Level of Knowledge 
Required, Validation, Reproducibility, Sensitivity, 
Experience Base, Resource Requirements, Cost and 
Availability, as well as Suitability for NASA Applications 
(Chandler, F., Chang, Y., Mosleh, A., Marble, J., Boring, 
R., Gethman, D. (2006)). Consideration of several of these 
attributes is essential when evaluating existing HRA 
methods for use in the context of O&M of WFs. 

2.3. Human Factors 
Our definition of HFs is from IEA: "Human Factors is the 
scientific discipline concerned with the understanding of 
interactions among humans and other elements of a system, 
and the profession that applies theory, principles, data, and 
other methods to design to optimize human well-being and 
overall system performance". HFs can be used either in 
accident investigations, or they can be used to enhance the 
performance of the technicians. 

The aims of using HF in general and in accident 
investigations are to:  

(1) Improve safety (i.e., reducing the risk of injury and 
death);  

(2) Improve performance in safety-critical situations (i.e., 
increase quality, productivity, and efficiency);  

(3) Support satisfaction/usability (i.e., increasing 
acceptance, comfort, and well-being). 

The details of how to use HFs for accident investigation are 
well documented in the literature, however, in this paper, we 

shall focus more on the identification of the HFs (in 
particular PSFs) that can be managed such that the I&M 
activities are performed efficiently within given time with 
minimal HE. 

2.4. Performance Shape Factors (PSFs) for OWFs 

PSFs or Performance Influencing Factors (PIFs) are defined 
by the Health Safety and Executive (HSE) as 
“characteristics of the job (e.g. the working environment); 
the individual (physical capability to do the work), and the 
organization (e.g. time pressure) that influence human 
performance” (HSE RR01 (2002)) 

Relevant PSFs for OWFs include environmental conditions 
(e.g., high winds, rough seas, weather variability), 
ergonomic challenges (working at heights, confined spaces, 
awkward postures), organizational aspects (training, work 
culture, resource availability), technical and mechanical 
complexity, accessibility and logistics due to remote 
locations, communication and coordination for emergency 
response, and the use of specialized tools and predictive 
maintenance technologies. On a more personal level, 
psychological stressors such as time pressure and 
distractions, as well as physiological factors like fatigue and 
hunger, can impact inspection and maintenance quality and 
error rates, especially in confined spaces like nacelles and 
hubs.  

Acknowledging PSFs and their impact on operational 
outcomes is essential for ensuring the safety, efficiency, and 
reliability of OWF’s O&M. For instance, the performance 
of technicians can significantly drop on a wet and windy 
day compared to more favorable weather conditions, 
increasing the risk of human error and injuries. Similarly, an 
overloaded technician may overlook early signs of wear, 
potentially causing unforeseen equipment failures. 
Additionally, a company that prioritizes proactive 
maintenance is likely to emphasize regular training, which 
can lead to fewer operational errors. 

The I&M activities and corresponding PSFs differ 
depending on the location within the WTs. For example, 
tasks on the yaw deck, such as brake maintenance and 
friction pad replacement, present unique challenges. These 
include transporting items using the nacelle crane or 
manually from inside the tower. Operations in this area 
entail inspecting the deck, handling moving parts, setting up 
the workspace, conducting maintenance, and cleaning up 
(G+ Global Offshore Wind Health & Safety Organization, 
(2021)). Challenges specific to the yaw deck include 
difficult access, particularly through ladder hatches in older 
turbines, constrained working space, and the physical strain 
of maneuvering heavy items. These conditions require 
technicians to employ specialized tools and assume 
strenuous postures, which can adversely affect their well-
being (G+ Global Offshore Wind Health & Safety 
Organization, (2021)). 
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Most service and maintenance tasks in WTs, such as routine 
inspections and part replacements, are carried out in the 
confined spaces of the nacelle and blade hub. Although 
newer, larger wind turbines provide a bit more space and 
improved accessibility, the areas remain constrained, 
frequently cluttered, and occasionally slippery due to oil 
spills. These conditions make it difficult to move safely and 
operate tools efficiently (G+ Global Offshore Wind Health 
& Safety Organization, (2021)). In the hub, accessing 
components like blade root bolts forces technicians into 
uncomfortable positions, compounded by the presence of 
grease and cramped, angled spaces. This increases the 
likelihood of injuries, equipment mishandling, and errors. 
More details regarding PSFs for working on OWT can be 
found in (G+ Global Offshore Wind Health & Safety 
Organization, (2021)). 

A questionnaire was designed to collect feedback from 
technicians, the results of which are presented in Figure 3 
(in the Appendix). The questionnaire's link is provided in 
(Questionnaire, (2024)). The responses indicate a consensus 
among technicians on most questions. For instance, 
regarding ergonomic challenges highlighted in question 3, 
one technician mentioned, "Wind turbines are often not 
ergonomically designed, lacking laydown areas for bags 
and equipment, leading to obstacles and potential hazards. 
Restricted access, working in areas with significant grease 
or oil, and maintaining a clean environment pose 
substantial challenges." Another respondent highlighted the 
absence of adequate sanitary facilities for women on WTs.  

A detailed analysis of the survey results suggests that 
conducting I&M activities on WTs is an exceptionally 
challenging task, which significantly increases the 
likelihood of HE. Moreover, the lack of real-time 
supervision at inspection sites reduces the opportunities to 
correct such errors. Consequently, the following section 
introduces a novel framework for a Computer Vision 
supervisory agent designed to monitor technicians during 
inspections and capable of raising an alarm if there is a risk 
of HE 

3. COMPUTER VISION-BASED RECOMMENDATION AGENT 

The steps involved in the framework that integrates multi-
modal inputs like videos and images consist of the 
following steps: 

1. Data Collection: Using high-resolution cameras, we 
will gather a comprehensive dataset of videos and 
images capturing expert technicians performing WT 
inspections. 

2. Data Preprocessing: We will apply techniques like 
frame extraction, noise reduction, and image 
stabilization to the recorded videos and images to 
prepare the data for analysis. Next, we will manually 
annotate them with labels indicating correct and 

incorrect actions, focusing on key inspection points and 
common errors. Finally, we will augment the data using 
techniques such as rotation, scaling, and mirroring to 
increase the dataset's robustness against variations in 
real-world scenarios. 

3. Model Development: We will use convolutional neural 
networks (CNNs) to extract features from images and 
video frames, and employ Long Short-Term Memory 
(LSTM) networks to analyze temporal dependencies in 
video data. We will then implement a fusion technique 
to effectively integrate features from different 
modalities, capturing a comprehensive profile of 
inspection activities. Lastly, we will develop a 
classification system using machine learning to 
distinguish between correct and incorrect inspection 
behaviors based on the labeled data. 

4. Real-Time Monitoring System: We will install a 
monitoring device at strategic locations around the 
wind turbine. Each device will be equipped with a high-
resolution camera and a speaker system. The camera 
will continuously capture video of the technician’s 
activities, allowing the system to visually monitor the 
inspection process from multiple angles. We will use 
edge computing devices integrated within the 
monitoring systems to process the data in real-time, 
significantly reducing latency and ensuring that any 
deviations or anomalies are promptly detected. The 
speaker will provide immediate audio feedback and 
recommendations to the technician based on the real-
time analysis, including alerts about potential errors, 
reminders of inspection steps, or safety warnings. 

5. Feedback Loop: We will integrate a feedback system 
where the model learns from new inspection videos 
over time, adapting to new techniques and evolving 
standards in turbine maintenance. We will regularly 
evaluate the system’s accuracy and reliability in 
detecting deviations and making iterative improvements 
based on real-world performance and feedback from 
technicians and supervisors. Furthermore, the 
technicians will also be able to interact with the system 
using voice commands. They will be able to respond to 
the audio cues by confirming receipt of messages or 
asking for further clarification. They will also be able to 
report issues, fetch information, or even tag certain 
observations without having to stop their work or 
remove their gloves, which can be particularly useful in 
harsh weather conditions.  

The deployment of such a framework has the potential to 
lower the HE significantly within WT maintenance and it 
also aligns with the broader goals of the wind industry to 
reduce costs and improve the reliability and efficiency of 
green energy production. As the industry continues to 
evolve, the continuous refinement and adoption of such 
integrated frameworks will be essential for sustaining 
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growth and ensuring the safety and well-being of the human 
technicians at the heart of these operations. 

4. CONCLUSION 

This paper laid out the critical importance of integrating 
HFs into the O&M of WFs, with a particular focus on the 
potential to enhance safety and efficiency through advanced 
technologies and methodologies. We discussed various 
approaches that have been used in the past for performing 
HRA to estimate HEP.  The important PSFs for 
maintenance activity on WFs, include environmental 
conditions, ergonomic challenges, organizational aspects, 
accessibility and logistics due to remote locations, 
communication and coordination for emergency response, 
the use of specialized tools, and psychological stressors. A 
questionnaire was designed to collect feedback on PSFs 
from WT technicians. For example, all the technicians 
agreed that the awkward positions required for accessing 
components like blade root bolts not only increase the risk 
of injury but also elevate the likelihood of mishandling 
equipment and making errors. 

To address these issues, we proposed a computer vision-
based supervisory agent capable of real-time monitoring. 
This system, which utilizes multi-modal inputs from high-
resolution cameras and provides audio feedback, represents 
a significant leap forward in reducing HE. By continuously 
capturing and analyzing the technician's actions, the system 
offers corrective feedback and actionable recommendations, 
thereby ensuring adherence to best practices and enhancing 
overall safety. 

REFERENCES 

1. KPMG, 2019. 
https://assets.kpmg.com/content/dam/kpmg/dk/pdf/DK-
2019/11/The-socioeconomic-impacts-of-wind-
energy_compressed.pdf 

2. Asim, T., Islam, S., Hemmati, A., & Khalid, M. (2022, 
January 14). A Review of Recent Advancements in 
Offshore Wind Turbine Technology. Energies, 15(2), 
579.  

3. Haghshenas, A., Hasan, A., Osen, O., & Mikalsen, E. 
T. (2023, January 25). Predictive digital twin for 
offshore wind farms. Energy Informatics, 6(1).  

4. Rinaldi, G., Thies, P. R., & Johanning, L. (2021, April 
27). Current Status and Future Trends in the Operation 
and Maintenance of Offshore Wind Turbines: A 
Review. Energies, 14(9), 2484.  

5. McMorland, J., Flannigan, C., Carroll, J., Collu, M., 
McMillan, D., Leithead, W., & Coraddu, A. (2022, 
September). A review of operations and maintenance 
modelling with considerations for novel wind turbine 
concepts. Renewable and Sustainable Energy Reviews, 
165, 112581.  

6. Besnard, F., Patriksson, M., Stromberg, A. B., 
Wojciechowski, A., & Bertling, L. (2009, June). An 
optimization framework for opportunistic maintenance 
of offshore wind power system. 2009 IEEE Bucharest 
PowerTech.  

7. Fast, S., Mabee, W., Baxter, J., Christidis, T., Driver, 
L., Hill, S., McMurtry, J., & Tomkow, M. (2016, 
January 25). Lessons learned from Ontario wind energy 
disputes. Nature Energy; Nature Portfolio.  

8. Kiassat, A.C., 2013. System Performance Analysis 
Considering Human-related Factors. 
PhD Thesis. University of Toronto. 

9. Morag, I. et al. (2018) ‘Identifying the causes of human 
error in maintenance work in developing countries’, 
International Journal of Industrial Ergonomics, 68, pp. 
222–230. 

10. Mathavara, K., & Ramachandran, G. (2022). Role of 
Human Factors in Preventing Aviation Accidents: An 
Insight. IntechOpen. doi: 10.5772/intechopen.106899. 

11. Swain, A.D. (1990). Human reliability analysis: need, 
status, trends and limitations. Reliability Engineering 
and System Safety 29(3), 301-313.  

12. Dougherty, E.M. (1990). Human reliability analysis – 
where should thou turn? Reliability Engineering and 
System Safety 29(3), 283-299. 

13. Swain, A.D., Guttman, H.E. (1983). Handbook of 
human reliability analysis with emphasis on nuclear 
power plant applications. Final report. NUREG/CR-
1278. Washington, DC: US Nuclear Regulatory 
Commission. 

14. Hannaman, G.W., Spurgin, A.J., Lukic, Y.D. (1984). 
Human Cognitive Reliability Model for PRA Analysis. 
Draft Report NUS-4531, EPRI Project RP2170-3. 
Electric Power and Research Institute, Palo Alto, CA. 

15. Williams, J.C. (1985), HEART A proposed method for 
achieving high reliability in process operation by means 
of human factors engineering technology, in 
Proceeding of a symposium on the achievement of 
reliability in operating plant, Safety and Reliability 
Society, 16 September 1985. 

16. Swain, A.D. (1987). Evaluation of Human Reliability 
on the Basis of Operational Experience, in Economics 
and Social Science. The Munich Technical University.  

17. Gertman, D., Blackan, H.S., Marble, J., Byers, J., 
Haney, L.N., Smith, C. (2005). The SPAR-H Human 
Reliability Analysis Method. U.S. Nuclear Regulatory 
Commission. NUREG/CR-6883, Washington DC.  

18. Hollnagel, E. (1998). Cognitive Reliability and Error 
Analysis Method CREAM. 1. Ed., Elsevier. 

19. Kim, I.S. (2001). Human Reliability analysis in the 
man-machine interface design review. Annals of 
Nuclear Energy 28(11), 1069-1081. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 874



ANNUAL CONFERENCE OF THE EUROPEAN PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

7 

20. Reason, J. (1990). Human Error. Cambridge University 
Press, Cabridge, UK. 

21. Cooper, S.E., Ramey-Smith, A.M., Wreathall, J., Parry, 
G.W. (1996). A technique for human error analysis 
(ATHEANA). Technical basis and methodology 
description. USNRC; 1996. No. Nureg/CR-6350. 

22. De Ambroggi, M. (2011). Modelling and assessment of 
dependent performance shaping factors through 
Analytic Network Process. Reliability Engineering and 
System Safety 96(7), 849-860. 

23. Griffith, C.D., Mahadevan, S. (2011). Inclusion of 
fatigue effects in human reliability analysis. Reliability 
Engineering and System Safety 96(11), 1437-1447.  

24. Kirwan, B., Gibson, H., Kennedy, R., Edmunds, J., 
Cooksley, G., Umbers, I. (2004). Nuclear action 
reliability assessment (NARA): a data-based HRA tool. 
In: Probabilistic safety assessment and management. 
Springer, p. 1206-1211. 

25. Kirwan, B., Gibson, H. (2008). CARA: a human 
reliability assessment tool for air traffic safety 
management – technical basis and preliminary 
architecture. In: The safety of systems. Springer, p. 197-
214. 

26. Gibson, W.H., Mills, A.M., Smith, S., Kirwan, B.K. 
(2013). Railway action reliability assessment, a 
railway-specific approach to human error 
quantification. In: Proceedings of the Australian system 
safety conference, 7 p. 

27. Akyuz, E., Celik, M., Cebi, S. (2016). A phase of 
comprehensive research to determine marine-specific 
EPC values in human error assessment and reduction 
technique. Safety Science 87, 108-122. 

28. He, Y., Kuai, N.-S., Deng, L.-M., He, X-Y. (2021). A 
method for assessing Human Error Probability through 
physiological and psychological factors tests based on 
CREAM and its applications. Reliability Engineering 
and System Safety 215 (2021) 107884, 12 p. 

29. Chandler, F., Chang, Y., Mosleh, A., Marble, J., 
Boring, R., Gethman, D. (2006). Human Reliability 
Analysis Methods: Selection Guidance for NASA. 
NASA Office of Safety and Mission Assurance, 
Washington, DC (2006), 123 p. 

30. HSE RR01 (2002). Human factors integration: 
Implementation in the onshore and offshore industries. 

31. G+ Global Offshore Wind Health & Safety 
Organization, 2021 incident report. Energy Institute, 
UK. 

32. Questionnaire,2024.https://forms.office.com/Pages/Shar
eFormPage.aspx?id=Eh_I_oZiUEWJEfRG_Nr6HwUV
rL3FuU9GkTQNYRKR5FURTFNWDgxSEJSQ0U5T
E5IVlo3TDRRTVZPSy4u&sharetoken=4iZz38x8ISItU
PxLNwXM 

BIOGRAPHIES  

Arvind Keprate received his B. Tech in Mechanical 
Engineering (2007) from Himachal Pradesh University, 
M.Sc. in Marine & Subsea Technology (2014), and PhD 
(2017), in Offshore Engineering from the University of 
Stavanger, Norway. He is currently a Professor at Oslo 
Metropolitan University where he teaches Design related 
courses to Mechanical Engineering students. Besides this, 
he also teaches Machine Learning, Probability & Statistics 
at Kristiania University College in Oslo. He has been a 
visiting researcher at the Prognostics Center of Excellence, 
NASA Ames Research Center, USA. Currently, his research 
is focused on Digital Twins and PHM of complex Socio-
Ecological-Technical Energy Systems such as Wind Farms. 

Stine Skaufel Kilskar has an M.Sc. in Industrial 
Economics and Technology Management (2014) from the 
Norwegian University of Science and Technology, Norway, 
with a focus on strategic change management. She is 
currently a Research Scientist at SINTEF Digital in 
Trondheim. She has ten years’ experience of working in 
safety-related research projects within various industries, 
such as construction, maritime, oil & gas, and energy. The 
research is mainly focused on safety management and 
human factors. 

Pete Andrews qualified from the University of Sheffield 
with a Masters degree in Aerospace Engineering in 2005. 
Working within the power industry for the last 19 years he 
has delivered operational, engineering and leadership roles 
across a broad range of power generation assets and 
technologies. Previously he delivered a number of roles 
within leading utilities including Commercial Manager 
supporting major asset divestments and managing offshore 
wind services and Plant Manager accountable for a large 
offshore wind farm. Recognizing that the pace of innovation 
in offshore wind operations and maintenance was lagging 
compared to the rate of development in other aspects of the 
sector he founded EchoBolt, an organisation dedicated to 
deploying advanced technologies to improve the 
management of structural integrity of wind turbines.

 

 

 

Appendix 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 875



ANNUAL CONFERENCE OF THE EUROPEAN PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

8 

Fig 3. Response of Questionnaire 
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ABSTRACT 

This study seeks to address the challenge of limited 
degradation data in developing Fault Detection and Isolation 
(FDI) models for multi-component degradation (MCD) 
scenarios. Utilizing a small fraction (0.05%) of a previously 
utilized water distribution testbed dataset in a previous 
publication, a weighted ensemble hybrid approach is 
proposed and evaluated against more established modelling 
approaches used in the previous publication. The proposed 
approach combines heuristic approximation and Physics-
Informed Neural Network (PINN) methods with a recurrent 
neural network (RNN) model to enhance diagnostic 
performance for predicting MCD scenarios. The hybrid 
model generally outperformed other algorithms when tested 
on an MCD dataset, demonstrating improved diagnostic 
accuracy in such scenarios. Future research aims to optimize 
ensemble weights based on model uncertainty, further 
enhancing diagnostic capabilities.   

1. INTRODUCTION 

Data has become the story of engineering design in recent 
times as the availability of system data provides insights into 
the dynamics of any complex system. This is particularly true 
for developing analytics in digital twin (DT) design for asset 
health management applications (Lu, Xie, Parlikad, & 
Schooling, 2020). Figure 1 shows the nexus between the 
analytics developed for PHM applications and a virtual 
representation of a physical asset highlighting how DTs can 
enable PHM applications. In exploring cost mitigation 
strategies, different maintenance data-driven models often 
rely on large amounts of data to train effectively (Maass, 
Parsons, Purao, Storey, & Woo, 2018). The more data is 

available, the better the model can learn patterns and 
relationships within the data, leading to more accurate 
predictions or insights (Barimah, Niculita, McGlinchey, & 
Cowell, 2023). This helps data-driven models generalise 
better to unseen data the more data is available (Duriez, 
Brunton, & Noack, 2017). This is particularly useful when it 
comes to asset health management where the availability of 
trainable degradation data is critical in the design and 
execution of Prognostics and Health Management (PHM) 
strategies for complex systems undergoing multi-component 
degradation scenarios.  

  
Figure 1. Relationship between DT and PHM applications. 

However, obtaining asset degradation data can be expensive, 
time consuming, and often requires specialized equipment, 
sensors, or monitoring systems (Hu, Miao, Si, Pan, & Zio, 
2022). Operators often rely on post-failure degradation data 
(Barimah, Niculita, McGlinchey, & Alkali, 2021) which 
enables the development of statistical-based techniques for 
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system-level anomaly detection. The statistical-based 
technique alone prevents an operator from isolating the sub-
systems contributing to the anomaly in the larger system. The 
scenario becomes even more complex when two components 
of the same system degrade simultaneously (very often, at 
different rates). Simulated degradation data calibrated with 
the actual physical system (Higdon, Kennedy, Cavendish, 
Cafeo, & Ryne, 2004) can also be used to train predictive 
models. However, this approach becomes limited when MCD 
scenarios are being considered as degradation data from the 
different combinations of sub-systems undergoing 
degradation need to be simulated to generated the required 
data. For complex systems with a lot of sub-systems with 
different operating conditions, this approach becomes 
untenable.  
To address the issue of limited data, several authors have 
suggested combining the insights given by data-driven 
models with some physical equations that govern the 
dynamics of a system. Physics-Informed Neural Networks 
(PINNs) integrate the physics of an asset into their training 
process, enforcing physical constraints alongside data-driven 
learning. PINNs can generalize well with limited data (Cai, 
Mao, Wang, Yin, & Karniadakis, 2021) and have 
applications in various fields (Huang & Wang, 2022), making 
them valuable for tackling complex, multi-physics problems 
(Bararnia & Esmaeilpour, 2022) by reducing computational 
costs and providing insights (Rizi & Abbas, 2023). The aim 
and objectives of this paper are presented in section 2 below.  

2. OBJECTIVES OF STUDY 

This paper aims to develop and benchmark an ensemble 
hybrid fault detection and isolation model for components 
(sub-systems) undergoing multi-component degradation 
(MCD) scenarios in a water distribution system.  
 

• Identify a physical equation that represents the 
degradation severity level of either blockages or 
leakages in the system. 

• Design a Fault Detection and Isolation (FDI) 
algorithm using a PINN-enabled Hybrid model for 
each component in the water distribution system. 

• Train all FDI models on limited degradation data 
and test models on test multi-component 
degradation scenario data from the same system at 
different operating conditions. 

• Identify areas of model improvement and potential 
research. 

The paper is structured as follows: Section 3 covers the 
methodology. Sections 4 and 5 present and discuss the results 
of FDI model performance. Finally, the paper concludes with 
contributions and future research work. 

 

3. METHODOLOGY   

3.1. System Description 

Data from the dynamic behaviour of a water distribution 
system undergoing multi-component degradation presented 
in Barimah et. al (2023) was used in this report. Figure 2 
below shows the water distribution experimental testbed, 
where an external gear pump pumps water from a main 
supply tank. A variable speed drive (VSD) controls the 
rotational speed of the pump and the motor. The system also 
has five (5) direct proportional valves (DPV1 to DPV5) and 
a solenoid shut-off valve (SHV) that were included to support 
the emulation of deterioration phenomena affecting five 
different components in a controlled manner. Data is 
collected from five pressure transmitters (P1, P2, P3, P4, and 
P5), turbine flow meters (f1 and f2), and a laser sensor to 
gauge the pump's speed.  Table 1 lists the control valves in 
the system's default operating states, their respective fault 
codes, and the fault emulation mechanism for each 
component on the testbed. 
 

 
Figure 2. Water Distribution System Testbed Schematic (Barimah 

et. al 2023). 

Table 1. Healthy condition operating state of the system's 
control valves and associated fault codes 

Component/Fault 
Codes 

Testbed 
Valves 

Healthy 
State 

Fault Emulation  
Mechanism 

Filter/FC1 DPV 1 FO DPV1 GC 
Pump/FC2 DPV 2 FC DPV2 GO  
Valve/FC3 DPV 3 FO DPV3 GC  
Nozzle/FC4 DPV 4 FO DPV4 GC  
Pipe/FC5 DPV 5 FC DPV5 GO  

FO - Fully Open | FC - Fully Closed  
GC - Gradually closing | GO - Gradually opening. 

3.2. Process Data Capture 

The degradation data used in the previous publication by 
Barimah et. al (2023) was recorded within four (4) weeks for 
healthy condition (HC), Single Component Degradation 
(SCD) and Multi-Component Degradation (MCD) scenarios 
between pump speeds of 700rpm and 950rpm in intervals of 
50rpm. The SCD process data represents the degradation of 
individual components (See Table 2) with pressure and flow 
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measurements at 𝑃1, 𝑃2 … . . 𝑃5 and 𝑓1, 𝑓2 respectively. 
Data logging for each faulty condition scenario last between 
three (3) to four (4) minutes and also starts at least 10 minutes 
after the process reaches steady state conditions or when there 
is a step change in pump speed or a change in the failure 
condition scenario with each data file having different sample 
sizes. The degradation level of severity  (0 ≤ 𝑆 ≤ 1)  for 
each component on the testbed is determined by gradually 
closing or opening the respective direct proportional valve.  

Table 2. Data capturing process with a sampling rate of 0.2s 

Test period 4 consecutive weeks 
Faulty Condition 
Scenarios (Total No of 
Tests) 

FC0 – Healthy Condition (24) 
FC1–Clogged Filter (24) 
FC2–Degraded Pump (24) 
FC3–Blocked Valve (24) 
FC4–Blocked Nozzle (24) 
FC5–Leaking Pipe (24) 

Pump Speed (rpm) 700/750/800/850/900/950 
 

3.3. FDI Model Development 

Sections 3.3.1 to 3.3.5 presents the process for developing 
physics informed fault detection and isolation (FDI) 
algorithms. Using limited training data, the paper also 
benchmarks the statistical process control (SPC), ensemble 
classification models and a recurrent neural network model 
presented by the author in a previous paper (see Figure 4) 
with the physics Informed FDI models presented in this 
paper. This is to determine the performance of FDI models in 
detecting multi-component degradation scenarios when 
limited degradation data is available for model training. The 
Statistical Process Control, the ensemble and neural network 
models were trained with full degradation dataset in Table 2 
simultaneously, tagged as models 𝑀1, 𝑀2𝑎𝑛𝑑 𝑀3 
respectively and stored in a Fault Detection and Isolation 
model repository. The function 𝑓2(𝑥) is then used to 
determine the proportion of accurate predictions of test 
degradation scenario data by 𝑀1, 𝑀2𝑎𝑛𝑑 𝑀3.  
 
A physics-informed Neural Network (PINN) enabled hybrid 
FDI algorithm is also developed in this report to detect multi 
component degradation scenarios. The hybrid model consists 
of a weighted average of a heuristic approximation model, a 
naïve recurrent neural network and a feedforward PINN 
model for each component in the water distribution system. 
The training of all models was done using randomly selected 
0.05 % of the full degradation data from the original 
historical dataset used in Barimah et. al (2023) shown in 
Table 2. Figure 5 below shows the various cases in which the 
various randomly sampled degradation data can occur. Case 
A represents a scenario where part of the live process data 
from the system forms part of the distribution of the sampled 
random data. Case B is the non-ideal situation where the live 
process data is a subset of the sampled distribution while case 

C is the ideal case where the degradation data available is 
truly limited. The rationale for the random approach is to 
reduce the quantity and diversity of degradation data 
available for model training and development hence the 
limited nature.  This is done to determine the impact of 
limited data conditions on the performance of FDI algorithms 
in MCD scenarios. The levels of severity are categorized into 
two (2) groups with below 0.21 defined as healthy and 
between 0.21 and 1.0 defined a faulty in both MCD and SCD 
scenarios (see Figure 3). The performance of the FDI 
algorithms is measured using the interval (0 ≤
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ≤ 1) where 1 means the algorithm predicted 
correctly all the categorized severity states of the asset in 
operation while 0 means the algorithm failed to predict 
correctly any severity state of the asset. 

3.3.1. Physics Informed Neural Network Model 

As shown in Figure 2, five direct-acting proportional valves 
are used to emulate the dynamics of degradation patterns in 
the main components on the water distribution system. 
Equation (1) is used to determine the fluid flow through a 
valve where 𝑓(𝑉0) is the function of valve opening with 0 ≤
𝑓(𝑉0) ≤ 1 as the interval for the valve opening and 𝐶𝑣 is the 
valve coefficient (Knight, Russell, Sawalk & Yendell, 2013). 
Equations (2) & (3) are used to determine the level of severity 
𝑆(0,1) for blockages (Blocked Filter, degraded valve & 
Blocked Nozzle) and leakage (leaking pipe) respectively. For 
the pump, Eq. (4) is used to determine the severity level in a 
leaking pump degradation scenario for the gear pump on the 
testbed where 𝑁𝑣 and 𝑁𝑚 are the volumetric and mechanical 
efficiencies respectively. The maximum level of severity 
occurs when  𝑆 = 1 with no fault condition being 𝑆 = 0. 
Therefore, the interval of degradation for each component on 
the testbed is 0 ≤ 𝑆 ≤ 1 (see Figure 3). 

𝑓𝑙𝑜𝑤 = 𝐶𝑣𝑓(𝑉0)√
∆𝑃

𝑆𝐺
   (1) 

 
𝑆(0,1) = 1 − 𝑓(𝑉0)    (2) 

 
                𝑆(0,1) = 𝑓(𝑉0)       (3) 

 
                 𝑆(0,1) = 1 − (𝑁𝑚𝑁𝑣)       (4) 
 

 
Figure 3. Change in component degradation severity level.
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Figure 4. Proposed process for benchmarking the FDI algorithms (Barimah et. al 2023). 

 
 

Figure 5. Random sampling of full degradation dataset for FDI model training. 

Equations (2), (3) & (4) are used as physical constraints in 
constructing the loss function in the training process for the 
physics-informed neural network (PINN). Equation 2 is used 
for the filter, valve and nozzle all of which degrade via the 
gradual closing of DPV 1, DPV 3 and DPV 4 respectively. 
Since the gradual opening in DPV 5 represents a leakage in 
the main line, Eq. 3 is used to determine the extent of valve 
opening which represents the level of severity in the pipe. 
Equation (4) which represents the drop in gear pump 
volumetric efficiency when DPV 2 is opened is used in 
developing the loss function for the PINN model for the 
pump. The PINN model architecture used consists of a fully 
connected feedforward neural network with a Leaky version 
of the rectified linear unit (LeakyReLU) activation function 
to prevent any potential dying ReLU problem during the 
training process. The network has 1 input and output node, 3 
hidden layers with 100 neurons in each layer. The Nadam 

optimizer is used for its good coverage and faster training 
time (Bera & Shrivastava, 2020). A Mean Squared Error 
(MSE) Loss function of the PINN model 𝐿(𝜃) used is shown 
below where 𝜆 is a hyperparameter manually set to 1. Figure 
6 below shows the PINN model architecture for each 
component on the testbed. The total loss for the PINN model 
which consists of the data and physics loss is shown in 
Equation (5). Table 3 also shows the various parameters used 
for the PINN model and the associated loss functions in Eqs. 
(6), (7) & (8) where 𝛽 =

𝑓𝑙𝑜𝑤×√𝑆𝐺

𝐶𝑣
 and 𝑁𝑚 are treated as 

trainable parameters in the training process. 
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Figure 6. PINN Model Architecture for each component  

 
 
𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = (𝜆 × 𝐷𝑎𝑡𝑎 𝐿𝑜𝑠𝑠) + 𝑃ℎ𝑦𝑠𝑖𝑐𝑠 𝐿𝑜𝑠𝑠 (5) 
 
𝐿1(𝜃) =  

𝜆

𝑁𝑏
∑ (𝑆𝑃𝐼𝑁𝑁(𝑥𝑖 , 𝜃) − 𝑆𝑜𝑏𝑠(𝑥𝑖))2 +

𝑁𝑏
𝑖=1

1

𝑁𝑝
∑ ([𝑉0 − 1 + [

𝛽

√∆𝑃
⁄ ]] 𝑆𝑃𝐼𝑁𝑁(𝑥𝑗 , 𝜃))

2

𝑁𝑝

𝑗=1
 (6) 

 
 

𝐿2(𝜃) =  
𝜆

𝑁𝑏
∑ (𝑆𝑃𝐼𝑁𝑁(𝑥𝑖 , 𝜃) − 𝑆𝑜𝑏𝑠(𝑥𝑖))2 +

𝑁𝑏
𝑖=1

1

𝑁𝑝
∑ ([𝑉0 − 1 + 𝑁𝑚. 𝑁𝑣]𝑆𝑃𝐼𝑁𝑁(𝑥𝑗 , 𝜃))

2𝑁𝑝

𝑗=1
  (7) 

 

𝐿3(𝜃) =  
𝜆

𝑁𝑏
∑ (𝑆𝑃𝐼𝑁𝑁(𝑥𝑖 , 𝜃) − 𝑆𝑜𝑏𝑠(𝑥𝑖))2 +

𝑁𝑏
𝑖=1

1

𝑁𝑝
∑ ([𝑉0 − [

𝛽

√∆𝑃
⁄ ]] 𝑆𝑃𝐼𝑁𝑁(𝑥𝑗 , 𝜃))

2

𝑁𝑝

𝑗=1
  (8) 

 
Table 3. Parameters used for the construction of the PINN 

Model 

Component Learning 
Rate 

𝝀 Input Output 𝑳(𝜽) 

Filter 1e-3 1 ∆𝑃 =  |𝑃2 − 𝑃1| 𝑆(0,1) 𝐿1(𝜃) 

Valve 1e-3 1 ∆𝑃 =  |𝑃3 − 𝑃4| 𝑆(0,1) 𝐿1(𝜃) 

Nozzle 1e-3 1 ∆𝑃 =  |𝑃5 − 𝑃4| 𝑆(0,1) 𝐿1(𝜃) 

Pump 1e-3 1 𝑁𝑣 𝑆(0,1) 𝐿2(𝜃) 
Pipe 1e-3 1 ∆𝑃 =  |𝑃5 − 𝑃4| 𝑆(0,1) 𝐿3(𝜃) 

 

3.3.2. Approximation Model 

A heuristic model 𝑆(0,1) = 1 − 𝑥𝑂.𝐶 is used to approximate 
the level of severity of both blockages and leakages (see Eqs. 
10 & 11) in the system with a domain of [0,1]. The variable 
𝑥 is the feature of the component which is sensitive to a 

change in degradation levels and it is defined as 𝑥𝑂.𝐶  (see Eq. 
9) with a domain of 𝑥𝑂.𝐶[0,1]. The operating condition in this 
case is the speed of the pump.  
 

𝑥𝑂.𝐶 =  
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
                 (9) 

𝑥𝑂.𝐶(𝐵𝑙𝑜𝑐𝑘𝑎𝑔𝑒) =

 
 (𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒⁄ )
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

(𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒⁄ )

𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

    (10) 

𝑥𝑂.𝐶(𝐿𝑒𝑎𝑘𝑎𝑔𝑒) =

 
 |𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒−𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 |𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒−𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
    (11) 

3.3.3. Recurrent Neural Network (RNN) Model 

An FDI classifier based on a neural network architecture in a 
previous publication Barimah et. al (2023) which uses a 
recurrent neural network (RNN) architecture is used in this 
report. The RNN model comprises a single hidden layer with 
150 neurons followed by a dense layer and a sigmoid 
activation function (see Figure 7 below). The model is 
compiled with binary cross-entropy loss and the Nadam 
optimizer. Early stopping is then employed to prevent 
overfitting during the training of the model.  
 

 
Figure 7. Recurrent Neural Network Architecture (Barimah 

et. al 2023) 

3.3.4. PINN enabled Hybrid FDI Model 

The physics-informed Neural Network (PINN) enabled 
hybrid FDI algorithm shown in Figure 8 is a weighted 
ensemble of the outputs of the RNN model, approximation 
model and PINN model. The weights of the model are 
skewed more towards the PINN model due to the limitations 
of purely data-driven model in the face of limited training 
data and its ability to generalize outside its training 
distribution. This PINN enabled hybrid model is then 
benchmarked against the other FDI algorithms, presented in 
Figure 4, for the system undergoing multi-component 
degradation scenarios. The model weights (𝑊𝐷 , 𝑊𝑃, 𝑊𝐴) for 
each component in the hybrid ensemble model are shown in 
Appendix B. 
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Figure 8. Ensemble Hybrid Framework for FDI models 

 

3.3.5.  Test Degradation Scenarios 

Benchmarking is done using a series of test datasets recorded 
by Barimah et. al (2023) to assess the performance of FDI 
algorithms in the context of multi-component degradation. 
Table 3 below describes the nature of the test data with the 
components under consideration for the multi-component 
degradation scenarios, at different pump speeds, as well as 
their specific levels of severity.  
 
Table 3. Test Degradation scenarios for FDI Model Testing 
Dataset Degradation 

(Component 1) 
Degradation 

(Component 2) 
Operational 

Speed Range 
(RPM) 

T13 Pump (Medium-
severity) at 45% 
DPV2 opening 

Constant 
degradation of 

Nozzle: 30-70% 
DPV1 opening 

700 

T14 Pump (Medium-
severity) at 45% 
DPV2 opening 

Constant 
degradation of 

Nozzle: 30-70% 
DPV4 opening 

950 

T15 Filter (High 
severity) at 32% 
DPV1 opening 

N/A 700 to 950 

T16 Pump (Medium-
severity) at 50% 
DPV2 opening 

Nozzle (Medium-
severity) at 40% 
DPV4 opening 

700 to 950 
 

T17 Constant 
degradation of 
Pump: 0-100% 
DPV2 opening 

Constant 
degradation of 
Pipe: 0-100% 

DPV5 opening 

800 

T18 Intermittent 
faults for the 

pump between 
45%-60% DPV2 

opening 

N/A 850 

T19 Constant 
degradation of 
Pump: 0-100% 
DPV2 opening 

Constant 
degradation of 
Valve: 30-70% 
DPV3 opening 

850 

T20 Pump (Medium-
severity) at 55% 
DPV2 opening 

Nozzle (High 
severity) at 30% 
DPV4 opening 

700 to 950 

4. RESULTS 

4.1. Healthy Condition (HC) Scenario  

The FDI algorithms showed very good performance in 
determining the healthy condition scenario in a situation 
where no fault had been injected into the system. Figure 9 
shows the performance of all the FDI models in a healthy 
condition scenario with the pump speed at 700rpm and at 950 
(see Appendix B). However, the performance of some of the 
models for components in a healthy state deteriorates once 
failure is introduced into the system. The performance of the 
FDI algorithms in faulty condition scenarios are presented in 
sections 4.2 to 4.4 showing the prediction of the conditions 
of various components on the testbed for the test scenarios.  

4.2. Statistical Process Control (SPC)  

The statistical process control (SPC) which relies on 
deviation from the mean of a process variable generally 
showed poor performance in the detection of the test MCD 
scenarios for components where faults were injected. For the 
test degradation scenario T13 which is has a leakage in the 
pump at DPV 2 of 45% opening and the gradual closure of 
DPV 4 which represents nozzle from 70% to 30%, the SPC 
model resulted in a 0.42 and 0.61 model performance for the 
pump and nozzle respectively (see Figure 9). In the case of 
T14 which has the same components under consideration but 
at a higher pump speed of 950rpm, the SPC showed an even 
poorer performance than in the case of T13 with 0.22 and 
0.55 for the pump and nozzle respectively. However, for the 
components which had no failure injection, the SPC had a 
performance of 1.0 for the components not undergoing any 
form of degradation. This pattern of poor performance for 
components undergoing MCD scenarios and healthy 
components is seen in the rest of the test degradation 
scenarios T15, T16, T17, T18, T19 & T20 (see Appendix A).   

4.3. Ensemble (Classifiers) and Recurrent Neural 
Network (RNN)  

The ensemble classifier which uses the weighted outputs 
from logistic regression, support vector machine and decision 
tree classifier models also showed poor performance 
particularly for components not undergoing any form of 
degradation. This was revealed in T13 where it had a 
prediction performance of 0.42 for the pipe even though the 
pipe had no leak. This is also identified in T14 where the 
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model performance was 0.23 and 0.22 for the filter and pipe 
respectively. For components undergoing MCD scenarios the 
model showed some good performance for components (see 
Figure 10 &11). The recurrent neural network (RNN) also 
showed a similar pattern of prediction to the SPC model 
albeit slightly better than the former. The performance of the 
RNN model of the nozzle deteriorates from 0.81 for T13 
(700rpm) to 0.45 for T14 (950rpm). This drop in performance 
is also seen in the pump where the performance reduces from 
0.42 to 0.22. For the test degradation scenarios T15, T16, 
T17, T18, T19 & T20 (see Appendix), the RNN model 
showed very good prediction for the components not 
undergoing degradation. Nonetheless, for the components 
undergoing the MCD scenarios, the RNN model showed 
mixed model prediction performance. 

4.4. PINN enabled Hybrid FDI Model 

The performance of the PINN enabled hybrid FDI model on 
the test degradation scenarios in Table 3 above showed 
improved performance compared to the other algorithms in 
the context of the MCD scenarios. Although the PINN model 
performs better than the other FDI models in the hybrid 
model, it sometimes underperforms as seen in T17 (see 
Appendix A4) where the weighted ensemble hybrid model 
compensates for the limitations in the PINN model in 
predicting the degradation of the leak in the pipe due to the 
impact of the other models in the hybrid model. For all the 
test degradation scenarios, the hybrid approach showed a 
much better performance as seen in Figures 10 & 11 as well 
as for test scenarios T15, T16, T17, T18, T19 & T20 (see 
Appendix A).

 
 
 

 
Figure 9. Performance of FDI algorithms for a Healthy Condition scenario at a pump speed of 700rpm. 
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Figure 10. Performance of FDI algorithms on Test Degradation Scenario T13

 
Figure 11. Performance of FDI algorithms on Test Degradation Scenario T14 
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5. DISCUSSION 

For stakeholders in industry, training Fault Detection and 
Isolation models for PHM applications is key to optimizing 
asset health and logistics management. The challenge in 
model development as alluded to above is the availability of 
degradation data. The limited data available for training the 
FDI models presents a challenge in detecting MCD scenarios 
as seen in the results section above. The performance of the 
deep learning model for the test degradation scenarios 
showed the limitation in developing data-driven models on 
limited training data.  This is seen in prediction of the state of 
the pump and nozzle in T13 & T17 as compared to the 
approximation and PINN models. However, it performs well 
when the training distribution of the available limited 
degradation data fall within the test degradation data 
scenario. This presents a challenge for stakeholders who have 
training data outside the distribution of the real time data 
from their assets. The ensemble hybrid approach proposed in 
Figure 8 compensates for this shortfall by integrating a 
heuristic approximation and a PINN approach with a neural 
network model to improve the overall model diagnostic 
performance. The main contributing parameters to the 
ensemble performance are the weights which were assigned 
using domain knowledge on the performance of the 
individual models with limited degradation data.  This 
presents an interesting research opportunity for dynamically 
optimizing the weights in the ensemble hybrid model. The 
hybrid model also reduces the computational requirements 
for training the FDI models which ultimately reduces the cost 
for FDI model development for PHM applications.  

6. CONCLUSIONS AND FUTURE WORK 

In conclusion, this study highlights the capabilities of physics 
enabled fault detection and isolation algorithms for PHM 
diagnostics, emphasizing the challenges associated with 
limited training data and generalization issues. The proposed 
PINN-enabled hybrid model demonstrates promising FDI 
predictive capability for MCD diagnostics despite limited 
training data, indicating its potential for addressing the 
identification of multiple degraded conditions occurring 
simultaneously in a complex system. The contributions of the 
paper are: 
C1. This study contributes to the application of physics 
informed FDI models for PHM applications in MCD 
scenarios, ultimately reducing model training data 
requirements for asset health management. 
C2. The paper also presents an ensemble FDI approach with 
the capability of addressing the limitations of integrating both 
data-driven and physics based FDI models in multi-
component degradation scenarios which can also be used in 
the analytics that drive digital twin applications.  
Future research would focus on dynamically optimizing 
ensemble hybrid model weights, leveraging prediction 
uncertainty to further enhance model performance.  

 

NOMENCLATURE 

DT Digital Twins 

DPV Direct Proportional Valve 

FDI Fault Detection and Isolation 

𝐿(𝜃) Loss Function 

MCD Multi- Component Degradation 

NN Neural Network 

PHM Prognostic and Health Management 

PINN Physics Informed Neural Network 

RNN Recurrent Neural Network 

SCD Single Component Degradation 

SPC Statistical Process Control 
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APPENDIX 

Appendix A. FDI Model Performance  

Figure A1. Healthy condition at 950 RPM 

 

Figure A2. Test Scenario T15 
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Figure A3. Test Scenario T16 

       

 

Figure A4. Test Scenario T17 
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Figure A5. Test Scenario T18 

 

Figure A6. Test Scenario T19 
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Figure A7. Test Scenario T20 

 
 

Appendix B. Model Weights for FDI algorithms 
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ABSTRACT 

Transfer learning is a method that transfers knowledge 
learned from a source domain to a similar target domain to 
improve learning. In power plants, obtaining sufficient 
anomaly data is difficult due to the characteristics of the 
systems. Transfer learning enables learning with only a small 
amount of data from the target domain by using a model 
trained in a similar domain. By applying transfer learning, 
models developed for one power plant can be expanded and 
used in other power plants where available data are limited. 

Using actual data from an operating combined-cycle power 
plant, an anomaly diagnosis model was developed and tested. 
Its applicability to different operating conditions and 
anomaly cases was evaluated through transfer learning. The 
fine-tuned pre-trained model was effectively adapted with 
limited target domain data. Transfer learning was applied 
despite the limitations of data and distribution differences. 
The expandability of anomaly diagnosis models to different 
power plant systems was demonstrated by applying transfer 
learning. 

1. INTRODUCTION 

The limited anomalous data and labels in power plants are 
challenges for training anomaly diagnosis models. Due to the 
requirements for safety and operational stability, inducing 
failures or obtaining sufficient anomalous data is difficult in 
power plants (Qian & Liu, 2023). Variations in operating 
conditions also complicate model training by changing the 
distribution of data. The operating conditions of power plants 
change with variations in power demand over time and 
external factors such as temperature and humidity (Bai, 
Yang, Liu, Liu, & Yu, 2021). In actual operating power 
plants, it is difficult to obtain data while operating under the 
same conditions consistently, as power demands and external 

factors vary. Differences in operating conditions disrupt the 
assumption of consistent data distribution between training 
and testing sets in anomaly diagnosis models (Li, Lin, Li, & 
Wang, 2022; Zhou, Lei, Zio, Wen, Liu, Su, & Chen, 2023).  

Developing diagnosis models for a new power plant system 
incurs additional costs, even after significant investments 
have been made to overcome challenges and develop the 
models. This is because the distribution of data collected 
varies due to differences in the structure and sensors of the 
systems in each new power plant. Each new power plant 
requires a customized approach to model development, 
involving the redesign of diagnosis models to fit the specific 
data characteristics of that plant. To develop models for other 
new power plants, the process should start anew with data 
collection. Training and validating models with the collected 
data are essential steps in developing the new model. This 
process again incurs significant time and costs. 

The fact that power plants of the same type share a common 
domain can be utilized. When applying models to new power 
plants, it is typically necessary to redesign them due to 
differences in data distribution. Since the power plants 
operate on similar principles within the common domain, this 
can enable the expansion of existing models without a 
complete redesign. This approach utilizes the commonalities 
from the same types of plants, reducing development time 
and costs. 

By applying transfer learning, a developed model can be 
expanded and adaptively used for a new power plant within a 
similar domain. Transfer learning is a method that transfers 
knowledge learned from a source domain to a target domain 
with insufficient data for a similar task (Pan & Yang, 2009). 
The transfer learning method involves fine-tuning model 
parameters pre-learned from the source domain using limited 
data from the target domain. With transfer learning, a model 
developed in the source domain can be adapted to a new 
system in the target domain, instead of restarting the entire 
process. Additionally, it can be applied to the target domain 
using only a small amount of data, serving as an approach to 
overcome the challenges of limited data and labels. By 

First Author (Jiwoon Han) et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and reproduction in 
any medium, provided the original author and source are credited. 
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applying transfer learning and using the model adaptively, the 
expandability and practicality of the diagnosis model can be 
enhanced. 

In this paper, an anomaly diagnosis model was developed 
using data collected from the actual gas turbine of an 
operating combined-cycle power plant. The developed 
diagnosis model was tested by applying transfer learning to 
data with different anomaly features and operating conditions 
than the training data. Collected data have an emergency 
shutdown called a “trip”, that occurs in the case of anomalies 
to prevent serious accidents. Cases, where actual data are 
collected under different operating conditions, have similar 
situations with other power plants data that have different 
data distributions. By fine-tuning with limited data from the 
target domain, this study demonstrated the potential to 
expand a developed model to different power plant systems. 
Comparative analysis was conducted by applying transfer 
learning, even in situations of data imbalance where little 
anomaly data is available in the target domain. 

Section 2 introduces the related works that developed a 
diagnosis model for the power plant and applied transfer 
learning to the model. Section 3 describes the data, model, 
and transfer learning methods used in this study. Section 4 
presents the results, Section 5 discusses these results, and 
Section 6 presents the conclusions and future work. 

2. RELATED WORKS 

Related studies on anomaly diagnosis in power plants have 
been conducted across various subjects and domains. 
Diagnosis using the Gaussian Process (GP) algorithm and 
model ensemble techniques were conducted at an actual coal-
fired thermal power plant (Zhang, Dong, Kong, & Meng, 
2019). They identified relationships between variables to 
reflect temporal dependencies and cross-variable 
associations, using combinational data relationships to 
develop the diagnosis model. Lee et al. (2021) collected data 
from a full-scope simulator for abnormality diagnosis in a 
nuclear power plant and developed a Convolutional Neural 
Network (CNN) algorithm model. To manage the 1004 
sensor variable data, they converted it into two-channel 2D 
images with a data size of 32*32. 

As mentioned in the introduction, power plants have 
challenges due to the limited anomaly data and differences in 
operating conditions. To address these challenges, transfer 
learning methods have actively been researched for 
diagnosing power plants. Studies have been conducted to 
apply transfer learning for fault diagnosis at different power 
levels in nuclear power plants. Data were collected at several 
power levels using a simulator, and a CNN algorithm was 
developed to handle numerous sensor variables. Maximum 
Mean Discrepancy (MMD) was used to develop the model to 
adapt to differences in distributions when power levels vary. 
With these approaches, Li et al. (2022) divided domains 
based on power levels and applied transfer learning across 

different power levels. They also analyzed the effects of 
various kernel functions used to calculate MMD. Wang et al. 
(2022) utilized Transfer Local MMD (TLMMD) combined 
with the ResNet-18 algorithm to develop a diagnosis model. 
Li, Lin, Li, and Wang, (2022) applied transfer learning to 
construct models for each power level. They proposed a 
framework that determines the current power level during 
actual operation and matches data to the model trained at each 
power level. 

The CNN algorithm and transfer learning were also applied 
for fault detection in the gas turbine combustion chambers of 
power plant systems (Bai et al., 2021). Exhaust Gas 
Temperature (EGT) data collected from two gas turbines 
were used. The turbine with more data was used as the source 
domain for training, and transfer learning was then applied to 
the other turbine, which had limited data. The performance of 
the transfer learning approach was evaluated and compared 
with various other diagnosis methods. 

3. APPROACH 

A diagnosis model was developed for the gas turbine of an 
operating combined-cycle power plant. Training and testing 
were conducted using data from collected anomaly cases, and 
transfer learning was applied. The model’s performance was 
evaluated, observing changes in performance based on the 
data used for training and the application of transfer learning. 

3.1. Data 

The operating data were collected from sensors related to the 
gas turbine equipment of a combined-cycle power plant A, 
located in region B of Korea. The power plant data were 
provided by KEPRI (Korea Electric Power Corporation 
Research Institute). A total of eight anomaly cases related to 
trips were detected. Data for each case were collected on the 
dates when the anomaly occurred for four years. Each case 
has different operating conditions, resulting in different 
characteristics.  

 
Data were collected from 118 sensors of the plant’s gas 
turbine system. Sensors collected data on flow rate, pressure, 
and temperature, such as EGT. Each sensor was related to the 
control and flow of fuel gas in the gas turbine.  

Within each of the eight anomaly cases, there are 128 
instances of both normal and anomaly data, labeled by 

Table 1. Collection of Data. 
 

Collection period 4 years 
Number of sensors 118 
Number of Cases 8 

Data instance per cases 
Total 256 
Normal 128 
Anomaly 128 
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domain experts based on the investigation reports conducted 
for each case. The data format consists of 60-minute windows 
for the 118 collected sensor data points.  

Figure 1. Example of collected data with a trip. 

To utilize the overall 118 sensor data, the collected time 
series data can be concatenated in parallel to form a two-
dimensional matrix. Each row is composed of a time series, 
and the patterns of the sensors contain information about 
anomalies. The data from 118 sensors have variations in units 
and ranges of values, depending on their measurement 
targets. To address this, min-max normalization was applied 
to each sensor. The matrix collected from 118 sensors over a 
60-minute window is represented as an image as follows. 

 
Figure 2. Example image of data. (a) Case 1, (b) Case 3. 

3.2. Transfer Learning 

Transfer learning was applied by taking a model trained in 
the source domain and fine-tuning it with a limited dataset 
from the target domain, with some weights of the 
convolutional layer fixed. The model was constructed using 
a Convolutional Neural Network (CNN) architecture, with 
1D kernels utilized to detect patterns in the data from 118 
sensors over a 60-minute window. The model’s structure 

includes convolutional layers, max-pooling layers, batch-
normalization layers, and fully connected layers. It is 
designed to learn features from the data and perform 
classification. 

In the CNN model, the initial convolutional layers extract 
general features, while the fully connected layers extract 
specific features (Zhu, Peng, Chen, & Gao, 2019). This 
characteristic enables the use of general features validated in 
the source domain while adapting specific features for 
classification in the target domain when applying transfer 
learning. The model was trained using all available data in 
the source domain, and fine-tuning was conducted with only 
60 data instances from the target domain. 

 
Figure 3. Outline for Structure of CNN model 

3.3. Evaluation 

Eight cases were used as different source domains, with each 
dataset being used to train a CNN model individually. Each 
trained source case model was evaluated using the validation 
data from that case and tested using the remaining seven 
cases as test data. Thus, there are eight evaluation results for 
one case model and a total of 64 results for all eight cases. 
The average of the calculated performance metrics was used 
to evaluate how each method applies. This average 
performance metric was compared based on the application 
of transfer learning and depending on the case used for 
training. 

The performance metric used is the Matthews Correlation 
Coefficient (MCC), which represents performance through 
the correlation between actual and predicted labels, among 
metrics for binary classification (Chicco, Tötsch, & Jurman, 
2021). MCC values range from [-1, 1], as it is a correlation 
coefficient. Accuracy, the commonly used performance 
metric, cannot represent cases of class imbalance and cases 
where predictions are made with only one label. The MCC 
metric can effectively show the relationship between actual 
and predicted labels. It is considered to perform well even in 
cases of class imbalance, indicating a value of 0 when 
predictions are made with only one label. 

4. RESULT 

The comparison of the average MCC for the three cases is 
shown in the figure below. CNN models were trained using 
data from eight different anomaly cases. The models for each 
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case were trained and validated in an 8:2 ratio, and data from 
different cases, which were not used in training, were utilized 
for testing.  

 
Figure 4. Comparison of the average MCC 

The performance of the model significantly improved when 
transfer learning was applied, compared to using data from 
only one case. Additionally, although the best performance 
was in the case that used data from both domains, the 
performance with transfer learning exhibited similar levels of 
effectiveness. 

Each anomaly case has different operating conditions and 
anomalies. While the models exhibit high performance in 
validation for each specific case, most exhibit low MCC 
scores when applied to other cases. Most test cases with low 
MCC scores are cases where predictions are made with only 
one label, either normal or anomaly. Figure 4 shows that the 
diagnosis models are well-trained for each specific case. 
Additionally, it indicates that the models cannot predict 
accurately in tests for other anomaly cases due to different 
operating conditions and anomalies. 

 
Figure 5. Performance of models trained with each case. 

The performance of each case was evaluated by applying 
transfer learning. To evaluate the effectiveness of transfer 
learning, a comparison was made between models that 
applied transfer learning and those that used all the data from 
both the source and target domains without transfer learning. 
Initially, each case was fine-tuned with limited data from the 
target domain, based on the model trained in the source 
domain. The performance metrics were evaluated using test 
data that were not used in the fine-tuning of the target domain. 
Transfer learning was applied as described in Section 3.2. 

  
Figure 6. Performance of models applied transfer learning. 

For comparison, a scenario was assumed in which data were 
collected and available from both domains. The model was 
trained using all the data from both the source and target 
domains without the use of transfer learning. The results are 
as follows. 
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Figure 7. Performance of models trained with both domains. 

When trained using data from both domains, the data for 
training and validation was the same as when only one 
domain was trained and validated, but the trained model was 
not completely accurate. This is because each domain has 
different operating conditions, making it challenging to treat 
and learn from them as a single domain. 
It can be observed that diagnoses performed with transfer 
learning are effective. The difference in the effectiveness is 
due to the different distributions of data from each anomaly 
case under different operating conditions. When using 
models trained with a single case, the features identified 
during training differ from those in the test, leading to poor 
performance of the model. In contrast, the application of 
transfer learning has shown that fine-tuning the model with a 
limited amount of data can enhance performance. When 
compared to cases where data from both the source and target 
domains are available, similar performance metrics were 
observed. This indicates the effectiveness of transfer learning 
in cases with different data distributions. When expanding the 
model to different new power plant systems, data newly 
collected under different operating conditions or anomaly 
cases differ from the previously trained data. Previous results 
demonstrate the expandability of the diagnosis model 
through transfer learning, which has been effective despite 
these differences. 

5. DISCUSSION 

In real-world situations, collecting anomaly data is more 
challenging compared to normal data, resulting in a data 
imbalance. Additional analysis was conducted to monitor 
changes in the training models by applying transfer learning. 
A sensitivity analysis was performed on the ratio of normal 
to anomaly data used in fine-tuning the target domain. To 
address this, the performance of transfer learning was 

evaluated by gradually increasing the proportion of normal 
data. Figure 8 shows the results of the average MCC 
according to the ratio of normal to anomaly data used in fine-
tuning. The results indicate a significant decrease in 
performance when no anomaly data were included. 

 
Figure 8. Average MCC according to the ratio of normal to 

anomaly data. 

Using transfer learning, the ratio of normal to anomaly data 
used for fine-tuning was changed to analyze factors that 
influence its effectiveness. It was observed that even a small 
amount of anomaly data could yield good results when the 
overall proportion of anomaly data was reduced. In real-
world application scenarios, normal data is generally more 
prevalent. The model could identify anomalies well even in 
imbalanced situations where the ratio of anomaly data was 9 
to 1. However, the performance significantly decreased when 
there was no anomaly data at all. This decrease occurs 
because fine-tuning without any information about anomalies 
makes it difficult to adaptively use the identified anomaly 
features through transfer learning.  

6. CONCLUSION AND FUTURE WORK 

In this study, an anomaly diagnosis model was developed 
using data from an actual combined-cycle power plant. 
Diagnosis models were developed for each case, and it was 
observed that the operating conditions and anomaly features 
varied according to each case. To use the diagnosis models 
adaptively, transfer learning was applied to fine-tune the 
models and evaluate their performance. Using transfer 
learning, the ratio of normal to anomaly data used in the fine-
tuning of the target domain was varied to analyze changes in 
performance. This process demonstrated that transfer 
learning could be effectively applied even in imbalanced 
situations with a predominance of normal data, and it also 
highlighted the importance of collecting anomaly data. 

Next, Research could be conducted to validate the 
expandability of the model through transfer learning using 
data collected from different new power plants. Research 
could be conducted on applying the model in real-time 
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scenarios at actual power plants using transfer learning. In 
actual power plant operations, the occurrence of an anomaly 
is already critical. There is a need for an approach that allows 
for fine-tuning without information about anomalies and 
adaptively uses the model under different operating 
conditions. Additionally, considering that data are collected 
in a sequential time series, there is a need for a transfer 
learning framework that fine-tunes the model using only 
initial data and adaptively detects anomalies. 
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ABSTRACT

Machine learning-based condition monitoring of mechanical
systems, such as bearings, employs two primary approaches:
unsupervised and supervised methods. Unsupervised approaches
aim to characterize the healthy state of the machine and mon-
itor deviations from this state. The advantage lies in requiring
only the health condition of the component without the need
for historical data until breakdown. However, the disadvan-
tage is the lack of information regarding the root cause of any
potential malfunction. On the other hand, supervised meth-
ods consider both healthy and faulty cases, aiming to max-
imize the difference between them through post-processing,
as well as among different fault types. The advantage is the
ability to analyze the specific signature of a particular fault
type. Nonetheless, the disadvantage is that available data usu-
ally do not cover all possible faults that may occur. Typically,
obtaining a faulty bearing involves either a time-consuming
run-to-failure test or the artificial induction of faults using
drills, electro-discharge pens, etc. While artificial faults of-
fer a quicker procedure, they often fail to replicate real faults
faithfully. This paper suggests using picosecond laser tech-
nology to engrave the surface of the bearing and create artifi-
cial faults. Modern laser technology allows for precise con-
trol over the dimensions of injected faults, enhancing the un-
derstanding of fault progression at various stages in the life
of bearings. These measurements are crucial parameters for
evaluating the robustness of diagnostic algorithms. This pa-
per focuses on artificially damaging a ball bearing used in
an independent cart systems application, which comprises a
fleet of linear motors moving on the same rail. These sys-
tems have recently been proposed by different manufactur-

Abdul Jabbar et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

ers and adopted in the field of packaging machines for their
flexibility. For such systems, no prior instances of faulted
bearings are available, and the size of a real fault is also un-
known. Hand-made faults with drills did not produce dis-
cernible faults appreciable in post-processing of the data. There-
fore, a picosecond laser with a pulse duration of 10 ps and a
maximum energy per pulse of approximately 100 µJ is uti-
lized to create a set of test bearings with increasing fault sizes
on the outer race. Post-processing of the data enables the
qualification of the minimum fault severity detectable in this
specific application.

1. INTRODUCTION

The emerging technology of independent cart systems com-
prises a fleet of linear motors that operate on a shared track
and can be controlled individually and independently. Unlike
conventional motors, where the stator and rotor are enclosed
within the same frame, linear motors feature a completely
detached rotor. In this design, the fixed frame of the mo-
tor serves as the stator, with coils evenly distributed along the
track, while the single cart functions as the movable part, con-
taining permanent magnets positioned above the coils, along
with a set of bearings. The cart, while crucial, is a completely
passive component of the system. It interact with the chang-
ing magnetic field of the motor coils, moving in synchroniza-
tion with the magnetic field pattern.

Independent cart systems stand poised to revolutionize tradi-
tional conveyor belts. Offering a range of benefits such as in-
creased flexibility and dynamic capabilities, independent cart
systems are proving to be ideal solutions for a wide range
of industrial and motion control applications. Comprising
modular components such as linear motors, guide rails, and
control circuitry, these systems offer adaptability and effi-
ciency. Linear motors within independent cart systems are

1
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available in both straight and curved modules, allowing for
diverse path configurations tailored to specific industrial re-
quirements. Across industries, various iterations of indepen-
dent cart systems are being deployed, each with distinct fea-
tures in guide rail and cart design. Depending on applica-
tion needs, guide rails may either attach directly to linear
motors (Jabbar, D’Elia, & Cocconcelli, 2023; Jabbar, Coc-
concelli, D’Elia, & Strozzi, 2023) or form a separate bed par-
allel to them (see figure 2), a brief description of such a sys-
tem with parallel guide rail can also be found in (Cavalaglio
Camargo Molano, Capelli, Rubini, Borghi, & Cocconcelli,
1968). Similarly, cart and bearings can take on different con-
figurations to suit specific application requirements. For ex-
ample, in a previous study (Jabbar, D’Elia, & Cocconcelli,
2023; Jabbar, Cocconcelli, et al., 2023), the authors have de-
scribed setups where guide rails are directly attached to lin-
ear motors, with options for 12 or 6 bearings featuring plas-
tic outer races. One significant advantage of independent
cart systems is their ability to define the entire track in sta-
tions, enabling the accommodation of distinct speed profiles
for each cart along every station.

Despite the considerable benefits that these systems offer over
conventional conveyors, economic concerns remain. To date,
the high cost and substantial upfront investment required for
independent cart systems present challenges to their widespread
adoption. To ensure economic viability, it is imperative that
these systems operate flawlessly. Thus, the implementation of
robust condition monitoring measures is crucial for their sus-
tained performance. Although independent cart systems are
rapidly replacing conveyor belt systems, there has been a lack
of studies focused condition monitoring of such systems. Due
to the confidentiality surrounding these systems, often pro-
tected by non-disclosure agreements, there is no repository
or public database where vibration, acoustic, or other data re-
lated to independent cart systems is available for conducting
condition monitoring. Consequently, to the best of the au-
thors’ knowledge, there has been no research conducted on
condition monitoring of the independent cart systems. This
scarcity of research and data necessary for condition mon-
itoring serves as a primary motivation for this study. Fur-
thermore, another motivation for this research stems from the
inherent challenges associated with monitoring the condition
of such systems.

Condition monitoring of the independent cart systems presents
a formidable challenge for several reasons. Firstly, it is a
highly non-synchronous system, with speed variations rang-
ing from a few millimeters per second to several meters per
second. For instance, the system under study can achieve
cart’s speed of up to 4 meters per second. Additionally, the
system supports speed reversal, allowing for changes in di-
rection. Furthermore, with the addition of every cart to the
fleet, the number of bearings increases by three. Given that
each cart contains three bearings and there are hundreds of

bearings in the fleet, monitoring the condition of the indepen-
dent cart systems becomes complex. This monitoring process
can be divided into several steps: firstly, identifying if there
is a fault; secondly, determining the type of fault (such as
inner race, outer race, ball fault, etc.); thirdly, distinguish-
ing whether the top bearing is faulty or the bottom one; and
fourthly, localizing the cart carrying the faulty bearing. Un-
derstanding the behavior of the vibration signal in the case of
a top bearing fault is also intriguing. This is because there
is a pair of bearings with exactly the same dimensions and
dynamics supporting the same movement.

There are several bearing datasets available, including the In-
telligent Maintenance Systems (IMS) dataset (Lee, Qiu, Yu,
& Lin, 2007), the Case Western Reserve University (CWRU)
dataset (Bearing Data Center, Case Western Reserve Univer-
sity (CWRU), n.d.), and the IEEE Dataport bearing dataset
(B. Hu, 2023). These datasets serve as benchmarks for testing
and evaluating new condition monitoring algorithms. How-
ever, these datasets primarily focus on conventional configu-
rations where the bearings are fixed around a shaft. In con-
trast, in independent cart systems, the bearings not only ro-
tate but also translate along the path defined by a set of linear
motors. This introduces a significant departure from conven-
tional setups. Additionally, the linear motion of the cart is
often highly non-synchronous, resulting in non-synchronous
rotational speeds of the bearings. Furthermore, the possibil-
ity of instant speed reversal further complicates the dynamics
of the system. Given these differences, there is a clear need
for new datasets specifically tailored for the condition moni-
toring of such industrial systems. These datasets would need
to capture the unique characteristics and challenges posed by
the operation of bearings within independent cart systems.

Data-driven modeling has emerged as a valuable approach
that can complement traditional signal processing techniques,
offering a robust methodology for uncovering insights from
complex datasets. This methodology involves leveraging ma-
chine learning algorithms to discern patterns and anomalies
within the data. While implementation requires expertise in
both data preprocessing and machine learning, the benefits of
this approach can be significant. In light of these advantages,
researchers have explored the integration of machine learning
algorithms for bearing fault classification, alongside classical
signal processing techniques. A diverse array of algorithms
has been deployed for this purpose, encompassing Long Short
Term Memory (LSTM)((Walther & Fuerst, 2022), (Y. Hu et
al., 2022)), Autoencoders ((K. Cheng RC.and Chen, 2022),
(R.-C. Cheng, Chen, Liu, Chang, & Tsai, 2021)), Support
Vector Machines (SVM) ((Sun & Liu, 2023), (Y. Fan, Zhang,
Xue, Wang, & Gu, 2020)), Artificial Neural Networks (ANN),
Convolutional Neural Networks (CNN), Deep Learning (DL),
Transfer Learning (Wan et al., 2022), Anomaly Detection
(Z. Fan et al., 2023), and the K-means clustering algorithm
(Yiakopoulos, Gryllias, & Antoniadis, 2011), among others.
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Although this list is not exhaustive, it underscores the breadth
of approaches available for analysis. By combining these var-
ious methodologies, researchers aim to construct more pre-
cise and reliable models for machine condition monitoring.
Through this integration, the potential for accurately identi-
fying and predicting faults in machinery is significantly en-
hanced.

Machine learning-based condition monitoring of mechanical
systems relies heavily on data. To amass a large dataset, it’s
essential to gather a vast array of data encompassing various
degrees of faults and experimental conditions. Achieving this
requires the creation of artificial faults through specific meth-
ods. Artificially injecting faults poses challenges, particularly
when it comes to ensuring repeatability and control over the
size of the fault. Traditional methods such as cutting tools
or drill mills may lack accuracy, and be limited by the high
hardness of the materials employed for bearings, in particu-
lar, when attempting to damage different parts of the bearing
with varying fault sizes. Consequently, manually employing
these tools often results in irregular fault sizes and dimen-
sions. In contrast, laser injection offers a solution that pro-
vides repeatability and precise control over fault dimensions.
By utilizing laser technology, faults can be consistently cre-
ated even in very high strength material with accurate control
over their size and shape, ensuring greater consistency and
reliability in experimental conditions.

The rest of the paper is structured as follows. Section 2 pro-
vides insights into the experimental setup of the independent
cart system, including the cart and bearing configuration. Fol-
lowing this, Section 3 elaborates on the setup involving pi-
cosecond laser technology. In Section 4, the paper delves
into the specifics of the experimental campaign. Moving for-
ward, Section 5 presents preliminary results derived from the
conducted experiments. Finally, conclusions drawn from the
study are discussed in Section 6.

2. INDEPENDENT CART SYSTEM AND EXPERIMENTAL
SETUP

The experimental setup for the independent cart system uti-
lized in this study comprises eight straight motor modules,
two curved modules, and a total of 12 carts. Each straight mo-
tor module features a 250-millimeter (mm) long stator, while
the stator of the curved module measures 500 mm in length.
Consequently, the combined length of the track defined by
the 10 motor modules totals 3000 mm (see figure 1). With
the system’s capability to program each cart independently
for a desired travel path, provided there are no collisions be-
tween carts, experiments were conducted with varying num-
bers of carts. Each cart, measuring 50 mm in length, consists
of five pairs of permanent magnets and is equipped with a set
of three rolling-element bearings as shown in figures 3 and 4.
The two top bearings share identical geometry, with an exter-

Figure 1. The independent cart system with Parallel guide
rail.

nal diameter of 25 mm, while the bottom bearing is slightly
larger, with an external diameter of 35 mm. These bearings
ensure secure attachment of the cart to the guide rail, which
runs parallel to the linear motor modules (see figure 2). The
motor modules are outfitted with coils that generate magnetic
field patterns, enabling the system to achieve the desired tra-
jectory and motion profile for each cart.

To acquire vibration data, five vibration sensors were strate-
gically installed at various locations throughout the system’s
geometry, as depicted in the figure 1. Among these sen-
sors, three are monaxial, each with different sensitivities (e.g.,
10mv/g and 100mv/g). The remaining two sensors are triax-
ial and are directly mounted onto the guide rail near the left
and right sides of the system, with each axis exhibiting a sen-
sitivity of approximately 10mv/g.

3. PICOSECOND LASER

An EKSPLA Atlantic 50 picosecond laser source was used
to damage the bearings. It’s a picosecond laser source which
generates a Gaussian beam profile at the IR wavelength of
1064 nm. This kind of laser source produces ultrashort pulses
in the picosecond regime thus allowing to ablate the inner
(and the outer) race by creating a very precise in shape grooves
without limitations in terms of hardness of the material to be
harmed. The laser beam diameter in the focal position settled
at ϕ ≈ 10 µm, evaluated at 1/e2 intensity. A dedicated opti-
cal path for the IR wavelength allowed the laser beam exiting
from its source to be delivered to the scanning head. This is
a Raylase Supercan IV galvanometric scanner copuled with
an 80 mm F-theta lens thus allowing a square working area
with a side of 39 mm. The remaining movements, outside
the above scan area, were instead guaranteed by the transla-
tion, in X and in Y- direction, of a stage on which the bear-
ings to be damaged were placed. The translation of Z axis
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Figure 2. The parallel guide rail.

allowed to damage the bearings by working at the correct fo-
cal height. The entire system set up in BrightLab laboratory
of the DISMI Department is shown in Figure 5. Preliminary
tests were conducted to evaluate the response of the material
to the infrared radiation. These tests allowed us to correctly
identify, and define, all the process parameters to be able to
carry out damage with specific geometry, dimension and pre-
scribed depth. The adopted laser parameters are summarized
in Table 1.

Table 1. Laser parameters used during experiments.

Parameter Unit of Measure Value
Wavelength, λ nm 1064

Average Output Power, P W 13.32
Pulse Frequency, f kHz 300

Pulse energy, E µJ 44.4
Pulse duration, τ ps 10
Pulse fluence, F J/cm2 56.56
Line spacing, s µm 5

Marking speed, vs m/s 1
Number of passes on each groove, p 150

Figure 3. System’s cart configuration.

4. EXPERIMENTAL CAMPAIGN

The experimental campaign can be divided into two main cat-
egories: fault injection and vibration data acquisition, with
and without the presence of bearing faults. Fault injection
campaigns, furthermore, can be categorized into two main
types: those that do not involve dismantling the bearings and
those that involve disassembled bearings. Initially, our ap-
proach aimed to create faults in bearings without the need for
dismantling, utilizing Lab-available drill mill. However, due
to the limited flexibility in maneuvering of the drill mill head
caused by the close proximity of the bearing’s inner and outer
races, the faults injected were predominantly of an incipient
nature. Consequently, these faults failed to fully encompass
the entire grooves of the inner and outer races. Henceforth,
these faults will be referred to as incipient fault types throught
the remainder of this paper. Subsequently, we explored an
alternative method using the EKSPLA Atlantic 50 picosec-
ond laser to create faults in the bearings without disassembly.
This approach allowed to reach controlled fault while entail-
ing a challenging method to perform the damage of the bear-
ing parts. The main difficulties were found in the creation
of damage both in the inner race and in the outer race of the
bearing and they referred to the following two aspects. The
first is linked to the shielding effect of the laser radiation that
some components of the non-disassembled bearing may have
on the area that needs to be damaged. This inconvenience
also occurred when specific supports were used to correctly
orient (and strongly tilt) the bearing (e.g. the internal race
didn’t always allow the defect to be created in the external
race in its entire axial extension due to the shielding effect
performed). Instead, the second considered the need to create
a groove with a predetermined depth on a strongly inclined
component due to the considerations previously anticipated.
To overcome these limitations, and also to be robust in ob-
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Figure 4. Cart’s bearing configuration.

Figure 5. A schematic of the laser ablation system.

taining the damage on the various component of the bearings
comparable to what was achieved on preliminary planar tests,
an evaluation of the allowable depth of focus was required.
In particular, by considering a beam quality factor M2 of 1.5
and a laser beam diameter (evaluated at 1/e2 intensity) on the
lens of D0 = 14mm, have been calculated:

• Rayleigh length zf , as the distance from the beam waist
where the beam radius is increased by a factor of the

√
2:

zf =
π
(
D0

2

)2

M2λ
≈ 100 µm (1)

• Depth of Field (D.O.F.), as the distance either side of the
beam waist, D0, over which the beam diameter grows by
5%

Figure 6. Pico-second laser beam profile

D.O.F. = ±0.08πD2
0M

2λ ≈ 118 µm (2)

The modest value of the depth of Field (D.O.F.), which settles
at 118 µm for our laser, did not allow for damaging the bear-
ing components in a single laser pass. Therefore, a multi-pass
approach was needed. This methodology involves focusing
the laser beam on a target zone of the component that needs
to be damaged. The process carried out is characterized by
reaching the prescribed depth in the area where the laser was
focused, and by unworked areas where the laser was unable
to completely deposit its energy and properly ablate the ma-
terial. The processing area can therefore be limited to a rect-
angle having as its height the depth of field previously calcu-
lated. The areas not included within this height will instead
remain untreated due to the unfocused conditions. An incre-
mental increase in depth is needed and allowed by varying
the height of the galvanometric head (and correspondingly
recovering the X position by advancing with the XY table). In
this way, by focusing on a lower area, further ablation pro-
cessing is possible. The process is performed continuously
until the intended damage shape is achieved. The reached
depth had a tolerance of ±0.15 mm from the nominal shape.
Finally, to fully overcome the limitations related to the first
issue explained above, the bearings were completely disman-
tled. This way, individual parts of the bearing were fully
exposed, facilitating controlled fault injection. The damage
process was unaffected by the presence of, for instance, balls
between the inner and outer races, which obscured the area
to be damaged. Thus, better and more precise flat-bottom
grooves were created using the multi-pass criteria mentioned
above. An optical microscope (Mod. Nikon LV100ND), was
used to characterize the final shape of the fault in terms of
dimensions and, by changing the depth of focus.
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Figure 7. Positioning of bearings on an ad-hoc support. The
operating principle of the multi-altitude approach for progres-
sive focusing is explained in the enlarged image.

Figure 8. Microscopic view of bearing faults: a) Incipient
version IR fault of bottom bearing, b) Incipient version OR
fault of bottom bearing, c) Lase version 0.5 OR fault of top
bearing, d) Lase version 1.0 OR fault of bottom bearing, e)
Lase version 0.5 IR fault of bottom bearing.

Table 2. Bearing type, fault type, and fault version.

Bearing Type Fault Type
Fault Version

Incipient Laser 0.5 Laser 1.0 Laser 2.0
Width Width Width Width

Top Bearing
OR NA 0.5 1.0 2.0
IR 0.75 0.5 1.0 2.0
BF NA 0.5 1.0 2.0
OROS NA 0.5 NA NA

Bottom Bearing
OR 1.3 0.5 1.0 2.0
IR 1.4 0.5 1.0 2.0
BF NA 0.5 1.0 NA
OROS NA 0.5 NA NA

The microscopic view of the some of the faults created with-
out dismantling the bearings is illustrated in the figure 8. It is
evident that the depth of the faults varies non-uniformly due
to the challenges mentioned earlier. A tabular summary of
the fault injection campaign without dismantling the bearings
is presented in the table 2. In the table, ”IR” represents in-
ner race faults, ”OR” denotes outer race faults, ”BF” signifies
ball/roller faults, and ”OROS” indicates outer race outer sur-
face faults. Whereas, laser versions 0.5, 1.0, and 2.0 represent
the nominal width (in mm) of the injected faults.

5. RESULTS

The experiments involved varying the number of movers and
different experiment types, each focusing on different areas
of the system, such as the straight path on the top or bottom
side, or the curved side, with varying numbers of movers.
However, the results presented are specifically for a particu-
lar experiment type involving a single mover traversing the
straight path on the top side of the system, demonstrating
back-and-forth motion. This experiment was conducted at
different speeds: 1000 mm/s, 2000 mm/s, and 3000 mm/s.
It is important to note that the results will not be discussed in
terms of fault identification based on fault frequency. Instead,
the focus will be on highlighting differences in the vibration
data concerning fault injection types and fault sizes.

The figure 9 illustrates the Fast Fourier Transform (FFT) of
the data obtained during the experiment conducted at a speed
of 1000mm/s, showcasing different versions of IR faults in
the top bearing. In the legend, ”F” indicates the presence of
a fault, while ”H” denotes healthy conditions. Additionally,
”S1000” represents the linear speed of the cart. ”V” signifies
the laser version of fault injection, while ”Incipient Fault”
denotes manual fault injection. It is important to note that
only one of the top couple of bearings is faulty at a time.
Moreover, the width of the impulses in the data with faulty
conditions appears to be directly correlated with the size of
the faults; sharper faults result in narrower impulse widths.
The same behavior is observed in the case of the outer race
fault of the bottom bearing, as illustrated in the figure 12.

As evident from the table 2, the Incipient type IR fault in
the top bearing measures 0.65mm, which closely aligns with
the laser version 0.5 fault. This similarity is also reflected
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Figure 9. The FFT of the vibration data with an incipient and laser version 1.0 type inner race fault in the top bearing, at a linear
speed of 1000 mm/s.

Figure 10. The FFT of the vibration data with an incipient and laser version 2.0 type inner race fault in the bottom bearing, at a
linear speed of 1000 mm/s.
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Figure 11. The FFT of the vibration data with laser version 0.5 and laser version 1.0 type outer race faults in the top bearing, at
a linear speed of 1000 mm/s.

Figure 12. The FFT of the vibration data with an incipient and laser version 2.0 type outer race fault in the bottom bearing, at a
linear speed of 1000 mm/s.
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in the width of the impulses in the FFT of the vibration sig-
nal. However, it’s noteworthy that the width of the incipient
fault is not uniform throughout the fault area, nor does it com-
pletely cover the groove of the inner race where the rolling
element glides. Therefore, a detailed explanation and anal-
ysis of these differences are yet to be conducted. Similarly,
in the case of the IR bottom bearing fault, the incipient fault,
approximately 1.4 mm wide at its widest, shows FFT char-
acteristics more akin to the laser version 2.0 fault type as de-
picted in figure 10. Notably, for the incipient type IR fault of
the bottom bearing, the modulating frequency appears to be
2.83 Hz, with even harmonics exhibiting higher energy than
the odd harmonics. Conversely, for the laser version 2.0 fault
in the bottom bearing, the modulating frequency seems to be
3.48 Hz, with even harmonics having more energy than the
odd harmonics.

Likewise, for the IR top bearing fault in figure 9, the incipi-
ent type fault measuring approximately 0.75mm exhibits FFT
characteristics more similar to the laser version 1.0 fault type.
Interestingly, for the incipient type IR fault of the top bear-
ing, the modulating frequency appears to be 3.19 Hz, with
even harmonics having higher energy than the odd harmon-
ics. Conversely, for the laser version 1.0 IR fault in the top
bearing, the modulating frequency seems to be 3.86 Hz, with
even harmonics exhibiting more energy than the odd harmon-
ics.

Regarding the OR bottom bearing fault, the incipient fault,
approximately 1.3 mm wide at its widest, exhibits FFT char-
acteristics more aligned with the laser version 2.0 fault type as
shown in figure 12. Notably, for the incipient type OR fault of
the bottom bearing, the modulating frequency appears to be
3.38 Hz, with even harmonics demonstrating higher energy
than the odd harmonics. Conversely, for the laser version 2.0
fault in the bottom bearing, the modulating frequency seems
to be 2.36 Hz, with even harmonics having more energy than
the odd harmonics.

Lastly, in the case of the OR top bearing fault in figure 11, the
FFT of the laser version 0.5mm resembles more closely the
laser version 1.0 fault type. Interestingly, for the version 0.5
OR fault of the top bearing, the modulating frequency appears
to be 2.59 Hz, with even harmonics demonstrating higher en-
ergy than the odd harmonics. Conversely, for the laser version
1.0 fault in the top bearing, the modulating frequency seems
to be 2.43 Hz, with even harmonics exhibiting more energy
than the odd harmonics.

6. CONCLUSION

In order for the dataset to be utilized in developing new al-
gorithms, it is imperative that at least a subset of the data
exhibits clear fault signatures. The laser method of fault in-
jection offers precise control over fault dimensions, ensuring
repeatability. The data acquired from this experimental cam-

paign could serve as a benchmark for the development and
testing of condition monitoring algorithms, whether they are
machine learning-based, statistically based, or employ classi-
cal signal processing techniques.
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ABSTRACT

Prognostics and Health Management (PHM) plays a crucial
role in maximizing operational efficiency, minimizing main-
tenance costs, and enhancing system reliability. Predicting
Remaining Useful Life (RUL) is a key aspect of PHM, in-
herently incorporating uncertainty. This paper focuses on
uncertainty quantification (UQ) within Data-Driven Models
(DDMs), particularly Machine Learning (ML), such as Long
Short-Term Memory (LSTMs), and stochastic models namely
Hidden Markov Models (HMMs). While ML models empha-
size accuracy, stochastic models offer a different paradigm
for prognostics, directly addressing uncertainty. Traditional
categorizations of uncertainty as aleatory and epistemic face
challenges in practical implementation. This paper explores
how, in prognostics, HMMs primarily tackle aleatory un-
certainty, whereas LSTMs predominantly address epistemic
uncertainty. It also discusses the complexities of uncer-
tainty management in prognostics and analyzes further an al-
ready proposed alternative approach to categorize uncertain-
ties. Despite theoretical advancements, practical implemen-
tation remains challenging, especially for DL models due to
their limited interpretability. This study sheds light on UQ
challenges and offers insights for future research directions
in prognostics.

1. INTRODUCTION

Prognostics and Health Management (PHM) is a field that
provides users with a thorough analysis of both the current
and future health condition of a system. PHM has gained
attention during the last years due to the potential that it has
to maximize the operational availability, reduce maintenance
costs, and improve the system reliability.

Prognostics, as part of the PHM field, aim at predicting the

Mariana Salinas-Camus et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Remaining Useful Life (RUL) of a given engineering system
while it is in operation. By definition, the prediction of RUL
incorporates uncertainty. Therefore, it is imperative to model
RUL as a random variable rather than a deterministic one to
account for the inherent uncertainties in prognostics. The pre-
diction of RUL is then used by a decision-making module,
which will make health management decisions to fulfill PHM
goals.

Nonetheless, uncertainty quantification (UQ) is a challenge
within prognostics. In particular, when prognostics are per-
formed with Data-Driven Models (DDMs), which only rely
on historical sensor data, UQ can become a greater challenge
depending on which type of prognostic DDM is used. Hence,
this paper will solely focus on UQ for DDMs, given their ex-
tensive use in prognostics and their sensitivity to uncertainty
sources related to the data.

As previously mentioned, DDMs use historical sensor data
to predict the RUL of the engineering system, and there are
different types of DDMs. For the purposes of this paper, we
would consider Machine Learning (ML) and stochastic mod-
els as the two main categories of DDMs. ML models, which
include decision trees, Support Vector Regressor (SVR), and
Deep Learning (DL) models, among others, have gained at-
tention in prognostics because of the high accuracy of the
RUL predictions.

In contrast to ML, stochastic models offer a different
paradigm for data-driven prognostics. Stochastic models,
such as Hidden Markov Models (HMMs) and Wiener pro-
cesses, model the degradation process of the engineering
system based on the sensor data, i.e. unsupervised learn-
ing, unlike ML models that can find complex relationships
between the sensor data and RUL, i.e. supervised learning.
Thus, ML models find patterns in the data which allows them
to have a good performance when trained with large and
labeled datasets but struggle with outliers.

Another important difference between ML models and
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stochastic models is UQ. In stochastic models, UQ is di-
rect since the output of the model is a probability density
function (pdf) of the RUL prediction. For ML models, UQ
is a challenge given that ML models are deterministic by
nature, i.e. they provide a single-point prediction for RUL.
There are techniques to perform UQ, but these might not be
suitable for a prognostic application, as will be discussed in
Section 3.

It is important to know that UQ is not the ultimate goal, but
it is a key step towards uncertainty management. Uncer-
tainty management is defined as the identification of sources
of uncertainty and the reduction of uncertainty by leveraging
data to characterize better the inherent prognostic uncertain-
ties. Hence, reducing their impact on RUL predictions, which
is necessary for the decision-making process (Sankararaman,
2015).

The question is then, which are the sources of uncertainty?
The classical categorization considers two sources of uncer-
tainty, aleatory and epistemic. Aleatory refers to the uncer-
tainties that are intrinsic randomness of a phenomenon. Epis-
temic uncertainty is caused by a lack of knowledge, thus, it
is the uncertainty that comes from the model itself (Der Ki-
ureghian & Ditlevsen, 2009). Another way to look at them is
that aleatory uncertainty is irreducible, since there is no con-
trol over the randomness of the phenomenon, and epistemic
uncertainty is reducible given that the model can be changed.
Consequently, to perform uncertainty management epistemic
uncertainty needs to be addressed.

Nevertheless, even if we manage to identify epistemic un-
certainty effectively, how can this information be used to per-
form uncertainty management in prognostics? Aside from the
variability of the data, i.e. aleatory uncertainty, there is uncer-
tainty in the identification of the current state of the system’s
health or the future loading operation that the system will be
subjected to. By considering all these different sources as part
of “epistemic uncertainty”, it is unclear what actions need to
be taken to reduce the RUL uncertainty.

For that reason, it has been claimed that the aleatory and
epistemic categorization is not suitable for prognostics
(Sankararaman & Goebel, 2013) and a more suitable catego-
rization has been proposed, which will be further explained
in Section 5. Although this categorization has been presented
in different publications, it has not been applied, to the best
of the author’s knowledge, to a real-life scenario. Until now,
the few prognostics publications that identify sources of
uncertainty continue to use the classical categorization.

This paper presents both an stochastic model and a DL model
under the same case study. To understand the use of stochas-
tic models, an HMM presented. With the HMM, a new ex-
pression for RUL prediction is introduced in this study and is
compared with the state-of-the-art RUL expression in terms

of UQ. For DL models, a Long-Short Term Memory (LSTM)
is used, given that it has been argued as the one with the best
performance in terms of accuracy for several engineering ap-
plications. The LSTM is analyzed by using different param-
eters for UQ.

Therefore, by the use of these models this paper aims to pro-
vide an understanding of uncertainty in prognostics, and how
different types of DDMs deal with UQ. As well as to offer a
discussion in terms of future perspectives to address the UQ
challenge, ultimately aiming towards the goal of uncertainty
management.

The paper is organized as follows, Section 2 offers the theo-
retical background of HMMs and the new prognostic expres-
sion and Section 3 details the UQ methods for DL models,
as well as DL model approaches in prognostics. The case
study, including the data prepossessing and results, is pre-
sented in Section 4. Section 5 offers a discussion about the
future perspective on UQ for prognostics. Finally, the paper
is concluded in Section 6.

2. HIDDEN MARKOV MODELS

HMMs are a widely used stochastic model for different engi-
neering applications. In the context of prognosis, it has been
used for composites (Eleftheroglou, 2020; Eleftheroglou et
al., 2024), lithium-polymer batteries (Eleftheroglou et al.,
2019), turbofan engines (Giantomassi et al., 2011), and sim-
ulated fatigue crack growth (Le et al., 2014). In each one
of these publications, different variants of HMM are used. A
multi-branch HMM is used in (Le et al., 2014) to take into ac-
count the multiple degradation modes that can occur. A more
complex version of HMM is used in (Eleftheroglou, 2020;
Eleftheroglou et al., 2019), called the Non-Homogeneous
Hidden Semi Markov Model (NHHSMM). When applied
to composites the author used an adaptive approach of the
NHHSMM that allowed the model to predict the RUL for
testing data that had gone through unexpected phenomena.

Thus, HMMs have demonstrated their applicability through
the use of different variants of it. In this paper, the classical
HMM will be used, and a new definition for prognostic is
presented.

HMMs can model a sequence of observations, which in this
case is the data coming from the sensors. It is used in pro-
cesses in which the state of the engineering system cannot
be directly observed, hence, they are hidden. The engineer-
ing system is modeled as a Markov process, meaning that
the probability of transitioning from one state to another de-
pends only on the current state. The sojourn time of each
hidden state is defined by an exponential distribution (contin-
uous case) or a geometrical distribution (discrete case). Each
state emits an observation with a certain probability distribu-
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tion. Below, the parameters that describe an HMM are de-
tailed (Rabiner, 1989).

• N: number of states. Individual states are denoted as S =
{S1, S2, ..., SN}, and the state at time t as qt.

• M: number of distinct observation symbols per
state. Individual observations are denoted as V =
{v1, v2, ..., vM}.

• State transition: the state transition probability distribu-
tion is denoted as A = {aij}, where aij = P [qt+1 =
Sj |qt = Si]. This expression is the probability that the
state at time t + 1 is equal to the hidden state Sj given
that the current state qt is equal to the hidden state Si.

• Observation distribution: the observation symbol prob-
ability distribution in state j, B = bj(k), where bj =
P [vk at t|qt = Sj ], with 1 ≤ j ≤ N and 1 ≤ k ≤M .

• Initial state: the initial state distribution π = {πi} where
πi = P [q1 = Si] with 1 ≤ i ≤ N .

The complete parameter set of the model is denoted as λ =
(A,B, π). To train an HMM it is necessary then to adjust
the model parameters λ to maximize P (O|λ), meaning that
the parameters are optimized to best describe the observation
sequences, which in the case of prognostics are the degrada-
tion histories. Since there is no possible way of analytically
calculating P (O|λ), the iterative algorithm Baum-Welch can
locally maximize it.

In the particular case of prognostics and this paper, some as-
sumptions are made. First, the last state is not hidden but
observable and it represents failure. Second, in the failure
state, only one observation value is emitted. Third, only left-
to-right transitions are allowed, meaning that while in hidden
state i, it is only possible to remain in state i or to transit to
state i + 1. This last assumption is valid only when mod-
eling a degradation process independently from maintenance
actions.

Once the model parameters λ are estimated and we have an
observation sequence O = O1O2...OT , two questions arise.
First, what is the probability of the observation sequence
given the model P (O|λ)? The second question is, which is
the most likely sequence of hidden states Q = q1q2...qT ?

The answer to the first question, the Forward-Backward al-
gorithm is used. The forward part calculates the likelihood
of being in a hidden state at a certain time point given the
available observations. The result of the forward part is then
P (O|λ), which answers the first question. The backward part
is then used to answer the second question since calculates the
likelihood of observing the remaining data, given the current
hidden state. The result of the complete Forward-Backward
algorithm is the posterior distribution which is the probability
of being in each state at each time, given the entire sequence
of observed data.

However, to answer fully to the second question it is nec-
essary to find the single best state sequence that maximizes
P (Q|O, λ) that is equivalent to maximizing P (Q,O|λ). The
maximization is done via the Viterbi algorithm. After the
Viterbi has estimated the most likely sequence of hidden
states, it is possible to calculate the RUL. In the state-of-
the-art, a time-invariant (TI) (Dong & He, 2007a) prognostic
measure used is defined in (1). The variables ai,i and ai,i+1

represent the probability of remaining in the current hidden
state or transitioning to the next hidden state, respectively.
The variable Di(d) represents the pdf (or pmf for the discrete
case) evaluated in the probability of transition to the same
state i, i.e. aii.

RULt
i = ai,i(Di(d) +RULi+1) + ai,i+1(RULi+1) (1)

In this paper, a new time-dependent (TD) prognostic measure
is introduced in (2). This TD prognostic measure is expected
to improve accuracy of the RUL prediction and to reduce the
spread of the confidence intervals, which can be calculated
by the weighted spread of uncertainty (WSU) presented in
Appendix A.

RULt
i = dTi,i

(
Di(d− τ) +

N−1∑

i=k+1

Dk(d) +N (1, ϵ)

)

+ dTi,i+1

(
N−1∑

k=i+1

Dk(d) +N (1, ϵ)

)
(2)

The notation for this expression is as follows. RULt
i, is the

RUL in the state i and time step t. Once again, Di(d) rep-
resents the pdf (or pmf for the discrete case) evaluated in the
probability of transition to the same state i, i.e. aii. The vari-
able τ is the time spent in the current state i. Therefore, the
term Di(d− τ) represents a shift in the pdf making this RUL
expression time-dependent. The variables dTi,i+1 and dTi,i are
derived from the transition matrix and are defined as shown
in (3) and (4), respectively.

dTi,i+1 = P (d ≤ τ |St = i) (3)

dTi,i = 1− dTi,i+1 (4)

The result of the expression 2 is the pdf of RUL per time step.
Therefore, the confidence intervals can easily be obtained by
calculating the cumulative density function (CDF) and, later,
choosing the confidence level, usually 95%.

However, even if the HMM has a closed form for the pos-
terior distribution, the distribution captures aleatory uncer-
tainty, including uncertainty propagation and quantification
via the prognostic measure. In state-of-the-art prognostics,
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including the publications mentioned above, the HMMs pre-
sented usually address only aleatory uncertainty. Yet, epis-
temic uncertainty can be included in HMMs through a time-
consuming sensitivity analysis, which traditionally has been
used for accounting for epistemic uncertainty in stochastic
models. In (Xie et al., 2016) a Generalized Hidden Markov
Model (GHMM) is introduced that can identify both epis-
temic and aleatory uncertainties by using imprecise probabil-
ities. The results show that the GHMM can make more robust
decisions because the uncertainties can be differentiated. Yet,
it is a computationally expensive model.

3. DEEP LEARNING MODELS

For DL models, as well as for any ML model, uncertainty
quantification is a challenge since they are by nature de-
terministic, i.e. a single-point value for RUL prediction.
Bayesian Neural Networks (BNNs), which are an extension
of Neural Networks (NNs), overcome this by providing a pdf
as a result. However, BNNs still have a problem when quan-
tifying uncertainty since they offer an approximation of the
posterior distribution (Abdar et al., 2021). The posterior dis-
tribution cannot be directly calculated because it is intractable
to calculate the marginal distribution. Therefore, there is no
close-form expression for the posterior distribution.

BNNs can provide a pdf as an output because they have distri-
butions over the weights parameters and not deterministic val-
ues as in the case of NNs. These distributions in the weights
parameters are learned over Bayesian inference, which uses
the Bayes rules as shown in equation (5). In this expression,
P (w|X,Y ) is the posterior distribution, P (w) is the prior dis-
tribution, P (X,Y |w) is the likelihood and P (X,Y ) is the
marginal distribution.

P (w|X,Y ) =
P (X,Y |w)P (w)

P (X,Y )
(5)

Once again, it is computationally intractable to calculate
P (X,Y ). Thus, these models offer an approximation of
P (w|X,Y ) by using Variational Inference (VI). VI approxi-
mates the posterior distribution by using a variational parame-
ter qθ(w). The distribution qθ is approximated by minimizing
θ with the Kullback-Leibler (KL) divergence.

KL(qθ(w)||P (w|X,Y )) =

∫
qθ(w) log

qθ(w)

P (w|X,Y )
dw

(6)

However, KL minimization is still intractable because it
needs the posterior distribution that it was impossible to ob-
tain in the first place. By rearranging KL into the evi-
dence lower bound (ELBO), the need to have the posterior

is avoided.

LV I(θ) =

∫
qθ logP (Y |X,w)dw −KL(qθ(w)||P (w))

(7)

However, even though VI offers a good approximation of the
posterior it is still challenging to implement given their com-
putational cost (Nastos, Komninos, & Zarouchas, 2023). As
a result, other techniques have arisen, such as Monte Carlo
(MC) dropout, Deep Gaussian Processes, and Markov Chain
Monte Carlo (Abdar et al., 2021).

MC Dropout has been introduced as a technique to quantify
epistemic uncertainty and is the most used one due to its sim-
ple implementation (Gal & Ghahramani, 2016). This tech-
nique approximates the posterior by randomly switching off
neurons, given a dropout probability. The same architecture
is run multiple times and each dropout configuration corre-
sponds to a different sample from the approximate posterior
distribution.

However, MC dropout struggles to approximate complex pos-
terior distributions, which may lead to good approximations
only in certain regions of the posterior distribution but poor
approximations in others (Fort, Hu, & Lakshminarayanan,
2019). Even more, it has even been questioned the fact that
MC dropout is Bayesian since it fails sanity checks and is
a design artifact since the posterior distribution converges
to different values depending on the dropout probability as-
signed by a user (Folgoc et al., 2021). Hence, these tech-
niques although easy to implement, do not always provide
a good approximation of the desired distribution. The latter
leads to uncertainty about the posterior distribution approx-
imation that is already quantifying RUL uncertainty, adding
up to uncertainty propagation of the entire prognostic model.

In the context of prognostics, these types of models have been
applied with Bayesian LSTMs since LSTM, in general, pro-
vides the best results in terms of accuracy metrics. However,
in (Peng, Ye, & Chen, 2019) and in (Xiahou, Wang, Liu, &
Zhang, 2023) a point estimation of the final RUL value is
made, instead of a prediction of RUL through the operation
time. Nevertheless, (Xiahou et al., 2023) includes a RUL pre-
diction during the operation time by including a credible in-
terval. The results are promising, yet the main drawback of
this approach is the complexity of the model and its optimiza-
tion, as the authors have claimed to be “extremely intractable
and time-consuming”.

Other Bayesian approaches such as (Caceres, Gonzalez,
Zhou, & Droguett, 2021) perform UQ including both aleatory
and epistemic uncertainty. However, it is not reported in the
results how much each source contributes to the confidence
intervals, which are also quite volatile. Epistemic uncertainty
is quantified with MC dropout with a probability dropout
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value of 0.25, which is considered lower than the standard
value of 0.5.

In (Pei et al., 2022) a Bayesian RNN is used with the dropout
technique, however, they use a value of dropout between 0.05
to 0.2, which once again is considered low given that the stan-
dard dropout value. Low dropout values lead to narrow con-
fidence intervals, meaning less estimated uncertainty in the
RUL predictions. Thus, the choice of low dropout values can
cause an underestimation of uncertainty that can be prejudi-
cial for decision-making.

When it comes to aleatory uncertainty in DL models, it is
split into two categories: homoscedastic and heteroscedas-
tic. Homoscedastic uncertainty corresponds to the noise in
the data and it remains constant through the whole data set,
while heteroscedastic uncertainty corresponds to the noise
that varies with the input (Nemani et al., 2023). The few
DL models that include aleatory uncertainty, include only one
part of it. For example in (Li, Yang, Lee, Wang, & Rong,
2020) a Bayesian DL framework is developed that takes into
account heteroscedastic aleatory uncertainty. In the already
mentioned work of (Caceres et al., 2021), only heteroscedas-
tic aleatory uncertainty is address and it is also assumed to
follow a Gaussian distribution.

4. CASE STUDY

To perform a comparison between a stochastic and a
DL model, the C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset is used (Frederick,
DeCastro, & Litt, 2007). The C-MAPSS dataset is used as a
benchmark within the prognostics community. This dataset
is composed of four sub-datasets of simulated run-to-failure
degradation histories from turbofan engines, with informa-
tion from 21 sensors. Each sub-dataset considers a variety of
operational conditions and injects different fault modes. For
this paper only the sub-dataset FD001 is used, which consists
of 100 training degradation histories. This dataset is divided
into two in a random manner to have a training set of 80
degradation histories for training and 20 for testing. Addi-
tionally, sensors 1, 5, 6, 10, 16, 18, and 19 were eliminated
from all the analyses since the values were fixed for every
time measurement.

4.1. Pre-processing and training phase

For the HMM, only one feature can be used given the capa-
bilities of the library used in Matlab. Therefore, sensor 11
is chosen since it is the sensor with the highest correlation
to RUL. The sensor data is then discretized into 20 clusters
using K-Means. The number of clusters was chosen based
on the monotonicity index (MI), which allows to identifica-
tion of the optimal number of clusters that can reasonably
represent the degradation process. Once the data has been
pre-processed, the optimal number of states is identified as

10, via the Bayesian Information Criterion (BIC). The ex-
pressions and results of both the MI and the BIC are shown in
Appendix A, along with the estimated transition and emission
matrices.

For the LSTM, first, an analysis of the importance of the
sensors with respect to RUL was done. The sensors were
selected based on their absolute Pearson Correlation Coeffi-
cient (PCC) with respect to RUL. Table 1 shows the results
for all the sensors under analysis. The sensors selected were
the ones with an absolute PCC higher than 0.6. Thus, sen-
sors 2, 4, 7, 11, 12, 15, 17, 20, and 21 were used to train the
LSTM. It is important to keep in mind that the LSTM is being
trained with more data than the HMM, which only uses data
coming from one sensor.

LSTMs need to receive sequences that have the same length,
thus, the degradation histories were modified to fulfill this re-
quirement. A sequence length of 362 was selected and values
zeros were added in the RUL column, while for the sensors
the last measurement was repeated. Thus, the shape of the
training set tensor is (80, 362, 9).

The architecture of the LSTM is displayed in Figure 1. The
last layer, which corresponds to a Dense layer, uses a linear
function as activation. The model was trained using Adam as
an optimizer, with a Mean Squared Error (MSE) loss function
for 30 epochs.

Table 1. Sensor correlation to RUL values for dataset FD001
in C-MAPSS.

Sensor PCC
2 -0.61
3 -0.58
4 -0.68
7 0.66
8 -0.56
9 -0.39
11 -0.7
12 0.67
13 -0.56
14 -0.31
15 -0.64
17 -0.61
20 0.63
21 0.64

4.2. Results and Discussion

The results are examined individually because the uncertainty
captured by the HMM pertains to aleatory uncertainty, while
that captured by the LSTM corresponds to epistemic uncer-
tainty. While it is feasible to incorporate epistemic uncer-
tainty for HMM, most publications employing this model
overlook it. Therefore, this paper focuses on analyzing the
impact of the prognostic measure on aleatory UQ.

Similarly, for LSTM, MC Dropout is often employed as a
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Figure 1. LSTM architecture for prognostics.

methodology to address uncertainty, hence, only epistemic
uncertainty is considered. Though it is plausible to include
aleatory uncertainty for LSTM, the few publications that do
so, only address heteroscedastic aleatory uncertainty and dis-
regard homoscedastic aleatory uncertainty. Consequently,
this paper exclusively analyzes epistemic uncertainty via MC
Dropout, a common methodology for UQ in LSTMs for prog-
nostics.

4.3. HMM

The results for HMM both with the TI and TD prognostic
measure are shown in Table 2. The results correspond to the
average RMSE error and the average spread of uncertainty
measured by the metric WSU, for the testing set.

Table 2. Average values of the test dataset for the prognostic
performance metrics considering the TI and TD expressions
of RUL for the HMM.

RUL Expression RMSE WSU
TI 45.00 3328839.60
TD 43.10 2978334.12

To visualize confidence intervals, engine #13 is utilized as
an example. Figure 2 shows the RUL prediction alongside
uncertainty quantification when employing an HMM with TI
and TD prognostic measures. It is evident from the visualiza-
tion that the TD approach provides results with reduced un-
certainty and higher accuracy. Thus, the choice of prognostic

measure significantly influences how aleatory uncertainty is
quantified, as it propagates the aleatory uncertainty captured
inherently by the HMM. Even with a simple model, as the
HMM is, an improvement can be achieved merely by adopt-
ing a different prognostic measure. Therefore, for HMMs in
prognostics, one course of action for managing uncertainty
could be the development of new prognostic measures that
mitigate the tendency to over-propagate inherent aleatory un-
certainty captured by the HMM.
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Figure 2. HMM RUL prediction for testing engine #13.

While higher performance is expected with more complex
variants of HMMs, such as with a Hidden Semi Markov
Model (HSMM) (Dong & He, 2007b) or the NHHSMM pre-
viously mentioned in Section 2. However, this paper offers
a new time-dependent prognostic measure for the classical
HMM that can be extended to other variants in future work.
Furthermore, the goal of this paper is not to analyze RUL pre-
diction accuracy but to discuss the challenges and potentials
of different DDMs in terms of uncertainty.

4.4. LSTM

The results for LSTM with MC Dropout are summarized in
Table 3 for dropout values 0.3, 0.6, and 0.9. The results show
high accuracy in terms of RMSE for all three dropout values
used, with a slightly better performance for lower dropout
values. In terms of epistemic UQ, the value of WSU is higher
for higher dropout values as expected.

Table 3. Average values of the test dataset for the prognostic
performance metrics considering different dropout values for
LSTM.

Dropout value RMSE WSU
0.3 1.19 150187.81
0.6 1.57 247935.42
0.9 1.63 645949.41

Figure 3 shows the RUL predictions and confidence inter-
vals for engine #13 (the same engine used for visualization
for the HMM). For clarity, only the RUL predictions with
dropout values 0.3 and 0.9 are presented. The confidence in-
tervals of the RUL predictions with the LSTM remain approx-
imately the same throughout the degradation history since
only the epistemic uncertainty is considered. Additionally, as
explained in section 3, it has been claimed that MC Dropout
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is not even Bayesian and the posterior distribution converges
to different values depending on the dropout probability cho-
sen by the user. In these results, it can be seen that according
to the dropout values different model uncertainties are cal-
culated. The question arises then on which is the best value
to converge to the right posterior distribution of the model,
meaning that there is an uncertainty on how to calculate the
epistemic uncertainty.
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Figure 3. LSTM RUL prediction for testing engine #13 with
dropout probability value of 0.3 and 0.9.

5. FUTURE DIRECTIONS IN UNCERTAINTY QUANTIFI-
CATION FOR PROGNOSTICS

The case study analyzed how UQ is commonly performed
in prognostics for HMMs and LSTMs. While for HMMs in
most cases only aleatory uncertainty is taken into account,
in LSTMs only epistemic uncertainty is addressed via MC
Dropout due to its simple implementation. However, even
if both models could consider both aleatory and epistemic
uncertainty, despite the concerns rising for both approaches,
can uncertainty management be performed? Let us remem-
ber that epistemic uncertainty is reducible because it comes
from the lack of knowledge. Nonetheless, it has been stated
that aleatory and epistemic uncertainties often coexist, which
makes it difficult to separate them (Nemani et al., 2023). By
consequence, uncertainty management would not be feasible.

Hence, a different categorization of uncertainties is needed
to allow differentiation. The categorization must be based
on the variable of time, inherent in prognostics. This cate-
gorization should be subjective and focus on characterizing
uncertainties specific to the studied system rather than un-
certainties in the population. The need of a different cat-
egorization of the sources of uncertainty has been already
mentioned in (Sankararaman, 2015), where the author identi-
fies four sources of uncertainties: present, future, model and
prognostic measure. The categorization was further extended
in (Eleftheroglou, 2020) where a fifth source of uncertainty
was included, past uncertainty.

To further explain, the five sources of uncertainty proposed
are the following: first, past uncertainties are the ones that
come from the manufacturing or assembly process and ma-
terial quality. Second, present uncertainty refers to the lack
of knowledge of the true state of health of an engineering

system. Third, future uncertainty is the most difficult and im-
portant one to deal with. The future is unknown, and it is
not possible to foresee the environmental conditions, loading
profile, etc. Another source of uncertainty is the one from the
model and it compromises several parts such as model param-
eters, biases, etc. The last source is the prediction method un-
certainty, which is related to the uncertainty coming from the
prognostic measure. In the case of supervised techniques, i.e.
ML models, the model uncertainty and the prediction method
uncertainty become one source.

A remark here is done for past uncertainties since they are not
an uncertainty in the present, once uncertainty management is
performed. For example, if sufficient data is gathered about
the manufacturing process, it can be possible to manage past
uncertainties and take them into account when predicting the
RUL.

To the best of the author’s knowledge, this categorization has
not been applied to a real case study and it has only been
introduced theoretically. However, an attempt to provide a
better understanding on how this categorization can be im-
plemented for HMMs is offered briefly in this section.

For HMMs, past uncertainties can be addressed by the ini-
tial parameters distributions π. Present uncertainty can be re-
flected by the hidden state with the highest probability at the
current time step by using the forward probabilities. Future
uncertainty, as already mentioned, is the most challenging
one. Based on training data, loading profiles can be identi-
fied and the probability of changing from one loading profile
to another one can be calculated. To account for unexpected
phenomena a loading profile can be included that considers
an extreme degradation rate, to give an example. Model un-
certainty can be addressed by imprecise probabilities or by a
sensitivity analysis, as mentioned in Section 2. Finally, the
prediction method uncertainty is already considered by the
prognostic measure.

DL models remain more challenging to implement under the
alternative UQ categorization for prognostics due to the lack
of interpretability that has already been mentioned in other
publications such as (Fink et al., 2020). Given their black-box
nature, the parameters of DL models do not hold a physical
meaning making it intractable to connect them to each one of
the five sources of uncertainties.

6. CONCLUSIONS

This paper explores uncertainty in prognostics, focusing on
two main models: HMMs and LSTM networks. It finds that
while HMMs primarily deal with aleatory uncertainty (inher-
ent randomness), LSTMs predominantly address epistemic
uncertainty (uncertainty from lack of knowledge).

For HMMs, results show the importance of understanding
how different prognostic measures affect UQ by broaden-
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ing the confidence intervals by introducing a new prognostic
measurement that is time-dependant. Similarly, for LSTMs,
when using the MC Dropout technique, the results show the
importance of the parameter selection of the dropout proba-
bility value. Even more, from the theoretical background it
has been claimed by other authors how a different dropout
probability can lead to not converging to the posterior distri-
bution needed to calculate epistemic uncertainty.

However, this paper also opens the discussion about how
UQ can be used for uncertainty management in prognos-
tics. Despite attempts to categorize uncertainty, such as
distinguishing between epistemic and aleatory uncertainty,
challenges persist, particularly in effectively reducing uncer-
tainty. Future directions advocate for a different approach that
considers five sources of uncertainty, such as past, present,
and future uncertainties, model uncertainties, and prediction
method uncertainties.

This alternative approach aims to offer a more comprehensive
understanding. However, the prevalence of epistemic uncer-
tainty poses challenges in disentangling from each one of the
sources of uncertainty. Even when attempting to quantify past
or model uncertainties, the presence of epistemic uncertainty
persists due to data limitations and knowledge gaps. While
theoretical discussions on implementing alternative catego-
rizations for HMMs exist, practical implementation is con-
strained. Managing uncertainties in HMMs requires address-
ing multiple dimensions, encompassing past, present, and fu-
ture uncertainties, as well as model and prediction method
uncertainties. Conversely, implementing this alternative ap-
proach on UQ in DL models remains challenging due to their
limited interpretability, raising questions about their efficacy
in real-world prognostic applications.
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APPENDIX A
Weighted Spread of Uncertainty (WSU)
The weighted spread of uncertainty (WSU) metric is shown
in 8. It calculates the area between the confidence intervals
while penalizing wider confidence intervals at the end of the
lifetime. The penalization is considered because the longer
time that has passed, the more information is available. Vari-
able ti is the time unit, RULupper is the RUL value of the
upper confidence interval and RULlower is the value of the
lower confidence interval.

WSU =
T−1∑

i=1

(ti+1 − t1)
((

RULupper
i+1 +RULupper

i

2

)

−
(
RULlower

i+1 +RULlower
i

2

))
(8)

Monotonicity
The equation for the MI is provided in 9 with y(ti) as the
feature value at time measurement ti and D as the number
of measurements. The results in Figure 4 show that after 20
clusters the monotonicity index converges and remains stable.

Figure 4. Monotonicity index versus the number of clusters
for the sensor 11.

MI =

∑D
i

∑D
j=1,j>i(tj − ti)sgn(y(tj)− y(ti))∑D

i

∑D
j=1,j>i(tj − ti)

(9)

Bayesian Inference Criterion

In equation 10 Mi is the candidate model, y(k) is the sensor
data from K degradation histories, Q(k) the state sequence
for the kth degradation history, H is the number of estimated
parameters of model Mi, and n the number of all the samples
from the K training sessions. Figure 5 shows the results of
the BIC, from which 10 states are proven to be the optimal
number.

BIC(Mi) =

K∑

k=1

log(P (y(k), Q(k)|Mi))− w
Hi

2
log(n)

(10)

Figure 5. BIC to select the number of optimal states.

After training the HMM, the transition matrix A and the emis-
sion matrix B are estimated. The values of the elements of the
matrices have been approximated

A =




0.9646 0.0354 0 0 0 0 0 0 0 0
0 0.9648 0.0352 0 0 0 0 0 0 0
0 0 0.9709 0.0291 0 0 0 0 0 0
0 0 0 0.9735 0.0265 0 0 0 0 0
0 0 0 0 0.9591 0.0409 0 0 0 0
0 0 0 0 0 0.9417 0.0583 0 0 0
0 0 0 0 0 0 0.9323 0.0677 0 0
0 0 0 0 0 0 0 0.9281 0.0719 0
0 0 0 0 0 0 0 0 0.8941 0.1059
0 0 0 0 0 0 0 0 0 1
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B =




0.01 0.07 0.16 0.26 0.24 0.16 0.05 0.01 0.001 0.039 0 0 0 0 0 0 0 0 0 0 0
0.0008 0.006 0.02 0.09 0.19 0.31 0.23 0.09 0.01 0.01 1.7e−12 0 0 0 0 0 0 0 0 0 0

0 1.07e−06 0.003 0.01 0.05 0.17 0.29 0.30 0.11 0.02 0.003 0.044 0 0 0 0 0 0 0 0 0
0 0 0.0002 0.001 0.006 0.04 0.14 0.30 0.28 0.17 0.03 0.005 0.0278 0 0 0 0 0 0 0 0
0 0 0 0 2.19e−09 0.003 0.03 0.16 0.27 0.31 0.15 0.05 0.009 0.018 0 0 0 0 0 0 0
0 0 0 0 0 0 0.004 0.02 0.10 0.29 0.31 0.16 0.06 0.02 0.36 0 0 0 0 0 0
0 0 0 0 0 0 0 0.002 0.02 0.07 0.21 0.27 0.28 0.09 0.03 0.028 0 0 0 0 0
0 0 0 0 0 0 0 4.23e−07 0 0.005 0.01 0.10 0.27 0.30 0.21 0.07 0.017 0.018 0 0 0
0 0 0 0 0 0 0 0 0 0 7.16e−05 0.005 0.03 0.12 0.26 0.28 0.19 0.07 0.03 0.012 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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ABSTRACT 

Machine learning methods are increasingly used for rotating 
machinery monitoring. Usually at system set up, only data of 
the machinery in healthy conditions, the so-called nominal 
data, are available for the machine learning phase. This type 
of training data enables fault detection capabilities and 
several methods such as Gaussian Mixture Model, One Class 
Support Vector Machines and Auto Associative Neural 
Networks (Autoencoders) have been already proved 
successful for this task.  
However, in some predictive maintenance applications, 
information on the type of defect may represent a key element 
for producing actionable information, e.g. to reduce 
diagnostic burden and optimize spare procurement. This 
requires to define classification strategies based on machine 
learning even in absence of data representing the behaviour 
of the system with defects.  
In this study we present an approach that uses only nominal 
vibration data to train an autoencoder which will enable at 
same time fault identification and fault classification tasks. 
As faulty data are expected to possess information content 
which is structured differently from the healthy ones their 
reconstruction at output will result inaccurate.  In 
conventional anomaly detection approaches, the module of 
the reconstruction error, defined as the difference between 
output and input, is uses to determine an unusual input such 
as faults.   
The proposed approach represents a step forward as here a 
single autoencoder is used both for detection and 
classification. 
The underlying idea is that the components of the 
reconstruction error vector whose module is used to trigger 
fault identification in classical autoencoder approaches 
contain the information of the fault type. This way the 

analysis of the different components of the reconstruction 
error allows to differentiate the different types of faults.  
Two methods to analyse the components of the 
reconstruction error vector will be discussed and their 
respective test results will be presented  
Test data have been generated with a machine fault simulator 
to produce 3 different types of bearing defects with different 
load, speed and noise conditions. A dataset of about 10000 
vibration signals has been used to evaluate the classification 
algorithms and to benchmark them with a supervised 
approach. 
The results obtained using the autoencoder method do not 
achieve the same performances as the conventional 
supervised learning algorithms. However, they proved to be 
88% accurate in classification when SNR is above 0dB with 
the ranking based method overperforming the barycentre one. 
 

1. INTRODUCTION 

Diagnostics is a crucial aspect for rotating machinery 
maintenance. Data processing methodologies range from 
traditional techniques such as frequency analysis to more 
innovative approaches like machine learning. In diagnostics 
process two main steps are often distinguished: detection and 
identification/classification. Detection aims to recognize the 
presence or absence of a defect. This can be sufficient in 
some situations where it is simply necessary to know if a 
machine is functioning correctly or if it requires intervention. 
Nevertheless, to optimize maintenance and repair processes, 
it is often essential to precisely target determining which 
component is failing: this requires fault identification. 
 
Data-driven approaches are progressively more employed for 
anomaly detection and fault classification for machine 
condition monitoring purposes.  However, high integrity 
systems could not always use the supervised 
learning/classification process needed for fault classification. 

Gianluca Nicchiotti et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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This depends on the fact that, at machine installation time, 
only healthy (nominal) data are available for training. 
Unsupervised learning offers a solution to fault detection by 
modeling nominal data and using a distance measure and a 
threshold for determining abnormality (Samanta, Al-Balushi, 
& Al-Araimi, 2003; Jack & Nandi, 2002; Booth & 
McDonald, 1998; Sanz, Perera, & Huerta, 2007; 
Guttormsson, Marks, El-Sharkawi, & Kerszenbaum, 1999; 
Rojas & Nandi, 2006; Prego, et al., 2013; Alguindigue & 
Uhrig, 1991; Fulufhelo, Tshilidzi, & Unathi, 2005; Rubio & 
Jáuregui, 2011). However unsupervised novelty detection 
approaches cannot be used for fault classification.  
In (Nicchiotti et al.,2016) it has been proposed a strategy to 
extend machine learning capabilities from fault detection to 
fault classification with the constraint that only nominal data 
are available for training. The logic is to use a priori 
knowledge about the effects of each fault to be classified in 
order to produce input training data which are somehow fault 
tuned. These training data are generated by computing, on 
nominal data, features which are known to be the most 
responsive to each kind of fault which has to be classified. 
The approach presented in this paper represents a step 
forward compared to the work presented in (Nicchiotti et 
al.,2016), where multiple unsupervised models were trained 
and classification was performed by comparing the models. 
In this case, classification is based on the analysis of the 
results of a single unsupervised model. 
 
The case study used to validate this new approach is the 
classification of faults in ball bearings with a machine 
learning approach where only healthy data are used for 
training. The study required taking measurements on 
defective bearings under various operating and noise 
conditions. The collected signals were preprocessed to 
extract training features both in time (RMS, Kurtosis, Crest 
Factor, etc.)  and frequency domains. The frequency domain 
proved to be particularly effective in discriminating between 
different types of failures, due to the characteristic 
frequencies associated with the defects.  
 
The paper is organized as follows. Next section will briefly 
illustrate the test rig and the data set characteristics. 
A description of data-driven method used in this study will 
be presented in section 2. The focus will be on Auto 
Associative Neural Networks (AANN) . 
The novel strategy to extend the data-driven capabilities from 
detection to classification will be described in section 4 
Two methods for classifying defects will be explored: the 
first based on the ranking of reconstruction errors 
components, the second on the analysis of the barycenter of 
the reconstruction error when represented in a polar plot. 
The results obtained with the 2 data-driven methodologies 
will be then compared and discussed and their robustness 
against noise characterized. 
The classification results will be finally benchmarked against 
supervised approaches. 

2. ACQUISITION SETUP AND DATASET 

The signals were acquired using acquisition systems 
developed by MC-Monitoring. Measurements were 
conducted on a fault simulator, allowing for measurements 
under different operating conditions. The fault simulator 
enables the rotation of bearings under various load, 
unbalance, and speed conditions. Bearings can be affected by 
defects in the inner race, outer race, balls, and a case 
presenting a combination of defects. The defective bearings 
were placed at location 5 (see figure 1), and the measurement 
via the accelerometer is carried out along the x and y axes. 
The sampling rate was 50 kHz 

 
Figure 1. Machine Fault Simulator and acquisition setup. 1 
AC Motor, 2 Frequency Converter ,3 Tachometer, 4 
Additional mass load,  5 Right and left bearing 6Acceleration 
sensor x-y, 100mV/g. 

For each type of bearing fault and under different loads and 
speed conditions, a 6-minute acquisition of the vibration 
signal has been performed. 

After digital conversion, the raw signal undergoes filtering to 
remove the DC component. We then calculate the Root Mean 
Square (RMS) value of the filtered signal, which becomes the 
reference point for adding white noise. To assess the process's 
robustness, seven levels of white noise were added to each 
original signal. This resulted in a total of 140 sequences, each 
containing 6 minutes of healthy and faulty signal data under 
different load, speed, and signal-to-noise ratio (SNR) 
conditions. 

3. MACHINE LEARNING METHODS 

Machine learning offers diverse tools for monitoring machine 
health, including density methods (KNN), boundary methods 
(SVM), and reconstruction methods (AANN) (Johannes, 
2001). These techniques have been successfully applied to 
fault detection (Samanta et al., 2003; Jack & Nandi, 2002; 
Booth & McDonald, 1998). When used for classification, 
these approaches all require pre-existing fault data for 
training (Alguindigue & Uhrig, 1991; Fulufhelo et al., 2005; 
Wang et al., 2020; Prego et al., 2013). 

However, acquiring such data poses a challenge when dealing 
with new equipment. In such scenarios, data-driven anomaly 
detection emerges as the only possible alternative which is 
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exemplified in studies by Rubio & Jáuregui (2011), 
Guttormsson et al. (1999), and Sanz et al. (2007) . Methods 
like Auto-Associative Neural Networks (Sanz et al., 2007) 
and one class SVM (Guttormsson et al., 1999) are among the 
most widely used methodologies that rely on "one-class 
classification", when only healthy data is available for 
training. 

Despite their success in fault detection, one-class 
classification methods haven't been explored for fault 
identification. This research aims to bridge that gap by 
incorporating expert knowledge ("a priori") into these data-
driven ("a posteriori") techniques, implementing fault 
classification within the AANN framework.  

3.1. AANN 

Auto-Associative Neural Networks (AANNs), also known as 
Replicator Neural Networks or Autoencoders, are like smart 
copycats in the world of artificial intelligence. These 
networks are trained to mimic whatever data they're given, 
but with a twist: they have a hidden layer with fewer neurons 
than the input and output. This "bottleneck", shown in Figure 
1, forces them to compress the information, essentially 
learning the key features of the data they're trained on. 

 

 
 

Figure 2. AANN Architecture. 
 

Imagine training an AANN with healthy equipment data. 
Once trained, it can accurately reproduce similar healthy 
data. However, faulty data will contain different patterns that 
the AANN struggles to compress in the bottleneck. This 
results in a larger reconstruction error, which is the difference 
between the original data and the AANN's attempt to recreate 
it. 

The reconstruction error can be considered as a measure of 
strangeness. The higher the error, the more different the data 
is from what the AANN knows as "healthy." By setting a 
threshold for this error, we can create a simple fault detection 
system: anything with an error above the threshold is likely 
faulty. 

In practice once a new sample is processed by the AANN, the 
measure of the difference between output and input vectors, 

the Reconstruction Error ( 𝑅𝐸 ) of an input vector 𝑋 , is 
computed as 

𝑅𝐸 = ‖𝑋 − 𝑂𝑋‖   (1) 

where 𝑂𝑋 is the output of the AANN and || symbol stands for 
any p-norm. Once computed the 𝑅𝐸 ,  a fault or anomaly 
detection logic can be easily implemented for instance by 
thresholding. 

 

4. FAULT IDENTIFICATION STRATEGY 

This section aims to examine the usage the reconstruction 
error of an autoencoder to classify different types of defects. 

To compensate for the lack signals associated with the 
defects, the idea is to leverage the "a priori" knowledge of the 
phenomena linked to the type of fault and encode it within 
the autoencoder process. As shown in figure 3, this process 
requires an initial step consisting of extracting features from 
the signal through appropriate signal processing techniques. 

 

 
Figure 3. Main Processing Steps. 

 

 

4.1. Pre-processing 

In the subsequent discussion, the term "feature" refers to an 
individual measurable attribute of the observed phenomenon. 
In this research, the features represent various characteristics 
of the signals extractable from the signals. Features represent 
unique clues about a machine's condition, like symptoms for 
a doctor. Think of these features as different dials on a 
dashboard, each showing a different aspect of the machine's 
health. 

Raw sensor data from ball bearings needs preparation before 
computing features and feeding it into machine learning 
algorithms. This involves filtering, windowing, and 
extracting the signal's "envelope". 
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- Filtering - Since the information we care about lies above 2 
kHz, lower frequencies are irrelevant and clutter the analysis. 
We utilize a Butterworth bandpass filter [2-22kHz]to 
selectively remove them.  In this proof of concept, we 
decided to use such a large bandwidth to represent the worst 
case. Practically, it is more efficient to filter around the 
frequency resonance of the entire system (motor, bearing, 
sensors, etc..) which is between generally somewhere 
between 2kHz and 20kHz to minimize the noise. However, 
as we wanted a “generic” system, we decided to use the 
overall bandwidth of our acquisition system. This also 
presents a practical benefit of not requiring to configure the 
filter during the installation procedure. 

- Envelope Extraction - Ball bearing vibrations, like the one 
shown in Figure 3, contain information in their "envelope". 
This envelope reflects the modulation of the bearing's natural 
resonance frequency caused by impacts between rolling 
elements and defects. To uncover the characteristic 
frequencies of these defects, we calculate the Fast Fourier 
Transform (FFT) on the extracted envelope, not the raw 
signal. As most of the rotating machines we monitor in our 
applications run between 25Hz and 60Hz, we know that the 
characteristic frequency of the faults (BPFO, BPFI, etc) are 
between, let say, 5Hz an 500Hz, so the envelope size was 
chosen according to these values. 

 

 
Figure 4. Bearing signal: Raw (slim lines) Envelope (bold 
lines) 

- Windowing - To enhance the accuracy of frequency 
analysis, we apply a Hann window to the filtered data. This 
window smooths the signal edges, reducing artifacts in the 
resulting spectrum. The measured signal (240 s) will be 
divided into 1-second samples with a 1/2-second overlap. The 
choice of 1 second allows balancing the need for enough 
signals for machine learning model training and retaining 
sufficient characteristic information of the vibrational signal 
generated by the bearing. A too small window would make 
the model unreliable if the pseudo-periodic nature of the 
signal is not preserved in the sample. A too large window 

would also not allow good model generalization due to the 
more limited training dataset. 

4.2. Feature extraction 

Features have been extracted with time domain and 
frequency domain analysis. 

In the time domain, signals from defective bearings exhibit 
periodic impulses corresponding to impacts between the balls 
and the cage defect or between the defective ball and the 
metallic components. The impulses excite the resonance 
frequencies of the system. Each impact can be compared to 
the impulse response of the system due to the short duration 
of contact between a ball and the defect The presence of 
defects in a machine can be detected by analysing the 
vibration signal. Defects increase the energy of the vibration 
signal and modify its statistical distribution. These changes 
can be used to identify the presence and severity of the 
defects. Time domain features used in this study are 
(Hornavar & Martin, 1995): RMS,Crest Factor, Kurtosis, 
Skewness, Impulse Factor and Form Factor. 

Each bearing has a unique "fingerprint", its characteristic 
frequencies, determined by its geometry and rotation speed. 
(Kamaras et al. ,1995, Andhare, 2010) 

- FTF - Fundamental Train Frequency: This is the rotation 
frequency of the bearing cage. 

- BPFI - Ball Pass Frequency of the Inner Race: This 
frequency is generated by the passage of balls over the inner 
ring. 

- BPFO - Ball Pass Frequency of the Outer Race: This 
frequency is generated by the passage of balls over the outer 
ring. 

- BSF - Ball Spin Frequency: This frequency is related to the 
rotation of the balls. 

When a fault develops, these specific frequencies become 
amplified, acting like warning lights. These frequencies not 
only reveal the presence of a problem but also pinpoint the 
exact type of fault, allowing for targeted repairs and 
preventing unnecessary downtime.  Hence to identify faults 
in bearings, features were extracted from the vibration 
signal's envelope spectrum. These features included the peak 
ratio amplitudes of characteristic frequencies related to 
bearing health: the Ball Pass Frequency Outer Race (BPFO), 
Ball Pass Frequency Inner Race (BPFI), and Ball Spin 
Frequency (BSF). Additionally, the spectral centroid and the 
energy in the band 10-20 kHz were included. These features 
formed the frequency "fingerprint" of the bearing's health and 
were fed into an Auto Associative Neural Network (AANN) 
for fault classification.  

To extract the features, we first chopped the time signal into 
half second intervals, making sure to overlap them by 0.25s 
to capture any important transitions. From each chunk, we 
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then extracted 14 specific features which we fed into the 
autoencoder for further analysis. 

4.3. Classification 

The fault detection by autoencoder is based on the premise 
that the reconstruction error for data similar to those used for 
training will be lower than the error for data from faulty 
bearings. 

Since different features do not all have the same range of 
values, the data has to be standardized (Equation 2). Each 
new set of tested data will be standardized using the mean 
and standard deviation of the training data. 

𝐹𝑖 =
𝑓𝑖−𝜇𝑖

𝜎𝑖
       (2) 

Where 𝑓𝑖  is the value to be standardized, 𝜇𝑖  , 𝜎𝑖   are the mean 
and the standard deviation of the training set for feature 𝑖 
and 𝐹𝑖 is the standardized feature value. 

The parameters of the autoencoder have been determined 
according to the average reconstruction error on healthy data. 
The autoencoder has a single hidden layer which contain 10 
neurons This value represents a good compromise between 
low reconstruction error and moderate training time. The 
maximum number of iterations (Epochs) for training is set to 
500 beyond this, the improvement in performance is not 
significant. 

For each feature 𝐹𝑖 at the input, the autoencoder calculates a 
corresponding output  𝑂𝑖   . The difference  𝐸𝑖 = ‖𝐹𝑖 − 𝑂𝑖‖ 
represents the components of the reconstruction error along 
the various axes represented by the features used, as shown 
in Figure 5. 

 
Figure 5: Reconstruction error for a healthy signal (left) and 
outer race fault (right). X-axis represent the feature index 
Errors 𝐸𝑖  in stems (vertical lines), continuous lines input 
features dotted features as reconstructed by autoencoder 

The two classification strategies here presented assume that 
the relative values of components 𝐸𝑖  of the reconstruction 
error depend on the type of defect. 
 
The first approach maps 𝐸𝑖  on a polar plot (Figure 6), and 
uses the angle of the reconstruction error to discriminate the 
different types of faults. 
 

To differentiate between fault types, each feature 𝑖 is 
assigned a specific angle (𝜃𝑖). Using a priori knowledge about 
fault behavior, these angles are carefully chosen to maximize 
the angular separation between features clearly associated 
with different faults (e.g., Inner Race, Outer Race, Ball). For 
example, BPFO, BPFI, and BSF might be assigned 0°, 120°, 
and 240° directions, respectively. 

 

 
Figure 6: Polar Plot of the reconstruction error. Blue contour 
represents the shape of outer race fault, Red of inner race, 
Black ball fault, Violet Multiple faults. Different faults types 
correspond to different contours. 

Next, each feature's reconstruction error component 𝐸𝑖  is 
represented as a 2D vector 𝐸𝑖

⃗⃗  ⃗  where the magnitude reflects 
the error value of the component itself and the angle 
corresponds to the pre-assigned 𝜃𝑖 based on fault type a priori 
knowledge. By summing these vectors, a resulting 
reconstruction vector �⃗�  is created  

�⃗� = ∑ 𝐸𝑖
⃗⃗  ⃗𝑁

𝑖=1       (3) 

Based on the vector direction Θ  of �⃗�  𝑤𝑖𝑡ℎ Θ=arg( �⃗� )  the 
fault type can be classified.  

For instance, if Θ  is falling within -60° to 60° we can classify 
the fault as inner race between 60° and 180° as outer race, 
else as ball error. The underlying idea is that reconstruction 
errors not strictly dependent on the type of defect interfere 
destructively, highlighting the direction of the defect in the 
polar plot. 

The second method assumes different fault types make it 
harder for the autoencoder to reconstruct certain feature 
components. By leveraging a priori knowledge, we anticipate 
the ranking of reconstruction errors magnitude for the 
features across different fault scenarios as shown in Table 1. 
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Table 1. Ranking fault signatures 
 

Fault 
type 

Reconstruction error 𝐸𝑖 = ‖𝐹𝑖 − 𝑂𝑖‖ 

←Bigger                                                 Smaller → 

Inner 1 8 10 5 9 12 7 2 11 6 3 4 13 14 

Outer 9 5 12 8 11 1 10 2 7 6 3 4 13 14 

Ball 12 8 1 5 9 7 6 10 11 2 3 4 13 14 

 

This expected ranking serves as a signature to identify the 
actual fault based on the observed ranking of reconstruction 
errors. Comparing the actual observed order to the expected 
ranking enables the classification task. 

 
Figure 7: Example of ranking signature for Outer Race Fault 
and RBO algorithm  

To effectively compare ranking list and classify the fault 
type, the algorithm needs to consider the varying importance 
of features in their ranked order (see Figure 7). The 
correspondence between two top-ranked features (top arrow) 
is more important than two lower-ranked features (bottom 
arrow). Additionally, two identical features that are not at the 
same rank (center arrow) must be taken into account. To 
accomplish this, the Rank Biased Overlap (RBO) algorithm 
(Joshi 2021), which meets these requirements, was used to 
compare the rankings. This algorithm allows assigning a 
weight (𝑝) more or less significant to elements at the top of 
the ranking. The result of the comparison between the two 
lists is a number between 0 and 1 (the value '1' is obtained for 
two identical lists). 

 

5. TEST RESULTS 

An autoencoder with 14 input features and a single hidden 
layer with 8 nodes to distinguish healthy and faulty system 
states has been trained with 3000 healthy samples, each 
represented by a vector of 14 features extracted from a 0.25-
second signal window. The model's performance was 
evaluated on 3000 healthy and 9000 faulty samples. While 
confusion matrices provided insights into classification 
errors, this document focuses on precision, defined as the 

ratio of the total number of correct predictions to the total 
number of predictions made by the model. 

Figure 8 demonstrates the model's ability to accurately detect 
healthy states with excellent precision even when dealing 
with high levels of noise in the signal. 

 
Figure 8: Precision of the anomaly detection as a function of 
SNR(dB) 

To detecting faults, we set a threshold (𝑇ℎ𝐷) based on the 
reconstruction error (RE). If RE exceeds 𝑇ℎ𝐷, a fault is likely 
present. This threshold is calculated as the mean (μTS) plus 
three times the standard deviation (σTS) of the reconstruction 
error computed on the training data (Equation 4). 

𝑇ℎ𝐷 = μTS 
+  3 ∙  σTS  (4)  

The autoencoder demonstrates exceptional anomaly 
detection capabilities even under low noise conditions, 
achieving precision levels exceeding 99.4% for signal-to-
noise ratios (SNR) up to 0 dB. However, as noise levels 
increase, performance drops and false alarms become a 
concern, at SNR 6 dB, precision falls below 90%. 

5.1. Vector Direction classification 

Initially, with 14 features, the method based on the direction 
of the reconstruction vector (Θ=arg( �⃗� )) only achieved a 
76.8% precision. The unsatisfactory percentage is likely due 
to the correlation between some features which produced the 
same interferce pattern. Therefore, we applied Principal 
Component Analysis (PCA) (Shlens, 2014) to identify 
redundancies and reduce the number of features to 8 This 
process ends up with the selection of the most informative 
features, in statistical sense, like RMS, Kurtosis, Peak Factor, 
Impulse Factor, and key frequency components). This 
dimensionality reduction significantly improved 
classification performance, boosting the precision to 87.94%. 
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Figure 9: Polar Plot with 8 features pour outer race fault 

 

 
 
 

 
Figure 10: Polar Plots with 8 features for an inner race fault 

 

 
Figure 11: Polar Plots with 8 features for a ball fault 

 

 
 
Figure 12: Polar Plots with 8 features for a ball fault, with 
misclassification 

In addition to automated fault classification, our method 
provides a visual tool for identifying different fault types.  
Figures 9-11 showcase polar diagrams where each plot 
displays examples correctly classified. Figure 12, however, 
depicts a scenario where misclassification occurred. 
 
In some maintenance situations, where misidentifying a 
failure could have serious consequences, operators can 
leverage these visualizations to perform a semi-automated 
diagnosis, especially if the automated results lack sufficient 
confidence. This allows them to combine the model's insights 
with their own expertise for a more informed decision.  

5.2. Rank Order classification 

When using the rank order RBO method for classification, 
the initial precision with 14 features was only 41.46%. 
Similar to the previous approach, we reduced the number of 
features to decrease redundancy and eliminate less relevant 
information. Using the same features as the "vector direction" 
classifier, the RBO method improved, and achieved a 
maximum precision of 76.8% when the parameter 𝑝 (Joshi 
2021) is set to 𝑝  =0.9. The parameter p determines the 
weighting of the first positions in the similarity measurement 
between two ranked lists. By adjusting the value of p, it is 
possible to control the importance given to the first positions 
compared to the subsequent positions, thus providing 
flexibility to evaluate the similarity between ranked lists 
according to different criteria. The value of p is chosen 
between 0 and 1. In this case, it has been decided to give more 
importance to the first positions in the ranking, which have a 
more significant impact on the classification performances. 

Therefore, the « directional » classifier appears more 
effective in our tests. 

While unsupervised methods like RBO offer an advantage in 
not requiring labelled data, their precision in this case 
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(76.8%) falls short compared to supervised learning (>99% 
precision). (Cherif, 2023) This is likely due to the inclusion 
of actual fault data in the training set for supervised methods, 
providing them with a more direct understanding of failure 
patterns.  

 

6. CONCLUSIONS 

The application of unsupervised machine learning techniques 
for detecting bearing faults and anomalies in rotating 
machinery offers a compelling array of advantages for 
practical business implementations. By eliminating the need 
for labeled faulty data, these approaches streamline the 
deployment process, making it more accessible and cost-
effective for industrial settings. 

The ability to operate without pre-existing fault data enables 
unsupervised algorithms to uncover previously unrecognized 
patterns and anomalies, providing early detection of faults 
and proactive maintenance opportunities. This early 
detection capability, coupled with scalability and adaptability 
to changing conditions, empowers businesses to enhance 
reliability, minimize downtime, and optimize maintenance 
strategies. 

In essence, leveraging unsupervised machine learning in 
industrial contexts not only circumvents the challenges 
associated with acquiring labeled data but also delivers 
tangible benefits in terms of reliability, efficiency, and cost-
effectiveness. This approach represents a transformative 
paradigm for bearing fault detection and anomaly 
monitoring, enabling businesses to proactively manage their 
assets and maximize operational performance without relying 
on historical fault data. 

However, whilst supervised and unsupervised methods show 
similar performance in defect detection, our proposed 
approach using an autoencoder for classification falls short 
compared to supervised learning. However, our method 
offers the crucial advantage of not needing rare defect data 
for training. This combination of unsupervised anomaly 
detection and classification enables defect detection without 
labeled data. 

The "directional error" method achieves a promising 87.94% 
accuracy through optimized feature selection.  

To further improve our classification system, we are pursuing 
two complementary research directions: 

1. Improving precision over time: We're exploring how to 
combine classification results over time to potentially 
boost precision. 

2. Implementing a rejection logic (Bartlett & WegKamp, 
2008; Chow ,1970): This framework aims to prevent 
critical misclassifications by allowing the model to avoid 
predictions when uncertain, at a predefined cost. This 

enables semi-automatic diagnostics where polar plots of 
ambiguous cases can be sent to operators for 
confirmation. 

From the validation point of view, it has been planned to 
validate our methodology on HUST bearing dataset 
(https://data.mendeley.com/datasets/cbv7jyx4p9/3)  

 

NOMENCLATURE 

Ei Reconstruction error component 
Θ Direction of Reconstruction Vector 
p Weight of RBO 
RE Reconstruction Error 
𝑇ℎ𝐷 Detection Threshold 
�⃗�  Reconstruction vector 
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ABSTRACT

Accurate bearing load monitoring is essential for their Prog-
nostics and Health Management (PHM), enabling damage as-
sessment, wear prediction, and proactive maintenance. While
bearing sensors are typically placed on the bearing housing,
direct load monitoring requires sensors inside the bearing it-
self. Recently introduced sensor rollers enable direct bear-
ing load monitoring but are constrained by their battery life.
Data-driven virtual sensors can learn from sensor roller data
collected during a battery’s lifetime to map operating condi-
tions to bearing loads. Although spatially distributed bear-
ing sensors offer insights into load distribution (e.g., correlat-
ing temperature with load), traditional machine learning algo-
rithms struggle to fully exploit these spatial-temporal depen-
dencies. To address this gap, we introduce a graph-based vir-
tual sensor that leverages Graph Neural Networks (GNNs) to
analyze spatial-temporal dependencies among sensor signals,
mapping existing measurements (temperature, vibration) to
bearing loads. Since temperature and vibration signals exhibit
vastly different dynamics, we propose Heterogeneous Tem-
poral Graph Neural Networks (HTGNN), which explicitly
models these signal types and their interactions for effective
load prediction. Our results demonstrate that HTGNN outper-
forms Convolutional Neural Networks (CNNs), which strug-
gle to capture both spatial and heterogeneous signal charac-
teristics. These findings highlight the importance of capturing
the complex spatial interactions between temperature, vibra-
tion, and load.

Mengjie Zhao et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Bearings are essential components in mechanical systems,
ensuring the efficient and reliable operation of machinery and
equipment across diverse industries, including wind energy,
aerospace, and automotive sectors. Real-time monitoring of
bearing conditions is crucial for optimal performance and proac-
tive maintenance (Hou & Wang, 2021). Knowing the ac-
tual load experienced by bearings offers several key benefits.
Firstly, deviations from the original design loads signal the
need for adjustments to operational parameters and mainte-
nance schedules. This allows for proactive prescription of
health-aware load profiles, potentially extending the bearing’s
service life. Moreover, load monitoring aids in early detec-
tion of misalignments, enabling timely proactive adjustments
to prevent further damage (Widner & Littmann, 1976). Addi-
tionally, knowledge of bearing load facilitates more accurate
diagnosis of potential bearing faults (Peng et al., 2020). Fi-
nally, bearing loads are a key factor influencing bearing lifes-
pan and failure (Harris & Kotzalas, 2006), and their under-
standing enables predicting damage propagation (Morales et
al., 2019). An in-depth understanding of the load is essen-
tial for accurate Remaining Useful Life (RUL) prediction and
effective Prognostic and Health Management (PHM).

Directly measuring bearing loads during operation presents
complex challenges. Traditional approaches, typically using
strain gauges, require direct contact or close proximity to the
bearing’s rolling elements. This introduces significant logisti-
cal and technical hurdles (Konopka et al., 2023), including ac-
cessing power and establishing sensor communication, mak-
ing installation more expensive than conventional condition
monitoring sensors, such as for vibration and temperature.

Recently, wireless sensor roller technology has been intro-
duced, wherein sensors are embedded inside a rolling element
to allow in-operation measurement of bearing loads (Baggerohr,

1
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2023). However, their utility is still constrained by battery
life. A virtual sensor could overcome this limitation by pro-
viding continuous, long-term load predictions, even when the
sensor roller’s battery is depleted. Specifically, our goal is
to develop a virtual sensor that maps the measurements of
conventional bearing condition monitoring sensors to loads.
Since the relationships between these sensors and load are in-
fluenced by factors such as stiffness, damping, and thermal
behavior, and are often unknown in real-world applications,
we adopt a data-driven approach. Sensor roller provides cru-
cial ground-truth load data, which is significant for enabling
the development of this virtual sensor. Estimating the load
without such direct data is extremely difficult without exten-
sive modeling. Our approach not only extends the value of
the physical sensor roller but also supports advanced PHM.

Virtual sensors have been applied in many different applica-
tions ranging from environmental sensing to complex indus-
trial systems. They leverage readily available measurements
and computational models to infer quantities that are chal-
lenging or costly to measure directly (Martin et al., 2021).
They also play a crucial role in digital twins, providing in-
sights beyond what physical sensors can capture (Song et
al., 2023). Two primary directions exist for virtual sensors:
model-based and data-driven. Model-based approaches rely
on well-defined physical laws and principles to develop mod-
els describing the system of interest. In contrast, data-driven
approaches use machine learning and data mining algorithms
to find patterns and relationships within sensor data. Model-
based virtual sensors require using existing sensor data to ac-
curately infer and update model parameters to ensure accu-
rate estimations. Methods such as Kalman filtering, which
dynamically updates model states in real-time based on noisy
sensor measurements, are well-established for calibrating physics-
based virtual sensors for load estimation models (Kerst et al.,
2019). Alternatively, Gaussian processes can be applied to
latent force models to infer unknown load dynamics from a
sensor network (Bilbao et al., 2022). While powerful, these
methods rely on prior knowledge of the system’s physics,
which can be challenging or infeasible to obtain in many real-
world cases. In contrast, data-driven virtual sensing offers
flexibility by directly learning complex relationships from data.
For example, (Dimitrov & Göçmen, 2022) demonstrated the
potential of Long Short-Term Memory (LSTM) networks for
predicting wind turbine blade root bending moment using
SCADA data. (Wang et al., 2021) developed a Deep Belief
Network (DBN) with event-triggered learning (DBN-EL) to
improve the efficiency and accuracy of a water quality soft-
sensing model for the wastewater treatment processes from
the sensor data.

Model-based methods often depend on prior knowledge of
the system’s physics. In contrast, data-driven approaches can
overcome this limitation but may require other forms of ground
truth to learn the functional relationships, such as simulation

data (Dimitrov & Göçmen, 2022) or periodic lab-based mea-
surements (Wang et al., 2021), making them difficult to apply
in real-world scenarios. Fortunately, bearing sensor rollers al-
low direct measurement of bearing load in operation, offering
a direct ground truth that enables us to learn the complex re-
lationships between load and conventional bearing condition
monitoring sensors through supervised learning.

For large-size bearings, such as main shaft bearings in wind
turbines, a common approach for bearing condition moni-
toring involves positioning multiple sensors around the bear-
ing to measure rotational speed, vibration, and temperature.
Although a correlation exists between load and these sensor
readings, the relationships are complex and difficult to model
accurately due to the lack of exact physical models. However,
there exists an additional inductive bias in the form of spatial
information, such as the correlation between higher temper-
atures and areas of increased load. Leveraging this spatial
information can offer valuable insights into load distribution.
While traditional machine learning algorithms struggle to ef-
fectively utilize this spatial information, Graph Neural Net-
works (GNNs) are well-suited for handling spatial-temporal
dependencies (Jin et al., 2023). By modeling sensors and
their connections as a graph, GNNs can directly capture the
spatial dependencies and relationships between different sen-
sor readings. They utilize message-passing techniques, where
information from neighboring sensors is iteratively processed
and aggregated, building a global understanding from local
information (Gilmer et al., 2017). GNNs have been success-
fully applied in areas such as bearing remaining useful life
prediction (Yang et al., 2022), cyber-physical attack detection
for water distribution systems (Deng & Hooi, 2021), sensor
calibration for air pollution (Niresi et al., 2023) and fault de-
tection for chemical process plants (Zhao & Fink, 2023).

Nevertheless, existing GNN methods often assume relatively
similar feature characteristics across nodes. Although GNNs
have been applied to heterogeneous sensor networks, the fo-
cus has typically been on handling different sensor types (e.g.,
temperature, humidity, pressure). In these cases, while the
data originates from diverse sources, the signal characteris-
tics often exhibit some similarities. In our scenario, the het-
erogeneity is in signal characteristics. Vibration and temper-
ature signals exhibit very different dynamics and frequencies.
This poses a novel and significant challenge for GNNs, which
often struggle to effectively integrate and learn from such
highly diverse signal characteristics.

To address the challenge of heterogeneous sensor characteris-
tics, we propose a novel virtual load sensor based on Hetero-
geneous Temporal Graph Neural Networks (HTGNNs). By
explicitly modeling high and low-frequency signals as dis-
tinct node types and differentiating their interaction types, our
HTGNN effectively fuses the information from diverse sen-
sors. This enables more accurate load prediction, overcoming

2

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 928



VIRTUAL SENSOR FOR REAL-TIME BEARING LOAD PREDICTION

the limitations of traditional GNNs. To the best of our knowl-
edge, this represents the first design of such an architecture to
analyze diverse sensor types for bearing load estimation.

The remainder of this paper is organized as follows: Sec. 2
describes the task of a bearing virtual sensor. Sec. 3 elabo-
rates on HTGNN’s core components to model the heteroge-
neous dynamic relationships within the bearing system. Sec. 4
describes the case study, experimental setup, and the baseline
method Sec. 5 presents the results of and offers a thorough
discussion. Finally, Sec. 6 summarizes key findings and pro-
poses directions for further research.

2. VIRTUAL SENSOR FOR LOAD PREDICTION

In this paper, we establish the notation where bold uppercase
letters (e.g., X), bold lowercase letters (e.g., x), and calli-
graphic letters (e.g., V) to denote matrices, vectors, and sets,
respectively. Time steps are indicated by Superscripts (e.g.,
Xt is the matrix X at time t), while subscripts identify spe-
cific nodes (e.g., xi is the vector for node i).

2.1. Problem Statement

In our case study, we focus on monitoring a bearing with a
heterogeneous network of sensors. The data are collected
from a test rig and comprise N sensor signals captured at
discrete time instances. We particularly examine temperature
and vibration data, which are represented as vectors:

xT
t = [xtT1

, xtT2
, ..., xtTNT

]T ∈ RNT , (1)

xV
t = [xtV1

, xtV2
, ..., xtVNV

]T ∈ RNV , (2)

where NT and NV are the number of each sensor type, while
xtTi

and xtVi
denote the measurements at time t from the ith

sensor for temperature and vibration. Additionally, the rota-
tional speed is recorded as wt ∈ R at time t. Importantly, this
characterizes the system’s operational state and acts as a con-
trol parameter, rather than being a direct sensor measurement.
To construct time-series samples for each sensor type, we em-
ploy a sliding window of length L, resulting in the following
representations:

XT
tl:t = [xT

tl , · · · ,xT
t−1,xT

t] ∈ RNT×L, (3)

XV
tl:t = [xV

tl , · · · ,xV
t−1,xV

t] ∈ RNV ×L, (4)

wtl:t = [wtl , · · · , wt−1, wt] ∈ RL, (5)

where tl = t− L+ 1 > 0 marks the beginning of the obser-
vation window.

Our goal is to develop a function f , referred to as a virtual
sensor, to accurately estimate the bearing load yt ∈ Rd at
time t, targeting both axial and radial loads (d = 2). This
function learns from heterogeneous sensor data XT

tl:t, XV
tl:t,

and Wtl:t. Several challenges arise in developing such a
function. Firstly, temperature and vibration signals exhibit

inherently distinct characteristics. Temperature signals, typi-
cally monitored at lower frequencies, reflect gradual changes
in the system’s thermal state. In contrast, vibration signals are
captured at high frequencies, offering insights into the imme-
diate mechanical interactions and anomalies within the sys-
tem. These differences in frequency not only affect the data
processing strategy but also the interpretation of these signals
in real-time monitoring. Additionally, the dynamic operating
conditions introduce further complexity. Variations in load,
speed, and environmental factors can significantly alter the
base characteristics of both temperature and vibration data.

3. GRAPH-BASED LOAD PREDICTION MODEL

3.1. Framework Overview

We propose a novel Heterogeneous Temporal Graph Neu-
ral Network (HTGNN) for real-time bearing load prediction.
Our framework learns a virtual sensor function, f(XT

tl:t,
XV

tl:t,WT
tl:t) = Yt, to accurately estimate the bearing

load Yt at a given time t. The HTGNN’s main novelty lies
in its ability to effectively capture the heterogeneity of sen-
sor data and model the interactions between different sensor
types. We achieve this by representing different sensor types
as distinct node types in an aggregated temporal graph. This
allows us to extract unique dynamics of each sensor type us-
ing tailored models and then model their interactions with
specialized GNNs, This offers a significant advantage over
traditional homogeneous temporal GNN methods that con-
sider only a single type of relation. Fig. 1 illustrates the HT-
GNN architecture. The model’s key components are:

1. Heterogeneous temporal graph construction, which
constructs the bearing graph. (Sec. 3.2).

2. Context-aware heterogeneous dynamics extraction,
which captures dynamics of different sensor types (Sec. 3.3).

3. Heterogeneous interaction modelling, which models
complex interactions between diverse sensors (Sec. 3.4).

4. Load prediction, which predicts the bearing loads using
the learned node representations (Sec. 3.5).

In the following, we detail each component of HTGNN.

3.2. Heterogeneous Temporal Graph Construction

Heterogeneous Static Graph. Following (Shi, 2022), a Het-
erogeneous Static Graph (HSG), denoted as G = (V, E), con-
sists of a node set V and an edge set E , where nodes and edges
can be of different types. The graph is associated with a node-
type mapping function ϕ : V → A and an edge-type mapping
function ψ : E → R, with A and R representing the sets of
node and edge types, respectively, satisfying |A|+ |R| > 2.

Heterogeneous Temporal Graph. Extending the concept of
a Heterogeneous Static Graph (HSG), a Heterogeneous Tem-
poral Graph (HTG) is defined as a sequence of HSGs over T
time steps, GT = {Gt1 , . . . ,GtT }. Each graph Gt = (Vt, Et)
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Figure 1. Architecture of the proposed Heterogeneous Temporal Graph Neural Network (HTGNN) for Load Prediction.

within this sequence represents the state of the graph at time t.
The node and edge type mapping functions, ϕ and ψ remain
consistent across time steps. The HTG can then be presented
in an aggregated form as:

GT =

(
tT⋃

t=t1

Vt,

tT⋃

t=t1

Et
)
, (6)

combining nodes Vt and edges Et across all time steps while
preserving heterogeneity defined by ϕ and ψ.

Bearing graph construction. To model the heterogeneous
sensor signals from a sensor network of the bearing system,
we construct an HTG. This graph consists of two types of
nodes: temperature (T) with attributes XT

tl:t and vibration
(V) with attributes XV

tl:t. Edge types represent relationships
between node types: T-T, V-V, T-V, and V-T. We assume that
these relationships are invariant over time. The HTG allows
capturing the interactions and evolution of temperature and
vibration signals within the bearing system. A visualization
of the HTG is provided in Fig. 1.

3.3. Context-aware Node Dynamics Extraction

In complex systems, the behavior of individual nodes (sen-
sors) is often influenced by the global operating context. In
our bearing system, rotational speed can be considered a con-
trol variable, where increases in rotational speed lead to higher
vibration intensity and faster temperature rises. To capture
these important influences, our HTGNN model leverages context-
aware dynamics extraction for node, following the strategy
proposed in (Zhao & Fink, 2023). We extract contextual in-
formation from rotational speed and integrate it into the dy-
namics modeling of other sensor types using tailored tech-
niques.

Rotational speed. To extract meaningful representations of
operational state context from the rotational speed signal, which

contains noise, we employ a 1D Convolutional Neural Net-
work (1DCNN). We choose a 1DCNN due to its effectiveness
in capturing patterns within time-series data. This process
generates a hidden representation of dimensionality hw ∈
Rdw , which is used to augment the dynamics extraction from
other sensor types. Our 1DCNN configuration adopts chan-
nel sizes [2, 2, 1], kernel sizes [3, 5, 5], and employs the SiLU
activation function:

hw = SiLU
(
1DCNN(wtl:t)

)
, (7)

Temperature. We model the temperature dynamics using a
Gated Recurrent Unit (GRU) network. For each temperature
node j, the GRU updates its cell state at each time step τ
to capture the temporal dynamics within the sequence xT

tl:t
j .

Importantly, we initialize the GRU’s hidden state with hw (ro-
tational speed encoding from Eq. 7), allowing the operational
state context to influence temperature dynamics:

hT
τ
i = SiLU

(
GRU-Cell(xT

τ
i ,hT

τ−1
i )

)
,∀τ ∈ [tl, t]. (8)

We use the final state hT
t
i ∈ RdT , representing the encoded

dynamics of node i up to time t and incorporating the oper-
ational state context, as the temperature node representation
hTi ∈ RdT .

Vibration. Similar to the rotational speed encoding, we use
a 1DCNN to model the dynamics of vibration signals. This
process learns the hidden representation hV

t
i from the vibra-

tion sequence xV
tw:t
i of a vibration signal i:

hV
t
i = SiLU

(
1DCNN(xV

tl:t
i )
)
. (9)

Finally, we concatenate hV
t
i ∈ RdV with hw ∈ Rdw to

form the complete node representation hVi =
[
hV

t
i ∥ hw

]
∈

RdV +dw . This incorporates both vibration dynamics and op-
erational state.
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3.4. Heterogeneous Interaction Modelling

We model heterogeneous interactions between different sen-
sor types to capture the influence of operating context-aware
dynamics. The proposed HTGNN model addresses two types
of interactions within the graph: interactions among the same
type of nodes and interactions across different types. This in-
teraction modeling applies to node dynamics previously ex-
tracted in the node dynamics extraction section (temperature
node from Eq. 8, vibration node from Eq. 9).

Same-type interactions. For interactions among nodes of
the same sensor type, we employ Graph Convolutional Net-
works (GCNs) (Kipf & Welling, 2017). This allows us to
refine node representations by aggregating information from
neighboring nodes that share similar characteristics. Mes-
sages passed from node j to node i of the same type with
relation rs ∈ Rs are computed as follows:

m
(l,rs)
j→i =

1
√
d̂i

√
d̂j

W
(l)
ϕ(j),rs

h
(l)
j ,∀rs ∈ Rs, ϕ(j) = ϕ(k),

(10)
where d̂i and d̂j denote normalized node degrees, and Rs is
the set of edge types connecting nodes of the same type.

Different-type interactions. To model the influence of one
sensor type on another (e.g., the impact of temperature on
vibration), we utilize Graph Attention Networks v2 (GATv2)
(Brody et al., 2022). This mechanism dynamically computes
attention-weighted messages, allowing the model to discern
the varying importance of different neighbors. The attention
coefficients α(l,rd)

jk for a target node i receiving a message
from node j with relation rd ∈ Rd are defined as:

α
(l,rd)
jk = softmaxj

(
a(l)Trd

LeakyReLU(W(l)
rd
· [h(l)

i ∥ h
(l)
j ])

)
,

(11)
where rd ∈ Rd represents the set of edge types connecting
nodes of different types. Messages are then computed as:

m
(l,rd)
j→i = α

(l,rd)
jk W

(l)
ϕ(j),rd

h
(l)
j ,∀rd ∈ Rd, ϕ(j) ̸= ϕ(k),

(12)
Aggregation and update: After aggregating messages of
both same-type and different-types, the node representations
are updated as follows:

h
(l+1)
ϕ(i) = SiLU


 ∑

r∈Rs∪Rd

∑

j∈Nr(i)

m
(l,r)
j→i


 . (13)

3.5. Load Prediction

Having extracted the context-aware dynamics of each node,
we now combine the heterogeneous node representations to
learn the virtual sensor function f(XT

tl:t,XV
tl:t,WT

tl:t) =
Yt. We achieve this by flattening the final node representa-
tions into a unified input vector for a Multilayer Perceptron

(MLP). The MLP processes this aggregated information and
outputs two values: the predicted axial and radial loads.

To ensure the model’s accuracy under real-world conditions,
the training objective is to minimize the L1 loss between the
predicted bearing load ŷi and the actual load yi. We choose
L1 loss for its robustness to outliers. This is particularly im-
portant in bearing systems, occasional measurement noise or
transitional operating conditions might generate extreme data
points. The loss is defined as L = 1

M

∑M
i=1

∣∣ŷi − yi
∣∣, where

M is the number of training samples.

4. CASE STUDY

Figure 2. Cross-sectional view of the bearing test rig indicat-
ing sensor types and installation locations.

The data used in this study was collected at the SKF Sven
Wingquist Test Centre (SWTC) using a face-to-face test rig
with two identical single-row tapered roller bearings (TRBs).
The TRBs feature a rotating inner ring, an outer diameter
of 2,000 mm, an inner diameter of 1,500 mm, and a width
of 220 mm, each incorporating 50 rollers. This setup aims
to assess load conditions under various operational scenar-
ios. Fig. 2 illustrates the sensor positioning on both identical
TRBs. Ten temperature sensors are positioned on each bear-
ing (eight uniformly distributed on the outer ring (OR), two
on the inner ring (IR)). Additionally, six vibration sensors on
the outer ring measure both axial (AX) and radial (RA) vibra-
tions, with sensors placed at the top and bottom of the bearing
housing for the radial direction.

Temperature is recorded at a 1 Hz sampling rate with a preci-
sion of 0.05°C. Vibration data is resampled to 1 Hz through
RMS aggregations. Axial and radial forces are measured and
controlled by several load cells, with an aggregated load value
in both directions used as a ground truth for this study (note
that the radial load cells are not shown in the figure).

4.1. Data Preprocessing

To reduce noise and transient fluctuations in the temperature
data, we apply a moving average filter with a 1-minute win-
dow. We focus on the rate of temperature change because the
bearing temperature responds gradually to changes in load
and speed. We calculate this rate over 5-minute periods to
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align with typical operational changes. This approach allows
our model to identify the immediate impact of load changes
on temperature, rather than the cumulative effects of histori-
cal variations. After preprocessing, we split both temperature
and vibration signals using a sliding window, with a length of
30 seconds and a stride of 1 second.

4.2. Train-Test Split
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Figure 3. Train-test split of bearing load conditions for vibra-
tion data analysis (55% training, 45% testing)

We divided the dataset into training, validation, and testing
sets. Approximately 55% of the data (924,230 samples across
31 unique operating conditions) was used for training and
validation, with a random 80/20 split. The remaining 45%
(699,340 samples across 25 unique operating conditions) was
reserved for testing. We included only cases that maintained
stationary operation for at least 10 minutes and up to 2 hours.
We ensure that each case (a unique combination of axial load
Fx, radial load Fy , and rotational speed) maintained station-
ary operation for at least 10 minutes and up to 2 hours. In
total, the dataset comprised 56 unique operating conditions.
To assess generalization, 12 conditions in the test set were un-
seen from the training and validation data. Fig. 3 provides a
detailed breakdown of the specific conditions included in the
training and test sets.

4.3. Heterogeneous Bearing Graph Construction
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Figure 4. Heterogeneous graphs for bearing sensor network
relationship modeling. (a) T-T (b) V-V (c) T-V (d) V-T (e)
connectivity across two test rig bearings.

We construct a heterogeneous graph with nodes represent-
ing sensors (temperature (T) and vibration (V)). Temperature
nodes are further classified into inner ring (T IR) or outer ring

(T OR) nodes. V nodes, which are installed on the outer ring,
are distinguished by their load direction: radial (V RA) or ax-
ial (V AX). We model four types of relationships: T-T, V-V,
T-V, and V-T. Here, T-T and V-V represent homogeneous re-
lationships, while V-T and T-V represent heterogeneous rela-
tionships. Node positions reflect physical sensor placement.
Fig. 4(a) and (b) illustrate the connectivity within a single
bearing based on physical proximity. Additionally, IR nodes
are connected due to relatively uniform temperatures across
the inner ring. Given that the test rig consists of two bear-
ings, we connect them based on proximity, as illustrated in
Fig. 4(e) for V nodes. We assume symmetrical (undirected)
relationships within the same sensor type and model hetero-
geneous T-V and V-T relationships with directed edges, as
demonstrated in Fig. 4(c) and (d).

4.4. Experimental Setup

Baseline. We employ a 1DCNN model as our baseline due
to its established success in handling multivariate time series
data. 1DCNNs are particularly well-suited for signal predic-
tion tasks, making them a strong baseline. We adapt the de-
sign from (Chao et al., 2022), tailoring the architecture to our
specific dataset through a grid search to minimize the mean
absolute error (MAE) on the validation set. The explored pa-
rameter spaces included hidden channel dimension (20, 50,
or 100), kernel size (3, 5, or 9), number of channels (20, 50,
or 100), and number of layers (3, 4, or 5). The optimized
model consists of four layers, each with 100 channels with
100 hidden dimensions, a kernel size of 9, batch normaliza-
tion, a dropout rate of 0.5 for regularization, and a SiLU acti-
vation function (consistent with our proposed method). This
configuration has a total of 209,403 parameters.

HTGNN hyperparameter tuning. We similarly used grid
search for HTGNN hyperparameter tuning. To reduce the
search space, we maintained a consistent hidden size across
all layers and the same graph embedding dimension for all
GNN modules. The search space comprised: node embed-
ding dimension (values of 10, 15, 20), number of GNN layers
(2 or 3), GNN hidden dimension (40 or 80), graph head hid-
den dimension (40 or 80), and number of graph head layers
(2 or 3). The optimal HTGNN configuration consists of a
node embedding dimension of 10, 3 GNN layers with a hid-
den dimension of 80, and a graph head dimension of 40. The
configuration has a total of 142,394 parameters.

Training. We optimized the HTGNN and 1DCNN models
using the AdamW optimizer with a learning rate of 1e-3.
Training was continued for up to 50 epochs with early stop-
ping at 30 epochs with patience of 10 steps. We used a batch
size of 512 and minimized L1 loss (defined in Sec. 3.5). To
ensure the robustness of our results, experiments were re-
peated five times with different initializations, and the mean
and standard deviation of the results were reported.
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Table 1. Averaged model performance over cases and runs

1DCNN HTGNN

Seen
MAEFx

(kN) 531.3 203.1
MAEFy (kN) 33.2 12.4
MAPEFx (%) 12.8 4.5
MAPEFy

(%) 12.0 5.7

Unseen
MAEFx

(kN) 1765.5 1649.7
MAEFy

(kN) 58.7 57.4
MAPEFx

(%) 33.2 29.2
MAPEFy (%) 17.8 15.8

5. RESULTS

We evaluate the model performance on Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE).

Superior performance on seen conditions. Tab. 1 high-
lights the HTGNN model’s superior performance advantage
compared to traditional 1DCNN models in predicting seen
conditions. Notably, this improvement is evident in both ax-
ial (Fx) and radial (Fy) load predictions, with the HTGNN
achieving approximately one-third the MAPE for Fx and half
the MAPE for Fy compared to the 1DCNN. Importantly, the
scenario considered here reflects real-world conditions. It is
feasible for the sensor roller to collect load data across all typ-
ical operating conditions before its battery depletes, allowing
the HTGNN to serve as a reliable virtual sensor.

HTGNN’s physical prior. The superiority of the HTGNN
in unseen conditions highlights the advantages of explicitly
modeling heterogeneous sensor relationships. The physical
connectivity in the bearing system acts as an effective induc-
tive bias for the model. We attribute the improved perfor-
mance of the HTGNN to its ability to capture complex in-
teractions between temperature and vibration measurements,
which often exhibit interdependent behaviors in bearing sys-
tems. The proposed architecture of the HTGNN is ideally
suited to represent these heterogeneous relationships. In con-
trast, 1DCNN’s homogeneous approach to processing vari-
ables limits its ability to model such complex interdependen-
cies, leading to higher prediction errors.

Better generalizability. Fig. 6 presents the mean MAPE in
Fx and Fy for various bearing load conditions, with unseen
conditions highlighted in gray. Although the HTGNN gen-
erally outperforms the CNN in handling unseen conditions,
as detailed in Tab. 1, there are instances depicted in Fig. 6
where CNN shows competitive performance. This challenge
in generalization can be partially attributed to the dynamics
shown in Fig. 5, which illustrates the significant effects of
rotational speed changes on both vibration intensity and the
rate of temperature change. Additionally, the underrepresen-
tation of certain rotational speeds in the training data may
impede interpolation, impacting the generalization capabili-
ties of both models. Interestingly, as depicted in Fig. 5, the
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Figure 5. Examples of input signals and load prediction per-
formance. Shaded areas indicate unseen conditions.

HTGNN tends to generalize better for the commonly encoun-
tered unseen rotational speed of 10 rpm than for the less fre-
quently occurring speed of 20 rpm, across both axial and ra-
dial loads. For details on the distribution of conditions in the
training and testing sets, see Fig. 3.

6. CONCLUSION

In this research, we propose HTGNN, a novel virtual sen-
sor that accurately maps vibration and temperature signals
under varying rotational speeds to axial and radial bearing
load predictions. Our findings demonstrate that HTGNN out-
performs 1DCNN models, particularly when trained on rep-
resentative conditions. The success of HTGNN highlights
the importance of incorporating physical priors and inductive
biases: by modeling the connectivity of the bearing sensor
network, HTGNN effectively captures the complex interac-
tions between temperature and vibration. This superior per-
formance suggests HTGNN’s potential as a reliable virtual
sensor in real-world applications, replacing battery-powered
load sensors after their lifespan. This could facilitate proac-
tive maintenance, reducing unexpected breakdowns and op-
timizing the lifespan of bearings. However, the models can-
not generalize as effectively to unseen speed conditions. Fu-
ture work should focus on investigating datasets that include
a broader range of speed conditions in the training to deter-
mine if the model can improve its generalization capabilities.
Additionally, measuring the model’s performance using real
load data measured from sensor rollers in real operations and
not just from the test rig would be valuable.
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Figure 6. Mean test set performance averaged over 5 runs of CNN and HTGNN on bearing load conditions Fx(×1000) [kN],
Fy(×50) [kN], and rotational speed (×10) [r/min]. Shaded areas indicate unseen conditions.
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ABSTRACT 

The degradation of a system is a time bound phenomenon, 
which leads to the deterioration of turbomachinery, in terms 
of performance and reliability. If undetected and not acted 
upon in time, this could also lead to sudden system failure, 
resulting in unplanned unit downtime and maintenance. 
Unplanned downtime of a turbomachine leads to severe 
production loss for the end customer and consequent 
economic damages. Early detection of a degradation pattern 
would provide the customer with the opportunity to timely 
carry out corrective actions, preventing an unscheduled down 
time. The paper evaluates degradation identification 
methodology currently known from literature and finds them 
not accurate enough for general purpose application required 
by the solution. The paper discusses a novel methodology 
which can accurately detect degradation patterns of 
timeseries data. Critical features of this methodology are 
novel time-based correlation enabled regression model with 
variable observation window, autonomous training, and 
automatic adjusting capability to incorporate operating 
behavior change or physical system replacement. This leads 
to high accuracy, high generalization, and domain agnostic 
application capability. Moreover, particular focus is given to 
achieving high probability of detection and a low probability 
of false alarm. The paper demonstrates the performance 
achieved by the methodology when applied to the field of 

prognostics and diagnostics of IoT connected turbomachines 
through 50+ real application cases.  

1. INTRODUCTION 

Rotating Turbomachines play a critical role in Industrial 
domain in Oil & Gas / Energy Plants serving various 
applications, such as Liquified Natural Gas (LNG), pipeline, 
fertilizers, refineries and power generation units. One of the 
most important aspects for the operators of these 
turbomachines are continuous availability and reduced 
downtime covering the entire life cycle. Iannitelli et al. 
(2018) highlighted that unscheduled shutdown of the 
turbomachines can have impact on the whole plant downtime 
with associated significant loss of production.  

Baker Hughes is a leading Original Equipment Manufacturer 
of Rotating Turbomachines with a wide Product Range of 
Gas Turbines, Centrifugal Compressors, Pumps, Steam 
Turbines, Electric Motors, Axial Compressors, etc. These 
products have been operating in various Oil & Gas and Power 
Generation facilities around the globe covering all the 
segments of the entire value chain of Oil & Gas industry and 
have an unparallel operating history.  

Baker Hughes has developed monitoring capabilities which 
are offered as a service, applied to a broad installed fleet of 
rotating equipment including gas turbines. Baker Hughes’ 
iCenter ecosystem continuously acquires different sensor 
parameters of its deployed assets at customer premises. These 
large number of operational data from the everyday operation 
of turbomachines is usually collected and analyzed by means 

First Author (Unnat Mankad) et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited. 
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of analytics, component models and rules implemented by 
subject matter experts, as soon as new data is transferred to 
the monitoring center. Allegorico & Mantini (2014) indicated 
that anomaly detection rules and models are designed to scan 
through the data and notify the monitoring and diagnostic 
engineers, if any anomalies or emerging problems are 
detected. All alerts are analyzed by diagnostic engineers 
along with trouble shooting analysis and useful insights are 
sent to customers comprising set of recommendations.  

With turbomachinery covering various applications and 
operating in different operational scenarios, Baker Hughes 
follows a hybrid approach consisting of physics and data 
driven methods, where strong OEM knowledge is further 
enhanced by state-of-the-art data science methodologies to 
create robust solutions. This approach can be applied to the 
entire fleet of operating machines, to bring economies of 
scale and help maximize the availability and uptime of the 
monitored units. 

1.1. Degradation phenomena 

In Turbomachines, degradation phenomena accumulate over 
a period of time. Zagorowska, et al. (2019) indicated that 
degradation in turbomachine is an unwarranted phenomenon 
which deviates from the expected behavior and that changes 
the behavior of the affected system. Few examples of 
degradation include clogging of filters, performance 
degradation of compressors, increase spread of exhaust 
temperature measurement of gas turbines, etc. If degradation 
is not detected early, this may lead to a gradual build up above 
the mechanical integrity of the system which can cause 
sudden failures, break down and consequent downtime of the 
turbomachine with production loss for the end customer. A 
typical example of degradation in turbomachinery systems 
concerns filters. A filter acts as a mechanical stop for 
contaminants, to make sure they do not pass through the 
downstream systems. Due to their nature, filters have a 
tendency to get clogged or choked after a period of operation 
with gradual buildup of contaminants, creating a higher 
resistance to the flow. To detect abnormal operating 
conditions, analytics could be built to observe the behavior of 
the component by monitoring physical quantities, such as the 
pressure drop on the filter. This can be analyzed to infer 
information on its actual defect state. The ability to promptly 
detect these deteriorating conditions could be useful for 
implementing corrective actions.   

Generally, degradation phenomena cannot always be directly 
measured, however it is possible to make use of indirect 
information or calculated parameters to verify the level of 
degradation of a system (for example the level of fouling of 
an axial compressor can be determined indirectly through the 
analysis of its compression efficiency). In general, the 
presence of a degradation phenomenon is signaled by the fact 
that the timeseries of interest shows a drift over time. If the 
timeseries has an upward trend, it is considered a positive 

degradation, otherwise it is considered a negative 
degradation.  

In the current study, authors have focused on univariate time 
series with a stationary behavior in the normal operating 
range of the system. In these cases, a monotonic signal trend 
is considered anomalous and possibly linked to an ongoing 
degradation phenomenon. In the event that this monotonic 
trend is accompanied by a similar behavior of other signals 
related to it, the event is considered non-independent and 
therefore not anomalous.  

Figure 1 shows a typical behavior of a sensor going through 
a degradation trend. As the sensor value increases over a 
period, this is considered a positive degradation phenomena.  

 
Figure 1. Example of a degradation pattern in a generic 

signal 
In the analysis of degradation phenomena, another factor to 
consider is the observation time window. Figure 2 highlights 
the behavior of the same signal over a longer observation 
time.  

 
Figure 2. Example of multiple degradation patterns for the 

same signal 
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In this case, two different degradation profiles can be noted 
that evolve with two different time scales. The first 
degradation profile is quite sudden, while the subsequent one 
is rather slow and it build up over a longer period of time. 
The sudden drop down of the signal after the first degradation 
pattern is currently excluded from the current analysis. 

2. EXISTING METHODS FOR TREND IDENTIFICATION 

2.1. Monotonicity Trend – Mann-Kendall Test 

The purpose of the Mann-Kendall (MK) test (Mann 1945, 
Kendall 1975, Gilbert 1987) is to statistically assess if there 
is a monotonic upward or downward trend of the variable of 
interest over time. A monotonic upward or downward trend 
means that the variable consistently increases or decreases 
through time.  

The MK method calculates test statistics as the count of 
positive and negative deltas in the dataset. 

 𝑺 =  ∑ ∑ 𝒔𝒈𝒏(𝒙𝒊 − 𝒙𝒋)

𝒏

𝒊−𝒋+𝟏

𝒏−𝟏

𝒋−𝟏

          (1) 

 

Where x is the observation value, i and j are time indices.  

If number of observations, 𝑛 ≥ 10, Variance of S is 
calculated as follows. 

 

                                             𝑉𝐴𝑅(𝑆)𝑀𝐾

=
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −  ∑ 𝑡𝑝 (𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑔

𝑝−1

] (2) 

 

where g is the number of clusters of data points having the 
same data value and 𝑡𝑝 is the number of observations in the p 
th group. 

For example, in the sequence of observation in time 
{28, 32, 34, 2, 29, 32, 2, 34, 32} there are 𝑔 = 3 tied groups. 
Tied group 𝑡1 = 2 for tied value of 2, tied group 𝑡2 = 3 for 
tied value of 32 and tied group 𝑡3 = 2 for tied value of 34 

 

MK Test statistics is calculated as follows: 

 

𝑍𝑀𝐾 =  
𝑆−1

√𝑉𝐴𝑅(𝑆)𝑀𝐾
 𝑖𝑓 𝑆 > 0  

𝑍𝑀𝐾 =  0 𝑖𝑓 𝑆 = 0 

𝑍𝑀𝐾 =  
𝑆+1

√𝑉𝐴𝑅(𝑆)𝑀𝐾
 𝑖𝑓 𝑆 < 0  

 

(3) 

A positive value of 𝑍𝑀𝐾 indicates an increasing trend, while 
a negative value of 𝑍𝑀𝐾 indicates a decreasing trend. 

The MK test was applied on the generic signal in Figure 3, 
which shows a clear degradation trend in different periods of 
time. The points where the increasing trend is detected are 
highlighted in orange. 

 
Figure 3. MK Test results 

As observed from the Figure 3 for the given data set, the 
method was promising in terms of detecting the slope region, 
however it produced many false positives. To improve this 
manual threshold tuning is required, however this is not a 
practical and most effective solution for more general and 
scalable applicability of the methodology.  

2.2. Theil Sen Slope Method 

Theil (1950) proposed the median of pairwise slopes as an 
estimator of the slope parameters. Sen (1968) extended this 
estimator to handle ties. Sprent et al, (1993) indicated that 
Theil-Sen estimator is a regression method, robust to outliers.  

Thiel-Sen estimator calculates the slope by taking the median 
of the slopes between each pair of points in the data. For a 
pair of points, (𝑥𝑖 , 𝑦𝑖), 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠 

 𝑠𝑙𝑜𝑝𝑒 =  
(𝑦𝑗 – 𝑦𝑖  )

(𝑥𝑗 – 𝑥𝑖  )
 (4) 

 

An intercept between each pair of points, can be calculated as  

                𝑏𝑖 =  𝑦𝑖 −  𝑚 ∗ 𝑥𝑖  (5) 

where m is the Thiel-Sen slope. Following the similar 
methodology of finding the median of each slope between 
each pair of points, median of intercept is calculated.  

Theil-Sen Slope method was applied on the same signal of 
Figure 3 after setting an appropriate threshold to detect the 
degradation pattern. Figure 4 shows the results of the Thiel 
Sen slope method. 
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Figure 4. TS Test results 

 
As observed from Figure 4 for given data set, Thiel-Sen 
method identifies trending patterns, however it still generates 
many false positives and is strongly dependent on the 
threshold value, which need to be manually adjusted based 
on the profile of the signal. This limits the general purpose 
and scalable applicability of the methodology.  

3. NOVEL METHODOLOGY 

Abernathy et al. (1973) indicated that sensor measurement 
are affected by noise and noise increase over a period of time 
as the sensor ages. Noise of the sensor measurement impacts 
the method development and it’s ability to identify the 
degradation patterns. Furthermore, the degradation detection 
method must be easily scalable to other use cases and be able 
to work with different degradation patterns such as slow and 
fast degradations and presence of noise. 

De Giorgi et al. (2023) have done an exhaustive literature 
review on detecting degradation phenomena as part of 
prognostic and diagnostics for jet engine health monitoring 
and have found that current literature degradation health 
monitoring techniques have certain gaps in terms of lack of 
standardization, lack of real world testing/comparative 
studies and limited consideration of multiple degradations.  

Following the above analysis, it was concluded that current 
methods available in the literature may not effectively 
provide a generalized and robust solution. Furthermore, the 
existing methods are quite difficult to be fine-tuned in real 
application scenarios and are prone to generate a high rate of 
false positives.  

As seen in Figure 3 & Figure 4, the degradation profile of a 
signal is a function of time. This could be caused by various 
factors, such as the intrinsic structure of the system, external 
interferences, natural aging and so on. In order to effectively 
capture degradation phenomena which evolves over a 
different time scale, authors had decided to distinguish 2 
types of degradation profiles: 

• Fast Degradation – These degradation profiles are 
quick with respect to typical behavior of the given 
signal/system. 

• Slow Degradation – These degradation profiles 
slowly build over a period of time and may not show 
an obvious degradation behavior when the 
observation window is small. 

Authors have then devised a novel methodology by filtering 
the signal into a High Frequency component and a Low 
Frequency component.  

The High Frequency component of the signal is calculated as: 

       𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 =  𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡−1 ∗  𝛼𝑡 +
                                     𝑆𝑖𝑔𝑛𝑎𝑙𝑡 ∗  (1 − 𝛼𝑡)                                     (6) 

 

Where 𝛼 is the exponential smoothing average constant. As 
degradation phenomena are function of time and depends on 
past values, this constant has been selected to keep a balance 
between past observations and current values. After a careful 
analysis and various tests on real cases, this value was kept at 
0.35. 

The low frequency component of the signal is then calculated 
as  

   𝐿𝑜𝑤 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 =  𝑆𝑖𝑔𝑛𝑎𝑙𝑡 −  𝐻𝑖𝑔ℎ 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡−1  (7) 

Figure 5 shows the original signal and decomposition of the 
same into high & low frequency component of the given 
signal. Observing Low Filter, it is evident that, this features 
carries out the denoising of the signal. 

 

 
 

Figure 5. Signal decomposition in Low frequency 
 

A novel time-based correlation approach was used to identify 
the degradation patterns of the low frequency component. 
The approach was based on the observation that if the signal 
is trending up or down over a period of time, it shall have a 
strong correlation with time, which will be positive or 
negative respectively.  

The correlation coefficient was obtained by normalizing the 
covariance of the low frequency signal. 

The covariance of the signal is calculated as 

                𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝐸[𝑋𝑌] −  (𝐸𝑋)(𝐸𝑌)                  (8) 

The variance is calculated as 

                          𝑉𝑎𝑟𝑋 = 𝐸[𝑋2] − 𝐸[𝑋]2 

                                                                                            (9)      

                           𝑉𝑎𝑟𝑌 = 𝐸[𝑌2] − 𝐸[𝑌]2 
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Then the correlation coefficient is calculated as 

 

                𝐶𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

√𝑉𝑎𝑟𝑋∗ 𝑉𝑎𝑟𝑌
          (10) 

A threshold of 0.9 was then applied to this correlation 
coefficient to detect sections of the signal with high slope, as 
showed in Figure 6. 

 
 

Figure 6. Time based correlation on Low frequency 
 

As observed from Figure 6, the method is more robust and 
less sensitive if compared to previously discussed methods. 
It effectively captures the sections with high slopes; however, 
it is not capable of capturing the areas where degradation is 
slowest and it also generates some sporadic false alarms. 

To overcome the limitation of the current method on the slow 
degradation patterns, the authors devised the dedicated 
approach described in the next paragraph. 

3.1. Methodology for Slow Degradation 

Verbai et al. (2024) applied linear regression method to 
identify and predict the degradation phenomena. Authors 
have further used the linear regression method to develop the 
methodology to capture slow degradation  

The linear regression model is expressed as: 

                                  �̂�𝑖 =  𝑏0 +  𝑏1 ∗ 𝑥𝑖                           (11) 

Where �̂�𝑖 is the predicted value, 𝑏0 is the intercept of the line, 
𝑏1is the slope of the line, and 𝑥𝑖 is the actual value. 

The linear regression model is fit on 1 week of Low 
frequency data of the signal and further analysis is carried out 
on the line slope 𝑏1, 𝑅2 error and Root Mean Square Error. 

R-squared (𝑅2) of the linear regression model is calculated as 

                            𝑅2  = 1 −  (
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
)                          (12) 

Where 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  is the sum of squares of the residual errors 
and 𝑆𝑆𝑡𝑜𝑡𝑎𝑙  is the total sum of the errors.  

𝑅2  indicates the proportion of data points which lie within the 
line created by the regression model. A higher value of 𝑅2 is 
desirable as it indicates a better fit. 

To ensure a good regression model for subsequent analyses, 
a minimum value of 𝑅2 score is required.  

The Root Mean Square Error (RMSE) indicates the quality of 
predictions. It evaluates how far predictions are from the 
measured true values using Euclidean distance.  

                       𝑅𝑀𝑆𝐸 =  √∑
(�̂�𝑖− 𝑦𝑖)2

𝑛

𝑛
𝑖=1                           (13) 

Where �̂�𝑖 is predicted value, 𝑦𝑖  is actual true value and 𝑛 is 
number of observations. 

Above regression methodology was applied on low 
frequency of 7 days data. However in order to early detect the 
degradation phenomena, observation window considered was 
1 day. 

To further make sure that generated errors are within the 
typical operating range of the signal a threshold was applied 
on RMSE as a function of normal operating range of the 
signal. 

To make sure, that only important degradation patterns are 
captured, a minimum threshold value was applied on the 
slope on top of already discussed threshold on 𝑅2 and RMSE 
values. The proper value of the threshold was selected while 
doing an exhaustive testing to obtain a balance between False 
Positive and False Negative.  

Results of Figure 7 shows the degradation pattern captured 
by the new methodology with high accuracy. 

 
 

Figure 7. Detection by Slow Degradation Methodology 
 

3.2. Time Window for Fast and Slow Degradation 

Based on the extensive tests carried out and iteratively 
optimized, authors have specified 2 different observation 
periods, 24 hours and 7 days, which have proven to be 
effective on use cases that are common in our industry. 

Table 1. Time Window duration 
Degradation Type Time Window 

Fast Degradation 24 Hours 
Slow Degradation 7 Days 

 

3.3. Autonomous Training and Self Adjusting Capability 

The developed methodology is intended to have a general-
purpose application by covering various types of signals that 
are typically acquired on turbomachines. Moreover, it must 
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be able to function correctly for signals that span in a wide 
operating range. 

To meet the above requirement, authors have developed a 
methodology to characterize the “Normal State” of operation 
of a signal, namely its typical operating range known from 
the past.  

In order to define an operation range of the signal and 
detection of potential anomalous behavior of the signal, 
authors have then developed a typical operating range of 
signal called as confidence band. 

Confidence Band is a function of the following signal 
statistical indicators and is calculated dynamically:  

                               𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐵𝑎𝑛𝑑 =
         𝑓(𝑀𝑒𝑎𝑛, 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠)            (13) 

Any sustained operation outside of the normal state could be 
considered as a potential degradation pattern. 

The method continuously updates the above statistics and 
redefines the system normal state when needed. Other factors 
that influence the signal behavior are the maintenance events 
such as major inspections, repairs, replacements, etc. and 
other external contributors like the process load and ambient 
conditions, which can lead to different operating behavior of 
a given signal. The algorithm is designed to self-adjust when 
this change in signal behavior occurs.  

4. TECHNICAL CASES 

Authors have extensively applied and tested this 
methodology on a variety of turbomachinery signals acquired 
by Baker Hughes’ monitoring service. In the following 
section the authors reported some examples of real 
degradation events captured by applying this methodology on 
historical data. If not detected promptly, the progression of 
the degradation phenomenon could have caused the signal of 
interest to reach protection thresholds, causing alarms or even 
the trip of the unit. A trip leads to unavailability of the 
turbomachine and the loss of production for the end 
customer, with consequent economic damage.  

The implemented methodology provides early detection of 
degradation of critical signals and provides the opportunity to 
perform corrective actions and increase the availability of 
turbomachinery. 

This section captures few of the real technical cases captured 
from variety of signals acquired by Baker Hughes’ 
monitoring service. Few of these signals are part of 
Centrifugal Compressors Auxiliary systems, Gas Turbines, 
etc. Some of the examples of these signals are Filter 
Differential Pressure, Vent Pressure, Compressor Efficiency 
etc,. As discussed before, these signals are expected to be 
stationary with in the normal operating range of the system. 
Any independent monotonic trend identification is 
considered to be anomalous behavior of the signal.  

The grey are highlighted in the figures represents Confidence 
Band of the signal, which is the expected range of operation. 
As discussed before, methodology keeps on dynamically 
calculate this confidence band. Anomaly events are generated 
when the signal exceeds this confidence band. 

4.1. Example of Fast Degradation 

This section describes the example in which underlying 
degradation phenomena is Fast in nature and happens with in 
time window of 24 hours. 

4.1.1. Fast Degradation Profile 1 

 
Figure 7. Detection of Fast Degradation event 1 

4.1.2. Fast Degradation Profile 2 

 
Figure 8. Detection of Fast Degradation event 2 

As seen from Figure 7 & Figure 8, the methodology can 
effectively capture fast degradation of the signal, even when 
signal has high oscillation or a reset.  

4.2. Example of Slow Degradation 

This section describes the example in which underlying 
degradation phenomena is Slow in nature, accumulates over 
a longer period of time and happens with in time window of 
7 days. 
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4.2.1. Slow Degradation Profile 1 

 
Figure 9. Detection of Slow Degradation event 1 

4.2.2. Slow Degradation Profile 2 

 
Figure 10. Detection of Slow Degradation event 2 – Noisy 

signal 
 

In some cases, the monitored signal can be noisy and this may 
impact the detection capability of the algorithm. A such 
example is visible in Figure 10, where the raw signal is noisy, 
but at the same time shoes a slow degradation process. With 
the novel approach of the methodology, segregating low 
frequency of the signal, the methodology is effectively able 
to denoise the signal and accurately captures the degradation 
trend.  

4.3. Timely Corrective Actions 

The degradation patterns detected by this analytic could be 
associated to some specific failure modes of the system, thus 
mapping of this potential root cause with detected type of 
degradation phenomena is of high importance. Based on 
strong OEM knowledge, Baker Hughes has identified up to 8 
root causes for degradation patterns. Some of these root 
causes are Instrument deviations, Clogging, Condensation, 

Process fluctuations, Fouling etc. With the given identified 
root cause, diagnostic engineers then propose a targeted 
corrective actions to the site service engineers. 
Implementation of this corrective actions eventually leads to 
improved uptime of the unit with no unscheduled 
shutdowns/repairs for the end customer. 

5. RESULT ANALYSIS 

To summarize, the novel methodology proposed by the 
authors, separates High frequency and Low frequency 
component of the signal to effectively denoise the data and 
separate the rapid changes happening into the signal.  

As the degradation profile is strongly dependent on the time 
interval, currently 2 observation windows have been 
considered. Results have shown that method is effectively 
able to capture the Fast and Slow degradation of the signal, 
whereas standard methods like Mann Kendall and Thiel Sen 
slope has not been very effective and accurate in either 
identifying the degradation trend or wrongly capturing the 
degradation. It is to be further noted that, analytic has quite 
good generalization capability as it is able to catch wide 
operating range of signal as observed from Figure 7, 8, 9 & 
10. 

In order to validate the methodology on a larger data set, the 
approach was applied on 600+ turbomachines being 
monitored by Baker Hughes’s iCenter eco system. With 
extensive understanding of Turbomachines system, signals 
for validation were selected in such a way that signal show a 
degradation trend due to inherent malfunctioning of the 
system. Some of the examples of these signals are Filter 
Differential Pressure, Vent Pressure, etc.  Methodology was 
tested in a Batch process where incoming data with a given 
sampling frequency of 1 minute was processed in a batch of 
2 hours.  

To calculate the key performance indicators of the 
methodology, a manual approach was used which required a 
great effort from the subject matter experts to analyze all the 
events generated by the algorithm. The methodology was also 
tested on a number of real cases of degradation that were 
already known to the monitoring service. 

Table 2 shows the performance metrics of the method 
implemented.   

Table 2. Performance of Method during Validation 
 

Details Value 
Number of Assets on which methodology 

was applied  600+ 

Average processing time for 2 hours batch 
with 1 minute sampling 

1.1 seconds / 
asset 

Total Degradation events captured on 
multiple signals 50+ 

Probability of Detection  > 95% 
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False Positive Rate < 5% 
False Negative Rate < 5% 

Precision > 95% 
Recall > 95% 

 

6. CONCLUSION 

In this paper, the authors discussed the problem of detecting 
degradation phenomena in the application field of 
turbomachinery and explained the importance of 
implementing early detection of such events in Baker Hughes 
continuous monitoring service.  

Authors have also described degradation phenomena which 
accumulates with time scales of different duration, happening 
on different signals acquired on turbomachines. The existing 
methods for the identification of degradation patterns, 
already known in the literature, have not been deemed 
accurate enough for general purpose applicability required by 
the solution. A novel approach has been developed 
comprising strong features, like the extraction of low 
frequency component of the signal, the incorporation of time 
based correlation and linear regression model applied on 
multi time observation window. It was shown that these 
unique features empower the method with accurate detection 
rate, precision and recall. The proposed methodology also 
embeds autonomous learning and auto setting capability that 
enables generalized application covering multiple types of 
signals with wide operating ranges.  

To validate the new methodology on a large data set, tests 
were performed on historical timeseries data from more than 
600+ turbomachines being monitored by Baker Hughes’s 
iCenter eco system. The signals were chosen on some 
families of mechanical systems which generally can present 
degradation phenomena during their life cycle. The paper 
then also discusses some real detection cases and explains the 
process through which the probable associated root causes 
are identified and the corrective actions are suggested to the 
final customers for field implementation. Finally, the 
performance matrix of the methodology is shown, which was 
found to comply with the stringent detection requirements 
followed by Baker Hughes. 

NOMENCLATURE  

LNG Liquified Natural Gas 
OEM     Original Equipment Manufacturer 
MK Mann Kendall 
TS  Thiel Sen 
RMSE Root Mean Square Error 
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ABSTRACT 

Product Lifecycle Management (PLM) systems are 
commonly used to manage various product data generated 
throughout the product lifecycle. This paper explains the 
results obtained by multiple participants using commercial 
software within the PLM environment to perform structural 
and vibration analyses of an Anemometer. Generative design 
techniques were employed for 3D CAD modeling of the 
Anemometer, and the commercial analysis software 
NASTRAN was used for simulation analyses. The open-
source PLM system ARAS Innovator's project and workflow 
management modules were utilized to manage the generated 
design data, allocate tasks among participants, and control 
schedules. Through this approach, we propose a method to 
predict and manage the replacement cycle of Anemometer. 

Key Words: Generative Design, PLM, Nastran, ARAS 
Innovator 

1. INTRODUCTION 

Currently, the technology for generative AI is very active and 
progressing at a very fast pace. [1] This direction is also being 
applied to industrial companies to reflect generative design [2], 
and this research is being conducted through a research 
project as described later.  

This study is still a work in process, and the model applied in 
this study evaluated the structural stability of an anemometer, 
one of the products of the client company, and presented a 
case of applying it to ARAS Innovator, an OPEN PLM 
solution, as a management method for a large number of 
design plans generated through generative design. He is 
currently conducting research by expanding its application to 
assembly design in the aero/defense field. 

2. DISCUSSION 

2.1. Structural Analysis  

Fig.  1 shows an anemometer that was damaged during 
operation. To analyze it, we performed a structural analysis 
as shown in Fig.  2, a structural analysis was performed. 

 
Fig.  1 Breakage of the Anemometer cup 

 

 
Fig.  2 Analysis process flow chart 

Joongyu Choi et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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Fig.  3 Structural & Natural Frequency Analysis 

 
The analysis showed that the natural frequency analysis of 
the structure should be designed to avoid the vortex-induced 
vibration frequencies around the anemometer cup, and a 
generative design was derived to satisfy these design criteria. 
 

2.2. Generative Design Draft 

Fig.  4 shows a schematic of the design generation process. It 
shows the process of generating a large number of designs 
using generative design methods and then optimizing them to 
find the optimal design. This detailed study is in progress 
through joint research [3]. 

Fig. 4 at the bottom, Generative Adversarial Networks with 
Boundary Constraints (GAN-BC), a deep learning-based 
model for reverse engineering, is shown. The samples 
generated from the model and their prediction performance 
were considered, and supervised learning was performed 
using the data extracted for prediction and used as a surrogate 
model. This improved the engineering performance and 
additive manufacturing suitability of the design created by 
learning in a direction that minimizes the predicted 
performance value. 

1,000 samples were generated by learning GAN-BC, and 
compared to existing randomly generated samples, the 
average weight decreased by about 35.6% from 2.16 kg to 
1.39 kg, the average amount of support also decreased by 
about 21.6%, and the defined It was noticed that the 
evaluation criteria had improved. 

 

 
Fig.  4 Generative Design Framework 

 

2.3. Adapting to an open PLM system  

The massive number of design alternatives generated through 
generative design techniques necessitates the establishment 
and management of a database containing the characteristics 
of each design alternative. Additionally, procedures such as 
history management for items reviewed at each step of the 
workflow will be required. 

To implement these elements, we applied the open-source 
PLM system ARAS INNOVATOR to our research. In Fig.  5, 
we created a Workflow Manager environment for the design 
process using the Workflow Map module. Fig.  6 
demonstrates an example of establishing a database for the 
design alternatives. 
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Fig.  5 Workflow Manager for Generative Design 

 

 
Fig.  6 Open PLM System Application Cases 

 

In the case of workflow manager development, the first year 
was conducted in an environment where the outputs from 
each joint organization were integrated, and the second year 
was conducted to apply it to the PLM system. Currently, 
research on embedding it in the CAD system is in progress 
through the third year. 

3. CONCLUSION 

So far, we have introduced the analytical evaluation and 
generative design of anemometer, as well as the management 
plan for multiple design alternatives. Although there were 
limitations in terms of functionality due to its open-source 
nature, it is believed that systematic management data for the 
generated designs will play an important role. Subsequent 

research is ongoing to apply the final design selected through 
optimization to production via 3D printing [4]. Based on the 
technologies developed through such application cases, we 
are currently conducting generative design for wearable 
devices in the aerospace and defense industries. Additionally, 
we are actively promoting our work to secure demand from 
companies in the electrical and electronics sectors. 
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ABSTRACT 

In the construction of health indicator for electromechanical 
equipment, selecting features that exhibit monotonicity, trend 
characteristics, and a strong correlation with equipment 
health is paramount to accurately reflect these indices. With 
the advent of numerous libraries and models for time-series 
data feature extraction, the range of potential features has 
expanded significantly. Despite this proliferation, there is a 
lack of extensive research on effective feature selection. This 
paper investigates the efficacy of the Maximum Information 
Coefficient (MIC) method in extracting features that align 
with the monotonicity and trend-related requirements of 
electromechanical equipment health indicator. Our 
experiments indicate that the MIC method adeptly identifies 
pertinent features for the construction of these indices, 
underlining its utility in the field of health monitoring for 
electromechanical systems. 

1. INTRODUCTION 

The construction of health indicator is essential for evaluating 
the current health status of engineering systems and their 
critical components, playing a pivotal role in inferring their 
Remaining Useful Life (RUL). The accuracy of RUL 
predictions hinges on the ability to develop health indicator 
that precisely reflect the condition of these components. 
Gears, for instance, are key elements in transmission systems. 
Damage to gears can lead to severe economic losses and 
potential personnel injuries. Therefore, accurately assessing 
their health status is crucial to prevent accidents caused by 
gear failures. This underlines the importance of reliable 
health indicator construction as a preventative measure 
against unforeseen mechanical breakdowns. 
 
Supported by Sichuan Science and Technology Program, 
NO:2023YFG0030 
E-mail addresses: hongli_gao@home.swjtu.edu.cn (H. Gao). 

Currently, in the fault diagnosis and predictive analysis of 
gears, the application of vibration signals collected by 
accelerometers is the most widespread. Compared to other 
types of signals, such as temperature and pressure, vibration 
signals exhibit a higher sensitivity in detecting changes in 
gear health status [1]. The typical process for constructing 
health indicator, as illustrated in Figure 1, comprises four 
distinct stages: data acquisition, feature extraction, feature 
selection, and feature fusion, culminating in the construction 
of the health indicator. This structured approach ensures a 
comprehensive analysis, leveraging the sensitivity of 
vibration signals to accurately reflect the health status of the 
gears. 

 
Figure 1. Typical Process for Health Indicator Construction. 

In the construction of health indicator, feature extraction 
methods predominantly yield three types of features [2]-[3]. 
The first type, statistical domain features, are derived through 
statistical analysis to capture key characteristics of the data. 
They describe central tendencies, distribution ranges, and 
deviations in data shape. The second type, temporal domain 
features, focus on analyzing changes and dynamic properties 
in time series data. Finally, spectral domain features are 
identified through frequency analysis, uncovering periodic 
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components and spectral distributions within the data. 
Techniques like Fourier transform and other spectral analysis 
methods are employed to extract frequency components, 
which are crucial for understanding oscillatory patterns and 
frequency-related characteristics in the data. These three 
feature types compress information carried by the original 
signal from different perspectives. In health indicator 
construction, they play pivotal roles, complementing and 
interrelating with each other to provide a robust feature 
foundation for a comprehensive assessment of health 
conditions. 

In the context of constructing health indicator, three principal 
methods are employed for feature selection: filter methods, 
wrapper methods, and embedded methods [4]. Filter methods 
involve selecting features based on specific metrics, with the 
selection process operating independently of the health 
indicator construction algorithm. This approach prioritizes 
features based on their statistical properties. In contrast, 
wrapper methods iteratively utilize the algorithm to assess the 
impact of different feature sets on the performance of the 
health indicator. This process iteratively evaluates and selects 
features based on their contribution to the model's 
effectiveness. Finally, embedded methods integrate feature 
selection directly into the algorithm's internal structure. This 
approach leverages the intrinsic properties of the algorithm to 
optimize feature selection concurrently with model training, 
leading to a more cohesive and efficient feature selection 
process. 

Filter methods operate independently of any health indicator 
construction algorithms. In the context of health indicator 
construction, filter methods generally rely on a single metric 
for feature evaluation or employ an average of 2-3 metrics to 
determine the ranking. Medjaher et al. [5] introduced a novel 
hybrid feature significance ranking metric in their feature 
evaluation, incorporating monotonicity, correlation, and 
robustness for Health Indicator selection. Sun et al. [6] 
proposed the TWM-U2PL, consisting of a teacher model and 
a student model. The teacher model includes two independent 
classifiers that assist in extracting and categorizing wear 
features. Hu et al. [7] presented a method using minimum 
Redundancy Maximum Relevance (mRMR) to measure the 
similarity between features and the correlation between 
features and categories, facilitating the selection of 
dimensionless indices. Anil Kumar et al. [8] extracted 
statistical features from time-domain, frequency-domain, and 
time-frequency domain signals. They identified important 
features by calculating feature scores based on the differences 
in feature values between nearest neighbor pairs of instances. 

In the process of constructing health indicator, information 
theory has been applied to enhance the effectiveness of fault 
feature extraction and health indicator formulation. Akhand 
Rai et al. [9] utilized multiscale fuzzy entropy extracted from 
vibration signals as fault features. These multiscale fuzzy 
entropy feature vectors form probability distributions. The 

Jensen-Rényi divergence technique is then applied to 
differentiate the probability distributions of degraded and 
healthy multiscale entropy feature vectors, thereby 
establishing the desired health indicator. Sui et al. [10] 
proposed a bearing RUL prediction method using Mutual 
Information (MI) and Support Vector Regression (SVR) 
models to accurately assess the degradation state of 
mechanical equipment and comprehend bearing RUL 
information. Ekhi Zugasti et al. [11] introduced feature 
selection methodologies using Principal Component 
Analysis (PCA), Uniform Minimum Redundancy Maximum 
Relevance (UmRMR), and a combination of both, aimed at 
resolving the damage detection problem. These approaches 
demonstrate the value of information-theoretic techniques in 
creating more accurate and reliable health indicator for 
mechanical systems. 

Selecting features based on criteria such as monotonicity and 
correlation poses a challenge in effectively gauging the 
relative importance of each metric. This paper introduces a 
feature selection method for health indicator utilizing the 
MIC ranking, which is adept at identifying features that 
encapsulate a comparatively higher quantity of degradation 
information. The structure of the remainder of this paper is as 
follows: Section 2 details the proposed MIC-based health 
indicator feature selection method. Section 3 describes the 
experimental setup and data acquisition process. 
Experimental results are presented in Section 4. Conclusions 
are drawn in Section 5. 

2. METHODOLOGY 

In the construction of health indicator, feature selection 
constitutes a crucial aspect. Given the plethora of feature 
extraction methods available, it is imperative to selectively 
identify features that accurately represent the state of 
degradation. Such features typically necessitate possessing 
two key attributes: monotonicity and correlation. These 
attributes are quantifiable and can be effectively measured 
using specific formulas, designated as Eq. (1) for 
monotonicity and Eq. (2) for trendiness, as detailed in the 
referenced literature [12]. 

Monotonicity primarily measures the trend of a feature, 
whether it is consistently increasing or decreasing. A feature 
with the higher monotonicity indicates the better degradation 
with an increasing/decreasing trend. The calculation of 
monotonicity is conducted as follows: 

𝑀𝑜𝑛(𝑓𝑖) = |
#(∆𝑓𝑖 ≥ 0)

𝐿 − 1
−

#(∆𝑓𝑖 < 0)

𝐿 − 1
| (1) 

where 𝑀𝑜𝑛(𝑓𝑖) is the monotonicity value for the 𝑖𝑡ℎ feature 
𝑓𝑖 with length of 𝐿. ∆𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖 is the difference between 
consecutive elements. #(∆𝑓𝑖 ≥ 0) represents the number of 
non-negative differences in the 𝑓𝑖  sequence. #(∆𝑓𝑖 < 0) 
represents the number of negative differences in the 𝑓𝑖 
sequence. 
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Correlation as a metric primarily reflects the degree of 
correlation between a feature and the time of degradation. 
The formula for calculating correlation is as follows: 

𝐶𝑜𝑟𝑟(𝑓𝑖, 𝑇𝑖) = |
𝑐𝑜𝑣(𝑓𝑖, 𝑇𝑖)

𝜎𝑓𝑖 ∙ 𝜎𝑇𝑖

| (2) 

where 𝑐𝑜𝑣 is the covariance of 𝑖𝑡ℎ  feature 𝑓𝑖  with the time 
vector 𝑇,and 𝜎 is the standard deviation. 
An effective understanding of the concepts of monotonicity 
and correlation in feature analysis can be easily achieved by 
referring to Figure 2. This figure is divided into two parts: the 
left side depicts the behaviors of four distinct features, 
labeled F1 through F4, across their entire lifecycle. The right 
side, in contrast, illustrates the corresponding Monotonicity 
Score and Correlation Score for each of these features. By 
examining these graphical representations, one can clearly 
discern how different features exhibit varying levels of 
monotonicity and correlation over time. 

 
Figure 2. Four representative features. F1 represents high 

Monotonicity and high Correlation, F2 represents low 
Monotonicity and high Correlation, F3 represents high 

Monotonicity and low Correlation, and F4 represents Low 
Monotonicity and Low Correlation. 

The feature selection method for gear health indicators with 
MIC proposed in this paper is able to complete the feature 
selection quickly and, at the same time, ensure the 
monotonicity and trend of the features to a certain extent. 

2.1. Basic theory of The MIC 

The calculation of the MIC [13] necessitates the computation 
of mutual information values between variables. Mutual 
information is a concept in information theory that quantifies 
the degree of mutual dependence between two random 
variables. It serves as a measure of the amount of information 
one variable contains about another. The greater the mutual 
information value, the stronger the interdependence between 
the two variables. When considering two random variables, 
𝑋 and 𝑌 , their mutual information, denoted as 𝐼(𝑋, 𝑌) , is 
defined as follows: 

 

𝐼(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦)
𝑥∈𝑋,𝑦∈𝑌

log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) (3) 

Where 𝑝(𝑥, 𝑦) represents the joint probability distribution of 
𝑋  and 𝑌 , 𝑝(𝑥)  and 𝑝(𝑦)  denote the marginal probability 
distributions of 𝑋 and 𝑌. 
Unlike mutual information, the MIC demonstrates 
heightened sensitivity to a broader range of relationship types 
between variables. It is adept not only at identifying linear 
and non-linear functional relationships, such as exponential 
and periodic, but also at detecting non-functional 
relationships, including combinations or overlays of 
functional relationships. The aim of MIC is to provide a 
unified measure of similarity for various types of 
relationships. MIC builds upon the concept of mutual 
information. It operates by exploring all possible grid 
partitions of the data, seeking the partitioning that maximizes 
the mutual information. The value of MIC ranges between 0, 
indicating no relationship, and 1, signifying a perfect 
correlation. This range provides a clear and quantifiable 
indication of the strength and nature of the relationship 
between the variables. The MIC functions by calculating 
mutual information across a range of different grid partitions, 
with the objective of identifying the partition that maximizes 
this mutual information. Specifically, for a given dataset, the 
MIC algorithm evaluates various grid sizes and 
configurations. It systematically computes the mutual 
information for each of these configurations. The 
configuration that yields the highest mutual information is 
then selected, and its corresponding mutual information value 
is designated as the MIC value. 
In a dataset comprising data points with two attributes, X and 
Y, these points are distributed within a two-dimensional 
space. To analyze these data, an 𝑚 × 𝑛  grid is utilized to 
partition this space. The frequency of data points falling 
within a specific row 𝑥 of the grid is used to estimate the 
marginal probability 𝑝(𝑥). Similarly, the frequency of data 
points in a particular column 𝑦 is used as an estimate for the 
marginal probability 𝑝(𝑦) . Furthermore, the frequency of 
data points located within a specific cell (𝑥, 𝑦) of the grid 
provides an estimate for the joint probability 𝑝(𝑥, 𝑦). 

𝑝(𝑥, 𝑦) =
𝑁(𝑥, 𝑦)

∑ ∑ 𝑁(𝑖, 𝑗)𝑛
𝑗=1

𝑚
𝑖=1

 (4) 

By altering the method and arrangement of the grid 
partitioning, a range of mutual information values can be 
generated. This variation is crucial in the process of 
calculating the MIC. 

𝑀𝐼𝐶(𝑋, 𝑌) = max
𝑚∗𝑛≤𝑛𝑎

𝐼(𝑋, 𝑌)

log2 min (𝑚, 𝑛)
 (5) 

Where 𝑛 represents the scale of the data. The value of the 
constant 𝑎  can be set based on experience or scale. The 
condition 𝑚 ∗ 𝑛 ≤ 𝑛𝑎 is to limit the size of the grid for the 
purpose of dividing regions. Dividing by log2 min (𝑚, 𝑛) 
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completes the normalization of data in different dimensions, 
ensuring that their values fall within the interval [0,1]. 

2.2. Features Selection in Health indicator Utilizing MIC 
Ranking 

This paper primarily investigates feature extraction and 
selection from vibration signals. The features extracted in this 
study are listed in the accompanying table. For detailed 
explanations of each feature's significance and technical 
definitions, readers are referred to literature [2], as this paper 
focuses on the application rather than the detailed 
descriptions of these features. It is important to note that some 
features yield multiple output values. In such cases, each 
distinct output is assigned a unique Feature ID to facilitate 
clear identification and analysis. 

Table 1. Feature List. 

ID 
Statistical 
Domain 
Features 

ID 
Temporal 
Domain 
Features 

ID 
Spectral 
Domain 
Features 

1 Absolute 
energy 2 Area under 

the curve 9 Fundamental 
frequency 

4 Average 
power 3 Autocorrelati

on 23 
Max  
power 
spectrum 

6-7 ECDF 
Percentile 5 Centroid 33 Median 

frequency 

8 Entropy 24 Maximum 
frequency 39 Power 

bandwidth 
10- 
19 Histogram 27 Mean 

absolute diff 43 Spectral 
centroid 

20 Interquartile 
range 28 Mean diff 44 Spectral 

decrease 

21 Kurtosis 31 Median 
absolute diff 45 Spectral 

distance 

22 Max 32 Median diff 46 Spectral 
entropy 

25 Mean 35 Negative 
turning points 47 Spectral 

kurtosis 

26 
Mean 
absolute 
deviation 

36 
Neighbourho
od 
peaks 

48 

Spectral 
positive 
turning 
points 

29 Median 38 Positive 
turning points 49 Spectral 

skewness 

30 
Median 
absolute 
deviation 

41 Signal 
distance 50 Spectral 

slope 

34 Min 54 Sum absolute 
diff 51 Spectral 

spread 

37 Peak to peak 
distance 56 Zero crossing 

rate 52 Spectral 
variation 

40 Root mean 
square     

42 Skewness     

53 Standard 
deviation     

55 Variance     

In the context of feature selection for health indicators, it is 
necessary to first construct a progressively growing sample 
sequence 𝑻 =  [1, 2, . . . , 𝑁] based on the sampling interval. 
The feature set composed of features in TABLE I is denoted 
as 𝑭 =  {𝑭𝟏, 𝑭𝟐, . . . , 𝑭𝑳} . The pseudocode for feature 
selection is as follows: 
Table 2. Based on MIC Health Indicator Feature Selection. 
Input:𝑻, 𝑭 

output: 𝑭 are sorted by MIC 
1: for each feature 𝑭𝒊  ∈  𝑭 do 
2:     MIC of 𝑭𝒊 = 0 
2:     for (𝑚, 𝑛) such that 𝑚 ∗ 𝑛 ≤ 𝑛𝑎 do 
3:           Divide 𝑻, 𝑭𝒊 according to 𝑚, 𝑛 to form a grid 𝐺 
4:           Calculate the mutual information 𝐼(𝑭𝒊, 𝑻) of 𝑭𝒊 and 𝑻  

            on grid 𝐺 
5:           Normalized mutual information 
6:           if Normalized mutual information> MIC of 𝑭𝒊 
7:                MIC of 𝑭𝒊 = Normalized mutual information 
7:      Add MIC of 𝑭𝒊 in MIC list 
8: Sort 𝑭𝒊 in 𝑭 by MIC list 

The two principal characteristics of the MIC offer significant 
advantages in the context of feature selection for health 
indicator. 
Generality: The MIC demonstrates a high degree of 
applicability across a wide array of relationship types, 
encompassing linear, non-linear, monotonic, and non-
monotonic associations. This Generality enables the selection 
of features that are representative of diverse functional 
relationships, thereby facilitating more effective feature 
fusion in reflecting health indicator. 
Equitability: MIC exhibits a relatively consistent sensitivity 
across different types of relationships. This means that 
whether the relationship between variables is linear, 
curvilinear, or follows other complex patterns, MIC can 
identify it with similar efficacy, provided the relationship is 
sufficiently strong.  Consequently, MIC is capable of 
selecting features that are most relevant and informative, 
enhancing the accuracy and reliability of the resulting health 
indicator. 

3. EXPERIMENTAL PROCEDURE 

In this study, the experimental data set was collected through 
accelerated degradation tests conducted on gears. The 
experimental platform consisted of a two-stage parallel-axis 
gearbox. The torque applied to the gearbox was generated by 
a load motor attached to the output end. An accelerometer 
was mounted at the output cover to capture vibration signals 
along the Z-axis of the gearbox. The data collection was 
conducted with a high sampling frequency of 12,800 Hz, 
ensuring detailed capture of the vibration characteristics. The 
input frequency to the gearbox was set at 40 Hz. The platform 
for accelerated degradation tests conducted on gears is shown 
in Figure 3. The position relationship of each transmission 
gear in the gearbox is shown in Figure 4. 
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Figure 3. Experimental Platform. 

 
Figure 4. Position Relationship of Each Transmission Gear 

in the Gearbox 

For detailed specifications of the basic gear parameters, 
readers are directed to Table 3. Additionally, the data set 
encompasses real-life operational data of gearboxes 
throughout their entire lifecycle, recorded under three 
different load conditions. For a more comprehensive 
understanding of these data sets, including the specific 
conditions and parameters, please refer to Table 4. 

Table 3. Gearbox Parameters. 

Parameters Primary 
Gear Units 

Secondary 
Gear Units 

Number of small gear teeth 29 36 
Number of large gear teeth 95 90 

Pinion tooth width/mm 15 15 
Large gear tooth width/mm 15 15 

Modulus/mm 1.5 1.5 
Pressure angle/° 20 20 

Table 4. Experimental Data Set. 

Gear 
ID torque load Total Working 

Hours (H) 
Sample 

Size 
𝐺_1 50% 110 3303 
𝐺_2 60% 102 3079 
𝐺_3 70% 34 1022 

Figure 5 provides a graphical representation of the vibration 
signals from the tested gearbox, labeled G_1, over its entire 
lifecycle. The temporal progression of these signals is 
distinctly illustrated, with noticeable variations becoming 
evident as time progresses. This variation in the vibration 
signals is indicative of changes in the gearbox's condition, 
suggesting a correlation with the performance degradation of 
the gear. 

 
Figure 5. The Z-axis Vibration Signals Over Entire 

Lifecycle of G_1. 

4. RESULT AND DISCUSSION 

The study involved extracting a comprehensive set of 56 
features from the full lifecycle experimental data of three 
distinct gear sets. Following the extraction, the feature 
selection process, as detailed in Section 2.2 of this document, 
utilized the MIC algorithm. This algorithm was applied to 
each feature to calculate its MIC value, assessing the strength 
of the relationship between the feature and the gear's health 
status. Subsequently, the features were sorted based on the 
average MIC values computed across the three gear sets, 
providing a comparative view of their significance. The 
results of this feature selection and sorting process are 
illustrated in the Figure 6, offering insights into the relative 
importance of the various features in the context of gear 
health monitoring.

 
Figure 6. MIC Values for 56 Features of Three Gears. 
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Figure 7. Lifecycle Curves of the Top Six Features Ranked by MIC Score. 

 
Figure 8. Lifecycle Curves of Features Ranked in the Bottom Six by MIC Score

It is observed that some features exhibit MIC Scores nearing 
1 in Figure 6, indicating a significant non-linear relationship 
between these features and the equipment's degree of 
degradation. To analyze this further, the features with the top 
six and bottom six MIC Scores were normalized and their 
lifecycle variation curves were plotted in Figure 7 and Figure 
8. The analysis reveals that the features ranked in the top six 
display pronounced trendiness and a certain degree of 
monotonicity, suggesting a strong correlation with the 
equipment's degradation process. Conversely, the features 

ranked in the bottom six show little to no discernible trend or 
pattern. This contrast underscores the efficacy of MIC Scores 
in distinguishing features that are strongly indicative of 
equipment health from those that are less informative. 
Utilizing Eq. (1) and (2), the monotonicity and trendiness 
indices of the features were calculated. The analysis revealed 
a discernible positive correlation between the MIC values and 
these indices in Figure 9. Specifically, it was observed that 
features with higher MIC values tend to exhibit more 
pronounced monotonicity and trendiness. Conversely, 
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features with lower MIC values generally show weaker 
performance in these aspects. This correlation indicates that 
the MIC can be a reliable indicator of a feature's relevance, 

particularly in terms of its monotonic and trend-based 
behavior, which are critical attributes in assessing the health 
and degradation of equipment.

 
Figure 9. MIC Score, Monotonicity Score and Correlation Score.

5. CONCLUSION 

The application of the MIC algorithm in this study has proven 
to be highly effective in selecting features that correlate 
closely with gear health. This approach ensures that the 
resultant health indicator exhibit enhanced monotonicity and 
trendiness, thereby providing a more accurate reflection of 
the gear's condition. Notably, MIC also effectively 
compensates for the shortcomings of mutual information by 
offering a more comprehensive quantification of the 
correlation between features and equipment health. 

However, it is important to acknowledge a key limitation of 
the MIC algorithm: its reliance on large datasets for 
meaningful computation. The efficacy of MIC is significantly 
reduced when applied to smaller datasets. Recognizing this 
constraint, future research efforts will focus on modifying 
and improving the algorithm to better suit applications 
involving smaller data samples. Such advancements will 
broaden the applicability of this method, allowing for more 
versatile and reliable gear health assessments across a wider 
range of data scenarios. 
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ABSTRACT

Historical condition monitoring data from technical systems
can be utilized to develop data-driven models for predicting
the remaining useful life (RUL) of similar systems, whereas
the Health Index (HI) often is a crucial component. The de-
velopment of robust and accurate models requires meaning-
ful features that reflect the system’s degradation process, en-
abling an accurate prediction of the system’s HI. Tradition-
ally, the identification of those is supported by one of various
feature ranking methods. In literature, feature interdependen-
cies and their transferability across various similar systems
are not sufficiently considered in feature selection, exacer-
bating the challenge of HI prediction posed by the scarcity
of data and system diversity in real-world applications. This
work addresses this gaps by demonstrating how filter-based
feature selection, incorporating failure thresholds and cross
correlations, enhances feature selection leading to improved
HI prediction. The proposed methodology is applied to a
novel dataset* obtained from run-to-failure experiments on
geared motors conducted as part of this study, which presents
the aforementioned challenges. It is revealed that classical
feature selection, consisting of feature ranking only, leaves
potential untapped, which is utilized by the proposed selec-
tion methodology. It is shown that the proposed feature se-
lection methodology leads to the best result with a RMSE of
0.14 in predicting the HI of a constructive different gearbox,
while the features, determined by classical feature selection,
lead to a RMSE of 0.19 at best.

Alexander Loewen et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.
* The dataset called Lenze-GD is accessible via:
https://doi.org/10.5281/zenodo.11162448.

1. INTRODUCTION

Early fault detection of mechanical systems like gears and
motors is an important topic for industrial production, helping
companies to predict equipment failures, reduce downtime
and to ensure the reliability and safety of industrial systems.
The analysis of data from time series sensors like acoustic, vi-
bration, position, or current is of great interest to monitor the
health condition of machines and to predict failure in the me-
chanical systems life-cycle. The prognostics of the remain-
ing useful lifetime (RUL) aims to predict operating time of
a typical operational lifespan that a mechanical system has
already passed and estimate the amount of the remaining use-
ful life. In particular, vibration signals have been widely used
for RUL-prognostics. However, the usage of signals acquired
from inverts like the motor current reduces costs of installa-
tion and maintaining external sensors. Under the limitation of
a drive system including an induction motor and an inverter
with a sufficient data interface, the motor becomes the sensor.

A major challenge in developing accurate and robust RUL-
prognostics is the limitation of data, especially in scenarios
where abnormal observations are rare or difficult to obtain,
referred to as data scarcity. In this study geared motors are fo-
cused, which are combinations of toothed-wheel-based gear-
boxes and of electric induction motors. To match the diverse
requirements of customers, the geared motors can be config-
ured and scaled individually. These customized geared mo-
tors can be used in a variety of different machine types, which
also may be customized. In many real-world problems it is re-
alistic that only a few or none run-to-failure data-collections
are available and thus often only data from the healthy motor
can be used for model training.

The work is structured as follows. Section 2 presents a com-
prehensive feature engineering methodology with focus on

1
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feature selection to overcome data scarcity and address sys-
tem differences. A multi-stage feature selection methodology
is described followed by the machine learning (ML) models
used and trained based on the selected features. ML algo-
rithms employed are Gaussian Process Regression (GP), Lin-
ear Regression (LR), Multi-Layer-Perceptron (MLP), Ran-
dom Forest (RF) and Support Vector Machine (SVM). Next, a
novel dataset from run-to-failure experiments on geared mo-
tors including gear-mesh and bearing failures is introduced
in section 3. The experimental setup and the recorded data,
which are obtained from a frequency inverter, are described.
In section 4, the proposed feature engineering methodology
is applied on the new data. In section 5 the advantages over
the classical feature selection, consisting of feature ranking
only, is shown resulting in the best root mean squared error
(RMSE) of 0.14, in contrast to the classical selection’s best
RMSE of 0.19 in predicting the health index (HI).

2. METHODOLOGY

In this paper, a broadly used workflow for diagnostics and
prognostics of technical systems is utilized, which comprises
the elements data preprocessing, feature extraction and diag-
nostics or prognostics algorithm (Goyal, Mongia, & Sehgal,
2021; Ly, Tom, Byington, Patrick, & Vachtsevanos, 2009).
Depending on the application, these elements are generally
adapted and optimized to suit the circumstances of any given
application. The methodology employed prioritizes a more
generalized process. To address this limitation, feature en-
gineering is focused wherein a wide range of features are
computed, adapted and a multi-stage feature selection process
is adopted to select subsequently the most relevant features.
Data-driven algorithms are then trained with the selected fea-
tures within a cross-validation process that includes hyperpa-
rameter optimization to predict the HI of the system. These
steps are parameterized by means of the systems used for
training and then applied to the system used for testing. The
whole process is shown in Fig. 1 comprising feature extrac-
tion, feature processing, feature selection and model training
including hyperparameter optimization, with particular focus
on feature selection, whereas Fig. 2 shows the steps from fea-
ture processing to correlation analysis with more detail. The
steps are described in the following.

2.1. Feature Extraction

Feature extraction is applied to each measurement and chan-
nel to extract information regarding system’s degradation over
time. To address a variety of a system’s characteristics, a mul-
titude of features are computed, aiming to encompass a wide
range of potential applications where any given feature may
capture the system’s degradation process. To extract features
from time series data, the publicly available Python pack-
age tsfresh is used (Christ, Braun, Neuffer, & Kempa-Liehr,
2018). tsfresh is utilized for an automatic extraction of time

Feature
extraction

Feature
selection

Model training
& optimization

Threshold
preselection

Feature
ranking

Correlation
analysis

Feature
processing

Training
data

Trained
model

Final feature
ranking

Figure 1. Overview of the applied training process.

series features which comprises features from the time, fre-
quency, and time-frequency domains.

In the review of (Goyal et al., 2021), several use cases re-
garding rotating mechanical systems are consolidated, high-
lighting the frequent utilization of the fast Fourier transform
(FFT) for analysis. This underlines the capacity of FFT to
extract information from data, particularly from systems with
rotating components, to infer health-related insights. There-
fore, additional frequency-dependent features are calculated
by dividing the frequency spectrum into sections defined by
a constant percentage bandwidth (CPB). Maximum and av-
erage FFT coefficients are extracted from the corresponding
sections to capture amplitude changes in smaller frequency
spectrums. A CPB analysis has been utilized, among other
fields, in the field of acoustics (Gram-Hansen, 1991), provid-
ing the opportunity to efficiently consider the entire frequency
spectrum within comprehensive feature extraction.

2.2. Feature Processing

Feature processing encompasses feature smoothing and fea-
ture scaling. Feature smoothing is utilized to reduce noise
and variability from the feature data, making underlying pat-
terns and trends more apparent. The moving average is of-
ten applied for this purpose. Feature scaling involves scaling
the computed features based on the median value of their ini-
tial feature data points as shown in Eq. (1). Here, fi,j repre-
sents feature i of system j, fi,j,init contains the initial feature
points, and f∗i,j denotes the scaled feature data. This pro-
cess aims to eliminate unwanted influences and facilitate bet-
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Figure 2. Overview and illustration of the feature processing
and selection process.

ter comparability among different systems.

f∗i,j(t) =
fi,j(t)

median(fi,j,init)
(1)

2.3. Feature Selection

Feature selection can be divided into filter, wrapper, embed-
ded and hybrid methods (Hoque, Bhattacharyya, & Kalita,
2014) and is necessary for information concentration. This
paper focuses on filter methods, as they are less computa-
tional intensive in general (Hoque et al., 2014). Feature selec-
tion utilized comprises the steps threshold preselection, fea-
ture ranking and correlation analysis. Threshold-based prese-
lection retains features with similar failure thresholds and dis-
cards those without. It is followed by feature ranking and cor-
relation analyses to remove highly correlated features. The
steps are described in the following.

Threshold preselection: Subsequently on feature process-
ing, a preliminary selection is conducted based on a common
threshold value for each feature across the systems. Thresh-
olds for system failure are often determined using a prede-
fined HI, often as linear, e.g. in (Yang et al., 2016), or con-
structed based on selected features, e.g. in (Thoppil, Vasu,
& Rao, 2021). In more rare cases, only one feature is di-
rectly used if it is sufficient to reflect the degradation process,
provided that it can be used to define a system-wide failure
threshold, e.g. in (Li, Huang, Gao, Zhao, & Li, 2023; Bender
& Sextro, 2021). With limited data, it is difficult to evaluate

Table 1. Metrics considered to determine feature ranking.

Source Mon. Trend. Rob. Name
(Carino et al., 2015) × Spearman
(Nie et al., 2022) × × Cori-Score
(Chen et al., 2019) × × × MTRC
(Zhang et al., 2016) × × × MTRZ

an individual feature for use as a reliable HI, as well as to
construct a HI with respect to a failure threshold. Specific,
multiple features that indicate a common threshold across the
systems are often not explicitly sought out. To do this, a cri-
terion based on the thresholds for each feature and system is
introduced. Firstly, a threshold τi regarding Eq. (2) is calcu-
lated for each feature i with respect to the systems denoted
by j. Here, f̃∗i,j,end denotes the median value of the scaled
feature points within the final portion, defined by α, of the
RUL. The thresholds are reached at different points in the
lifetime of each system. If the minimum reached lifetime,
as determined by the specified threshold, is below β of the
total lifetime of one of the systems, the feature is discarded.
An example is given in Fig. 2, where a feature is marked with
a cross, signifying that the systems 2 reaches the threshold
prematurely, leading to the exclusion of this specific feature.

τi =





min
j
(f̃∗i,j,end) if f̃∗i,j,end ≥ 1

max
j

(f̃∗i,j,end) if f̃∗i,j,end < 1
(2)

Feature ranking: Feature ranking is crucial in predictive
analysis as it allows to identify the most relevant and infor-
mative features. Evaluation metrics employed typically en-
compass assessment of monotonicity and trendability anal-
ysis (Carino, Zurita, Delgado, Ortega, & Romero-Troncoso,
2015; Nie, Zhang, Xu, Cai, & Yang, 2022). Moreover, these
metrics can be combined with a metric to consider the ro-
bustness (Chen, Xu, Wang, & Li, 2019; Zhang, Zhang, & Xu,
2016). A short overview of considered metrics by source to
perform feature ranking is given in Tab. 1 and described in
the following.

In (Carino et al., 2015) the monotonicity is calculated using
the Spearman correlation coefficient, while monotonicity in
(Nie et al., 2022; Chen et al., 2019; Zhang et al., 2016) is as-
sessed through the counts of positive and negative derivatives.
Trendability is assessed usually through calculating the Pear-
son correlation coefficient (Chen et al., 2019; Nie et al., 2022;
Zhang et al., 2016). Here, (Zhang et al., 2016) used smoothed
feature values to encompass monotonicity and trendability,
while all others evaluate the original feature data set. The ro-
bustness of a feature is assessed through comparison the raw
feature values with their smoothed values (Chen et al., 2019;
Zhang et al., 2016). The evaluation across multiple consid-
ered metrics is conducted using either the average score or
the equally weighted sum. In this paper, all of the named fea-
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Table 2. Fictional correlation matrix of the best 3 ranked fea-
tures.

Feature 1 2

1 - -
2 0.955 -
3 0.892 0.851

ture ranking methodologies are considered to get insight into
the potential of the proposed feature selection methodology.

Correlation analysis: Correlation analyses, specifically the
Pearson correlation, are often used, besides for feature selec-
tion, for similarity analyses (Guo, Li, Jia, Lei, & Lin, 2017;
Nie et al., 2022). In this paper, the Pearson correlation is used
to determine the similarity between features. Based on the
similarity, highly similar features are classified as redundant
and discarded, while the best-ranked features are retained.
Tab. 2 provides a fictional example showing a correlation ma-
trix for the ranked features 1, 2 and 3. Feature 2 correlates
with a coefficient of 0.955 with feature 1. Feature 3 shows
correlations of 0.892 and 0.851 with feature 1 and 2 respec-
tively. A parameter can be used to specify which correlation
is acceptable. Features that exceed this parameter across all
systems are discarded, ensuring that only unique and infor-
mative features are retained. If the parameter in the example
shown is set to 0.95, feature 2 is discarded, as it exceeds the
parameter for feature 1.

2.4. Model training and test

Different ML algorithms are applied and optimized with re-
gard to their hyperparameters applying a Bayesian optimizing
algorithm provided by the scikit-optimize library (Head, Ku-
mar, Nahrstaedt, Louppe, & Shcherbatyi, 2021). This tech-
nique is based on probabilistic modeling to explore the hy-
perparameter landscape and find the best parameter combi-
nations (Garnett, 2023). The main goal is not to compare
ML algorithms against each other. Instead, the focus lies
on assessing the effectiveness and obtaining the best possi-
ble prediction result based on the introduced feature selec-
tion method. The ML algorithms employed include GP, LR,
MLP with one hidden layer consisting of 100 neurons, RF and
SVM from the sklearn library (Pedregosa et al., 2011). These
algorithms are trained on processed and selected features and
are optimized within a cross-validation process to predict a
linear HI. The hyperparameter ranges used for optimization
are given in the appendix, with standard values employed if a
hyperparameter is unspecified.

The predictions are constrained between 0 and 1, where 0
denotes system failure. Evaluation of the models is based on
the RMSE as calculated in Eq. (3). Here, ytrue,i denotes the
true and ypredicted,i the predicted HI for each observation i of
n total observations.

Figure 3. Experimental setup. On the left side, the counter
part is shown, which is a helical geared motor. The geared
motor on the right side is the device under test, which is a
bevel gear.

Table 3. Overview of the gearboxes and their nominal values.

Name Type Usage Torque Gear ratio
H110 Helical Counter part 110 Nm 28,738
B45 Bevel Device under test 45 Nm 25,051
H45 Helical Device under test 35 Nm 10,033

RMSE =

√√√√ 1

n

n∑

i=1

(ytrue,i − (ypredicted,i)2 (3)

3. CASE-STUDY

To facilitate the presented studies, a run-to-failure experiment
for geared motors is introduced. A geared motor is installed
in healthy condition and operated until it fails. Throughout
the experiment, a data acquisition system is active to monitor
the signals of all degradation states. In order to complete the
experiment in limited time, the geared motors nominal torque
is exceeded. The experiment is conducted three times in total
and each with multiple operation states during measurement.

3.1. Experimental Setup

The mechanical part of the setup consist of a first geared mo-
tor, the device under test, and a second geared motor, the
counter part, shown in Fig. 3. All gearboxes consist of two
gear stages with in sum four toothed wheels. The function of
the counter part is to create a load for the device under test.
An overview of the nominal values of the gears is given in
Tab. 3. Thereby the counter part has significant higher nomi-
nal torque, to make sure, that the device under test will cause
failure, while the counter part stays in healthy condition. The
actual torque is selected to lie in the mid of the finite life fa-
tigue of the Woehler characteristic of the second and last gear
stage of the device under test to accelerate degradation. Dur-
ing the experiment, the device under test runs with nominal
speed.

4
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Figure 4. Failure of gearbox B45. Shown are the gears from
left to right Z1 with moderate wear, Z2 with minor wear, Z3
with destructive wear and Z4 with moderate wear. As well as
the destroyed bearings’ inner ring next to Z3 and outer ring
next to Z4.

Figure 5. Failure of gearbox H45. Shown are the gears from
left to right Z1 and Z2 with minor wear, Z3 with moderate
wear and Z4 along with the gearbox full of the deteriorated
oil. As well as the destroyed bearings inner ring next to Z3.

In sum, three run-to-failure experiments were conducted, one
with B45 gearbox and two with H45 gearbox. In the follow-
ing, one of the H45 gearboxes will be referred to as H45I and
the other as H45II, if they are considered separately. A run-
to-failure experiment ends when the gearbox failed, which
means its transmission is interrupted. Here, gearbox failure
occurred after around 200 hours (H45II) to 790 hours (B45).
Subsequently, the gearboxes are opened to evaluate the fail-
ures. In the following, the gears are named beginning from
the motor-shaft with Z1 transmitting over Z2 to the middle-
shaft with Z3 transmitting to the output-shaft over Z4.

The B45 gearbox shows a destructive wear at the Z3, while
Z1 and Z4 also show moderate wear, but they stay functional.
Z2 only shows minor wear. All of which is shown in Fig. 4.
This observation can be explained by the higher torque trans-
mitted by Z3 and Z4 than the first gear stage with Z1 and Z2
and the higher rotation speed of Z1 and Z3 resulting in sum
to the high wear of Z3. In addition, the bearing of the middle
shaft most close to Z3 is destroyed.

The failure of the runs with H45 shows only minor wear at the
gears, except Z3 which shows moderate wear, see Fig. 5. The
failures are caused by destroyed bearings next to Z3. Over-
all, both gear wearing and a destroyed bearing in all cases is
observed.

3.2. Data Acquisition

Once per hour, the steady operation of the experiment is inter-
rupted to gather signal measurement of four operation states.
These four states are aligned with the nominal values of the
induction motor for star connection of the device under test.
The states are the combinations of positive or negative nomi-

Table 4. Overview of the channels acquired by the inverter.

Channel Type
1 Direct current
2 Quadrature current
3 Effective current
4 Effective voltage
5 Quadrature voltage
6 Phase current U
7 Phase current V
8 Phase current W

Figure 6. Overview of different derivatives of the current sig-
nal. Channel 1: direct current, Channel 2: quadrature current
and Channel 6: phase current. All signals are in an internal
normalization and thus unit free.

nal speed with nominal or idle torque. Each observation takes
measurement with constant sampling rate of 8 kHz and for
215 sampling points, which defines a time period of about
4 s. During this time period, 8 channels are stored in parallel,
which are shown in Tab. 4.

In contrast to vibration and acoustic signals, the original three
phase currents are alternating, which may negatively influ-
ence some fault detection approaches. Further, the signals
of at least two phases would be needed to cover all neces-
sary information. To counter this, also the current in D-Q-
coordinates as well as the effective current, calculated by the
inverter, are stored, which is briefly shown in Fig. 6. Note that
the direct current is related to the magnetic field, while the
quadrature current is related to the motors torque. In addition,
also the effective and quadrature target voltage are stored,
however which are highly quantized and therefore may be of
limited relevance.

4. APPLICATION

In this section, the presented methodology outlined in sec-
tion 2 is applied on the gearbox data.

Firstly, only the data recorded at nominal speed in the load-
ing direction with idle torque is considered. Additionally, the
running-in process is discarded from the data. A running-
in process is particularly well known for gears and causes
volatile system behavior in the data shortly after machine
commissioning. This can be caused by deforming or break-
age of the highest asperities on the tooth surfaces (Feng et al.,

5
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Table 5. Numbered overview of considered feature ranking
methods.

No. Name Modified
1 Cori-Score
2 Cori-Score ×
3 MTRC
4 MTRC ×
5 MTRZ
6 Spearman

2019). A running-in process is estimated at 50 hours. There-
fore, the initial 50 feature data points, approximately two days
of measurements, are rejected. Subsequently, 20,296 fea-
tures are computed from the 8 channels of each gearbox data.
The feature data set is then divided into a training and a test
dataset, using the data from the H45 gearboxes for training
and the B045 for testing. The target is to select meaningful
features using the data from the H45 gearboxes to train ML
algorithms, as discussed in section 2.4, and to apply them on
the data from the B45 gearbox to finally predict its HI. In the
following, the application of the proposed feature processing
and selection methodology presented in sections 2.2 and 2.3
is described.

Within feature processing, the feature data undergoes smooth-
ing, where a window size of 15 points seems appropriate.
This window size is also used to determine the initial feature
data points fi,j,init to scale the data. For threshold preselec-
tion, α is set to 1 % and β to 85 %. A small value for α
can be selected as the running-in process has been removed.
The value for β is chosen to consider the strong and varying
increase of feature values towards the end of life. Threshold
preselection leads to the exclusion of 19,572 features.

To rank the features, the feature ranking methods discussed in
section 2.3 are employed. Due to the positive experience with
the Spearman correlation specifically regarding capturing the
HI of a system in (Aimiyekagbon, Bender, & Sextro, 2021),
an additional version is employed, where the Spearman cor-
relation is used for evaluating the monotonicity. An overview
of the feature ranking methods is given by Tab. 5, where the
additional versions are marked as modified. In the following,
the numbers assigned in Tab. 5 are used as representatives for
the mentioned ranking methods.

Lastly, for the correlation analysis to reject highly correlated
features, the threshold value for the correlation coefficient is
set to 0.98. A high value is chosen to remove strongly cor-
related features, thereby leave room for selection based on
feature ranking. The selected threshold leads to the exclu-
sion of 273 of 724 features. Subsequently, the top 5 ranked
features are selected from the remaining 451 features, stan-
dardized and utilized for training and testing. A shuffle split
with 5 splits is employed for cross-validation, as only two
systems are given for training. To ensure the reproducibility

Table 6. Minimum, maximum and mean value of the aver-
age RMSE for prediction on the training dataset within cross-
validation across all feature selection variations.

Algorithm Minimum Maximum Mean
GP 1.2e-9 9.8e-9 4.6e-9
LR 0.0956 0.2178 0.1458
MLP 0.0345 0.1220 0.0529
RF 0.0114 0.0314 0.0167
SVM 0.0571 0.0991 0.0662

of the results, the random seed is fixed. For optimization, 200
iterations are set.

For comparison purposes, additionally, the proposed feature
selection methodology is replaced by feature ranking only.
Feature selection consisting of feature ranking only repre-
sents the classical feature selection process, which is pre-
dominantly followed in the literature such as in (Carino et
al., 2015; Nie et al., 2022). That means that out of the total
of 20,296 features the top 5 ranked ones are used for train-
ing allowing a direct comparison with the proposed feature
selection methodology.

5. RESULTS

The selected features, results and insights gained from further
analysis are discussed in more detail in the following.

When inspecting the selected features, the channels 1, 2 and
3 show a significant higher relevance as they are selected 19,
24 and 10 times of 60 in sum respectively through feature se-
lection. This observation leads to the conclusion that the cur-
rent in D-Q-coordinates is particularly suitable for predicting
the system’s condition in contrast to the phase current. As
assumed, the effective and quadrature voltage is of minor im-
portance. Further, it can be observed that abrupt changes, re-
versed direction of feature progression and large differences
in the endpoints between same features of the train and the
test set cause confusion in prediction.

The minimal, maximal and mean RMSE of the predictions on
the training data within cross validation is shown in Tab. 6 and
Fig. 7 presents the prediction errors from predicting the HI of
the gearbox B045. Primarily, all algorithms show low error
values on the training dataset, which in combination with the
results in Fig. 7 indicates, that some algorithms generalize
better (RF) than other (MLP). MLP and SVM generate the
highest RMSE, probably increased by the small amount of
training data. SVM performs better evaluating the selected
features from feature ranking only, although the predictions
get particularly worse towards the end of life. The full poten-
tial of the MLP may not be exploited, as the iterations during
its training and optimization are both limited to 200. In ad-
dition, the layer size and depth is not varied during optimiza-
tion.

6
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Figure 7. Results based on the estimation of the HI of gear-
box B45, which provides the test data. The results are marked
with an asterisk “*” when classical feature selection is applied
and without when the proposed feature selection methodol-
ogy is utilized.

The best performing algorithms are GP and above all RF. Es-
pecially noticeable is that the proposed selection method per-
forms most effectively in combination with Spearman corre-
lation for ranking the features as can be seen in rows 2, 4, and
6. To summarize, the best RMSE is reduced from 0.19 to 0.14
by around 26 % when the proposed feature selection method
is utilized. The worst RMSE is reduced from 0.58 to 0.56 by
around 3 %, whereby results with an RMSE of 0.5 and higher
occur 6 versus 2 times and an RMSE of 0.4 and higher occurs
12 versus 7 times. Results with an RMSE of 0.2 and lower
appear 2 versus 7 times. This indicates a higher robustness
capabality using the proposed selection method.

The RF achieves the best result with an RMSE of 0.14 in row
6, where feature ranking within the proposed feature selec-
tion methodology is applied by assessing the Spearman cor-
relation. The hyperparameters of the RF set by the hyper-
parameter optimization are given in Tab. 7 including a brief
description. The selected features are shown in Fig. 8 where
the feature values are plotted over the HI. The features are
briefly described in Tab. 8. For detailed information on fea-
ture calculations, reference is made to the official documenta-
tion of tsfresh (Christ, Maximilian and Braun, Nils and Neuf-
fer, Julius, 2016).

The prediction of the HI for the B45 gearbox data, generated
by the RF trained on the presented features, is visualized in
Fig. 9. The horizontal axis represents the actual HI values,

Table 7. Hyperparameter values and descriptions for the RF
model set by the optimization algorithm.

Hyperparameter Value Description
n estimators 149 Number of decision trees in the

ensemble.
max features sqrt Maximum number of features

used to determine the best split.
Here it is the square root of the
number of features.

max depth 27 Maximum depth of a single deci-
sion tree.

min samples split 1e-6 Minimum number of observa-
tions required to split a node in
the decision trees. This number
is defined by a fraction of the to-
tal number of observations.

min samples leaf 1e-6 Minimum number of observa-
tions required to form a leaf node.
This number is defined by a frac-
tion of the total number of obser-
vations.

while the vertical axis represents the predicted HI values. The
diagonal line running from (1,1) to (0,0) represents the ideal
prediction. The prediction of the test system shows a certain
variance of the points, especially in the ranges 0.9 to 0.5 and
0.3 to 0.1 of the actual HI. The underestimated HI in the range
0.9 to 0.5 can be explained by the stronger gradient observed
for the features 1 and 5. The overestimated HI in the range
0.3 to 0.1 is possibly caused by feature 2.

Despite the observed variability, the prediction is deemed sat-
isfactory considering the limited availability of training data
and the structural differences between the systems for training
and testing. The results presented underscore the ability of
the proposed feature selection methodology in capturing the
differences between the systems, especially in combination
with the RF. Although certain challenges persist and continue
to impact the overall results, the better results tend to align
with the utilization of the proposed feature selection method-
ology, particularly shown in the upper half of the color map
in Fig. 7.

6. CONCLUSION AND FUTURE WORK

The effective use of available data is crucial, especially in
scenarios characterized by data scarcity. The optimal use
of available information is essential to improve the accuracy
and reliability of prognostics and ensure efficient decision-
making and resource allocation in the industry.

To tackle this challenge, comprehensive feature engineering
with focus on feature selection is adopted, wherein the fea-
tures are adapted to their initial values by scaling and fea-
ture selection is performed involving several successive steps.
These steps encompass threshold-based preselection, feature
ranking and cross-correlation analysis. Subsequently, train-
ing of ML-based models is conducted to predict the HI of the
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Table 8. Description of the selected features obtained through the proposed feature selection methodology, wherein Spearman
correlation was utilized for feature ranking.

Feature Description
1 Value of the evaluated partial autocorrelation function at lag 6 of the quadrature current signal.
2 The highest order coefficient of a polynomial function the order 3 derived from the deterministic dynamics of the Langevin

model, where 30 quantiles are used for averaging, based on the direct current data.
3 Complexity calculated by the Lempel-Ziv compression algorithm in the direct current data divided into 100 bins.
4 Custom feature explained in section 2.1, where direct current data is used. Bin 78 represents a frequency range from 26.12 to

26.86 Hz, where the FFT coefficients were aggregated by the mean.
5 The feature quantifies the maximum standard error of the linear trend over sections of length 5 in the direct current data.

Figure 8. Best 5 features assessed by the proposed feature
selection methodology based on the feature data from the H45
gearboxes, wherein the Spearman correlation was utilized for
feature ranking. The boxes added indicate zoomed-in views
of the features. The range is marked on the right edge. The
feature values are unit free as they have been scaled.

Figure 9. Test results generated by estimating the HI of the
gearboxes H45I, H45II and B45, with the H45 gearboxes pro-
viding the training data and B45 gearbox the test data.

systems.

In order to evaluate the proposed methodology, a new dataset
is introduced and utilized, which contains current, voltage
and phase current data from run-to-failure experiments of
gearboxes. The dataset is notable for considering two struc-
turally different gearboxes and for addressing the challenge
of data scarcity, as it is sourced from only three systems. The
aim is to use the data from the two similar gearboxes to esti-
mate and select features to infer the HI of the dissimilar gear-
box over its entire operating time based on a ML algorithm.
By publishing the novel dataset, other researchers are inspired
to contribute to this specific problem setting.

It is observed that, the classical feature selection is able to se-
lect features capturing the degradation of the systems in some
cases leading to an RMSE of 0.19 in the best case. However,
the proposed feature selection methodology apparently sup-
ports overcoming system differences especially in combina-
tion with the RF by selecting appropriate features better lead-
ing to the best result overall with an RMSE of 0.14. There-
fore, a great potential in applying the proposed methodology
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to further problems in the field RUL-estimation is seen. It
can enable more effective training based on ML training, as
features are selected not only based on capturing the degra-
dation of individual systems separately but also considering a
common threshold for failure while avoiding redundancies.

The next research steps will include validation of the pro-
posed methodology using further data or different test con-
ditions to check the limitations, reliability and robustness of
the results. The exploration of alternative methods, such as
mutual information, should also be considered at the last step
of the proposed feature selection process to replace the Pear-
son correlation analysis. These methods have the potential to
enhance the methodology. Furthermore, the applicability of
the proposed method to different types of gearboxes or even
to other technical systems should be explored. This would
contribute to demonstrating the scope and versatility of the
proposed approach.
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APPENDIX

In Tabs. 9 to 12 the hyperparameter ranges are listed which
where utilized for hyperparameter optimization of the regard-
ing algorithm. For detailed information on hyperparameters,
reference is made to the official documentation of scikit-learn
(Pedregosa et al., 2011).

Table 11. Hyperparameter ranges for optimizing RF

Hyperparameter Range Distribution
n estimators [1, 200] uniform
max features None, sqrt, log2
max depth [1, 32] uniform
min samples split [1e-6, 1] uniform
min samples leaf [1e-6, 1] uniform

Table 12. Hyperparameter ranges for optimizing SVM

Hyperparameter Range Distribution
C [1e-2, 1e+3] log-uniform
gamma [1e-4, 1e+1] log-uniform
kernel linear, rbf
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ABSTRACT

This study introduces an integrated framework for 
conceptualizing the design of negative stiffness honeycomb 
(NSH) structures, specifically considering the durability and 
performance of their unit cells. Unlike conventional energy-
absorbing structures that rely on plastic deformation, NSH 
offers a promising alternative for reusable energy absorption
(EA) and high initial stiffness, making it suitable for a wide 
range of engineering applications. The research considers the 
variability in characteristics of NSH based on the shape of the 
configured negative stiffness beam (NSB), selecting a single 
curved-beam unit cell as the focal point. Extensive testing, 
including quasi-static and cyclic compression tests, is 
conducted on NSH unit cell fabricated using polylactic 
acid/polyhydroxy alkenoate (PLA/PHA) filament, to analyze 
performance under stress and to assess degradation over time. 
Central to the study is the use of multi-objective optimization 
(MOO) to explore the trade-off between performance and 
operational durability, thereby emphasizing the significance 
of degradation in the design process. The results demonstrate 
the potential for NSH structures, particularly in terms of their 
reusability and efficiency, highlighting the viability of 
incorporating durability considerations in the early stages of 
design, especially for structures intended for additive 
manufacturing processes.

1. INTRODUCTION

NSH structures exhibit unique characteristics when 
compared to traditional hexagonal honeycombs. While   
hexagonal honeycombs effectively absorb energy through 
plastic deformation, they fall short in terms of reusability 

post-deformation. (Correa et al., 2015) NSH structures, 
composed of NSBs, stand out for their recoverable energy 
absorption, as highlighted by (Klatt et al., 2013; Correa et al., 
2015), their high initial stiffness (Correa et al., 2015), and
their capabilities in impact isolation (Shan et al., 2015; 
Debeau et al., 2018), creating opportunities for their use in 
many engineering fields. 

Many studies have been conducted on the characteristics 
of such NSBs. Qiu et al. (2004) studied a bistable mechanism 
with a curved beam, whereas Klatt et al. (2013) demonstrated
negative stiffness behavior and recoverable energy 
absorption through vertical axial compression in an 
additively manufactured structure with a curved beam.
Correa et al. (2015) optimized the dimensions of NSH, 
achieving a structure with similar relative density and force 
threshold as traditional hexagonal honeycomb, but with 
better energy absorption per unit mass, closely matching the 
performance of the hexagonal honeycomb. Chen et al. (2021) 
showed that NSH, comprising curved beams of varying
thicknesses, not only improved energy absorption per mass 
but also enhanced shock absorption and vibration isolation
compared to uniform-thickness NSH. Zhang et al. (2021) 
proposed a lattice and hollow structure for the curved beam, 
showing better energy dissipation than conventional curved 
beams of the same volume.  Liu et al. (2020) used machine 
learning methods to achieve enhanced results in curved beam 
thickness optimization. In addition, research on cylindrical 
structure (Wang et al., 2020), cubic structure (Ha et al., 2019), 
and composite negative stiffness structure (Chen et al., 2020)
shows various negative stiffness structures and different 
features depending on the shape and dimensions of NSBs.

A key feature of negative stiffness structures like NSH, 
distinguishing them from other structures, is their reusability.
The studies in Correa et al. (2015), Tan et al. (2019), and 

First Author (Hyung-do Kim) et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribution 3.0 
United States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are 
credited.
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Chen et al. (2020) show the properties of negative stiffness 
structures, such as force thresholds and energy absorption or 
dissipation under repeated compression. Chen et al. (2020) 
shows that the degree of reduction in force threshold for 
cyclic compression depends on the dimensions of the NSB's 
thickness. However, there has been limited research on 
quantifying the performance reduction of negative stiffness 
structures relative to the NSB dimensions under cyclic 
compression, which is crucial for predicting the operational 
end of life (EOL) of these structures.

To address this gap, we propose an integrated design 
framework that considers both the performance and 
operational aspects of negative stiffness structures like NSH, 
including performance degradation. In this study, we targeted 
the unit cell of NSH for design and manufactured it using 
PLA/PHA filament through 3D printing. To consider both
performance and operational aspects, we conducted quasi-
static compression tests and cyclic compression tests to 
acquire data. Based on this data, we developed a model to 
estimate the performance and EOL of the NSH unit cell 
according to its dimensions. Finally, through the Multi-
objective Optimization (MOO) design process considering 
the estimated performance and EOL of the NSH unit cell, we 
not only confirmed the relationship between the structural 
performance and operational aspects but also provided
insights into the design considering both aspects.

2. DESIGN OF EXPERIMENT 

The unit cell of NSH, as illustrated in Figure 1, was 
employed in this study. The structure of the curved-beam is 
assumed to be based on Eq. (1). (Qiu et al., 2004) The design 
variables defined for this structure are the thickness (t) and 
central height (h) of the curved beam.

Figure 1. Geometry and dimension of unit cell of NSH

!("#) = $2 %1 & !'* +2, "#" -. (1)

Considering that Zhakatayev et al. (2020) and Tan et al.
(2019) have confirmed that the influence of the thickness (/)
and height ($) of NSB on the strength, absorbed energy per 
unit mass, and force threshold of negative stiffness structure, 
and Qiu et al. (2004) have established a relationship between
force-displacement of the curved-beam and geometric 
parameters as per Eq. (2),

0 = 3,4562 78 978 & 32 : ;1< & <356>978 & 32 & ;1< & <356> (2)

Klatt et al. (2013) observed that negative stiffness initiates 
when the numerical value of 5(= $?/) reaches 1.5, when 5
exceeds 2.31, the bi-stable characteristics become evident. 
Therefore, t and h can be considered as important design 
factors for the negative stiffness structure like Fig 1.

Therefore, we defined the range of / as 1@2[AA] B / B3@2[AA] and $ as 1@2[AA] B $ B C@<[AA]. Subsequently, 
we sampled samples using the design of experiment (DOE) 
method to train and test the surrogate models and 
classification models for the characteristics of NSH unit cell, 
which will be discussed later in section 4 and 5. First, 25 
samples were sampled for the training data using the full 
factorial design (FFD) method. For the test data, 10 samples 
were sampled through the optimal Latin hypercube design 
(OLHD) method. The results are illustrated in Figure 2.

Figure 2. Result of design of experiment

3. FABRICATION AND TEST

We manufactured NSH unit cells with dimensions 
obtained through the DOE process using a fused filament 
fabrication (FFF) 3D printer and PLA/PHA filament. Liu et 
al. (2023) demonstrated that variations in manufacturing 
features, such as building direction, fill pattern, and wall 
layers influence printing quality and performance of the NSH 
cell through the FFF method. Therefore, we considered three 
different infill angles for 3D printing. We utilized Simplify 
3D software for 3D printing, and detailed printing settings 
can be found in Table 1.

Material Properties

In this study, Colorfabb's PLA/PHA filament was utilized 
for fabricating NSH unit cell. Research conducted by 
Morettni et al. (2022), Letcher & Waytashek et al. (2014), 
Zouaoui et al. (2021), and Gonabadi et al. (2020) have
confirmed that the physical properties of FFF 3D printing can 
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vary depending on manufacturing parameters such as infill 
angle or pattern. Therefore, to account for these 
manufacturing characteristics, five specimens were printed 
with three different infill angles (0°, 45°, and 90°) to assess 
the physical properties of the PLA/PHA filament through 
ASTM D638. An example of specimens is depicted in Figure 
3, and the result of ASTM D638 are presented in Table 2.

Figure 3. ASTM D638 specimen with three angles of infill

In Table 2, the average values and standard deviations of 
the ASTM D638 test results show that the average values of 
Young's modulus, yield strength, and elongation decreases as 
the infill angle increases from 0° to 45° and 90°. This is 
because as the infill angle increases, the force applied to the 
specimen and the direction of the stacked filament become 
more closely perpendicular. Therefore, when manufacturing 
the unit cells of NSH through 3D printing, we set the infill 
angle to 0° and produced 5 unit cells of NSH per sample. An 
example is illustrated in Figure 4.

Figure 4. A unit cell for NSH with D° infill angle

Compression Test for Data Acquisition

Quasi-static compression tests and cyclic compression 
tests were conducted to acquire experimental data,
considering the performance and operational aspects of the 
NSH's unit cell. In both tests, compression was applied by 
inducing a displacement of 2$ to the unit cell of NSH. The 
compression test equipment comprised a JSV-1000 stand and 
a HF-100 force gauge. Additionally, consistent compression 
test conditions were maintained throughout by securing both 
ends of the structure using a support structure, as depicted in 
Figure 5.

Figure 5. Compression test equipment and environment

However, different types of NSH unit cells were utilized in 
the two types of tests, as shown in Figure 6. The structure 
depicted in Figure 6 represents a configuration designed for 
quasi-static compression test. Unlike Figure 1, an additional 
structure is incorporated at the compression center of the T-
shaped support to minimize asymmetric buckling mode in the 
curved-beam behavior. Conversely, for the cyclic 
compression test, these additional structures may interfere 
with the cyclic compression process, hence a configuration 
similar to Figure. 1 was employed.

Table 1. 3D Printing setting.

Nozzle Temperature 210 E
Bed Temperature 60 E

Infill Density 100 %
Infill Pattern Rectilinear
Infill Angle [D°F <G°F HD°]
Layer height 0.2 mm

Printing Speed 50 mm/s
Cooling Fan Speed 100 %
Building direction Flat

Material PLA/PHA

Table 2. Material properties according to infill angles

Infill 
angle

Young’s 
Modulus 

[GPa]

Yield 
Strength 
[MPa]

Elongation 
[%]

Poisson’s 
Ratio

D° 2.84
(0.059)

52.11
(0.548)

5.84
(1.629)

0.34
(0.005)<G° 2.59

(0.019)
37.86

(0.833)
5.75

(1.561) -HD° 1.99
(0.062)

16.48
(1.250)

1.65
(0.366) -
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Figure 6. Shape of the NSH unit cell used in quasi-static 
compression test

3.2.1. Quasi-static Compression Test

To assess the performance aspect of NSH unit cell, a quasi-
static compression test was conducted at a speed of 10 
mm/min. The obtained force-displacement data were 
preprocessed using a moving average filter to generate five 
force-displacement curves for each sample, as illustrated in 
Figure 7.

Figure 7. Force-displacement curve for quasi-static 
compression test

Then, specific energy absorption (SEA) was obtained by 
dividing Eq. (4) by Eq. (3), with the average SEA value 
designated as the representative value for the corresponding 
sample.

A = IJ KLM (!("N) : /)7OP
Q R & LM !("N)P

Q 7ORS (3)

TU = LM V(O)7O6W
Q R (4)

These data were also used to examine the occurrence of 
negative stiffness for five samples of each design point 
employed in the experiments, as detailed in Section 5. The 
occurrence of negative stiffness was assessed using Eq. (5), 
as established by Qiu et al. (2004), and Eq. (6) based on the 
force-displacement data.

OXYZ = <3$ (5)

\A^#_`_abcdV(O)e & V(OXYZ)) f D g hij^/kli */kVVmi**'/$inOk*i g h'm & hij^/kli */kVVmi** (6)

This allowed us to classify whether negative stiffness 
occurred based on OXYZ in the force-displacement curve.

3.2.2. Cyclic Compression Test

In this experiment, 30 cycles of compression were 
repeatedly applied at a speed of 60 mm/min. The force-
displacement data obtained underwent the same data 
preprocessing as the quasi-static compression test. The 
average force-displacement curve for each sample is depicted 
in Figure 8. Using mean force-displacement data, EA for each 
cycle was calculated using Eq. (4); mean force-displacement 
data was also utilized as the health index (HI) for estimating 
the end of life (EOL), a topic discussed in detail in Section 6.

Figure 8. Reactive force for each cycle of the cyclic 
compression test

4. SURROGATE MODEL

A surrogate model replaces a high-cost test-based or 
simulation model with a relatively low-cost alternative. By 
creating a surrogate model for a specific factor of interest, 
predictions can be made without the need for costly tests or 
simulations for any given sample. In this study, the Kriging 
method, implemented in the PIAnO 2024 software, was used 
to develop a surrogate model for the performance and 
operational factors of the NSH unit cell. This approach 
enabled the prediction of the values of these factors for a 
specific design point.

Kriging

Kriging is one of the most widely used methods for 
constructing a surrogate model or metamodel, also known as 
Gaussian process regression. Based on the references to 
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Forrester et al. (2008) and Kim et al. (2017), the explanation 
of Kriging would be as follows: In Kriging, the predicted 
output of a Kriging model is typically represented as Eq. (7).op(q) = r(q)st : u(q) (7)

Here, r(q)st represents the global function, and u(q)
represents the local departure. In our study, q denotes the 
dimensions of the NSH unit cell, such as / and $, while op
represents the value we want to predict, such as SEA. We 
have defined the correlation function for two points (qF q') as
shown in Eq. (8).

v(qF qw) =xyz{ (&|Y}#Y & #Yw}~@�)8Z�
Y�~ (8)

where m7l indicates the number of design variables,
and |Y represents the parameter of the correlation function.
Other types of covariance functions can be found in 
Rasmussen & Williams (2006) and Xu (2020). Therefore, the 
correlation matrix is expressed as shown in Eq. (8), and the 
correlation between the point x to be predicted and the 
observed points is expressed as shown in Eq. (9).

� = �v(q�F q�) � v(q�F q�)� � �v(q�F q�) � v(q�F q�)� (9)

� = �v(q�F q)�v(q�F q)� (10)

To estimate the parameters of the Kriging model, t, �6 ,
and �, we use maximum likelihood estimation (MLE). So, 
the logarithmic likelihood can be expressed as Eq. (11).��d�(�}tF *6)e= &h2 ��(2�) & h2 ��(*6) & 12 ��(}�})& (� & �t)s��~(� & �t)2*6

(11)

Taking the derivatives of Eq. (11) for t and �6 respectively, 
and setting them to zero, yields the estimation results via 
MLE as shown in Eqs. (12) and (13).

t� = (�s��~�)�~(�s��~�) (12)

*�6 = (� & �t)s��~(� & �t)2h (13)

The parameter $ is determined by substituting Eqs. (12) and 
(13) into Eq. (11), and the resulting value is maximized by 
the optimization algorithm (Differential evolution, DE), as
expressed in Eq. (14). 

| = ^njA^# %&h2 ��(*�6) & 12 }�}. (14)

Given a vector �p = [�sF op ]s , which includes the new 
predicted value op at q, the correlation matrix can be written 
as Eq. (15).

�� = + � ��s 1- (15)

Based on this, we obtain the logarithmic likelihood, as shown 
in Eq. (16). ��(�)= &h2 ��(2�) & h2 ��(*�6) & 12 ��d����e& ( �p & �t�)s���~( �p & �t�)2*�6

(16)

Differentiating Eq. (16) with respect to op and setting it to zero, 
the final output of a Kriging model is expressed as Eq. (17):

op(q) = r(q)st� : �(q)s��~(� & �t�) (17)

SEA Prediction Model

We formed a surrogate model for SEA to consider the 
performance aspect of the NSH unit cell. To do this, we first 
performed a quasi-static compression test on the 25 samples 
collected by the FFD method, with 5 samples per test point.
The average SEA results for each sample were successfully 
obtained.

Figure 9. Response surfaced of Scaled �TUX��8
Prior to creating the surrogate model using 25 datasets, we 

set the design variables of the NSH unit cell, / and $, as the 
inputs for the surrogate model, with �TUX��8 as the output. 
Both input and output data were scaled to have values 
between 0 and 1 using min-max scaling. Finally, we set the 
global function type to constant, and the results of this 
surrogate model are depicted in Figure 9. As shown in Figure 
9, �TUX��8 tends to increase as the values of the design 
variables / and $ increase. The root mean square error 
(RMSE) for this surrogate model was computed using Eq. (18) 
with 10 test data points, resulting in an RMSE of 0.0276.
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Energy Absorption over Cycles Prediction Model

Similar to Section 4.2, Kriging was utilized to generate
surrogate models for predicting EA over the compression 
cycle using average force-displacement data from about 25 
samples collected via FFD method. 

Initially, EA for each compression cycle was computed 
using Eq. (19):

TU���P� = LM V���P�(O)7O6W
Q R (19)

Following this, it was assumed that there was no degradation 
in the NSH unit cell prior to cyclic compression test, and Eq. 
(20) was used to scale based on 1 cycle of EA as a reference.

TU�� = TU���P�TU ~ ���P� (20)

An example of TU�� is shown in Figure 10, where it is crucial 
to note that for any sample, TU�� is 1 at 1 cycle. TU�� was 
used as the HI for estimating EOL.

Figure 10. Scaled EA over cycles

The TU�� was further processed by Eq. (21) for samples with 
a TU�� exceeding 0.9 at 30 cycles:

�TU�� = 1F V'n !o!"i = 1TU�� = TU���~ & }TU�� & TU���~}F '/$inOk*i (21)

The input data, consisting of / and $, was used to train the 
model, aiming to predict TU�� for a specific cycle. Unlike 
the surrogate model for �TUX��8 , only min-max scaling was 
applied to the input data, and a simple quadratic function was 
utilized as the global function to construct the surrogate 
model. The corresponding response surface for this is shown 
in Figure 11.

Figure 11. Response surfaced of TU�� at cycle 2

The surrogate model predicts TU�� for each cycle, which is 
then utilized to estimate the EOL for NSH unit cells. This will 
be discussed in detail in Section 6.

5. CLASSIFICATION MODEL

A classification model was developed based on the 
findings discussed in Section 3.2.1, where the design of NSH 
unit cells exhibits negative stiffness depending on certain 
design variables. Previous studies by Shahan et al. (2012), 
Morris et al. (2018), and Matthews et al. (2016) demonstrated
that a set-based approach using the Bayesian network 
classifier method can be used to explore the boundaries of the 
design space and identify designs that meet specific
performance criteria. Based on this, we utilized the Bayesian 
classifier as a classification model to determine the presence 
of negative stiffness. We formed the classification model 
using the results from quasi-static compression tests on 25 
samples. Furthermore, this classification model was used as 
a constraint in the MOO design process, which will be 
discussed in detail in Section 7.

Bayes classifier

The results from all five test points in the quasi-static 
compression test were incorporated into the Bayesian 
classifier model. Specifically, the prior probability, as 
defined by Eq. (22) from Shahan et al. (2012), was 
established based on the frequency of occurrence of negative 
stiffness.

  ¡(!�¢) = h�¢ : 1h : 2¡(!��¢) = h��¢ : 1h : 2 (22)

For the likelihood, multivariate kernel density estimation 
was employed as described by Scott (2015) and can be 
expressed using Eq. (23)

£¤�T = ¥1h¦do§¨�ZFY & o©¨ª�FYe�
Y�~ (18)
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«¬
¬® ¡(q}!�¢) = 1h�¢ ~̄F�¢�¯�cF�¢¦ \x ±L#² & #Y²²̄ R�c

²�~ ³�´µ
Y�~¡(q}!�¶8��¢) = 1h��¢ ~̄F��¢�¯�cF��¢¦ \x ±L#² & #Y²²̄ R�c

²�~ ³�´´µ
Y�~

(23)

The Gaussian kernel K is used, and the bandwidth ¯ values 
are calculated using Eq. (24):

«¬
¬® ²̄F�¢ = *² � <(hZ : 2)h�¢·~?(�c¸4)

²̄F��¢ = *² � <(hZ : 2)h��¢·~?(�c¸4)
(24)

The posterior probabilities for the two classes are given by 
Eq. (25).

� ¡(!�¢}q) = ¡(!�¢)¡(q}!�¢)¡(!��¢}q) = ¡(!��¢)¡(q}!��¢) (25)

¹~¡(!�¢)¡(q}!�¢) & ¹6¡(!��¢)¡(q}!��¢) f D (26)

Then, the decision rule for class for classifying a sample 
regarding the occurrence of negative stiffness is defined by
Eq. (26) below. According to the study by Shahan et al. 
(2012), it has been confirmed that the loss factor ¹~ and ¹6
can shift the decision boundary of the classifier. Therefore, 
setting ¹~ = D@CC , ¹6 = D@3< accounts for cases where
negative and non-negative stiffness may occur 
simultaneously in the samples. This setting allows the 
classification of such samples into the class indicating the 
occurrence of negative stiffness. With ¹~ = D@CC and ¹6 =D@3<, the difference between the two posterior probabilities 
is illustrated in Figure 12.

Figure 12. Difference between the two posterior probabilities

6. PREDICTING EOL OF NSH UNIT CELL

In order to consider the operational aspects of the NSH unit 
cell, prognostics methods were utilized to estimate the EOL. 
According to Kim et al. (2017), prognostics methods can be 
categorized into physics-based and data-driven approaches. 
Kim et al. (2017) also introduced nonlinear least square 
(NLS), Bayesian method (BM), and particle filter (PF) within 
physics-based prognostics. In this study, the NLS method 

demonstrated by Kim et al. (2017) was used to estimate the 
EOL by considering degradation, as shown in Figure 10,
through TU��, which serves as the HI of the NSH unit cell.

First, to estimate the EOL via NLS, the degradation 
equation was defined as Eq. (27):º = i#|d&}»~} ¼ (!o!"i & 1)½¾e (27)

The parameters »~ and »6 were estimated using the 
'lsqnonlin' function in MATLAB R2023b, employing the 
Levenberg-Marquardt method. To consider the uncertainty of 
the estimated model parameters in NLS, the 95% confidence 
intervals for the model parameters were obtained from 1.0E7
random sampling from the multivariate t-distribution using
Eqs. (28) and (29), with degrees of freedom h & h§ : 1 .
Here, Eq, (28) represents the variance of noise in measured 
data, and Eq. (29) represents the variance of estimated model 
parameters.

*86 = ¿� & ÀÁs¿� & ÀÁh & h§ (28)Â½ = *86[ÃsÃ]�~ (29)

The challenge in EOL estimation lies in determining 
amount of TU�� data needed to estimate the EOL using the 
surrogate model from Section 4.3, and how to estimate 
parameters »~ and »6 using NLS. To address this, a model 
was developed to predict TU�� for design variables / and $
across 2 to 15 cycles using the Kriging model from Section 
4.3. For the 10 test data, the TU�� data estimated by the 
surrogate model from 3 to 15 cycles was progressively added, 
calculating the median of the confidence interval of NLS and 
the mean RMSE of the actual experimental data. The results
of mean RMSE are depicted in Figure 13.

Figure 13. Mean RMSE by number of data

Figure 14. EOL Estimation Process

gu by
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It was observed that utilizing more than 10 cycles of data
predicted from surrogate model (i.e., beyond 1-10 cycles) did 
not significantly affect the estimation error in degradation 
estimation via NLS. Consequently, TU�� values were 
estimated for 2-10 cycles through a surrogate model as shown 
in Figure 11, considering that at 1 cycle, the TU��value is 
consistently 1 across all samples. This process is illustrated 
in Figure 14. Therefore, this process was utilized to estimate 
the EOL of the NSH unit cell, and the median of the EOL
confidence interval (TÄ�XYZ) was used in the MOO design 
process, which will be discussed in detail in Session 7.

7. MULTI-OBJECTIVE OPTIMIZATION DESIGN

A MOO design was implemented to address both the 
performance and operational aspects of the NSH unit cell. �TUX��8was considered for the performance aspect, while 
the estimated TÄ�XYZ served as the objective function for the 
operational aspect. Constraints included the strain of the 
curved beam, the threshold for HI, and the presence or 
absence of negative stiffness. The problem was formulated 
accordingly, and the results of the MOO design were 
analyzed using the NSGA-2 optimization algorithm (Deb et 
al., 2002), implemented in the PIAnO 2024 software. The 
overall flowchart is depicted in Figure 15.

Figure 15. Flowchart of multi-objective optimization design

Problem Formulation

For the MOO design, the problem formulation is defined 
as Eq. (30). Initially, the surrogate model for �TUX��8 , as 
discussed in Section 4.2, was employed to address the 
performance aspect of the NSH unit cell. Maximizing the �TUX��8 implied enhancing the capacity of the unit's curved 
beam to absorb energy relative to its mass. Subsequently, the TÄ�XYZ estimated through the approach outlined in Section 
6, was considered for the operational aspect. To ensure 
comparability in scale between the scaled �TUX��8 by min-
max scaling and the estimated TÄ�XYZ, we utilized the TU��

obtained from cyclic compression tests from 1 to 30 cycles 
on the 25 samples extracted using the FFD method to 
estimate TÄ�XYZ . Based on this estimation, we performed 
min-max scaling on the estimated TÄ�XYZ . At this point, it 
was assumed that the TÄ�XYZ from 25 samples provides 
sufficient information about TÄ�XYZ for the entire design 
space.

The first constraint was defined using the maximum strain, 
determined from the mean elongation when the infill angle is 
0°. The second constraint was defined as the occurrence of 
negative stiffness, where ¹~ = D@CC and ¹6 = D@3< . The 
threshold for TU�� as HI was assumed to be 0.7, indicating 
that the structure has degraded to 30% of its original 
performance.0km7 /F $

(30)

A^#kAkÅi V(q)= �TU��FX��8(/�� F $��): TÄ���FXYZ(/�� F $��)*ÆJÇi!/ /' 2,6 /$"6 È D@DGÉ<
D@CC¡(!�¢)¡(/F $}!�¢)& D@3<¡(!��¢)¡(/F $}!��¢) f D
Ê$ni*$'"7 = D@Ë
1@2 AA B / B 3@2 AA
1@2 AA B $ B C@< AA

Result of Multi-Objective Optimization Design

In the MOO design process, we considered an initial 
design point for the NSH unit cell with / = 2@2 AA and $ =3@É AA . NSGA-2 was employed as the optimization 
algorithm in the PIAnO 2024 software, with settings 
summarized in Table 3.

The results are displayed in Figure 16, where the lower 
constraints pertain to the condition for the occurrence of
negative stiffness, while the upper constraints relate to the 
maximum strain. When plotting the Pareto frontier for the 
objective function, it appears similar to Figure 17.

Table 3. The settings for NSGA-2

Population Size 100
Crossover Rate 0.9
Mutation Rate 0.5

Maximum Number of 
Generations 250
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Figure 16. Optimum results using NSGA-2 

 
Figure 17. Results of Pareto frontier 

Figure 17 illustrates that, despite aiming to maximize the 
objective functions, EOL and SEA exhibit an inverse 
relationship within the Pareto optimal set. As EOL increases, 
SEA decreases, and vice versa. Therefore, to identify the 
knee point, a horizontal line was extended from the point with 
the maximum �TUX��8 , and a vertical line from the point 
with the maximum TÄ�XYZ. The knee point was determined 
as the intersection of these lines, selected as the closest point 
from the Pareto optimal set. The dimensional information for 
the points with the maximum �TUX��8 , maximum TÄ�XYZ, 
and the knee point is provided in Table 4.  

 

After manufacturing, quasi-static compression tests and 
cyclic compression tests were conducted for these three 
points, as discussed in Section 3. All three points satisfied 
maximum strain constraint as defined in Eq. (29) and 
exhibited negative stiffness in five samples per point during 
the test. The results for �TUX��8 and TÄ�XYZ  were 
summarized in Tables 5 and 6. 

 

  
According to Table 5, the �TUX��8 value at the point 

where it reaches its maximum is approximately 50.5% higher 
than the initial design point, as predicted by the surrogate 
model. 

Table 6 displays the estimated TÄ�XYZ results for the three 
points. The median result estimated by the proposed method 
was compared with actual compression test data collected 
over 30 cycles. However, it is important to note that since 
cyclic compression test data are available only up to 30 cycles, 
the EOL beyond this point cannot be accurately determined. 
Therefore, for the three design points, considering the 
average RMSE of 0.0073 between the NLS results using 
actual data from 1 to 30 cycles and the actual data, it is 
assumed that the extrapolated median results using the NLS 
method do not significantly differ from the actual EOL. The 
results presented in Table 6 demonstrate that the TÄ�XYZ  
obtained with the actual data falls within the 95% confidence 
interval of the EOL estimated by the proposed method. 

When comparing the maximum TÄ�XYZ  point with the 
initial point, Table 6 shows an increase of approximately 
99.17 cycles in TÄ�XYZ, based on the estimated TÄ�XYZ  in 

Table 4. Dimensions for three points
 

 Max 
(�TUX��8) 

Max 
(TÄ�XYZ) 

Knee 
 Point 

t [mm] 1.702 1.669 2.258 
h [mm] 6.255 2.52 2.725 

 

Table 5. �TUX��8  results of 3 points
 

 Initial 
point 

Max 
(�TUX��8) 

Max 
(TÄ�XYZ) 

Knee 
point 

True 
[mJ/g] 425.96 641.06 116.05 207.34 

Predict 
[mJ/g] - 760.93 128.27 246.42 

 

Table 6. Estimated TÄ�XYZ  results of 3 points
 

Initial 
point 

Max 
(�TUX��8) 

Max 
(TÄ�XYZ) 

Knee 
point 

Estimated TÄ�XYZ  
[95% C.I] 

by proposed 
method  
(Cycle) 

- 
1.49 
[1.47 
,1.52] 

102.08 
[50.21, 
266.95] 

22.56 
[14.78, 
39.04] 

Estimated TÄ�XYZ 
from 30 cycles 
of true test data 

(Cycle) 

  127.91 31.44 

True TÄ� 
(Cycle) 2.90 1.48 - - 
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the operational aspect. However, there is a notable decrease 
of about 72.75% in �TUX��8 , representing the performance 
aspect. This trend is also observed at the knee point, where 
the operational aspect shows an TÄ�XYZ increase of 
approximately 19.66 cycles, but a performance decrease of 
around 51.32% in �TUX��8 . These observations highlight 
the trade-off between �TUX��8  (performance) and TÄ�XYZ  
(operational aspect, including degradation) in NSH unit cells. 
The initial design point has a high �TUX��8value but a very 
low TÄ�XYZ value in terms of service life, presenting a risk 
of breakage in case of repeated use. The results of the MOO 
show that the expected TÄ�XYZ result for the SEA value at 
the initial design point and the corresponding value is 4.72 
cycles at /  = 3.147 mm $Ì = 2.926 mm, which is an 
improvement in life and performance compared to the initial 
design point. 

 Moreover, analyzing the data from Tables 5 and 6, it can 
be inferred that if the target life is set to 20 cycles, the knee 
point emerges as the most reasonable design, considering the 
estimated TÄ�XYZ. Conversely, if reusability is not a priority, 
the point with the maximum �TUX��8value appears to be the 
optimal design choice. Consequently, this suggests that the 
most reasonable design can be determined from the Pareto 
optimum set, depending on the target life set by the designer. 

8. CONCLUSION 

In this study, a novel design framework for NSH unit cells 
was proposed, focusing on energy absorption and reusability. �TUX��8 was considered as a performance metric, while TÄ�XYZ estimation relied on operational degradation from 
cyclic compression. Using the repeated compression test data 
of 3D-printed NSH unit cell, a trade-off relationship between �TUX��8and TÄ�XYZwas identified through Pareto frontier 
analysis employing the NSGA-2 optimization algorithm. 
From the MOO results, it is evident that establishing a 
criterion for the target life enables the identification of a 
viable design point for that lifespan. This approach not only 
facilitates the lifespan-oriented design of NSH unit cells but 
also highlights the potential for its application in the design 
of multi-layer NSHs or similar negative stiffness structures. 
In the application of these structures, the lifespan of the 
structure is factored into the design process so that the time 
to repair or replace the structure can be considered and 
reflected in the design phase. This framework can be 
expected to facilitate decision-making based on information 
about the predicted health of the structure at the design stage 
and provide possibilities for prognostics and health 
management (PHM) for design. 

Finally, future work aims to develop a PHM framework for 
robust design that can account for uncertainties or noise that 
may occur during the manufacturing process and in the 
testing or operational environment, as efforts continue to 
predict the health more precisely and EOL of these structures. 
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NOMENCLATURE 

t thickness of curved beam 
h central height of curved beam /�� scaled thickness of curved beam $�� scaled central height of curved beam 
Q /?$ 
c height of curved beam for length 
l length of curved beam (= 60 mm) "N  horizontal length of curved beam (= 0 ~ 60 mm) 
b width of curved beam (= 12 mm) I density of PLA/PHA filament (= 1.24 j?!AÍ) 0 normalized force 
f reactive force O displacement 78 normalized displacement (= O?$) 
m mass of curved beam » parameter of degradation equation t global function’s coefficients | parameter of correlation function � likelihood 
m mass Î6 variance  o observed data o§¨�Z  predicted value o©¨ª� true value op output of Kriging TU¢Ï Scaled EA from original data h number of observations h�¢ number of negative stiffness occurrences h��¢ number of non-negative stiffness occurrences hZ number of dimensions h§ number of parameters !�¢ class for occurrence of negative stiffness !��¢       class for occurrence of non-negative stiffness * standard deviation Ã Jacobian matrix m§ number of parameters ¯  bandwidth  r bases of global function � Matrix of bases of global function Â½  variance of parameters for degradation equation � correlation matrix � correlation vector q vector of design variables t and h 
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ABSTRACT 

The German state-funded aviation research project “Real-
time Analytics and Prognostic Health Management” 
(RTAPHM) envisioned fully automated urban air services 
executed by autonomous drones and infrastructure controlled 
by a digital system. Research was focused on utilizing 
onboard real-time diagnostics to enable AI-driven UAV 
capability predictions. These predictions increased the 
reliability of upfront service commitments. The use case 
selected to demonstrate these elements was organ transport. 
The project delivered an end-to-end demonstrator 
incorporating a virtual fleet of drones with onboard 
diagnostics to provide data for the platform decision logic.  

The project followed a „digital-twin-first” approach to 
overcome a common bootstrapping problem faced by data-
driven applications. That is, the lack of in-service data for 
exploration, prototyping and training of diagnostic and 
prognostic approaches during the concept and early 
development phases. Due to the upfront development of 
physical high-fidelity simulation models for the monitored 
components, a digital twin – of the portion of the twin that 
resembles the physical behavior – was used to generate data 
and facilitate preliminary exploration, prototyping and 
training. Digital twins were further employed to allow 
evaluation of what-if scenarios and identify the optimal 
future operation parameters of a drone. 

Development of the RTAPHM digital twin involved a multi-
disciplinary team of members distributed across different 
organizations and locations. Successful realization of the 
digital twin depended on early integration testing, performed 
in high frequencies, which generated continuous feedback 
regarding technical and conceptual issues. Within the 
research project we developed MOLE, an engineering tool 
for automating the integration of distinct simulation 

components, into a single system simulation driven by 
commercially available flight simulator software. Here, we 
showcase the internal mechanisms of the tool and 
demonstrate its abilities to generate a Docker-based 
executable for efficient data generation in the cloud. We also 
show our approach to online visualization, fault insertion, 
batch integration testing and debugging the digital twin 
executable. We also report on the utilization of MOLE in 
assembling the final RTAPHM demonstrator (Löhr, 2023). 

1. OUTLINE 

The document first introduces the RTAPHM project with a 
focus on the use and purpose of digital twins. This leads to 
our primary project contribution: MOLE, a software tool 
assisting in the fast integration of digital twin components. 
After describing the core principles of MOLE, we report from 
our experience in using MOLE to build the digital twin for 
the RTAPHM demonstrator. We conclude with a suggestion 
for areas of future work. 

2. INTRODUCTION 

The project Real-time Analytics and Prognostic Health 
Management (RTAPHM) was a joint government-funded 
research endeavor in Germany It was in the aviation domain 
and included SMEs, academia, and industry as partners. The 
project concluded in June 2023. We participated as an SME 
partner focused on simulation and software engineering 
IVHM systems.  

The project contributed to the field of urban air services, such 
as person and cargo transport, imaging services, etc. The 
vision of a fully automated urban air services platform drove 
the work. Here, customers could book a variety of different 
services via low-threshold access channels, e.g., via their 
smart phone. Once booked, the service would be carried out 
by autonomous unmanned air vehicles (UAVs) supported by 
autonomous infrastructure, e.g., for mounting payload or 
loading cargo. The platform would have to work digitally to 

Andreas Löhr et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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benefit from automation. AI technologies would support the 
orchestration multiple booked services in parallel and the 
handling of problems which could not be sufficiently 
formalized upfront. 

Obviously, such a bold vision cannot be accomplished by a 
single research project. Therefore, project research focus was 
narrowed to a single use case highlighting a specific problem 
within that use case. The project selected organ transport as 
that use case. By the means of a digital service platform, the 
personnel of a donor hospital would book (air) transport to a 
specific receiver hospital, as depicted in Figure 1. The last 
mile between the hospitals and the next logistics hub should 
be covered with transport UAVs. 

 
Figure 1. Synopsis of selected use case. 

 

Within the use case, the project focused on the issue of how 
to make reliable service commitments given a fleet of UAVs 
(or other transportation vehicles for long haul routes) 
depending on their current and future health state. That is, 
build a platform capability to assess whether a specific 
service request can be completed with the available 
resources. This question should be answered by a 
comprehensive situational awareness picture of the fleet’s 
conditions, mainly driven by real-time diagnostics and 
prognostic capabilities, integrated into the onboard data 
processing of the UAVs. Figure 2 depicts the research focus 
on a high level: for selected components of an artificial UAV 
(fuel cell, servo and pusher motor) a monitoring concept 
should be established and implemented. The obtained 
(gradient of the) health data should be used to make reliable 
maintenance predictions for the components. Finally, by 
having predicted the future maintenance burden – thus, the 
availability of individual UAVs – incoming service bookings 
for organ transports would be committed reliably within a 
timeframe where the selected UAV is available and 
maintenance free. 

3. RTAPHM DIGITAL TWIN 

The project selected three components to be monitored: servo 
motors, a fuel cell and pusher propeller system. For all 
components, a monitoring concept, including diagnostics and 
prognostics, was developed, and included in the laboratory 
demonstrator. 

 
Figure 2. Research focus. 

3.1. Motivation 

The project faced a common bootstrapping problem, as 
depicted in Figure 3: incomplete, insufficient, or total 
absence of operational data from the components in question 
(the specific configuration of the targeted UAV, as well as 
the reason for the data absence, is out of the scope of this 
writing). There was no foundation for conducting exploration 
or conceptual studies. 

 

 
Figure 3. Problem statement. 

3.2. Digital-Twin-First Approach 

The concept of a digital twin is known in both academia and 
industry. A digital twin is typically derived by observing 
(data from) an existing system using specific frameworks and 
methodologies, as for instance Vuckovic, Prakash, and Burke 
(2023) have shown. The project decided to overcome the 
bootstrapping problem by employing simulation. The project 
already incorporated the usage of digital twins within the 
digital platform. This existing capability and the absence of 
existing physical components informed the decision to 
proceed with a “digital-twin-first” approach instead of 
creating the digital twin afterwards. 

To accomplish this, the partners agreed to provide validated 
high-fidelity component simulation models adapted from 
previous undertakings. These models formed the bases of the 
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digital twin. Within the project, these models were adapted 
according to the performance requirements of the targeted 
UAV platform and equipped with additional technical 
features to facilitate integration. Additionally, to stimulate 
the models with realistic input data, the project decided to use 
a commercially available flight simulator software. 

The solution approach is depicted in Figure 4: a commercial 
flight simulator should be equipped with a plugin, to extract 
and send specific data streams (e.g., electrical power demand, 
thrust demand, environmental data, etc.) to the simulation 
models as input. Optionally, the models should be operated 
in a closed loop with the flight simulator, depending on its 
capabilities. Being stimulated in a realistic way, the 
simulation models should provide simulated sensor data for 
the health assessment algorithms. Also, as Darrah, Frank, 
Quinones-Grueiro, and Biswas (2021) have pointed out, 
simulation allows generation of run-to-failure data – which 
would be an unsafe undertaking for a real system. 

 
Figure 4. Solution approach. 

 

3.3. Conceptual Challenges 

Performing digital-twin-first imposes certain challenges to 
the modeling process and the overall concept. 

This approach is used to obtain data from something that does 
not yet exist. But how can something that does not yet exist, 
be modeled? The project addressed this challenge by 
adapting existing work and narrowed the challenge down to 
finding the right scaling for the target environment. 

There is a further challenge of modeling the right inputs and 
output of each simulation component. This was addressed by 
employing agile development techniques, such as a high 
frequency of iterations and many integration attempts with 
close feedback amongst all partners. 

Finally, the challenge of representativeness and validity 
remains. Additionally, one must answer the question of how 
credible the resulting diagnostic and prognostic approaches 
can be, if they are developed on pure simulated data. There is 
a risk that simulation development is driven to produce what 
the exploiting modules expect and vice versa rather than 

reflecting a realistic and useful abstraction of the potential 
platform. This challenge was addressed by using (adapting) 
simulation models which had been created independently and 
validated in isolation. However, using simulations in this 
context can only be a first measure to parallelize 
development. As soon as the first set of “real” operational 
data becomes available, it must be used to tune the 
simulation. 

3.4. Integration Challenges 

Our task in the RTAPHM project, amongst others, was the 
provision of an integrated executable digital twin to be used 
by the partners to generate data according to their scenarios. 
Along with the task itself came the necessity to not only 
perform the physical integration just once towards the end of 
the project, as it would have been in a waterfall organized 
project. Instead, to adhere to the agile mindset of the digital 
twin development process, we had to be able to perform the 
physical integration as often as possible. We identified a set 
of challenges in the context of a multi-organization project 
that we had to address. 

• in what form should a model be delivered? 
• how can the intellectual property of a component 

providing partner be protected? 
• what needs to be provided so that a specific model can 

be integrated with others? 
• how can the interaction of two models be tested? 
• how to be test the nominal and erroneous behavior? 
• how can a quick turnaround be performed 

4. MOLE 

While the conceptual challenges were addressed by our 
partners, we worked on providing a solution to the integration 
challenges that the project was facing. We provided that 
solution on the form of MOLE – a desktop software tool for 
automating large portions of the digital twin integration 
process. Besides the capability to automatically create an 
executable digital twin from the provided simulation models, 
the tool provided support for the actual development cycle, 
and could be used directly by the partners. 

4.1. Model Format 

Our partners agreed to deliver the models as C code. Some 
chose to generate the C code using graphical modeling tools, 
such as Matlab/Simulink, while others provided custom code. 
Whatever the source, all models to adhered to a common 
interface concept, which was derived from the way that 
Matlab exports models. It consisted of: 

• structures representing the internal state of a model 
• an initialization function for the structures 
• a stepping function, accepting (pointers to) the structures  
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• a custom naming scheme for parameters to establish 
semantic consistence 

Intellectual property was protected by giving the partners the 
option to provide their models in pre-compiled object code, 
accompanied with their respective header files. Partners 
whose models depended on the models of other partners 
agreed on the specific information to be exchanged, and then 
specified the required technical parameters. We acted as a 
central parameter registry to enforce consistency. 

As part of the conventions, simulated fault behavior was 
triggered via a set of up to four parameters. This set consisted 
of one input parameter acting as a plain on/off switch, a 
second defining the degree (severity) of the simulated fault, a 
third setting the point in time at which the fault should 
become effective, and a fourth setting whether the fault 
should become effective immediately, or if a degradation 
towards the specified severity should be simulated. 

4.2. Automated Wiring  

A significant portion of the integration work consists in the 
correct wiring of a model’s outputs to one or mode inputs of 
dependent models, according to a specification given by the 
model creators. By “wiring” in the technical sense, we mean 
the temporal storage of a model’s output in memory, so that 
it can be read by all dependent models once they start 
calculating their next cycle. Figure 5 shows an example of 
MOLEs mapping browser, a visualization of all detected 
inputs of a specific model, and the assigned outputs for each 
inputs based on naming conventions. 

 
Figure 5. Component I/O and mapping browser. 

 

To relieve the burden of creating specification documents and 
harmonizing those documents among the partners, we 
exploited the project wide naming conventions for model 
parameters (inputs/outputs). Having established the 
conventions, we programmed MOLE to use them in 
inspecting (parsing) each provided simulation module and 
generating “glue” code for correct parameter exchange. To 
cater for exceptional cases, we incorporated the ability to 
manually override the automated wiring.  

Figure 6 aims at illustrating what we mean with “wiring”. The 
figure depicts a simulation of two aircraft systems, the 
hydraulic system and the fuel system. Each system 
simulation is decomposed into smaller simulation blocks, 
such as pumps, circuitry, and actuators. Each block exposes 
specific inputs (upper ports of each block) and outputs (lower 

blocks), whereas each output models either a sensor (e.g., a 
pressure sensor) or a specific physical property (e.g., a 
specific pressure) that provides input for another simulation 
block (e.g., the pressure output of the pump acts as the input 
of various actuators). A specific interface block models the 
interdependency between the two systems. Finally, some of 
the inputs will be fed from an external aircraft simulation. 
MOLE is able to generate code (glue code) for the data 
exchange, even for high exchange frequencies (see section 
4.3). 

 
Figure 6. Glue code for automated wiring. 

4.3. Parallel Computing 

Due to their intended use as source for health assessment 
algorithm training data, the models performed complex 
calculations demanding high CPU power.  The necessity for 
small temporal solutions, in the magnitude of 10-4s – 10-6s, 
drove the need for computational resources. Additionally, 
different models exhibited different temporal solutions, 
which were in general not multiples of each other. To benefit 
from multi-core processors, we introduced a concept for 
executing each model block in isolation with constant inputs 
for a maximum number of steps before the model block 
becomes unstable, and then halting the execution while each 
model block was updated with external inputs according to 
the specified wiring (while respecting overrides by 
expression). The concept was based on two frequencies. The 
“internal I/O frequency” determined the rate by which the 
model block execution was halted for the sake of parameter 
updates. As this lower frequency is reduced, overall 
execution time is also reduced, as a smaller relative fraction 
of time was used for parameter exchange and threading 
overhead. The “external I/O frequency” determined the rate 
in which supporting functions like graph plotting, data 
recording or other custom plugins were triggered. Based on 
that concept, MOLE supported setting a constant number of 
utilized CPU cores or dynamically adjust this number based 
on runtime performance analysis.  

Figure 7 depicts the main parallel execution loop. First, each 
simulation block is iterated in its own thread, with constant 
input values for a block-individual maximum number of 
iterations that leaves the block numerically stable. Once each 
block is finished, the respective block outputs are copied to 
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the inputs according to the wiring. Then, further supporting 
functions are executed (typically on the current outputs), see 
sections 4.4 and 4.5. Then the loop repeats. 

 

 
Figure 7. Main execution loop. 

4.4. OSA-CBM Sampling 

Based on our experience with implementing MIMOSA 
standards (Löhr & Buderath, 2014) we encouraged the 
project to follow the OSA-CBM design principles for the data 
processing chain. Consequently, the integrated diagnostics 
component of the digital twin was equipped with an OSA-
CBM compliant sensor data interface, which was 
implemented using our proposed implementation of the 
binary OSA-CBM messaging protocol described by Drever, 
Naughton, Nagel, Löhr and Buderath (2016), which also 
discuss challenges and opportunities of MIMOSA standards 
in general. To drive the integrated diagnostics with data from 
the simulation, we enhanced MOLE with an OSA-CBM-
compliant sampling function that was tied to the external I/O 
frequency. Selected model outputs, specifically those that 
simulated sensors, were sampled with the frequency required 
by the defined monitoring concept in the diagnostics layer. 
Then, the samples were automatically wrapped into OSA-
CBM DM DataSeq events and transmitted to the integrated 
diagnostics via UDP.  

4.5. Supporting Features 

The core features of MOLE kept the inputs and outputs 
consistent, and ensured all models could be compiled. This 
allowed for quick iterations. Further, we added the following 
functions to enhance the testing process: 

• Stepping: running a single model or a set of models, and 
halting/resuming the execution on demand, to inspect the 
current parameter sets  

• Recording: marking a set of model inputs and outputs to 
be written to a CSV file for offline inspection, or for 
exchange within the project  

• Fault Insertion: picking up on the naming conventions 
for faults, the fault input quadruples were recognized, 
and presented to the developer in a graphical user 
interface for interactive control  

• Visualization: plotting the development of selected 
parameters over time to visually inspect the behavior of 
the model. An example is given in Figure 8. 

• Parameter Override: we added an online compiler for 
simple expressions bound to model parameters. If set, the 
result of the expression was set (input parameter) or 
distributed (output parameter), resulting in a dynamic 
override of the original model wiring. 

• Scripting: we added a simple scripting feature which 
allowed the association of model executions with time-
indexed parameter overrides for that execution. By 
supporting an operation mode in which MOLE executes 
all scripts in a certain directory tree, users could generate 
data for different constellations, thus, having a set of 
repeatable test cases at their disposal.  

 

 
Figure 8. Integrated visualization. 

5. VALIDATION 

Validation of MOLE functionality was accomplished by its 
use in supporting the projects continuous integration process 
and building of the final deliverables. The constituents of the 
RTAPHM digital twin were: 

• model of a pusher motor in several blocks 
• model of a fuel cell in several blocks 
• model of a servo motor in several blocks 
• diagnostic module for pusher motor 
• diagnostic module for fuel cell  
• diagnostic module for pusher motor 
• prognostic module for fuel cell 
• interface module for pushing telemetry data to digital 

platform 
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• interface module for exchanging data with COTS flight 
simulator software 

• bundled flight simulator module consisting of Gazebo, 
PX4, and a communication adapter towards the 
RTAPHM interface module 

As validation evidence and as deliverables to the RTAPHM 
project, we created two artifacts.  

First, a MOLE-based integration process for the digital twin. 
Here, Gazebo/PX4 was used as the “aerodynamics driver” to 
stimulate three high-fidelity physical simulation models. 
These models, in turn were used to generate sample and 
training data for three individual implementations of 
monitoring concepts.  

Second, an interactive digital twin was created as a result of 
the integration process. This was used during project 
demonstration runs to create a live feed of (simulated) sensor 
data into the running diagnostic and prognostic modules, to 
show the interactive reaction to different fault scenarios.  

Figure 9 depicts the result: simulation models for fuel cell, 
servo and pusher motor formed the RTAPHM system 
simulation. Some of the system simulation’s inputs were fed 
with data from a customized fixed wing VTOL-capable UAV 
of which the physical and aerodynamic properties were 
simulated using Gazebo. Both system simulation and Gazebo 
were step-synced. PX4 was used to auto-pilot the UAV along 
a set of waypoints.  

 
Figure 9. RTAPHM virtual aircraft. 

6. FUTURE WORK 

The validation work points out paths for future work. The 
most significant findings, which we are currently pursuing, 
are presented below. 

• support further modelling tools: to enlarge the possible 
target audience for MOLE users, the support of further 
modelling tools, other than just Matlab/Simulink, seems 
promising. 

• support open standards: another aspect of widening the 
target audience of MOLE emerges from the support of 

open interface standards, such as the Functional Mockup 
Interface (FMI), instead of relying on parsing proprietary 
coding patterns. 

• integrate with Asset Administration Shell: the current 
efforts around (AAS) focus on standardizing the digital 
representation of assets. MOLE could be integrated with 
AAS compliant repositories to allow users to choose 
from pre-build simulation components. 

• cloud-native technology: currently, MOLE is designed 
as a desktop-based tool, and thus is limited by the 
resources of the computing platform it runs on. By 
extracting the headless MOLE computing core and 
basing in on state-of-the-art cloud-native technology, 
these limitations can be overcome, and data stakeholders 
can scale the required resources on demand.  

• service platform: finally, combining all the previously 
mentioned streams of future work, we envision a cloud-
based service platform, where stakeholders can upload 
own contributions, and build complex simulations from 
own and 3rd party simulation components, depending on 
their specific needs for training) data, and – by 
employing AAS and FMI concepts – without having to 
expose their intellectual simulation property to the 
public. 

Using the MOLE digital twin, the project was able to 
showcase a core use case for automated functional 
dependency analysis: the injection of a fault in the cooling 
system’s filter (clogging) caused the relevant areas to heat up, 
causing a decrease in the efficiency of the fuel cell, in turn, 
decreasing the remaining useful life of the fuel cell. 

7. CONCLUSION 

We presented MOLE, a tool for supporting the automation of 
the integration of software-based system simulations. The 
tool facilitates short integration cycles for agile project setups 
and provides specific debug and testing features. We showed 
the benefits of a structured and automated integration process 
for distributed research projects with different interests of 
individual partners. 

We reported on the benefits of MOLE for rapid assembling 
of demonstrators for PHM research projects (though MOLE 
is not limited to that application domain). MOLE was used to 
support the integration process of the RTAPHM digital twin, 
consisting of commercial flight simulator software driving 
high-fidelity models of aircraft components. 

We also showed that the bootstrapping and early 
development phases of data-driven application projects can 
benefit from artificially generated data to overcome the lack 
of initial data for first exploration and training. In particular, 
the data and communication architecture of the envisioned 
system can be explored regardless of the origin of the utilized 
data.  
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We finally recommend that OSA-CBM design principles and 
communication standards should not only be adopted for 
productive modules of a data processing chain. Designing  
data generators as OSA-CBM compliant data sources (see 
4.4) facilitates integration testing, as the productive interface 
of the modules can be transparently stimulated. 
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ABSTRACT

Implementing health monitoring methods for aircraft landing
gears holds the potential to prevent premature component re-
placements and optimize maintenance scheduling. Therefore,
this paper introduces a fundamental framework for fatigue
monitoring and subsequent steps for predicting the remain-
ing useful life of landing gears. A key component of this
framework is the model-based load observer, which lays the
groundwork for subsequent remaining useful life prediction
steps. This load observer will be analysed in detail in this
paper. The model-based approach is specifically designed
for observing the loads on civil aircraft landing gears dur-
ing touchdown, utilizing signals from in-service sensors. To
evaluate the load observation method, a flexible multibody
simulation model is introduced to generate synthetic data sets
of aircraft in-service data and the corresponding landing gear
loads, given the unavailability of real in-service and recorded
landing gear load data. The load observation method is applied
to synthetic in-service data across various virtually performed
landing scenarios, offering a proof of concept along with exten-
sive analysis of parameter uncertainties and additional factors
influencing observation quality. Through this analysis, certain
challenges to the observation method are identified that require
further investigation in subsequent research efforts.

1. INTRODUCTION

Optimizing aircraft life cycle management significantly con-
tributes to enhancing profitability and maintaining competi-
tiveness within the aircraft industry, while also facilitating the
achievement of ambitious climate objectives. One essential
aspect of an aircraft’s life cycle involves its operational life, in-
cluding maintenance. Emerging maintenance strategies, such
as condition-based, predictive, and prescriptive maintenance,
prioritize health-oriented approaches aiming to optimize air-
craft operating life by enhancing performance and safety. The

Jonathan Jobmann et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

advancement of processes and methodologies for these strate-
gies is facilitated by the growing digitization and improved
IT infrastructure, notably through digital platforms that ad-
dress aircraft operational life and maintenance needs. This
technological advancement enables the intensive computation
and memory utilization required for certain health monitor-
ing methods, which contribute to an optimized aircraft life
cycle management. Especially structural components, such
as aircraft landing gears (LG), offer high potential for the
meaningful implementation of health monitoring methods.

LG systems must endure a variety of severe loads across dif-
ferent loading conditions. To ensure the structural integrity of
the LG, with no detectable fatigue cracking throughout its op-
erational lifespan, the safe life design philosophy is commonly
employed in structural LG design (Schmidt, 2021). In this
context, the safe life denotes the duration during which the
components can operate without experiencing fatigue cracking.
At the latest, when this point in time is reached or exceeded,
the components are retired from service. Designing with the
safe life philosophy entails incorporating scatter factors and es-
timating fatigue load spectra (SAE International, 2020), often
resulting in underestimated individual LG lifespans.

However, by gaining detailed insights into actual loads and
fatigue experienced during service, the assessment of LG con-
dition and the prognosis of remaining useful life (RUL) can
be performed. Consequently, implementing Structural Health
Monitoring (SHM) for LGs through fatigue monitoring meth-
ods may help avoid premature replacements and optimize
maintenance scheduling. Furthermore, the comprehensive un-
derstanding of the actual loads experienced in service opens
up opportunities to improve future LG designs (Schmidt &
Sartor, 2009).

In recent years, several fatigue monitoring approaches have
been developed for aircraft, with some specifically tailored
for LGs. One common feature among many of these aircraft
fatigue monitoring approaches is the observation of loads prior
to fatigue calculation. In (Boller & Buderath, 2007), (Boller &
Staszewski, 2004), (Buderath & Neumair, 2007), (Buderath,
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2009) and (Schmidt & Sartor, 2009) aircraft load observation
approaches for fatigue monitoring are described.

One load monitoring approach involves using flight parameters
monitored on the aircraft. Another SHM strategy utilizes
additional sensors implemented on the aircraft, such as strain
gauges. The data collected from these sensors can then be
input into a ground-based digital loads model based on the
finite element method. A similar approach, employing strain
gauges, is addressed in (Chabod, 2022).

However, this approach incurs additional costs as it requires
the installation of extra sensors on each LG to be monitored.
Moreover, it increases the risk of sensor failures due to these
additional sensors, which could affect aircraft availability or
compromise the reliability of the implemented SHM methods.
Conversely, employing model-based methods reliant on flight
parameters extracted from sources like quick access recorder
presents a promising strategy for observing LG loads and
fatigue and can effectively mitigate these drawbacks. This ap-
proach is also already utilized for detecting transient overloads
in LGs (Schmidt & Sartor, 2009).

Explicit research on fatigue monitoring of LGs primarily fo-
cuses on the utilization of machine learning methods. In (El
Mir & Perinpanayagam, 2021), a machine learning model was
proposed to determine load histories of the LG based on sen-
sors onboard the aircraft. Additionally, (Holmes et al., 2016)
presented results of a machine learning model calculating LG
loads on different runway surfaces using sensor data collected
from sensors attached to the LG. However, this approach has
the disadvantage of requiring additional sensors to be installed
on the LGs.

Addressing this limitation, (Jeong, Lee, Ham, Kim, & Cho,
2020) utilized a landing simulation model to generate syn-
thetic flight parameters and related synthetic LG loads and
strains for training machine learning models. Nonetheless,
model-based methods offer several advantages over black box
models like machine learning models. On the one hand, they
are typically more robust and interpretable which is a great
advantage within the certification process of aircraft systems.
On the other hand, model-based approaches can be more effi-
cient in using data, particularly in scenarios with limited data
availability, as they often incorporate prior knowledge about
the problem domain.

Therefore, this paper presents a model-based loads observer
approach designed specifically for monitoring civil aircraft
LG loads without the need for additional sensors, primarily
utilizing in-service sensor signals as a foundational element.
As the load observation of LG operations is very extensive
and comes with various challenges, this paper aims to focus
solely on the first landing impact of the main LGs. The devel-
oped method constitutes a key component of a comprehensive
framework for fatigue monitoring in LGs. This framework,

along with the steps for remaining useful life (RUL) prediction,
is fundamentally introduced. The overall approach aims to
lay the foundation for LG lifecycle management optimization
through effective fatigue monitoring and prediction in future
work.

The paper is organized as follows. The fatigue monitoring
framework and subsequent steps for RUL calculation are intro-
duced in Section 2. For detailed analysis of the model-based
loads observer as a key component of the LG fatigue mon-
itoring framework, Section 3 outlines the simulation model
utilized for generating synthetic data. This synthetic data is
essential for evaluating the loads observation method. Section
4 presents the description and analysis of this method. Finally,
the paper concludes with Section 5, which provides a summary
and a brief outlook.

2. FATIGUE MONITORING AND PREDICTION

In the following section the LG fatigue monitoring framework
and an approach for downstream RUL prediction is presented.

2.1. Fatigue Monitoring Framework

There have been numerous publications addressing fatigue
monitoring of aircraft structures, such as (Boller & Staszewski,
2004), (Buderath, 2009), (Dziendzikowski et al., 2021), (JIAO,
HE, & LI, 2018), and (Stolz & Neumair, 2008). Additionally,
publications by (El Mir & Perinpanayagam, 2021) and (El Mir
& Perinpanayagam, 2022) have focused specifically on fatigue
monitoring of LG systems. What most of these publications
have in common is the proposed application of the Miner
rule for calculating a health index of the structures. This rule
calculates the cumulated damage D of structures over their
life cycle using the equation

D =
∑ ni

Ni
. (1)

Applying ni cycles with a certain stress amplitude i and the
corresponding fatigue life endurance Ni on a structural com-
ponent is equivalent to the consumption of ni/Ni of fatigue
resistance (Schijve, 2009). When the cumulated damage D
reaches 1, failure is expected. Given that the Miner rule is
presently utilized in the safe life fatigue analysis for LG cer-
tification processes (El Mir & Perinpanayagam, 2022), its
application in the fatigue monitoring process of the LGs is
evident. Therefore, the proposed fatigue monitoring frame-
work in this paper also relies on the damage calculation using
the Miner rule as a central element. By utilizing the Miner
rule, many aspects of the fatigue monitoring framework are
implicitly defined.

The LG fatigue monitoring framework, as illustrated in Figure
1, is based on the remaining life calculation scheme outlined
in (Tinga, 2010) and the steps for safe-life analysis presented
in (El Mir & Perinpanayagam, 2022). The objective of the
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Figure 1. Schematic presentation of the LG fatigue monitoring framework

outlined framework is to present a comprehensive monitoring
process for LGs, spanning from raw in-service data record-
ings over observing LG loads to monitoring LG fatigue and
integrating digital twin technology. The framework serves as
a basis for subsequent RUL calculation. Since real-time on-

board aircraft fatigue monitoring is unnecessary and requires
considerable storage and computing capacity, the framework
operates offboard. Initially, usage monitoring is conducted
within the framework, entailing the recording and storage of
essential data, primarily in-service data. This data undergoes
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preprocessing, including data cleansing and noise filtering.
Subsequently, the preprocessed data is utilized to observe
loads on the LG using simulation models constructed with
LG design data, thereby virtually emulating the actual LG dy-
namics (model-based loads observer). The simulation model
generates load histories at virtual load measurement points
of the LG geometry. These specific locations are also used
as load application points in finite element (FE) models for
structural analysis. Thus, load histories and FE-models can be
combined for subsequent stress monitoring.

To monitor LG structural stress based on LG load histories,
stress tensors σij,e,c,static are calculated for selected ’hot spots’
or across all finite elements e for different load cases c (e.g.
specific steering, braking or landing conditions) using static
FE design calculations, as depicted in Figure 1. The index ij
represents the respective matrix entry of a stress tensor. To
associate these stress tensors with observed loads, the load
histories from the model-based loads observers are analysed,
and specific load cases are extracted. The load histories are
segmented into load events Ll,c(t), where the additional index
l denotes the index of the load event within the overall load
history, and c links the load event to a specific FE load case.
The stress tensors are then linearly scaled based on the load
histories for each specific load event, resulting in a stress
tensor history σij,e,l(t) for each finite element e and each load
event l. This scaling is achieved through linear superposition
by multiplying each load event with its corresponding stress
tensor:

Ll,c(t) · σij,e,c,static = σij,e,l(t). (2)

It is important to note that each load event Ll,c(t) is character-
ized by three force time series and three moment time series
along the principal axes. However, the stress tensor is scaled
by only one time series, which is selected based on the pre-
dominant force specific to the load case. Therefore, for each
load event Ll,c(t), the load case-specific predominant load is
identified and used for scaling.

Afterwards, the stress tensor histories for all load events are
chronologically ordered and concatenated for specific finite
elements e, resulting in the combined stress tensor histories
σij,e(t). To ensure accurate fatigue monitoring under complex,
multiaxial loading conditions, the critical plane method is
employed (Lee & Barkey, 2012). This method assesses stress
across various potential planes to identify those where stresses
and strains are most likely to cause damage. The stresses σϕ,e
on various planes of finite element e, oriented at angles ϕ
under biaxial stress, are calculated using the formula:

σϕ,e =
σxx,e + σyy,e

2
+
σxx,e − σyy,e

2
· cos 2ϕ

+ τxy,e · sin 2ϕ.
(3)

Here, σxx,e and σyy,e represent the normal stresses on the x and
y axes of the finite element, respectively, contributing both
their average and their difference to the formula. Additionally,
the formula includes the shear stress τxy,e across the plane.
The output from the stress monitoring layer, as depicted in
Figure 1, thus consists of the stress histories σϕ,e.

In order to apply the Miner rule, as stated in Equation 1, to
the stress histories σϕ,e within the condition monitoring layer
depicted in Figure 1, the rainflow counting method is first
performed. This method decomposes complex stress histories
into a series of simple, reversed stress cycles, each represent-
ing an individual stress response that could potentially lead to
material fatigue (Schijve, 2009). The output of the rainflow
counting method includes the number of stress cycles n at
specific stress amplitudes σa and mean stress levels σm. Addi-
tionally, the SN-Curve, schematically depicted in Figure 1, is
crucial for applying the Miner rule (Schijve, 2009). This curve
illustrates the relationship between stress amplitude σa (with
mean stress level σm = 0) and the number of cycles to failure
N for a given material. It is essential for implementing the
Miner rule, which requires knowledge of the cycles to failure
N for specific stress amplitudes. Each point on the SN-Curve
represents a specific stress level and its corresponding fatigue
life or life expectancy in terms of number of cycles.

Given that simple SN-Curves only address fatigue life un-
der conditions of zero mean stress, mean stress correction is
crucial for accurate fatigue life monitoring. The stress cy-
cles n at specific stress amplitudes σa and mean stress levels
σm, as determined by rainflow counting, are subject to mean
stress correction, such as the Goodman mean stress correction
method (Schijve, 2009). Once the stress amplitudes are cor-
rected, the Miner rule, shown in Equation 1, can be applied.
To assess the LG structural fatigue based on the stress histories
σϕ,e from the stress monitoring layer, the rainflow counting,
mean stress correction, and Miner rule must be conducted for
the stress histories on every plane at angle ϕ for each finite
element e. Consequently, Equation 1 is extended to:

Dϕ,e =
∑ nϕ,e,i

Ni
. (4)

The maximum damage or fatigue DLG experienced by the LG
is calculated as follows:

DLG = maxϕ,e (Dϕ,e) . (5)

While calculating the maximum LG fatigue DLG is critical, it
is equally important to account for uncertainties in material
performance and load observation, as outlined in (Schmidt,
2021). This consideration is implemented using a scatter
factor (SF), which, for large civil aircraft, is a minimum of
3, corresponding to material properties with 99 % probabil-
ity of survival and a 95 % confidence level, as specified by
(European Union Aviation Safety Agency, 2020). Therefore,
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the safe-life fatigue index FILG of the LG is calculated by:

FILG = SF ·DLG. (6)

This health index serves as the health indicator within the
condition monitoring layer of the framework.

The fatigue index, along with data from the usage, loads, stress,
and condition monitoring blocks depicted in Figure 1, is stored
in a fatigue monitoring database. This database ensures the
availability and traceability of all information pertinent to the
fatigue monitoring process. For enhanced traceability, it also
includes additional information not shown in Figure 1, such as
log cards detailing component removals. In conclusion, this
database can be integrated into a digital twin or selectively
transfer specific data to other systems.

2.2. Fatigue Prediction

The fatigue monitoring framework can be extended by incorpo-
rating a prognostics layer, as schematically depicted in Figure
2. Taking the fatigue index FILG as input, the RUL calculation

Figure 2. Schematic presentation of LG fatigue prognostics

is straightforward and requires only one main calculation step.
Based on the remaining fatigue life estimations by (JIAO et
al., 2018), the RUL of the LG is determined by

RULLG =
1− FILG

SF · d =
1− SF ·DLG

SF · d , (7)

where d is the predicted mean damage rate in subsequent ser-
vice. If there is no difference in subsequent service expectable,
then d = 1. The parameter RULLG indicates how much re-
maining life is left relative to 1, where a value of 1 corresponds
to LG failure. To convert this RUL calculation into remaining
flight cycles, the equation can be extended by the overall flight
cycles nFC experienced by the LG to predict the RUL in terms
of remaining flight cycles RULLG,FC:

RULLG,FC =
1− SF ·DLG

SF · d · nFC

DLG
. (8)

Due to the various sources of uncertainties the precise deter-
mination of especially the scatter factor is demanding. The

literature provides suggestions (Schmidt, 2021) but a proba-
bilistic estimation of the scatter factor regarding the specific
use should be performed when possible.

3. BASE MODEL FOR SYNTHETIC DATA GENERATION

The development of monitoring methods typically requires
some sort of data for evaluation. In this case, to assess the
model-based LG loads observer, a combination of in-service
data recorded by the quick access recorder and dedicated LG
loads data is necessary. For this work, method development
and evaluation should focus on a narrow-body airliner model
with around 100-180 passengers serving as the reference air-
craft.

However, due to the unavailability of in-service data and
recorded dedicated LG loads, it is essential to generate plau-
sible synthetic in-service and LG loads data. To achieve this,
a base model was created using MATLAB/Simulink and the
integrated library Simscape Multibody. Simscape Multibody
facilitated the implementation of aircraft and LG components
within a multibody simulation environment and provided seam-
less integration with Simulink.

The overall base model consists of the multibody LG model,
the airframe, a runway and tyre model as well as an aircraft
movement and control subsystem. Figure 3 provides a visu-
alization of the basic model in Simscape Multibody. Further
details regarding the structure of the base model are described
in the subsequent section.

Figure 3. Visualization of the base model: multibody LG
model, airframe and runway model

3.1. Multibody landing gear model

The implementation of the multibody LG model was based
upon industrial design data, which was made available within
the research project OBSERVATOR. Figure 4 illustrates the
schematic representation of the implemented bodies and joints
for a single main LG in the multibody model. The connection
between the aircraft/airframe (AC) and the main fitting (MF)
is modeled as a fixed joint (with no degrees of freedom) to
represent the LG in an extended and locked state. Given that
only load measurements at the LG wheel axle midpoint are
of interest, as specified in Section 2.1 due to only one load
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application point in the FE assembly model, no additional
components connecting the LG and the aircraft, such as side
stays, are modeled. However, the impact of these omitted
components on LG flexibility is still addressed by integrating
their flexibility into the overall LG flexibility matrices which
are introduced later in this work.

For simulating translational shock absorber movement, a pris-
matic joint is installed between the MF and the sliding tube
(ST), providing one translational degree of freedom. This
design choice simplifies the multibody assembly, obviating
the need for additional torque links to prevent ST rotation
relative to MF along the rotational axis. Despite this design
simplification, the loads calculation at the wheel axle midpoint
is not affected. Moreover, to emulate LG flexibility, a single
6-DOF joint is utilized, condensing the LG flexibility into a
single flexible point at the wheel axle midpoint. Additionally,
revolute joints are employed to constrain the movement of LG
wheels W1 and W2 to one rotational degree of freedom each.

Figure 4. Schematic representation of the bodies and joints of
a single main LG

One of the key components of the modeled nose LG configu-
ration is the oleo-pneumatic shock absorber, which primarily
provides spring suspension and damping of impact and re-
coil energy (Schmidt, 2021). To represent the vertical shock
absorber dynamics, the shock absorber force, defined by

FSA = Fspring (sSA, Tamb) + Fdamp
(
sSA, sgn(vSA), v

2
SA

)
(9)

+ Ffric + Flimit (sSA, vSA)

was implemented. Here, Fspring represents the force exerted
by the gas spring, dependent on the shock absorber travel
sSA and ambient temperature Tamb. The term Fdamp is a func-
tion of the shock absorber travel sSA, shock absorber velocity
vSA = ṡSA, and the direction of velocity sgn(vSA), reflecting
the oil-induced damping force. Both, the gas spring and the

damping force are modelled by the application of lookup ta-
bles. Additionally, the shock absorber force accounts for the
friction force Ffric at the upper and lower bearings of the slid-
ing tube by using simple friction coefficients, along with the
translational limiting forces Flimit at the upper and lower stops
of the shock absorber travel. These upper and lower limiting
forces Flimit are modelled as simple spring-damper elements,
dependent on sSA and vSA.

To implement a flexible LG model, the matrix equation of
motion commonly employed in FE analysis was utilized in the
LG model:

Mü+ Cu̇+Ku = F. (10)

Here, F denotes the applied forces and the vector u represents
the degrees of freedom of the FE model. M , C, and K denote
the mass, damping, and stiffness matrices respectively. Due
to computational complexity reduction reasons, only mass,
damping and stiffness matrices of the order of 5 were avail-
able. With these system matrices reduced by the Guyan model
order reduction method (GUYAN, 1965), the LG motion due
to flexible structures could be simplified to only one point at
the wheel axle midpoint. The computed LG motions were ac-
curately replicated in the multibody model using the depicted
6-DOF joint in Figure 4. However, one translational degree
of freedom along the shock absorber axis was disregarded
due to the predominant shock absorber travel, leading to the
utilization of only 5 degrees of freedom of the 6-DOF joint in
Simscape Multibody.

What also had to be taken into account was the change in
flexibility with varying shock absorber travel, so that Equation
10 changed to

M (sSA) · ü+ C (sSA) · u̇+K (sSA) · u = F. (11)

This implementation issue was addressed by the usage of
lookup tables as a function of the shock absorber travel in
MATLAB/Simulink. The continuously calculated vector u of
Equation 11 could then be input to the 6-DOF joint.

3.2. Tyre model

Tyres represent an essential component of vehicle dynamics
such as aircraft LG dynamics. The forces and moments acting
on the tyres during ground interaction greatly influence the
vehicles dynamics. Thus, when developing multibody LG
models, the tyre ground interaction has to be sufficiently repre-
sented by tyre models. In contrast to the multibody LG model,
data for tyre modelling was not available. This proved to be
a challenge, because tyre models in general rely on extensive
input parameters. To address this issue, Fiala tyre models were
chosen for modelling.The Fiala model is based on a brush-type
tyre model and comes with the advantage, that it only requires
10 input parameters which are directly linked to physical prop-
erties of the tyre. Due to the fact, that Fiala tyre models for
other aircraft types were available, the parameters of those
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models could be used for parameter scaling so that plausi-
ble assumptions concerning the Fiala tyre models parameters
could be made. Nevertheless, the usage of the Fiala model
also comes with certain drawbacks as illustrated in (Blundell
& Harty, 2004):

• Combined cornering and braking or cornering and accel-
erating is not considered in the model.

• Aligning moment and lateral force induced by the camber
angle are not modelled.

• Varying cornering stiffness at zero slip angle with tyre
load is not represented.

• At zero slip angle the offsets in lateral force or aligning
moment due to conicity and ply steer are not considered.

Nevertheless, the Fiala tyre model represents a sufficiently
good model for the usage of synthetic data generation for land-
ing loads observation model evaluation. The exact mathemati-
cal representation of the model, which was used for implemen-
tation, is presented in (Blundell & Harty, 2004). The resulting
forces and moments, calculated in MABLAB/Simulink, were
used as inputs at the contact patches of the individual tyres in
the multibody model.

3.3. Runway model

In order to simulate different tyre ground interactions for syn-
thetic data generation, two different runways have been imple-
mented in Simulink and visualized in Simscape Multibody:

• Even runway: A completely even runway with no bumps
for optimal landing and taxiing conditions.

• San Francisco Runway 28R: The San Francisco Runway
28R before it was resurfaced was known for high loads on
aircraft (European Union Aviation Safety Agency, 2020).

Both runway profiles were constructed using lookup tables in
MATLAB/Simulink. The profile of San Francisco Runway 28R
was developed based on specifications outlined in (European
Union Aviation Safety Agency, 2020). Due to the lack of
additional runway data, only these two profiles were employed
for synthetic data generation. Within the simulation model,
both runway profiles were linked with the tire models of each
wheel to simulate tire-ground interaction. Figure 3 provides a
visualization of a segment of the even runway.

3.4. Aircraft model and control

The aircraft, or airframe, was modelled as a single rigid body
with specific mass and inertia properties. Since no information
was available regarding the flight mechanics of similar-sized
aircraft, aircraft movement was implemented using forces and
moments primarily applied at the aircraft’s center of gravity.
By incorporating a six-degree-of-freedom joint at the aircraft’s
center of gravity, the aircraft could be maneuvered along all six
degrees of freedom with the multibody LG model mounted on

it. To simulate various landing scenarios, multiple controllers
were developed. These controllers utilize the forces and mo-
ments acting on the aircraft as control variables, along with
the aircraft’s Euler angles and approach speeds in horizontal,
lateral, and vertical directions as reference signals.

3.5. Synthetic data generation for different landing sce-
narios

The aim of this work, as mentioned in Section 1, is to present
a method and evaluate it for observing landing loads in the
context of LG fatigue monitoring and RUL prediction. Conse-
quently, the generation of in-service data for various landing
scenarios and the recording of dedicated LG loads were re-
quired. Simulated landing scenarios included level landings,
one-gear landings, side load landings, and rebound landings.
To create diverse landing conditions, different parameters were
varied. These varied simulation parameters and their value
ranges are outlined in Table 1. The variation limits represent
plausible assumptions, partly based on knowledge of these
parameters from similar aircraft or regulatory documents such
as (European Union Aviation Safety Agency, 2020). For the

Table 1. Overview of simulation parameter variations for
synthetic data generation

Simulation
parameter

Variation
limits

Roll angle ±5 deg

Pitch angle 3− 9 deg

Yaw angle ±5 deg

Aircraft mass 50, 000− 60, 000 kg

Center of gravity 22− 28 % MAC

Ground speed 55− 65 m/s

Sinking speed 0.3− 3 m/s
Sample rate
(in-service data) 20/50/200 Hz

Measurement noise
(in-service data) no noise / white noise

Lift force 0− 1g
(variable during touchdown)

Runway profile even /
San Francisco Runway 28R

variation of sensor sample rates, only rates up to 50 Hz are the-
oretically necessary, as higher sample rates are uncommon for
aircraft quick access recorder data in today’s commercial avia-
tion industry. Nevertheless, additional in-service data sets with
a sample rate of 200 Hz were recorded to assess the impact of
higher sensor sample rates on monitoring performance.
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4. MODEL-BASED LOADS OBSERVATION OF LANDING
GEAR LOADS

The following section describes the model-based loads ob-
server of LG loads at the initial landing impact. At first, the
developed method is described. In a second step, results of
the loads observation method are analysed and the method is
evaluated.

4.1. Methodology

Aircraft model-based load observer approaches often rely on
a Luenberger observer using specific system sensor data for
state estimation, as demonstrated in (Montel & Thielecke,
2018) or (Luderer & Thielecke, 2022). Typically, in-service
data recorded at the LG is limited to weight-on-wheel binary
signals and rotational wheel speeds. However, employing state
estimation within a Luenberger observer with feedback solely
based on the the mentioned signals as the only LG signals is
not feasible. Therefore, direct estimation of the LG dynamics
and loads without state estimation feedback is utilized. A
schematic representation of this method using a block diagram
and a flow chart is depicted in Figure 5.

Figure 5. Block diagram of loads observer with data flow of
schematic observer logic

During the landing phase and ground operations, the aircraft
with the extended and locked LG is controlled with the aircraft
inputs u and is simultaneously exposed to various external
disturbances d. This results in various loads acting on the

aircraft, and particularly in this work, loads yL acting on the
LG. The aircraft and LG dynamics are recorded by various
sensors. The recorded in-service data yS is preprocessed, as
described in Section 2.1, so that the preprocessed data yS can
be used as loads observer input. The actual loads observer then
tries to re-simulate the exact aircraft motion in an offboard
simulation from the moment the rotational wheel speed ωw of
at least one main LG wheel exceeds the specified rotational
wheel speed threshold ωw,th.

The loads observer begins simulating aircraft movement just
above the runway. Initial inputs include the aircraft’s roll and
pitch angles and approach speeds recorded when the weight-
on-wheel signal first changes to ’true’ during touchdown. The
observer simulates until the simulated rotational wheel speed
ωw of at least one main LG wheel exceeds the specified thresh-
old ωw,th. After this point, the observer uses recorded time
series data of longitudinal, vertical, and normal accelerations,
roll, pitch, and yaw rates, as well as roll, pitch, and heading an-
gles to reproduce the aircraft movement. The simulated loads
are then output by the observer as the signal ŷL, as depicted in
Figure 5.

4.2. Analysis

To assess the effectiveness of the proposed observer method-
ology, it was applied to various synthetic in-service data sets
generated by the base model introduced in Section 3, with sim-
ulation parameters varied as detailed in Table 1. Initially, base-
line simulations were conducted at a sample rate of 200 Hz
on an even runway without measurement noise. This setup
aimed to exclude potential influences such as uneven runways
and low sensor sample rates, allowing for an analysis of the
method’s performance under ’ideal’ conditions. Subsequently,
the observer method was tested under more realistic condi-
tions, including measurement noise, uneven runways, and
sample rates of 20 Hz and 50 Hz.

A modified version of the base model was used as the simula-
tion model for the model-based loads observer. After baseline
and observer simulations, the simulated forces and moments at
the main LG wheel axle midpoint during the initial load impact
were compared. All observer simulations yielded highly ac-
curate results, with deviations between the simulated baseline
and observer loads being less than 2 %. Figure 6 illustrates the
forces Fx and Fz at the wheel axle midpoint for a level land-
ing scenario. Here, Fx denotes the force in the longitudinal
direction, while Fz indicates the force in the vertical direction
of the LG body-fixed coordinate system. The results show that
the method performs well for various landing scenarios un-
der conditions of no parameter uncertainties, no measurement
noise, an even runway, and high sensor sample rates of 200 Hz
or greater.

Subsequently, various parameters of the observer model were
individually modified with plausible assumptions to account
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Figure 6. Load observation of longitudinal and vertical forces
at wheel axle midpoint of one main LG at touchdown

for observer model uncertainties. The simulations were also
conducted with high sample rates of 200 Hz and even runways
to avoid biases in the analysis of model uncertainties. The var-
ied parameters include LG flexibility matrices, shock absorber
temperature uncertainty, shock absorber spring lookup table,
shock absorber damping lookup table, sensor signal offsets,
sensor positions, tyre friction coefficients, and tyre stiffness
and damping coefficients. Despite these model uncertainties,
the deviations between the baseline LG loads and the observer
LG loads for the initial landing impact were less than 10 %
and were therefore deemed sufficient. For example, Figure 7
illustrates the load estimation bandwidth of the observer for
±10◦ C at 30◦ C shock absorber temperature uncertainty.

At the time of writing, the impact of the deviations between
baseline and observer loads in the fatigue monitoring frame-
work introduced in Section 2.1 is not fully known. Therefore,
it is not yet possible to make exact statements about the qual-
ity of the observer results. Nonetheless, the initial findings
indicate a potential for precise load monitoring despite model
uncertainties.

Furthermore, the influence of sensor sample rates on the ob-
server method has been examined. For example, the load ob-
servations of the longitudinal and vertical forces at the wheel
axle midpoint are depicted for different sensor sample rates in
Figure 8. While the observer performs well for load observa-
tion with sensor sample rates of 200 Hz, the quality of load
estimation decreases with decreasing sample rate.
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Figure 7. Load observation of longitudinal and vertical forces
at wheel axle midpoint of one main LG at touchdown with
shock absorber temperature uncertainty of ±10◦ C at 30◦ C

Figure 8 also reveals that both the observer with 20 Hz sample
rate and the one with 50 Hz sample rate start to diverge from
the baseline in Fz at approximately the same time. This occur-
rence can be attributed to a significant increase in the vertical
deceleration of the aircraft about the same time, leading to
imprecise recordings of vertical accelerations during observer
simulations. Nevertheless, sample rates of 50 Hz, which are
common in modern aircraft, still hold considerable potential
for effective observation of LG loads during the initial landing
impact at the main LGs for use in LG fatigue monitoring.

Another significant factor expected to influence load obser-
vation was landing on uneven runways. Baseline simulation
results are depicted in Figure 9. These show the exemplary
longitudinal and vertical forces at the wheel axle midpoint for
a level landing scenario on the San Francisco Runway 28R
profile (before resurfacing). This runway was known for in-
ducing high loads due to its uneven nature. The figure also
presents the corresponding observer loads simulated for an
even runway, as the observer lacked information about the
actual runway profile. An observer sample rate of 200 Hz was
employed to mitigate potential inaccuracies from inadequate
sample rates, thus excluding certain erroneous load estima-
tions. At the beginning of the landing impact, when aircraft
movement predominates and no critical runway bumps affect
the LG, the observer estimates the LG loads quite accurately,
albeit with higher frequency oscillations. However, as simula-
tion time progresses, the loads begin to deviate significantly
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Figure 8. Loads observation of longitudinal and vertical forces
at wheel axle midpoint of one main LG at touchdown for
different virtual in-service data sample rates

due to runway bumps and variations in runway height.

The estimation results of the observer could be significantly
improved by observer simulations with a known uneven run-
way profile and a known runway position of the aircraft during
touchdown. However, if the precise landing position and es-
pecially the runway surface profile are unknown, which is
usually the case nowadays, highly uneven runways can lead to
significant variations in runway excitation. Despite maintain-
ing the same vertical aircraft position in the observer as in the
baseline, deviations in loads can be substantial due to these
discrepancies.

5. CONCLUSION

This paper introduces a model-based LG loads observer method
that operates exclusively on in-service data, thereby eliminat-
ing the need for additional sensors. The method is specifically
evaluated with an emphasis on the first landing impact of the
main LGs. It forms a key component of a comprehensive LG
fatigue monitoring framework and the subsequent calculation
of RUL for the LG. This paper also fundamentally outlines
the foundational steps and further key components for LG fa-
tigue monitoring and prediction, based on the ’safe life’ design
methodology commonly used for structural LG certification.

The application of the loads observer method on virtual in-
service data with dedicated LG loads shows significant po-
tential despite challenges, such as the unsuitability of LG
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Figure 9. Loads observation of longitudinal and vertical forces
at wheel axle midpoint of one main LG at touchdown: baseline
touchdown on San Francisco Runway 28R profile, observer
touchdown on even runway

feedback signals for state feedback observers and the heavy
influence of sample rates on precision. For accurate load esti-
mation, particularly for initial landing impacts, sample rates
of at least 50 Hz are necessary. However, deviations between
recorded and actual aircraft accelerations can lead to unac-
ceptable estimation errors over time, suggesting that higher
sample rates might be needed for longer monitoring durations.

A major challenge is the unknown runway profile, notably on
uneven runways like the pre-resurfaced San Francisco Run-
way 28R, where load estimation accuracy drops significantly.
The position inaccuracies in the observer model, due to in-
tegrating recorded aircraft accelerations, further distort load
estimations on inclining runways. Precise runway profiles
and exact touchdown coordinates are crucial for improving
estimation accuracy.

While this paper demonstrates a basic proof of concept by ap-
plying the developed method to virtual in-service data, further
analysis and development are required to address the chal-
lenges associated with load estimation. For instance, the exact
effects of load estimation errors on fatigue and RUL deter-
mination need to be investigated. Additionally, knowledge
about runway profiles and the exact touchdown position must
be incorporated. Furthermore, combined effects of model
uncertainties on load observation should be explored.
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ABSTRACT

The railway infrastructure condition is a crucial factor for the
safe and efficient operation of trains. Regular maintenance
is inevitable as the track geometry degrades over time due
to traffic and environmental effects. To restore the ideal po-
sition and provide sufficient durability of ballasted track so
called tamping machines are used. These machines lift the
track, correct the longitudinal level and the alignment of the
track panel and tamp the ballast. During the tamping process
the tamping tines penetrate the ballast bed, fill voids and com-
pact the ballast underneath the sleepers by a squeezing move-
ment with superimposed vibration. A detailed description of
the tamping cycle can be found on section 2. Monitoring and
evaluating this tamping process is essential for maintaining
process quality. This can be achieved through a variety of
sensors, such as incremental encoders, angle encoders, tem-
perature, pressure, and acceleration sensors, coupled with a
measurement unit (DAQ and edge device) to collect, locally
store and transmit the data to a cloud. This paper explores the
development of a rule-based algorithm for assessing the qual-
ity of the tamping process execution in reference to its nomi-
nal chronological sequence. The focus is on identifying tamp-
ing occurrences and classifying them into acceptable (OK)
or non-acceptable (NOK) categories. This involves select-
ing relevant measurement parameters and processing them,
considering the inherent imprecision in real-world processes.
Empirical thresholds are established to differentiate between
good and bad outcomes. The classification approach has to
be sufficiently generic in order to cover a high variety of cus-
tomized tamping machine types. As each machine is individ-
ually designed, the process of generalization is challenging
and complex. The paper demonstrates the accuracy and uni-
versal applicability of the developed rule set across different
tamping machines. The model’s effectiveness is validated us-
ing the Hold-Out-Test-Set method. Furthermore, the rule-set-

Andreas Bernroitner et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

achieved outcomes are compared with results gained from an
LSTM network. Both the rule-based approach and the neural
network demonstrate precision, but the latter requires signifi-
cantly more effort.

1. TRACK MAINTENANCE

For a safe and efficient operation of trains a proper track in-
frastructure is indispensable. Especially on high-speed rail
links the quality of the track and its surroundings is crucial.
Therefore not only the construction but also the maintenance
of the track in order to prevent degradation due to traffic and
environmental effects are important. This involves ensuring
a clean and dry embedding, sufficient proper ballast under-
neath the rails, impeccable condition of the sleepers involved
and restoring the vertical as well as the horizontal position of
the rails. A very detailed description of several track mainte-
nance methods can be found in (Hansmann, 2021).

In Figure 1 an acceptable condition of a track is depicted.
Here a sufficient amount of appropriately sized, clean ballast
is in place. The positioning of the rails in vertical and hor-
izontal direction is within applicable limits. The durability
of the track geometry is ensured through appropriate com-
paction of the ballast.

Figure 1. Acceptable condition
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For the latter tasks so-called tamping machines are used. The
process which results in appropriately compacted ballast is
referred to as tamping. In Figure 2 an example for such a
tamping machine can be seen.

Figure 2. Tamping machine

A crucial part of such working machines is the tamping unit
which is visualized in Figure 3. The lower grey colored com-
ponents are called the tamping tines. They constitute the only
components which are in direct contact with the ballast.

Figure 3. Tamping unit

Ultimately, the focus of this paper is the automatized identifi-
cation of tamping cycles. Subsequently also classifying tamp-
ing cycles into acceptable and non-acceptable cycles, here-
inafter denoted as OK and NOK respectively, will be done.

In Figure 4 a track with an unacceptable positional deviation
can be seen. The ballast condition regarding size, homogene-
ity and cleanness does not fulfil the minimum criteria either.

Figure 4. Unacceptable condition of the track

In Figure 5 it is obvious that the ballast is in an unacceptable
condition. Neither the ballast size nor the cleanness meet the
desired conditions. (Soleimanmeigouni I, Ahmadi A, Kumar
U., 2018) provide a summary, discussion and classification of
existing track geometry measures and track geometry degra-
dation models. Machine learning approaches for diagnosis
and prognosis of rail defects are reviewed by (Chenariyan
Nakhaee, Hiemstra, Stoelinga, & van Noort, 2019).

Figure 5. Unacceptable condition of the ballast

2. TAMPING PROCESS

The main goal of tamping is to correct track faults in longitu-
dinal level and alignment in order to guarantee the operating

2

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 996



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

reliability and ride comfort of the trains. The explanations
given in this section are based on (Offenbacher, Koczwara,
Landgraf, & Marschnig, 2023) and (Fellinger, 2017). Fur-
thermore, ballast faults like voids beneath the sleepers should
be corrected so that the load onto the sleepers is equally dis-
tributed and deployed to the underfloor. This also increases
track quality before irreversible damages can occur.

A complete tamping cycle can be decomposed into the fol-
lowing sub-processes:

1. Positioning
2. Lifting and Lining
3. Penetrating
4. Filling
5. Compacting
6. Lifting

Figure 6. Tamping stages

In the Positioning phase it has to be ensured that the tamping
unit is positioned exactly above a sleeper and there is no rel-
ative velocity between the unit and the track. Subsequently,
in the Lifting and Lining phase the rails are correctly posi-
tioned by a separate working unit. Here the rails are lifted
and brought into the desired longitudinal and lateral posi-
tion. Then Penetrating is done and the whole tamping unit
is lowered until the tamping tines sink into the surface and
the lower position is reached. This is followed by the squeez-
ing movement of the tines which basically comprises two sub
processes, Filling (the void caused by the previous Lifting

and Lining with ballast) and Compacting (the ballast under
the sleeper). Finally, rails are released and the tamping unit
is retracted again. This process is known as Lifting. During
all of the stages the vibration has to be active. Thus the tamp-
ing tines are oscillating with 35 Hz for a smoother penetra-
tion and squeezing movement inside the ballast bed (Fischer,
1983).

3. DATA GENERATION/MEASUREMENT SYSTEM

A variety of sensors, such as incremental encoder, angle en-
coders, temperature, pressure, and acceleration sensors are
connected with the control system. An Industrial Internet of
Things (IIoT) edge device is fully integrated with the machine
control system via the machine network. The device collects
and records the data which is transferred to an online platform
by means of a mobile broadband connection.

4. TAMPING ABSTRACTION

Unfortunately, there are not one-to-one relationships between
the recorded measurement signals and the sub-processes as
described in Section 2. Additionally, there are further con-
ditions to be fulfilled to assess the quality of the tamping-
process, e.g., squeezing (consisting of filling and compacting)
shall only be performed when the tamping unit already rests
in the down position and not during penetration. On the other
hand, it is not relevant to distinguish filling from compacting,
but only the process of squeezing and related key parame-
ters as squeezing times are of interest. The sub-process “Po-
sitioning” can only be identified by means of the vehicle’s
speed, in detail, whether the machine is at standstill or not,
but it cannot be checked if it is positioned properly. There are
separate assisting tools which deal with proper positioning.
For example, there is a camera and image recognition system
that makes suggestions to the operator for adjusting the tamp-
ing units properly, especially in turnouts. The operator only
needs to confirm the suggestions (Plasser und Theurer, 2017).
Concluding, the sub-processes as depicted in figure 6 need be
represented by sequences based on and created by real signal
data. Therefore, the signals are transformed into segments of
Boolean representations by means of applying mathematical
operations and threshold values, if required. The correct se-
quence of serial and parallel segments determines the quality
or correctness of the tamping process. The proper sequence
of segments for an acceptable tamping process is depicted in
figure 7.
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Figure 7. Tamping process based on measurement data

However, real data show deviations from theory, like the over-
laps of segments or short unidentified periods between seg-
ments (i.e., pauses) which should be in series. Furthermore,
differing start or end times of segments which should be syn-
chronous may occur. The inaccuracies are caused by different
sampling rates of the individual signals or temporal shifts in-
duced by mathematical operations. Thus, there are parts in
the sequences which do not follow the strict theoretical rules
but can be considered as valid to a certain extent. The impre-
cision necessitates the definition of further rules to qualify a
tamping process.

5. LONG-SHORT-TERM-MEMORY

The Long Short-Term Memory (LSTM) network was invented
by Sepp Hochreiter and Jürgen Schmidhuber in 1997 (Hochreiter
& Schmidhuber, 1997). Long Short-Term Memory (LSTM)
is a type of Recurrent Neural Network (RNN) architecture
used in the field of deep learning. LSTMs are designed to
avoid the long-term dependency problem typical of standard
RNNs, enabling them to remember information for long peri-
ods. This makes LSTMs particularly useful for tasks involv-
ing sequential data, such as time series analysis, natural lan-
guage processing (NLP), speech recognition, and more. The
key to LSTM’s ability to retain long-term memory is its cell
state, along with its various gates that control the flow of in-
formation. An LSTM unit typically comprises the following
components:

• Forget Gate ft

• Input Gate it

• Cell State ct

• Output Gate ot

The Forget Gate decides what information should be thrown
away or kept. It looks at the current input and the previous
hidden state and outputs numbers between 0 and 1 for each
number in the cell state (Ct−1). A value close to 1 means
to keep the information, while close to 0 means to forget it.
The Input Gate decides what new information will be stored
in the cell state. It involves two parts: one Sigmoid layer
that decides which values to update, and a Tanh layer that
creates a vector of new candidate values that could be added
to the state. The cell state is the key innovation of LSTMs.
It runs straight down the entire chain, with only minor lin-
ear interactions. It’s very easy for information to just flow

along it unchanged. The cell state is modified by the forget
gate and the input gate. The Output Gate determines the next
hidden state, which contains information on previous inputs.
The hidden state can be used to make predictions. The output
gate looks at the current input, the previous hidden state, and
the current cell state, and decides what the output should be.
These components work together to allow the LSTM to de-
cide when to allow data to enter, when to forget data because
it’s no longer useful, and when to let it impact the output at
the current timestep. This selective memory capability helps
LSTMs to perform exceptionally well on tasks where the con-
text or the sequence of data points is important.

A Bidirectional Long Short-Term Memory (Bi-LSTM) net-
work is an extension of the traditional Long Short-Term Mem-
ory (LSTM) network. It enhances the original LSTM by pro-
viding two layers that process the input sequence in both for-
ward and backward directions. By processing sequences in
both directions, Bi-LSTMs can capture context from both the
past and the future relative to a specific point in the sequence.
The key idea behind a Bi-LSTM is that at any point in time,
the network has access to information from both the begin-
ning and the end of the sequence, making it especially pow-
erful for tasks where context from both directions is crucial
for understanding or predicting the elements of the sequence.
Mathematically, a Bi-LSTM combines the outputs from two
separate LSTM layers — one processing the input sequence
from start to end and the other processing it from end to start.
The outputs of these two LSTMs can be merged in various
ways (e.g., concatenation, summation, or averaging) to form
a single output that provides a comprehensive context-aware
representation of each point in the sequence. Bi-LSTMs are
widely used in various sequence modeling tasks, such as nat-
ural language processing for named entity recognition, senti-
ment analysis, and machine translation, as well as in bioin-
formatics and speech recognition, where understanding the
context from both directions can significantly enhance model
performance.

In Figure 8 a typical (vanilla-)LSTM is depicted. In the graph
the σ stands for the Sigmoid activation and the tanh for Hy-
perbolic Tangent activation function. gt represents the input
activation and the x an element wise multiplication.

(De Simone et al., 2023) describe the application of a LSTM
model for the failure prediction of rolling stock equipment, in
detail of the traction converter cooling system, but also give a
rough overview on other LSTM-based prediction algorithms
in the railway industry.
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Figure 8. LSTM workflow
(Park & Kim, 2020)

6. RULE BASED DETECTION

6.1. OK Tamping cycle detection

In order to identify and evaluate tamping cycles based on the
time series of the measurement channels, boolean signals are
created and assembled, as depicted in Figure 9. A sampling
rate of 10 Hz was chosen in order to ensure an appropriate res-
olution of the signals. Each row of the visualization in Figure
9 is a time increment. Column a stands for ”engine running”,
which means that the engine of the tamping machine has to
be switched on and a minimum rotational speed has to be ex-
ceeded. The second column b represents the tamping cycle
initialization which is done by the operator by means of a
foot-operated pedal. In the c column it is listed whether the
superimposed vibration of the tamping tines is activated or
not. d indicates the proper lifting and lining of the rails. In
e one can see if the tamping unit’s relative velocity falls be-
low a very low threshold value with respect to the rails. This
means that ”the tamping unit stands still” or it is in a very slow
movement at least. The penetrating phase is described in col-
umn f via checking the downward movement of the tamping
units, in detail, it is true if it moves and false if not. Column
g shows if the tines are in the desired lower position. This is
again realized by applying a threshold value to the tamping
unit’s positional encoder. In column h the squeezing move-
ment is depicted. It is true if the tamping tines are moved
towards each other to fill and compact the ballast under the
sleeper and false else. In the last column i the retraction, the
lifting of the unit, is depicted. For the consideration of mea-
surement and transmission errors small deviations are toler-
ated. This means that also segments which are disconnected
by only one or two time increments are regarded as one full
coherent segment.

Figure 9. Tamping identification

The following criteria are established for the tamping cycle
identification and classification:

• duration of each individual segment

• simultaneity of segments

• duration of sections with overlapping segments which
should not be simultaneous

• serial sequence of segments or detachment of consecu-
tive signals

• duration between consecutive segments

The definition of permissible durations, serial sequences, con-
currences etc. requires both profound domain knowledge about
the tamping cycle and empirical insights based on real data.
For example, the ideal minimum squeezing time, i.e., the du-
ration from start of the filling phase until the end of com-
paction phase, is defined as about 1.2 seconds by a manu-
facturer of tamping machines. However, there can be na-
tional regulations which specify a deviating squeezing dura-
tion. Another example can be the temporal succession of the
lifting and penetration phases. Ideally, these two sequences
are strictly in series. However, the downward movement of
the tamping unit can already start when the lifting of the rail
is still in progress provided that a void has formed as soon
as the tamping tines enter the ballast. Concluding, a certain
duration of parallelism is permissible in this case. Further-
more, it is also acceptable that there is a short pause between
the segments. Thus, the definition of such thresholds and
tolerances requires experience and sensitivity from the en-
gineers and data analysts. Usually the threshold values are
determined empirically or are defined be national regulations
depending on where the machine is operated.

In order to get an intuitive feeling about the identification pro-
cess several consecutive tamping cycles are depicted in Fig-
ure 10, where blue sections represent boolean true and or-
ange, boolean false. The columns are identical to those in
Figure 9.

5
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Figure 10. Tamping identification of multiple cycles

6.2. NOK Tamping cycle detection

In order to obtain the desired process quality all sub-processes
have to have the appropriate duration and also the sequence
of the consecutive sub-processes has to satisfy the correct or-
der, which means that the subsequent signal has to follow the
previous one within a certain amount of time. Therefore the
following error scenarios can occur:

• vibration off
• incomplete vibration
• relative velocity
• no stand still
• incomplete stand still
• no leveling
• incomplete leveling
• no penetration
• no down position
• incomplete down position
• no squeezing movement
• penetration before lifting the rails
• squeezing before down position
• lifting the tamping unit before squeezing

The time-series signals of an example of detected NOK tamp-
ing cycles are depicted in Figure 11 - a better quality of the
plot can be found in the Appendix 9, too - where the upper
graph shows the lowering position of a tamping unit. Nega-
tive values indicate positions of the tamping tines above the
rail, zero is approximately the level of the rail’s surface and
positions greater than 120 mm can be considered as the tines
entering the ballast. The lower graph illustrates the machine’s
velocity in m/h. Based on the developed cycle identification
an impermissible overlap of the two sections ”vehicle stands

still” and ”tamping tines are in the ballast” could be detected.
The overlap is highlighted in red colour in Figure 11. These
overlaps indicate that the tines are already located in the bal-
last even though the machine is still moving can cause signif-
icant wear on or even severe damage of the tamping unit.

Figure 11. Identified NOK tamping cycle: The tamping unit
is already in the ballast even though the machine is still mov-
ing (see also Appendix)

7. LSTM DETECTION

7.1. Architecture

After several trials regarding the structure of the network, the
architecture depicted in 9 was chosen.

Figure 12. LSTM architecture

The network consists of:

• Input Layer
• Bi-LSTM Layer
• Fully Connected Layer
• ReLU Activation
• Output Layer
• Regression Output

The input layer is the bottom-most layer, where the input, the
previously generated boolean signals, is fed to the network.

6
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Subsequently data is passed to the Bi-LSTM layer which con-
sists of 25 hidden units. Bidirectional LSTMs can be useful
when the context of the input is needed from both the past
and the future of a specific time step. This turned out to be
the case in the cycle identification. Following the Bi-LSTM
layer, there is a fully connected layer which takes the sequen-
tial output from the Bi-LSTM and transforms it into a fixed-
size vector. This layer has 10 units, and it is likely responsi-
ble for integrating the features learned by the Bi-LSTM layer.
After that a non-linearity in form of a ReLU activation func-
tion is applied. Therewith the model is allowed to account for
non-linear relationships between the features. The next layer
is another fully connected output layer with a single unit. This
is because the network is designed to output a single contin-
uous regression value. The final layer is a regression output
layer with the mean squared error as loss function.

7.2. Training

The analysis workflow was implemented in Matlab and it
turned out that training for only 10 epochs with 225 itera-
tions each is sufficient. For the training the timeseries were
split into windows of 10 seconds each and a step size of 5
seconds was chosen. Therefore an overlap of 50% occurred
intentionally. The training was done with a learning rate of
0.001 on a single GPU. and the training in total only took a
couple of minutes. The metric used in training was RMSE
(root mean square error).

7.3. Results

In Figure 13 the cycle detection can be seen. This graph can
also be found in the appendix. In this visualization the gray
rectangles represent the tamping cycles and also their dura-
tion. A nearly perfect fit can be found here. There is no visi-
ble deviation between the LSTM and the rule based results.

Figure 13. LSTM tamping cycle detection (see also Ap-
pendix)

Using the hold-out test set method, an accuracy of 0.98 was
achieved.

8. CONCLUSIONS

The comparison of the two tested methods for tamping cycle
identification, i.e. the rule-based vs. the LSTM approach, it
can be concluded that:

1. The accuracy of the rule-based method is approx. 100%,
whereas that of the LSTM model is approx. 98% tak-
ing only OK detections into consideration. Obviously,
the rule-based approach, which basically consists of a
set of subsequent if-queries, delivers better results due
to the fact that the rules exactly represent the definition
of a correct tamping cycle. But the exact representation
requires profound domain knowledge of and experience
on the tamping procedure and the data acquisition pro-
cess. When lacking this knowledge and experience the
neural network, which defines its own rules by adjust-
ing its learnable parameters, the weights and biases, by
evaluating the time series over and over, turns out to be a
suitable alternative to still get very accurate results.

2. The implementation effort for the LSTM model is much
higher as well as the required hardware and processing
resources for training and evaluating the network.

3. The pre-processing of the data and the generation of the
boolean sub-processes is the same for both methods.

4. The identification of the NOK tamping cycles is more
difficult for the LSTM approach due to the lack of suffi-
cient amount of NOK cycles in real world training data
because operating errors rarely occur. A possible solu-
tion would be to artificially generate error cases in order
to allow the model learn incomplete sequences.

9. FURTHER STEPS

The LSTM approach as described is capable of identifying
OK-cycles. However the NOK-cycles are of higher interest
with regards of wear and resulting maintenance. However
these cases do not occur sufficiently frequent in real world
data. Therefore artificial samples could be generated and be
fed to the training set. Another approach could be weighing
the very rarely occurring failure cycles higher than the fre-
quently occurring OK cycles in order to balance the training
set. Furthermore it should be checked if the found algorithm
is generic enough to also fit to other machines and surround-
ings. Thus it shall be enrolled to different machines operating
in different regions of the world in order to compare results
and performance subsequently. On the other side also other
algorithms shall be implemented and compared. Therefore
the time series should again be split into small segments e.g.
0.1s and each of these segments should be classified by dif-
ferent machine learning algorithms according to the features
within the respective segment.

7
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APPENDIX

Figure 11. Identified NOK tamping cycle: The tamping unit is already in the ballast even though the machine is still moving

Figure 13. LSTM tamping cycle detection
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ABSTRACT 

In this study, we evaluate the performance of a prognostic 
classification model for NOX sensors in diesel engines over 
one month by comparing its predictions against actual 
outcomes. We then construct a validation dataset to assess 
the model's performance. By analyzing instances where the 
model's predictions were incorrect, we determine new 
threshold values that could potentially reduce errors for each 
false positive (FP) and false negative (FN). Subsequently, 
we create a dataset where the threshold varies for each 
observation and train a regression model with the modified 
threshold as the target variable. Our findings indicate that 
incorporating this approach, where the model's performance 
is iteratively refined using the validation dataset, leads to a 
reduction in both false positives and false negatives. 

Keywords – True Negative (TN), True Positive (TP), 
False Negative (FN), False Positive (FP), Receiver 
Operating Characteristic (ROC), Area Under ROC 
Curve - (AUC) 

1. INTRODUCTION 

Cummins Inc. is a global corporation that designs, 
manufactures, and distributes engines, filtration, and power 
generation products. Cummins Inc. is headquartered in 
Columbus, Indiana, and has a history dating back to 1919. 
The company serves customers in more than 190 countries 
and territories, with a focus on innovation and sustainability 
in its products and operations. Prognostics plays a crucial 
role for Cummins in the context of diesel engines by 
enabling predictive maintenance. By analyzing the condition 
and performance of diesel engines using data from sensors 
and other sources, prognostics can help Cummins predict 
when maintenance or repairs will be needed.  

 

This predictive approach allows Cummins to schedule 
maintenance in advance, minimizing downtime and 
reducing the risk of unexpected failures. Overall, 
prognostics help Cummins optimize the performance, 
reliability, and longevity of their diesel engines. 

Diesel engines, the preferred power source for commercial 
vehicles like trucks and buses, produce harmful NO and 
NO2 emissions due to high combustion temperatures. 
Mckinley, Somwanshi, Bhave, and Verma, (2020) in their 
study showed that, to meet stringent emission standards, 
after-treatment systems such as selective catalytic reduction 
(SCR) are used, which can reduce emissions by factors of 
10 to 20. SCR involves injecting a Diesel Exhaust Fluid 
(DEF) into the exhaust to produce ammonia (NH3), which 
then reacts with NOX to form harmless nitrogen (N2). NOX 
sensors are crucial in this process, measuring conversion 
efficiency and guiding the injection rate of DEF. Errors in 
these sensors can lead to either excessive ammonia or NOX 
emissions, impacting air quality and health. Regulatory 
agencies require continuous monitoring of these sensors and 
their operation to ensure compliance.  

Prognostics aims to suggest changing out a NOX sensor 
before it fails. Since the replacement NOX Sensor can be 
planned for a convenient time rather than dealing with the 
discomfort of an unexpected breakdown, the customer will 
ideally experience less downtime. To determine whether the 
NOX sensor will fail, the present prognostics methodology 
uses a classification model with a predetermined threshold 
which is set using AUC ROC curve analysis. Even with an 
appropriate threshold, there may be instances where the 
model's predictions are not entirely accurate, which could 
potentially lead to increased downtime and maintenance 
costs for the customer. Dynamic thresholding model is a 
field of research that focuses on developing efficient 
methods for altering decision thresholds in predictive 
models over time and over different units.  

Rohit Deo et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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The goal is to reduce the cost of false positives and 
negatives (after observing the performance of the prognostic 
classification model) by accounting for changes in the 
underlying data distributions that can arise because of 
changes in the environment, warranty status, or other 
external factors. In this study, we investigated a dynamic 
thresholding strategy and measured its performance by 
evaluating the incremental financial impact on customers 
and businesses. We also suggested a method for 
constructing a target label based on prognostics likelihood 
and validation data by computing the optimum thresholds. 
Our results demonstrate the importance of dynamic 
thresholding in maintaining the accuracy and robustness of 
predictive models and highlight the potential for further 
improvements through continued research in this area. 

In summary, the paper explains how to dynamically change 
the threshold to improve the performance of a classification 
model after observing its performance for some time.  

The rest of the paper is organized as follows. Section 2 
gives a literature survey. Section 3 elaborates proposed 
Dynamic Thresholding Model (DTM) followed by results 
and discussions in section 4. Section 5 gives conclusions 
and future scope. 

2. LITERATURE SURVEY 

In this literature review, we will explore some of the key 
research papers that use ROC and AUC, dynamic 
thresholding, and cost analysis to determine thresholds. 

Threshold selection is a crucial step in binary classification 
models as it determines the balance between the trade-off of 
precision and recall. Receiver operating characteristic 
(ROC) curves and area under the curve (AUC) are 
commonly used metrics to evaluate the performance of 
binary classification models and determine the optimal 
threshold value. The concept of the ROC (Receiver 
Operating Characteristic) curve, from which AUC ROC is 
derived, originated in electrical engineering and signal 
detection theory. It was initially used to analyze the 
performance of radar systems during World War II. The 
ROC curve was later adopted in medicine to evaluate 
diagnostic tests' performance. In machine learning, the ROC 
curve is used to assess the performance of binary 
classification models. The AUC ROC is a numerical 
measure derived from the ROC curve and provides a single 
value to quantify the overall performance of a classifier.  

The ROC curve and AUC ROC can help in 
deciding the threshold for a binary classification model by 
providing insights into the trade-off between the true 
positive rate (sensitivity) and the false positive rate (1 - 
specificity) at different threshold values. In their classic 
paper, Bradley (1997) emphasizes that AUC ROC provides 
a comprehensive measure of a classifier's performance 
across all possible thresholds, making it particularly useful 

for assessing the overall discriminatory ability of a model. 
The paper highlights that AUC ROC can be instrumental in 
threshold selection by illustrating the trade-off between true 
positive rate (sensitivity) and false positive rate (1-
specificity) at different threshold values. This insight 
enables practitioners to choose an optimal threshold based 
on the specific needs of the classification problem, 
balancing the costs associated with false positives and false 
negatives. In addition, Bradley discusses how AUC ROC 
can help in selecting a threshold that best suits the 
application's requirements. By analysing the ROC curve, 
which plots the true positive rate against the false positive 
rate at various thresholds, practitioners can visualize the 
classifier's performance and make informed decisions about 
threshold selection. This capability is particularly valuable 
in scenarios where the cost of false positives and false 
negatives differs, as it allows for the customization of the 
classifier's behaviour to meet specific needs. 

Alotaibi and Flach (2021) introduce a novel approach to 
extend the traditional AUC metric to incorporate 
misclassification costs, addressing limitations in existing 
settings. By treating costs as sampled data, the proposed 
method employs the Weighted AUC (WAUC) metric and a 
novel estimator to approximate it, enabling a more accurate 
representation of model performance in complex cost-
sensitive scenarios. The approach establishes a 
correspondence between WAUC and the cost function using 
threshold weighting and presents a bilevel optimization 
formulation to couple them. This formulation ensures that 
WAUC can be optimized at the optimal threshold value 
based on the real-world cost distribution. A stochastic 
algorithm is proposed for optimizing this formulation, 
demonstrating convergence rates comparable to standard 
SGD. Experimental results validate the effectiveness of the 
method in extending AUC to cost-sensitive scenarios, 
highlighting its significant performance improvements.  

Yang, Yu, Wang, Quddus and Xue (2018) introduced the 
thresholding methods: fixed, rate-driven, optimal, RCut, 
MCut, and two novel ones: score-driven and global optimal 
are introduced. Score-driven thresholds can be adjusted 
globally or per label, offering flexibility. It investigates 
selecting a single global threshold or multiple thresholds. 
Using real-world datasets, the study conducts an empirical 
review, finding that the global and label-wise score-driven 
methods excel. Tuning a global threshold with respect to 
per-label cost is not significantly worse than using a 
separate threshold per label. Some traditional approaches, 
like the label-wise rate-driven method, may not suit highly 
imbalanced multi-label data. The study recommends using 
score-driven thresholds, globally or per label, for superior 
performance. It calls for further research on 
misclassification costs, loss, and threshold choice in multi-
label classification, particularly when costs vary across 
labels. 
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In their study, Johnson and Khoshgoftaar (2019) showed 
that class imbalance is a common issue in machine learning, 
addressed through algorithm-level, data-level, and hybrid 
methods. While extensively studied in traditional 
algorithms, its application to deep neural networks (DNNs) 
is limited. This paper fills this gap by studying thresholding 
in DNNs using a Big Data Medicare fraud dataset. 
Employing random oversampling (ROS), random under-
sampling (RUS), and a hybrid ROS-RUS, 15 training 
distributions with varying imbalance levels are created. 
Optimal classification thresholds are identified for each 
distribution on random validation sets, outperforming 
default thresholds. They further showed that, statistical 
analysis reveals a strong linear relationship between 
minority class size and optimal threshold, highlighting the 
importance of thresholding in DNNs for imbalanced data. 

The properties of the F1 performance metric in multilabel 
classification, particularly regarding optimal decision-
making thresholds. In this study, Lipton, Elkan, and 
Narayanswamy (2014) discuss how the best achievable F1 
score is linked to the optimal threshold and highlights the 
impact of classifier behaviour in uninformative scenarios. 
For instance, in such scenarios, predicting all instances as 
positive maximizes the expectation of F1, which is 
beneficial for some metrics but problematic for others, like 
macro F1 in the presence of rare labels. The study also 
reveals that micro F1, on the other hand, maximizes the 
expected score by predicting all examples as negative in 
similar scenarios. This insight is especially valuable in 
settings with numerous labels. Additionally, the study 
suggests that micro F1 may wash out performance on rare 
labels. The findings underscore the importance of carefully 
selecting and understanding performance metrics, especially 
when choosing a single metric to optimize in scenarios 
involving competing systems, as this choice can 
significantly impact optimal thresholding behavior. 

For a different application, Hancock, Johnson and 
Khoshgoftaar (2022) investigate the impact of the TPR ≥ 
TNR constraint on threshold values in classification tasks. 
The constraint favors lower thresholds, closer to the prior 
probability of the positive class, leading to reasonable trade-
offs in classification rates. The default decision threshold of 
0.5 is found unsuitable for the imbalanced Kaggle Credit 
Card Fraud Detection Dataset, yielding low TPR and FNR 
scores. It is noted that this default threshold is much larger 
than the prior probability of the positive class in imbalanced 
data. No single metric provides a comprehensive view of 
classifier performance, with thresholds closer to the positive 
class prior probability generally yielding better performance 
across multiple metrics. Each threshold selection technique 
offers trade-offs between positive and negative class 
performance. Starting with the positive class prior 
probability as a benchmark, thresholds can be adjusted to 
balance TPR and TNR scores. For specific performance 
goals, the optimal threshold can be estimated using the 

training dataset, considering user-defined performance 
metrics and constraints. The choice of performance metrics 
and constraints for threshold optimization significantly 
impacts test performance, highlighting the importance of 
careful selection based on the classification task's 
requirements and goals. 

Going back in time, Chen, Tsai, Moon, Ahn, Young, and 
Chen (2006) explore the impact of decision thresholds on 
sensitivity, specificity, and concordance in four 
classification methods: logistic regression, classification 
tree, Fisher's linear discriminant analysis, and weighted k-
nearest neighbour. While standard classification algorithms 
aim to maximize correct predictions (concordance), this 
may not be suitable for all applications. Some applications 
prioritize high sensitivity (e.g., clinical diagnostics), while 
others prioritize high specificity (e.g., epidemiology 
screening studies). The study examines the use of decision 
threshold adjustment to enhance sensitivity or specificity 
under specific conditions. Through Monte Carlo 
simulations, the study shows that increasing the decision 
threshold leads to decreased sensitivity and increased 
specificity, with concordance values remaining stable within 
an interval around the maximum concordance. Optimal 
decision thresholds can be identified within this interval to 
meet specified sensitivity and specificity requirements. The 
study analyzes three example datasets to illustrate these 
findings. 

Two variants are introduced: a novel neural network-based 
thresholding method called ThresNets for improving multi-
label predictions from class scores obtained from external 
scorers as shown by Shao & Huiyang et al. (2024) 
ThresNets are designed to scale linearly with the number of 
labels and can be trained offline after the scorer training is 
completed. One variant incorporates classic CS/CSS 
thresholds into the neural model, serving as a form of 
transfer learning between heterogeneous models. Our 
method is particularly suitable for medium-sized multi-label 
classification (MLC) tasks where informative label score 
dependencies can be found, and the ground truth of label 
assignments is reliable. Experimental results on artificially 
created scores demonstrate the effectiveness of ThresNets, 
especially when the scoring phase allows for improvements. 
ThresNets outperformed popular nearest neighbor-based 
classifiers in recovering from scoring errors. Empirical 
evaluation on real datasets shows that ThresNets perform 
better than classical methods according to various metrics, 
especially when used in a hybrid approach. Despite its 
advantages, ThresNets face challenges such as the risk of 
overfitting and the difficulty of training with long-tail labels. 
Future work will focus on leveraging external knowledge of 
class structure to improve ThresNets' performance further. 

In their classic Real-time crash prediction,  Draszawka, 
Karol and Szymanski (2023) show how important the 
Threshold selection is, by determining the cut-off point for 
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the posterior probability used to separate potential crash 
warnings. Current research lacks methods for effectively 
determining an optimal threshold, often resorting to 
subjective approaches. This study proposes a theoretical 
method using the mixed logit model to develop crash risk 
evaluation models. The minimum cross-entropy method 
outperforms other threshold selection methods, providing a 
reliable and automatic approach for identifying optimal 

thresholds in crash prediction. 

In conclusion, this literature review has explored various 
aspects of threshold selection in machine learning, 
particularly in the context of class imbalance and multi-label 
classification. The reviewed papers have highlighted the 
importance of selecting an appropriate threshold for 
optimizing model performance and addressing specific 
challenges in different applications. 

Several studies have proposed novel thresholding methods, 
such as ThresNets for multi-label classification and the use 
of the Area Under the ROC Curve (AUC ROC) metric for 
threshold selection. These methods have shown promising 
results in improving classification performance, especially 
in scenarios with imbalanced data and complex cost-
sensitive considerations. 

However, challenges such as overfitting and training with 
long-tail labels remain, suggesting the need for further 
research. Future studies could focus on leveraging external 
knowledge, such as class structure information, to enhance 
thresholding methods. Additionally, exploring the 
application of thresholding in emerging areas like real-time 
crash prediction and credit fraud detection could lead to 
valuable insights and advancements in the field. 

3. PROPOSED METHODOLOGY 

The prognostics model may make a future failure 
prediction for each component. We can run the prognostics 
model, determine the component's remaining useful life 
(RUL), and take preventive action. The model predictions 

for this classification model are based on the threshold and 
the likelihood for each data row. The threshold is often set 
using AUC-ROC curves, and that threshold is chosen for 
which the area under the curve for the TPR vs. FPR curve is 
highest. Our current prognostics algorithm alerts the client 
90 days before the component's likely failure. 

The dataset has two variations, pre-verified engine 

validation data, and post-verified engine validation data. 
Both have all engine status parameters, but they differ on 
when the actual status of the engine was captured. In the 
pre-verified engine validation data we predict engine health 
using a static threshold to classify an engine as healthy or 
faulty after we have the data about the actual status of the 
engine. In post-verified engine validation data, we predict 
before we have any ground truth for engine health using a 
static threshold to classify an engine as healthy or faulty, the 
ground truth is received later. The pre-verified engine 
validation data has been discarded due to data quality issues. 
The post-verified engine validation data has features such as 
the likelihood of an engine failure, the RUL of the engine, 
the classification threshold that was applied, the prediction 
by the predictive maintenance model, the actual status of the 
engine, and all other parameters of engine health. 

Based on validation data in the suggested approach, we 
can choose the threshold dynamically. The validation data, 
with which, once the prognostics model has been run, we 
validate its performance during the following 90 days. 
Following the 90 days, we learn whether the failed event 
occurred. The confusion matrix, which we use to interpret 
the TPs, FPs, TNs, FNs, etc., is provided by the validation 
data. Our suggested methods can further reduce the FPs and 
FNs. 

The order of events is depicted in the block diagram. 
The dynamic thresholding model is constructed utilizing 
features like odometer running, engine run duration, the 
likelihood of each row, the component's warranty status, and 
failure type (first or repeated failure), as opposed to setting a 

Figure 1. Block diagram of Dynamic Thresholding Model 
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threshold for the entire dataset. A regression model is the 
dynamic thresholding model. Concerning the validation 
data, the following algorithm is used to construct the 
regression model's target. 

1. For a TP and TN, there is no change in the 
threshold, fixed by the AUC-ROC curve. 

2. E.g. - likelihood = 0.76, the fixed threshold is 0.8, 
which comes out to FN in the validation data, then, 
the new threshold is calculated as – 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"# = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑$%& +		
																												|𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑$%& − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑| 	
−	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟# 

3. Similarly, if likelihood = 0.86, the fixed threshold 
is 0.8, which comes out to FP in the validation 
data, then, the new threshold is calculated as –  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!"# = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑$%& +		
																												|𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑$%& − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑| 	
+	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟# 

4. Repeat the procedure for each TP, FP, TN, and 
FN. 

5. # - The value can range between 0 to 1. This can be 
finalized after repeated training and testing of the 
model for different correction factors. 
 

The target label, a continuous variable with a distinct 
threshold for each row of the output, is trained with the 
regressor model after we create the dataset containing the 
features as described before. After the model has been 
trained on the validation data, the DTM model that predicts 
dynamic threshold is given model out data with the same 
attributes as the validation data. 

Extreme Gradient Boosting (XGBoost), a powerful 
machine learning method that we have used for this 
regression problem, is capable of handling complex non-
linear interactions between features and targets as well as 
handling missing values and outliers. 

The performance of the Xgb regressor used in DTM, 
the effect of changing the threshold, and the financial 
impact of this approach for each row are discussed in detail 
in the results and discussions.  

4. RESULTS AND DISCUSSIONS 

The results (in Table 1) after applying Dynamic 
Threshold Modeling (DTM) show a notable improvement in 
various metrics. We have compared our results with 
traditional AUC ROC curves, as shown in column 2 of 
Table 1. We obtained the optimised threshold to be zero 
when we experimented with weighted AUC (WAUC) 
curves. This means that the model was recommending to 
replace every NOX sensor with even the smallest likelihood 

for failure. This is not a pragmatic solution. Also, The score-
driven global thresholds proved to give no different results 
than the traditional AUC. Because of data availability 
constraints per the rest of the methodologies, we couldn’t 
compare our methodology with them.    
 As compared to AUC, the True Positive Rate 
(TPR) has increased from 0.069 to 0.156, indicating that the 
model is better at correctly identifying positive instances. 
The Precision has also improved significantly, rising from 
0.041 to 0.093, indicating a reduction in false positives. This 
improvement is further reflected in the F1 Score, which has 
increased from 0.074 to 0.14. Despite these improvements, 
the model still exhibits a relatively high False Positive Rate 
(FPR), albeit reduced from 0.397 to 0.373.  

Table 1 shows the results for the EONOX sensor of a 
popular engine series. We observe that a reduction in FPs 
saves unnecessary repair of the engines and a reduction in 
FNs saves downtime cost of the engines which saves $0.3M 
for our customers and $13k for our company. In total, we 
save $313k. The methodology is highly scalable.   

Overall, applying DTM has greatly enhanced the 
model's performance, particularly in correctly identifying 
positive instances and reducing false positives. 
 
Table 1. Comparison of TPs, TNs, FPs and FNs before and 

after the use of DTM  
Using (AUC-ROC) After DTM 

TP 167 377 

FP 3905 3670 

FN 2246 2036 

TN 5923 6158 

TPR 0.069 0.156 

FPR(or Recall) 0.397 0.373 

Precision 0.041 0.093 

F1 Score 0.074 0.14 

5. CONCLUSIONS AND FUTURE SCOPE 

The application of Dynamic Threshold Modeling 
(DTM) in our classification model has resulted in significant 
enhancements across key performance metrics, including 
accuracy, precision, and recall. By increasing the number of 
True Positives (TPs) and True Negatives (TNs) while 
decreasing False Positives (FPs) and False Negatives (FNs), 
the DTM has improved the model's overall effectiveness. 
We have implemented the DTM on one sensor from a 
specific family of engines used in a particular application. 
However, there is potential to expand this approach to 
multiple sensors across various engine families and to 
integrate it with other classification models. This scalability 
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could save substantial costs by minimizing unnecessary 
repairs and downtime. We estimate that such an expansion 
could result in savings amounting to millions of dollars. 
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ABSTRACT 

This research aims to examine the challenges in developing 
Prognostics and Health Management (PHM) analytics for 
Digital Twin (DT) use cases in industrial applications, with a 
particular focus on Multi-Component Degradation (MCD) 
scenarios. A hybrid methodology, integrating physics-
informed and data-driven models, is employed, using limited 
asset degradation data for model development. Preliminary 
work includes an analysis of the impact of data quality on 
Fault Detection and Isolation (FDI) algorithm performance, 
as well as the proposal of a weighted ensemble hybrid 
approach for assets experiencing MCD scenarios Preliminary 
results indicate enhanced diagnostics in asset health 
management through the use of Physics-Informed models for 
FDI in MCD scenarios with limited prior degradation data. 
Expected contributions for this research are the development 
of physics-informed PHM analytics for DT applications in 
MCD scenarios, adaptive PHM analytics for evolving asset 
lifecycles in DT applications, and interpretable DT model 
analytics for PHM in systems facing Multi-Component 
Degradation.  

1. BACKGROUND AND PROBLEM STATEMENT 

Many high-value complex systems rely on advanced 
technologies, particularly the Industrial Internet of Things 
(IIoT), to monitor assets and carry out maintenance activities. 
Many stakeholders are increasingly turning to data-driven 
methods to monitor the condition of their assets, with 
Original Equipment Manufacturers (OEMs) offering various 
service packages in this regard (Barimah, Niculita, 
McGlinchey & Babakalli, 2021). These services leverage 
digital technology, particularly the concept of the digital twin 
(DT), to enable Prognostics and Health Management (PHM) 
applications. Digital twins serve as virtual replicas of 
physical assets (Grieves & Vickers, 2017), enabling 
operators to monitor, analyse, and predict asset states 
effectively. According to the Digital Twin consortium, the 
key capabilities required for digital twin use cases are data 
services, integration, user experience, intelligence, 
management and trustworthiness. This provides a framework 
for tailoring the capabilities of a digital twin for a particular 
industrial asset. The intelligence capability of a digital twin 
provides the requirements for enabling prognostic and health 
management applications. The analytics that drive 
intelligence in digital twins are constituted by either data-

driven or knowledge-based models that provide insights for 
detection, diagnostics and prognostics for enhanced system 
reliability and support (Mihai, Yaqoob, Hung, Davis, 
Towakel, Raza, Karamanoglu, Barn, Shetve, Prasad, & 
Venkataraman, 2022).  

However, developing the analytics that enable intelligence in 
digital twins (DT) for the full suite of PHM applications ─ 
detection, diagnostics and prognostics ─ is dogged with a lot 
of challenges which Compare, Baraldi and Zio (2019) 
describe in their work. One key challenge is the development 
of robust analytics for PHM applications, particularly with 
limited training data and in scenarios where assets are 
undergoing multi-component degradation (MCD) as part of a 
larger system.  Bayesian approaches have been explored by 
Lin, Zakwan, and Jennions (2017) where the probability of 
two components in a fluid system was determined using a 
Bayesian probabilistic approach. However, there are 
limitations of this approach especially when compared with 
data-driven approaches in the MCD scenarios. 

Another challenge in developing the analytics for PHM 
applications for Digital Twins is the evolution of the virtual 
replica of an asset throughout the asset's lifetime after 
commissioning and subsequent maintenance actions (Pires, 
Cachada, Barbosa, Moreira & Leitão, 2019), as various 
operating factors change the operating state of the asset, 
whether in a healthy or faulty condition. The complexity that 
the evolution of an asset throughout its lifecycle introduces 
in the DT development process presents model performance 
challenges for the PHM analytics embedded in the DT. 
Investigating how different DT model frameworks optimize 
analytics for PHM applications for an asset undergoing MCD 
scenarios will aid in identifying optimal DT model 
frameworks in the context of an evolving asset.  

Lastly, the adoption of DTs has been increasing steadily in 
recent times, with data streaming and enhanced visualisation 
being some of the key selling points. However, the 
inadequate explainability in the outputs of the analytics 
capabilities limits the widespread adoption of DT analytics 
for critical assets (Presciuttini, Cantini, Costa & Portioli-
Staudacher, 2024). In most DT applications, data-driven 
models that support the performance of DTs often train and 
perform as black boxes relying on the development of model 
weights which often become less intelligible (Kobayashi & 
Alam, 2024). Addressing the explainability of DT actions 
will facilitate the adoption of DTs for PHM applications, 
particularly for safety-critical systems.  _____________________ 

Atuahene Barimah. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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2. EXPECTED CONTRIBUTIONS 

This research aims to design a scalable online Hybrid-Digital 
Twin model architecture for IIoT-enabled PHM strategies for 
in-service support and maintenance applications. The 
expected contributions for this PhD research are presented 
below: 

1. Development of physics-informed PHM analytics using 
limited training data for instantiating DT applications in 
Multi-Component Degradation scenarios. 

2. Development of adaptive PHM analytics for evolving asset 
lifecycles in Digital Twin (DT) applications.  

3. Development of interpretable DT model analytics for PHM 
applications in systems undergoing Multi-Component 
Degradation scenarios. 

3. PROPOSED RESEARCH PLAN 

The research plan seeks to advance the field of Hybrid-
Digital Twins (H-DT) by defining an optimal physics-
enabled model architecture for detecting and isolating 
Multiple Component Degradation (MCD) phenomena in 
complex systems. The research is based on a well-established 
testbed (see Appendix) to analyse the dynamic behaviour of 
a fuel system undergoing MCD scenarios. This hydraulic 
system comprises critical components, including a main 
supply tank, and an external gear pump driven by an 
induction motor. The rotational speed of the motor is 
regulated by a Variable Speed Drive (VSD). The system also 
features a solenoid shut-off valve (SHV) and five direct 
proportional valves (DPV1 to DPV5) for fluid flow control 
and fault emulation, respectively. Data collection is 
facilitated by pressure transmitters (P1, P2, P3, P4, and P5), 
turbine flow meters (F1 and F2), and a laser sensor to 
measure the pump's speed.  

System components are connected using PVC tubing, and a 
finger valve is used for tank isolation when needed. In the 
context of fault simulation, specific control valves were 
manipulated to emulate fault conditions. For instance, DPV1 
represented a clogged suction filter, fully open at 0% fault 
severity, while DPV2 simulated pump discharge side leakage 
and was fully closed at 0% fault severity. The SHV solenoid 
valve remained open, and DPV3, emulating a blocked or 
degraded shut-off valve, was fully open at 0% fault severity. 
DPV4 represented a clogged fuel nozzle, also fully open at 
0% fault severity, while DPV5, simulating downstream pipe 
leakage, was fully closed with 0% fault severity. The healthy 
condition operating state of the system's control valves and 
their associated fault codes, as well as the test degradation 
scenarios for FDI Model Testing, are shown in the appendix.  

The research will address several key objectives and research 
questions across four main areas: 

1. Definition of a Hybrid-Digital Twin (H-DT): The research 
seeks to define an optimal architecture for H-DT models that 

meet diverse industry requirements and address MCD 
phenomena. This involves examining current trends and 
insights from literature via a systemic literature review. 

2. Hybrid-Digital Twin Model Development: This phase 
involves the development of an online H-DT model tailored 
for MCD detection in complex systems. Key focus areas 
include data quality assessment, AI-enabled Fault Detection 
& Isolation (FDI), selection of hybrid model frameworks, and 
practical implementation considerations within Industrial 
Internet of Things (IIoT) systems. 

3. System Reliability & Maintenance: The research will 
investigate the impact of employing an H-DT model 
architecture on different maintenance approaches, 
considering various technical, operational, and platform-
specific requirements. The economic benefits of using H-DT 
models for different maintenance strategies will be analyzed. 

4. Business Development: Finally, the research will focus on 
developing API-enabled services using a DevOps approach 
for the end-to-end implementation of the H-DT model 
architecture on IIoT platforms. It will explore the technical 
and business services enabled by an H-DT model architecture 
for cross-platform applications. 

4. PROPOSED METHODOLOGY 

The project will use the agile framework to plan various 
aspects of the digital twin development. A DevOps 
methodology will be adopted to facilitate the seamless 
integration and continuous deployment of physics-informed 
Prognostics and Health Management (PHM) analytics for the 
hybrid Digital Twin, focusing on components within the 
designated testbed. The industrial Internet of Things (IoT) 
platform Thingworx™ will be utilized to craft a user-centric 
experience (UX) for the digital twin, integrating the physics-
informed PHM analytics for each asset through an 
Application Programming Interface (API) hosted on a remote 
server. Different physics-informed PHM analytics 
approaches will then be benchmarked on their performance 
in predicting multi-component degradation (MCD) scenarios 
in the context of challenges presented in the background of 
this report. Bayesian approaches will then be used to develop 
a trustworthiness framework to address the physics-informed 
PHM model uncertainty in predicting MCD phenomena. The 
Hybrid DT model testing and validation will be done using 
real-time data from the existing testbed and another testbed 
(proposed) which contains the same assets but in a different 
configuration. This will help in determining the scalability of 
the intelligence that underpins the predictive capabilities of 
the hybrid digital twin.  
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5. RESEARCH WORK DONE AND PRELIMINARY RESULTS 

5.1. Data Quality and FDI Model Performance 

The relationship between data and predictive analytics was 
investigated in a recently published paper by Barimah, 
Niculita, McGlinchey and Cowell (2023). The analysis in this 
paper used data generated on the testbed described above as 
well as synthetic data to demonstrate high repeatability by the 
measurement system of the testbed. In the development of 
analytics for PHM applications, a lot of emphasis has been 
placed on data transformation for optimal model 
development without enough consideration for the 
repeatability of the measurement systems producing the data. 
This paper explored the relationship between data quality, 
defined as the measurement system analysis (MSA) process, 
and the performance of fault detection and isolation (FDI) 
algorithms within smart infrastructure systems using 
components of the testbed described above. The 
methodology employed starts with an MSA process for data 
quality evaluation and leads to the development and 
evaluation of fault detection and isolation (FDI) algorithms.  

During the MSA phase, the repeatability of a water 
distribution system’s measurement system was examined to 
characterize variations within the system. A data-quality 
process was defined to gauge data quality from the 
measurement system of the water distribution system. 
Synthetic data with varying data levels of quality levels was 
also used to investigate their impact on FDI algorithm 
development. Key findings reveal the complex relationship 
between data quality and FDI algorithm performance. The 
work carried out showed that synthetic data, even with lower 
quality, can improve the performance of a statistical process 
control (SPC) model, whereas data-driven approaches benefit 
from high-quality datasets. The study underscored the 
importance of customizing FDI algorithms based on data 
quality and a framework for instantiating the MSA process 
for IIoT applications, was also proposed for edge analytics 
which would be considered as part of future work. 

5.2. Physics-Informed PHM for MCD scenarios 

Optimizing PHM analytics for a system undergoing MCD 
scenarios using limited data was also investigated in the paper 
by (Barimah, Niculita, McGlinchey, Cowell and Milligan) 
and submitted to the PHME2024 conference which is 
currently under review. This study addresses the challenge of 
limited degradation data in developing Fault Detection and 
Isolation (FDI) models for multi-component degradation 
(MCD) scenarios. Utilizing a small fraction (1%) of the water 
distribution testbed dataset analyzed in the previous 
publication, a weighted ensemble hybrid approach was 
proposed and evaluated against more established modelling 
approaches. The proposed approach combines heuristic 
approximation and Physics-Informed Neural Network (Cai, 

Mao, Wang, Yin & Karniadakis, 2021) methods with a neural 
network model to enhance diagnostic performance.  

The hybrid model generally outperforms other algorithms 
when tested on an MCD dataset, demonstrating improved 
diagnostic accuracy in such scenarios. This study contributes 
to the application of physics-informed FDI models for PHM 
applications in MCD scenarios, ultimately advancing asset 
health management. The paper also presents an ensemble FDI 
approach with the capability of addressing the limitations of 
integrating both data-driven and physics-based FDI models 
in multi-component degradation scenarios. Additional 
research will focus on dynamically optimizing ensemble 
hybrid model weights, leveraging prediction and model 
uncertainty to further enhance model performance for PHM 
applications.  

6. CONCLUSION 

In conclusion, this research endeavours to push the 
boundaries of Hybrid-Digital Twin (H-DT) technology, 
specifically targeting the challenges posed by Multiple 
Component Degradation (MCD) phenomena within complex 
systems. By researching issues of data quality assessment, 
fault detection and isolation (FDI) algorithm development, 
and the optimization of Predictive Health Management 
(PHM) analytics, some strides have been made. By studying 
data-driven and physics-based models, this research aims to 
propose a hybrid approach that optimizes diagnostic accuracy 
in MCD scenarios for PHM applications. The physics-
informed PHM analytics developed from this research will 
improve on the current status quo by developing DT analytics 
models for PHM applications based on limited degradation 
data, adaptable in evolving asset lifecycles and intelligible. 
This will provide a new approach for addressing MCD 
scenarios aside from the use of classic Bayesian approaches 
for MCD prediction in the context of limited degradation 
data. This project will be relevant to industry because it will 
reduce the requirement for acquiring a lot of degradation data 
to train their degradation models ultimately reducing the cost 
of the FDI model development process for complex cases 
such as MCD scenario. 
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ABSTRACT

Since their introduction more than 20 years ago, PHM strate-
gies for aerospace equipment have gone a long way, enabling
operators and Original Equipment Manufacturers (OEM) to
monitor their assets, track down abnormal behaviors and plan
maintenance action in advance. On the other hand, the tran-
sition from PHM strategies using simulated data to solutions
utilizing real-life operational data is consistently prone to sig-
nificant challenges and demands. This doctoral thesis aims to
develop a PHM/CBM framework applied to a Electro-Hydraulic
Actuators (EHAs) leveraging real in-service fleet data. In this
paper, the first steps of the research project are presented.

1. INTRODUCTION

In the end of the 90s, the Joint Strike Fighter (JSF) Auto-
nomic Logistics (AL) system began to take shape in the minds
of forward-looking analysts and engineers with one mission:
conceiving a revolutionary way to assist assets along their life
cycle, hence enabling enlightened operational processes, in-
novative maintenance strategies and progressive logistic solu-
tions (Smith, Schroeder, Navarro, & Haldeman, 1997; Hess
& Fila, 2002). The AL framework core is encapsulated within
Prognostic and Health Management (PHM) solutions which,
as a consequence, have been defined as key enabling tech-
nologies for the development of reliable Performance Based
Logistics (PBL) frameworks.
The creation of more available, dependable and resilient as-
sets is especially important in the military aircraft sector, where
the availability and reliability of assets are crucial for defense
administrations to foster trust and guarantee mission readi-
ness. Since the introduction of PHM strategies in the indus-
trial and aerospace sector, in fact, many systems have been
the scope of research in order to develop tailored prognos-
tic strategies. It may then seem trivial that, along with other

Leonardo Baldo. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

pivotal subsystems, the Flight Control System (FCS) is being
gradually more covered by these approaches. However, this
is only true to some extents.
While the constantly growing interest buildup involving the
More Electric Aircraft (MEA) concept has led many prognos-
tic research activities related to Electro-Mechanical Actuators
(EMAs), applications on the widespread hydraulic actuators
have somewhat lagged behind in terms of PHM. The chal-
lenges linked to the lack of precise and extensive data as well
as the major difficulties in understanding and modeling fail-
ure mechanisms add one more difficulty layer to an already
demanding task, which however deserves attention and can
prove to generate extensive savings (Rodrigues, Yoneyama,
& Nascimento Jr, 2012).

2. NOVELTY AND SIGNIFICANCE

The sharp contrast between the popularity of EHAs in both
commercial and military aircraft and the scarcity of PHM re-
lated published studies focused on these actuators highlight a
significant research gap - a gap that deserves attention.
The development of PHM solutions and strategies for such
pivotal widespread systems holds substantial operational and
economic potential for every stakeholder in the MRO sector.
With the military MRO sector valued at around 37 billion
USD in 2024, the demand for digital transformation initia-
tives and advanced MRO services is expected to undergo a
substantial growth in the coming years, motivated by the ne-
cessity to maintain aging fleets and incorporate technological
advancements for legacy equipment.
One way to address these performance requirements is focus-
ing on the operations. The adoption of condition-based main-
tenance (CBM) and predictive maintenance (PDM) strategies
falls within this enlightened vision which, thanks to the bene-
fits offered by PHM analyses, provides decision makers with
extended situational awareness of fleet operations. Some of
the main components of a FCS are the actuators, which con-
trol the aerodynamic surfaces. Primary flight controls actua-
tors are extremely safety critical elements within aircraft FCS
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and, at the current state, they exploit mostly EHAs or Electro-
Hydro-Static Actuators (EHSAs). Sure enough, found in most
commercial and military aircraft, EHAs represent to date the
backbone of actuation mechanisms for flight controls.

3. STATE OF THE ART

A solid literature base exists for individual actuator compo-
nents. These studies have developed a wide range of solu-
tions related to component-level fault detection and isolation
(FDI), degradation models, and comprehensive PHM routines
for individual parts: (Mi & Huang, 2023; Byington, Wat-
son, & Edwards, 2004; Zhong et al., 2023) for servo valves,
(Shanbhag, Meyer, Caspers, & Schlanbusch, 2021) for cylin-
ders, (Vianna & Malere, 2014; Bertolino, Gentile, Jacazio,
Marino, & Sorli, 2018) for leakages, (Chao, Shao, Liu, &
Yang, 2023) for piston pumps. Additionally, some works
have concentrated on the construction of custom test benches
(Chiavaroli, De Martin, Evangelista, Jacazio, & Sorli, 2018)
and the development of models (Iyaghigba, Petrunin, & Avde-
lidis, 2024), aiming at the generation of custom datasets. More-
over, some PHM strategies at the FCS level have been envi-
sioned (Kosova & Unver, 2023; Shen & Zhao, 2023). Fi-
nally, most of the EHA level approaches found in literature
primarily focus on the sole diagnostics (Iyaghigba, Ali, &
Jennions, 2023). Notably, these approaches leave a consis-
tent gap for EHA level PHM, which, to the best of the author
knowledge, is approached with a limited number of strate-
gies. In (Liu, Zhang, & Lu, 2015), the author developed
EHA performance degradation predictions leveraging Elman
neural network observer, support vector regression (SVR) and
Gaussian Mixture Model (GMM). The research carried out
in (Soudbakhsh & Annaswamy, 2017) and (Lu, Yuan, & Ma,
2018) shows the development of both a fault detection tech-
nique and a health monitoring approach. (Guo & Sui, 2020)
presented an application of the Minimum Hellinger Distance
on top of a Particle Filtering (PF). This PF-based solution
is adopted by another PHM framework which combines also
high-fidelity models (Autin, De Martin, Jacazio, Socheleau,
& Vachtsevanos, 2021; De Martin, Jacazio, & Sorli, 2022).
A modular hybrid fault prognosis method is developed in
(Kordestani, Samadi, & Saif, 2020), where the author lever-
aged distributed neural networks and recursive Bayesian al-
gorithm. In (Cui, Jing, Jiao, Huang, & Wang, 2023) the
author approached a hybrid method: the nonlinear Wiener
process (NWP) algorithm is used for the physics based sec-
tion while the data-driven echo-state-network (ESN) is em-
ployed for the data driven one. In summary, the exhaustive
yet limited number of studies mentioned above lay its roots
on detailed actuator level data obtained from test benches and
laboratory tests. Although highly valuable, the results of such
studies hardly transfer to actual in-service legacy systems as
detailed monitoring of low-level subsystem data is often not
carried out and the control signals remain inside the FCC con-

trol loop without being saved or logged. On the other hand,
the approaches that leverage operational data collected from
real-world operational scenario are scarce and the few pub-
lished studies provide constrained findings (Schoenmakers,
2020; Kannemans & Jentink, 2002).
In conclusion, if creating these frameworks was not an al-
ready challenging task, designing them for legacy and already
operational platforms, definitely does not make the process
easier. In this scenario, PHM engineers face obstacles related
to working with pre-existing systems that were not originally
designed for PHM applications (e.g low and/or variable sam-
pling rates, limited built-in sensing/testing capability, no sub-
system level sensors, hand written records, siloed databases,
etc) as well as a vertical functional organization in the indus-
try (Vogl, Weiss, & Donmez, 2014; Esperon-Miguez, John,
& Jennions, 2013).

4. APPROACH AND WORK IN PROGRESS

This paper presents the initial steps towards implementing a
comprehensive CBM framework for a specific aircraft sub-
system. Precisely, the horizontal tail (HT) flight control Pri-
mary Actuation System (PAS) of an Advanced Jet Trainer
(AJT), a twin-engine lead-in fighter training platform equipped
with fully digital flight controls and avionics, is considered as
a proof of concept (Baldo, De Martin, Sorli, & Terner, 2023).
Through an in-depth analysis of design documents and op-
erational procedures, relevant data have been identified and
categorized. The AJT HT flight control PAS can be catego-
rized as an EHA controlled by a tandem configuration Direct-
Drive-Valve (DDV). The HT assembly is configured as an all-
moving tail, a very popular solution when a good trade-off be-
tween control effectiveness, aerodynamic efficiency and oper-
ational complexity is desired. This solution has been adopted
in various high-performance platforms (e.g. F16 Fighting
Falcon, F22 Raptor) providing excellent maneuvering and fly-
ing qualities. On the other hand, DDVs are established solu-
tions for flight controls and the adopted crank-connecting rod
mechanism is widely accepted among mechanical solutions
for longitudinal control.
The workflow employed for this research is reported in Figure
1. The most time demanding step so far has been represented
by the domain understanding phase where the platform and
data knowledge acquisition has been carried out. During this
phase, significant effort has been devoted to acquiring com-
prehensive knowledge about the platform and gathering data.
Leveraging the research group experience and expertise, both
from the OEM and the University, the author created a data
organization overview with the requested data for the first
steps along with importance and priority indications. In this
way, the author managed to reconstruct the data lineage and
the data flow from the operative base to the info logistic sys-
tems and to the project data repository (DR). This first phase
has been pivotal to plan ahead and understand which possible
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Figure 1. Research project workflow. Note the loopbacks to enhance the data processing with various iterations if necessary.

Figure 2. Data repository divided in categories.

strategic and methodological options could be approached,
based on the available data. The current DR, encompassing
more than 25000 Flight Hours (FH), is illustrated in Figure 2
where a clear distinction between operational (OD) and non-
operational data (NOD) has been carried out to streamline
the data classification process. LMX include Scheduled MX,
unscheduled removals, log cards, technical queries, inconve-
nience reports and MX performance tests.
OD can be divided into In-Service Data (ISD) and Logis-
tics & Maintenance Data (LMX). ISD includes all the data
obtained from the aircraft itself after the sorties (FH regis-
ter, Health Usage Monitoring System (HUMS) data and the
Non-Volatile Memory of the FCC). In particular, HUMS data
downloaded from the aircraft (S5000F, 2023) is divided in
structural related data (STR) and Faults & Alerts (F&A).
Other potential operational data sources, which are often em-
ployed in the development of PHM strategies for legacy equip-
ment, could include the Crash Survival Memory Unit (CSMU)
or the Digital Video and Data Recorder. However, these latter
sources were excluded from the study due to unreliable data

download processes that occur only on an occurrence basis
rather than consistently.
On the other hand, NOD encompass all technical information
involving design, performance, process and configuration of
aircraft components and subsystems (e.g. PAS PN and SN).
Following the domain understanding, the design and data han-
dling and the data processing steps, the research is currently
approaching the models and algorithm phase. This first steps
focused on data derived from STR HUMS, Log Cards and
UR. A total of 54 flight parameters (FP) has been selected
through physical reasoning from the STR file. Given the lack
of component-level signals that can accurately describe actu-
ator health, relevant indicators were selected based on their
potential to represent mechanical wear processes or possible
flight anomalies (e.g. mechanical work). The selected FPs
include:

• load components (forces and moments) acting on the HT
and fuselage

• yaw, pitch and roll rates and accelerations
• body angles
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• north, east, up speed components

• mobile surfaces deflections

• stick, pedals and throttle commands

• true air speed, Mach

• timestamps and complementary data

• 4 additional indirect signals (difference between two con-
secutive HT positions and the mechanical work carried
out by the actuator obtained multiplying the position dif-
ference with the moment acting on the HT)

It is important to underscore once again that, by design, no ac-
tuator level data is recorded, including the actuator command
produced by the FCC which would greatly benefit usage mon-
itoring. FPs are saved in the form of time-series data with
variable frequency. HUMS was not designed for PHM ap-
plications, thereby only a few irregular and sparse batches of
high frequency data can be found in data records while most
of the samplings are acquired at frequencies below 5 Hz. At
the current state, this irregular low frequency sampling does
not enable low level dynamic analyses of the actuator (whose
dynamics is characterised by much higher frequencies) or the
adoption of literature strategies based on high frequency ac-
tuator signals.
Following data quality and sampling analyses, the author thus
decided to adopt a statistical approach based on cumulative
features (CF). This approach has been chosen to determine
if the data at hand demonstrates prognostic value in relation
to the selected subsystem. CFs are currently being obtained
from the merging of operational data sources and are the scope
of current activities as reported in Figure 3. The four main
statistical moments (SM) are calculated from the time se-
ries data of each flight for each FP. Then, CF are created
by integrating these SMs in time (multiplying the FP SMs
by the flight time) to replicate a time degradation tailored
to the effective aircraft usage. Subsequently, the CF varia-
tions between two unscheduled removals are calculated and
visualized using histograms representations. Histograms are

Figure 3. Statistical methodology overview.

then analysed and a signal-to-noise ratio ranking is performed
to discern the most informative CF for further analyses and
model development.
The model and algorithm phase for diagnosis and PHM is
currently being investigated and the calculations are currently
being carried out. These results, if positive, would allow the
author to statistically allocate a failure probability distribu-
tion in time leading to the next steps of the research project:
conceiving a maintenance framework for fleet management
leveraging a selected PHM strategy to support CBM. Oth-
erwise, a custom actuator model will be needed to integrate
in-service time series signals.
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ABSTRACT 
Current Prognosis and health management (PHM) 
technology suffers from challenges such as data availability, 
system interoperability, scalability, and transferability. In 
previous years, the PHM field has advanced a lot, but very 
few studies have been presented in which these challenges 
are addressed, and hence, PHM solutions are still confined to 
the lab environment. Digital Twin technology has the 
potential to address these challenges altogether and can add 
significant value to the PHM field. This thesis aims to 
develop an implementable Digital Twin framework for feed 
drive systems' condition monitoring and maintenance 
optimization, targeting these prevalent PHM challenges. The 
proposed framework will employ multiple physics-based 
models to generate synthetic data for different system states, 
configurations, and applications, and utilize this data with the 
help of machine learning to overcome the PHM challenges. 
The successful address of these challenges will pave the 
foundation in the direction of generalization of PHM 
solutions and also enhance the trustworthiness and reliability 
of PHM solutions.  

Keywords-Digital Twin; Feed drive; Artificial intelligence 

1. MOTIVATION 

The feed drive systems primarily ball screw systems are used 
to convert rotary motion to linear motion and are employed 
in the field of manufacturing, machine tools, and robotics due 
to its high precision, and are used as electromechanical 
actuators for the aerospace and aviation components such as 
landing gear systems, flight control, engine actuation 
systems, etc.,(Qiao et al. 2018) where seamless and reliable 
operation is required. These systems have been employed due 
to high positioning accuracy and rigidity, which has been 

achieved by introducing preload between the screw and nut. 
Due to continuous operation, fatigue, and wear, these systems 
accumulate defects and lose preload over time, which leads 
to a loss in required precision and creates a backlash. Along 
with preload loss, the common fault modes for these systems 
are jam, spall, binding, and shaft bent (Yin et al. 2023). The 
mechanism failure of the feed drive is responsible for 18.72% 
of downtime in machine tools (Jia, Rong, and Huang 2019). 
As per the ASM handbook (Anon 1989) feed drive condition 
monitoring can decrease the production cost by up to 40% 
and increase the total productivity by 140% for machine 
tools.   

For PHM of the feed drive, primarily physics-based or data-
centric approaches are used (Butler et al. 2022). The physics-
based approaches provide enhanced interpretability, but they 
are very sensitive to system parameters and fail to 
accommodate the uncertainties involved in the system. Data-
centric approaches utilize the potential of machine learning. 
These approaches tend to be more accurate, but their 
accuracy depends on the amount of available historical data 
of the asset, which is not readily available in the field, making 
these approaches difficult to implement. Additionally, issues 
such as model interpretability may arise, hindering the 
understanding of how the model arrives at its conclusions. 

Alternatively, digital twin (DT) technology offers a 
promising solution, which utilizes the concept of both 
physics-based and data-centric modeling strategies in 
synchronization and mitigates the shortcomings of both  (K. 
Liu et al. 2022). Advancements in developing Digital Twins 
for feed drive systems have been relatively limited. W. Zhang 
et al. (2022) developed a DT framework for identifying 
rolling joints' dynamic parameters (stiffness and damping) 
for an FEA model. This involved conducting model tests on 
hardware and utilizing a DNN model in conjunction with the 
PSO algorithm to ascertain the parameter value. (D. Liu et al. 
2022) developed a Digital Twin lumped mass dynamic model 
of a feed drive servo actuator system that maps the command 
and load information of the actuator to identify its vibration 
mode for the purpose of its health monitoring. (K. Liu et al. 
2022) presented a multi-layer DT framework to predict and 
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compensate for time-varying positioning errors for a CNC 
machine. These existing DT frameworks focus on only one 
aspect of DT, i.e., developing virtual models, and fail to 
provide an implementable DT for a complete PHM solution 
with the capability of anomaly detection, diagnosis, and 
prognosis of the asset.  

Additionally, existing PHM solutions face challenges like 
transferability, scalability, interoperability, and historical 
data availability. Transferability refers to the capability of 
employing a single PHM solution across various designs, 
materials, and configurations of the same asset. Scalability 
involves the adaptability of the PHM solution to the system 
used in diverse applications. Interoperability denotes the 
ability to apply the same PHM solution across different 
operating conditions of the asset. Lastly, historical data 
availability pertains to the accessibility and adequacy of data 
related to different fault severities and failures.  

There have been progress in DT development for other 
applications which tries to tackle these challenges, such as 
(Feng et al. 2023)  developed a DT framework for gear 
surface degradation monitoring. They utilized physics-based 
models to virtually represent the gear dynamics and 
employed optimization algorithms to fine-tune their dynamic 
parameters. These models were used to generate a data 
library for various degradation states, enabling transfer 
learning models to provide meaningful predictions by 
utilizing the vibration signal from the target asset. The 
framework is capable of adapting to uncertainties and 

demonstrates interoperability for different operating 
conditions. However, it focuses solely on monitoring specific 
defects, lacking a complete comprehensive solution. (Qi et al. 
2024) Developed a DT-based monitoring system for the 
machining process of complex workpieces. The framework 
contains multiple layers and digital representation includes 
multiple models such as geometric, physics, behavior, and 
rule models. Real-time dynamic data is used for interaction 
mapping between the virtual models and the physical process. 
These tuned virtual models provide the state of the process. 
The framework applies to different operating conditions but 
fails to adapt to different applications and configurations. 

This thesis aims to provide an approach for the development 
and implementation of a DT framework aimed at PHM of a 
feed drive system. The proposed framework aims to tackle 
the above defined PHM challenges. 

2. PROPOSED METHODOLOGY 

Figure 1. shows the proposed conceptual DT framework for 
condition monitoring and maintenance optimization, which 
has four distinct layers. 

• Physical layer 
The physical layer includes the monitored asset, with sensors 
for acquiring dynamic signals and necessary data acquisition 
devices. The layer provides the DT framework with the 
essential data for tuning the virtual model and for continuous 
monitoring of the asset.  

Figure 1. Proposed Digital Twin framework 
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• Virtual layer 
The virtual layer mirrors the physical layer and simulates the 
dynamic behavior of the asset through either a lumped 
parameter dynamic model or an FEA model. The model 
employed is developed with adjustable parameters, which are 
adjusted as per the design configuration of the asset with the 
help of the interaction layer. This adaptability ensures that the 
virtual model correctly represents the physical asset.  

• Interaction layer 
This layer plays a crucial role in maintaining the virtual 
model's precise correspondence with the physical system. It 
accomplishes this by observing and modifying the virtual 
model’s parameters to reduce any differences noted during 
comparisons of the model's behavior with the real-world 
responses of the physical system. The parameters will be 
tuned only once with the help of data for the healthy condition 
of the asset when the condition of the asset is known with 
relative certainty. This will help in overcoming the need for 
historical failure data.  

• Decision layer 
The tuned virtual model is utilized to create data repositories 
for various operational scenarios and fault severity stages of 
the physical asset. The decision layer utilizes this compiled 
data to train the machine learning (ML) models. After its 
training phase, the ML models employ the physical asset's 
responses as inputs to monitor the condition of the asset in 
real time. Further, the output from this health prediction 
model will be used for maintenance planning of the feed 
drive.  

3. OBJECTIVES AND RESEARCH PLAN 

The DT framework will be developed by focusing on each 
layer discussed in the previous section as a full objective. The 
proposed thesis has four objectives: 

1. Configure a test rig with sensors and data acquisition 
hardware to gather data essential for the development 
and validation of the proposed framework. 

2. Develop lumped parameter models for the test rig, 
enabling simulation of various faults, operating 
conditions, and applications of the feed drive. 
Additionally, create parametric and ML models to assess 
discrepancies between physical and virtual responses, 
facilitating adjustments to model parameters.  

3. Develop ML models with the help of data from models 
created in objective 2 for health predictions. 

4. Based on the output of the models from objective 3, 
develop maintenance planning strategies for the asset. 

These objectives will be achieved by the following plan: 

In objective 1, a test rig for the feed drive system will be 
configured. This rig would be used for multiple experiments 
related to different operating conditions and faults to closely 

emulate the environmental and operational variables 
encountered in an industrial setting. A triaxial accelerometer 
along with required data acquisition hardware will be used to 
gather vibration data from the rig. The vibration data will be 
further processed using advanced signal processing 
techniques such as wavelet transform and empirical mode 
decomposition to remove random noise components and 
extract the signal relevant to feed drive system dynamics 
only.   The rig would be used to gather vibration data for three 
different nuts with different preloads to understand the effect 
of preload loss on the system's dynamics. The rig would later 
be used to collect data for the insinuated faults such as wear, 
nut and screw spalling, and backlash creating at least three 
datasets related to each fault. At last two run-to-failure 
experiments will be performed on the rig to understand the 
natural degradation of the feed drive. Based on the collected 
data health indicators will be selected for anomaly detection 
and diagnosis. 

In objective 2, based on the configured test rig a lumped 
parameter model will be developed for the multiple rotational 
and translational degrees of freedom (DOF) of the feed drive. 
The model will incorporate the Hertzian contact theory to 
simulate the rolling elements and the Archard wear theory to 
simulate defects like wear. The model will be capable of 
simulating the experiment conditions planned with the rig. 
The models representing the interaction layer will be 
developed by using lumped models related to specific DOF 
and by using ML models that can provide a nonlinear 
mapping between the response of the physical asset and 
virtual model parameters such as stiffness and damping 
parameters. These parameters will be updated by comparing 
the difference in various features between the collected signal 
from the test rig and the synthetic signal generated through 
the virtual layer.   

In objective 3, using the data gathered from objective 2 
different explainable regression and classification ML 
models such as random forest, linear regression and decision 
tree models (Kundu, Darpe, and Kulkarni 2020) will be used 
for health assessment and damage quantification of the asset 
under the natural fault progression.  These models will utilize 
the real-time vibration signal from the physical asset to 
predict its health state using features like natural frequency 
and ball pass frequency extracted from the signal. The 
predicted health state will further be utilized to estimate the 
stochastic positioning error. The initial concept of the 
proposed DT framework based on a single DOF model was 
developed and demonstrated in  (Gupta and Kundu 2024). 

In objective 4, the results obtained from objective 3 will serve 
as the basis for devising maintenance planning strategies for 
the asset based on the life cycle cost analysis. Further, the 
error compensation feedback control strategy will be 
formulated by utilizing an ML model to estimate required 
compensation based on location-specific positioning errors 
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estimated in objective 3. This is very important to utilize the 
maximum life of the feed drive.  

Once all the objectives are fulfilled the DT framework will 
be ready to implement on any feed drive system. The 
framework designed will possess the flexibility to adjust 
parameters based on the specific asset and application, thus 
ensuring high transferability and scalability. Also, DT will be 
trained for different operating conditions and fault severities 
addressing interoperability and data availability issues. The 
current objectives of this thesis will focus on detection, 
diagnosis, and health management aspects. 

 Future work for this thesis could involve integrating the 
prognosis module and exploring the implementation of the 
framework on edge devices. Additionally, investigating order 
reduction techniques for both machine learning and physics-
based models could help alleviate computing load and further 
improve the implementability of the framework. 

4. CONCLUSION 

This thesis aims to develop a digital twin framework for PHM 
applications that can provide better accuracy and versatility 
than physics-based and data-centric approaches. The 
proposed framework would be adaptable to different design 
configurations and also compensate for any system variations 
such as changes in operating conditions and applications. The 
research will contribute to tackling key PHM challenges such 
as transferability, scalability, interoperability, and historical 
data availability.  
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ABSTRACT

Absence of failure data is a common challenge for data-
driven predictive maintenance, particularly in the context of
new or highly reliable systems. This is especially problem-
atic for system level failure prediction of analog electron-
ics since failure characteristics depend on the actual system
layout and thus might change with system upgrades. To ad-
dress this challenge, this work pursues a novel simulation-as-
sisted failure analysis methodology enabling automated and
comprehensive evaluation of system level failure effects and
failure detectability. While results obtained from simulations
are suitable for comparative studies, they are confined to the
simulation environment. To overcome this limitation, failure
simulations are combined with generative models to gener-
ate realistic representations of missing failure data. Prelim-
inary results demonstrate the capability of conditional gen-
erative adversarial networks (cGANs) to generate operational
data of healthy systems, which accurately reflects correlations
present in the source dataset. The proposed approach, us-
ing simulations as an additional source for generative models,
not only targets the scarcity of failure data for highly reliable
electronic systems but also ensures the adaptability of predic-
tive maintenance algorithms to accommodate future system
modifications and upgrades.

1. INTRODUCTION

Data-driven predictive maintenance of analog electronics re-
quires algorithm-based detection of failure precursors in op-
erational datasets containing voltage and/or current signals.
However, obtaining sufficient historical failure data to train
the algorithms, particularly for high-reliability or novel sys-

Felix Waldhauser et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

tems like safety instrumentation, is often a challenge. While
manual studies of failure trajectories are feasible at the com-
ponent level - such as examining discharge curves for capac-
itors - similar analyses at the system level involve studying
numerous failure conditions, since failure characteristics not
only depend on the components themselves, but also on their
configuration in the system’s layout. As a result, common
failure trajectories may evolve with system upgrades or new
generations, which would require validation or repetition of
manual analyses. Hence, overcoming missing failure data re-
quires a more automated approach, allowing exhaustive stud-
ies of failure characteristics while being adaptable to system
upgrades.

The focus of this work is on developing a comprehensive sim-
ulation-assisted framework to establish a predictive mainte-
nance algorithm for analog electronic systems in the absence
of failure data. To illustrate this framework, a radiation mon-
itoring electronics system, designed primarily for personnel
safety, serves as demonstrator. It continuously monitors am-
bient dose rates and activates machine interlocks if defined
radiation thresholds are exceeded. Given the system’s criti-
cal role in ensuring safety, it is engineered to transition into
a fail-safe mode upon detection of internal faults, initiating
interlocks to mitigate risks. Thus, unforeseen failures trigger-
ing such interlocks can significantly impair the operational
availability of downstream equipment. To address this con-
flict between safety and availability, the implementation of
predictive maintenance based on data-driven failure predic-
tion is proposed.

2. LITERATURE REVIEW AND RESEARCH CONTRIBU-
TIONS

Limited availability of failure data poses a challenge for fail-
ure prediction in industrial equipment, especially in systems
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with high reliability and preventive maintenance (Rombach,
Michau, & Fink, 2023), making failures observed during op-
eration rare. Common approaches to overcome the scarcity
of failure data include laboratory experiments to reveal fail-
ure modes (Janeliukstis, Ručevskis, & Kaewunruen, 2019),
physics-based models incorporating relevant failure pro-
cesses (Sun, Fan, Qian, & Zhang, 2016), or simulations
to evaluate the system’s response to failures (Mosleh, Mon-
tenegro, Alves Costa, & Calçada, 2021). In contrast, data-
driven approaches, typically employing generative methods,
eliminate the need for intricate system modeling. (Xiong,
Fink, Zhou, & Ma, 2023) use generative adversarial networks
(GANs) to extend already available failure data to new, un-
seen operating conditions based on a physics-informed loss
function. While simulations of analog circuits are commonly
employed for studies of failure effects (Zhang, Hong, Gao, &
Yin, 2021), using simulations as a data source for generative
models is currently limited to mechanical systems. (Gao,
Liu, & Xiang, 2020) exemplify simulation-assisted data gen-
eration in the field of roller bearings, using FEM simulations
to generate missing failure data via GANs.

This work explores the potential benefits of incorporating
simulation-assisted failure analysis and data generation into
predictive maintenance algorithms for analog electronics in
the absence of failure data. The key contributions are:

• Utilization of synthetic datasets obtained from simula-
tions to inform decision-making in the development of
predictive maintenance algorithms at an early stage

• Generation of missing failure data using simulation-as-
sisted generative methods bridging the gap between the
healthy and the faulty domain

• Automated and resource-efficient framework for system
level failure prediction in the absence of real failure data

3. METHODOLOGY AND PRELIMINARY FINDINGS

In the frame of a feasibility study (Waldhauser, Boukabache,
Perrin, & Dazer, 2022), unsupervised anomaly detection al-
gorithms were applied to operational datasets of the radiation
monitoring electronics system. The study demonstrated the
capability of these algorithms to detect unusual data events,
such as rare spikes of the dose rate measurement. Although
the detected data events are technically anomalies, they are
not necessarily related to hardware degradation or faulty be-
havior. Instead, they may represent atypical yet normal oper-
ational behavior. This results in the requirement of introduc-
ing knowledge on the system’s failure behavior to establish
the link between detected anomalies and the system’s condi-
tion.

Since manual studies of the failure behavior are costly and
not adaptable to design changes, alternative, more automated
possibilities for acquiring comprehensive failure knowledge
need to be explored. Here, simulations of the analog electron-

ics using the SPICE simulation engine can be used to increase
the understanding of the failure behavior. Specific failure sce-
narios are simulated by altering component characteristics,
such as gradually reducing the capacitance of electrolytic ca-
pacitors. Hence, the impact of these failures on system-level
outputs can be observed, facilitating the identification of fail-
ure patterns and assessing the detectability of component fail-
ures.

Additionally, simulation-derived datasets were used to iden-
tify the optimal source of failure knowledge for hybrid
anomaly detection algorithms, which incorporate labeled fail-
ure data (Waldhauser, Boukabache, Dazer, Perrin, & Roesler,
2023). The results indicated that failure data derived from
hardware tests, such as accelerated life tests, proved most
beneficial in improving algorithm performance within this
synthetic environment. Hence, the findings suggest priori-
tizing resources towards conducting hardware tests to gather
failure data, as opposed to analysis of anomalous data events
for failure identification by system experts.

4. FUTURE WORK AND RESEARCH STRATEGY

The above mentioned studies emphasize the crucial need of
understanding the system’s failure behavior to refine failure
prediction algorithms for identifying patterns indicative of
hardware degradation. Failure simulations of analog elec-
tronics allowed detailed studies of failure detectability, com-
mon failure characteristics, and the generation of synthetic
datasets. Although these simulations were suitable for com-
parative analyses, their utility is inherently limited to the
simulation environment. Hence, future research endeavors
will focus on bridging this gap between simulated and real
datasets to ultimately compensate the missing failure data.

The subsequent phase of research therefore aims at manipu-
lating operational datasets based on simulations to generate
synthetic failure data. Here, one possible solution relies on
generative artificial intelligence. Initially, a generative model
is trained on data representing healthy system states with the
objective of reproducing this baseline data. This methodol-
ogy is then extended to address the generation of realistic fail-
ure data by fine-tuning the generative model with simulated
failure scenarios without relying on real failure samples.

Preliminary studies with data of healthy states from radia-
tion monitoring electronics containing measurements of in-
ternal voltages have demonstrated the capability of Wasser-
stein conditional generative adversarial networks (WCGANs)
to generate synthetic data while preserving the correlations
present in the training dataset. For example, WCGANs can
accurately capture the relationship between temperature fluc-
tuations and specific voltage signal characteristics. Figure 1
shows the comparison of real and WCGAN generated data
for the kurtosis values of the 5 V signal.
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Figure 1. Histogram comparing the distributions of real and
WCGAN generated (fake) data for the healthy system state
on the basis of 30,000 samples per type. Plus5v kurtosis is
the kurtosis of the 5 V signal, with data normalized.

Ultimately, hardware tests of representative failure states will
be required to validate the authenticity of the generated syn-
thetic data. However, this necessitates accurate information
regarding the health status of each component. Various op-
tions are being considered, including replacing components
to replicate changes in their characteristics or inducing local-
ized heat exposure to accelerate aging and confine failures to
specific components.

5. CONCLUSION

The proposed methodology demonstrates a novel approach
for developing predictive maintenance algorithms without
relying on historical failure data. Simulations serve as ad-
ditional knowledge source along the development process.
This includes identifying detectable failures and generating
synthetic failure data that is instrumental for training robust
failure prediction algorithms. While hardware-based stud-
ies are still relevant, they are complemented by simulation
results and limited to representative examples for validation
purposes. Besides assisting the generation of missing fail-
ure data, comprehensive simulations of failure effects hold
significant potential in automating analytical reliability as-
sessments.
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Abstract
Manufacturing industries are expanding rapidly, making it es-
sential to detect early signs of machine faults for safety and
productivity. With the extension of machines’ runtime due to
industrial automation, breakdown risks have increased, lead-
ing to economic and productivity consequences and some-
times even causalities. The surge in industrial big data from
low-cost sensing technologies has enabled the development
of intelligent data-driven Machinery Fault Detection (MFD)
systems based on machine learning techniques in recent years.
However, most existing methods are based on supervised pat-
tern classification techniques to detect previously known fault
types, which have limitations such as lack of generalization
across different operational settings, focusing only on specific
machinery and/or data types, and considering the identical and
independent distribution of training and testing data. There-
fore, my PhD research aims to develop a robust MFD frame-
work for practical use by addressing these limitations.I will
explore the potential of ensemble learning, unsupervised and
semi-supervised anomaly detection, reinforcement learning,
transfer learning, and cross-domain adaptation approaches in
MFD. My PhD research will contribute to the field of data-
driven MFD by proposing novel, effective solutions that can
be applied across various manufacturing applications.

1. Background
Rotating machinery holds significant importance in modern
industries. These machines often operate longer and under
adverse conditions, making them prone to failure. Machine
failures result in substantial maintenance costs, production
inefficiencies, financial losses, and even risks to human life.
Common electric motor failures involve bearings, stators, ro-
tors, and gearboxes. The continuous operation of these ma-
chines can lead to wear, cracks, and other defects, emphasizing
the need for accurate and timely fault detection and diagnosis
to mitigate financial and safety risks (Neupane & Seok, 2020).

Dhiraj Neupane et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

2. A Brief Discussion on the State-Of-The-Art
Recent developments (Neupane, Kim, & Seok, 2021; Zhong,
Zhang, & Ban, 2023) in MFD have mainly focused on clas-
sifying the health states of machinery through extensive anal-
ysis of samples under normal and faulty conditions. While
these studies have contributed to the creation of robust fault
diagnosis systems, there is a limited exploration in examin-
ing semi-supervised learning (SSL) methods (see Figure 1).
Moreover, the prior SSL applications primarily focus on fault
classification (Zong et al., 2022; Zhang, Ye, Wang, & Ha-
betler, 2020). Reinforcement Learning (RL) is increasingly
being employed in various domains of MFD, such as trans-
mission lines, hydraulic presses, and industrial process con-
trols (Teimourzadeh, Moradzadeh, Shoaran, Mohammadi-
Ivatloo, & Razzaghi, 2021; Junhuai, Yunwen, Huaijun, &
Jiang, 2023). Although most RL applications treat fault di-
agnosis as a simple classification task, there are also some
innovative approaches that extend its use to complex system
management. For instance, (Vos, Peng, & Wang, 2023) em-
ploy an RL framework to optimize fleet management in the
aviation sector, demonstrating how RL can effectively handle
the dynamic decision-making required to maintain high fleet
availability and minimize maintenance costs across aircraft
with varying ages and degradation paths. Furthermore, data
fusion methods play a critical role in enhancing the accuracy
of fault detection systems. Techniques range from data-level
fusion, such as weighted averaging and Kalman filters, to
more complex feature and decision-level fusions that utilize
statistical and machine learning methods, such as principal
component analysis and Bayesian decision theory (Kibrete,
Woldemichael, & Gebremedhen, 2024). Despite these ad-
vancements, the integration of multi-level fusion and cross-
domain adaptation remains limited, highlighting a significant
area for future research.

3. Motivations
First, the existing studies on MFD primarily employ super-
vised learning approaches (over 80%, see Figure 1), which
can accurately identify known faults but struggle to detect
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Supervised Learning ~81%
Unsupervised Learning ~12%
Semi-supervised Learning ~6%
Reinforcement Learning ~1%

Figure 1. Machine learning techniques used for MFD

novel or unseen ones (Das, Das, & Birant, 2023). This lim-
itation is problematic in complex industrial settings where
modern machines operate, as new fault types can emerge over
time. Also, accurately identifying various fault types necessi-
tates a substantial quantity of labelled data, which is a difficult
challenge in real-world industrial settings because annotating
takes time, expertise, and resources. Moreover, the labelled
data may not cover all possible faults, restricting the diversity
of the training dataset and hindering the model’s ability to
generalize to unseen faults.

In supervised learning, the effectiveness of the algorithms
heavily relies on the accuracy of the data labels, which are
typically derived from expert interpretations of sensor read-
ings or from known operating conditions. This dependency
on labeled data also extends to SSL, where limited labeled
data can constrain the learning process to the inherent accu-
racy of these labels, a limitation referred to as the Bayes rate
(Nian, Liu, & Huang, 2020). To address this challenge, RL
can be used, which is a promising ML framework that learns
from trial-and-error interactions using rewards rather than ex-
plicit instructions (Wang, Jiang, Li, & Liu, 2020). RL has
demonstrated success in various fields, including manufac-
turing, but its application in MFD is limited. Existing fault
detection systems have not thoroughly exploited the potential
of RL in optimizing maintenance decisions and fault detection
strategies. Current RL algorithms for MFD often treat fault
diagnosis as a simple classification task, which may not fully
utilize the capabilities of the RL framework. RL can learn the
sequence of events leading up to a fault, which can be used
to predict when a fault is likely to occur. Moreover, the use
of RL algorithms is currently limited to a single machinery
or environmental setting. This research aims to explore the
application of RL algorithms in MFD and develop specialized
RL algorithms that can effectively handle the dynamic nature
of fault patterns and machine operational conditions.

Additionally, most existing (about two-thirds, see Figure 2)
ML-based MFD techniques use vibration data to predict faults
(Das et al., 2023). Vibration signals, however, can be prob-
lematic in harsh environments or areas with high background
noise, which can decrease the accuracy of collected data.
Moreover, traditional vibration sensors may not always be

Vibration
66%

Visual17%

Acoustics
3%

Other

14%

Figure 2. Data types used for MFD

practical for installation in locations that are difficult to ac-
cess or on specific types of equipment. For example, placing
these sensors on ball bearings within centrifugal pumps or
on equipment operating under extreme conditions such as
low-temperature vacuum pumps can pose significant chal-
lenges (Hoang & Kang, 2019). Furthermore, an exclusive
reliance on vibration data could potentially limit the perfor-
mance of ML models. Thus, the incorporation of other data
types could offer a richer understanding of the problem and
yield improved results. Utilizing diverse data types, such as
temperature, current, acoustic, and visual information, into
fault diagnosis algorithms can offer a more comprehensive
and accurate understanding of machinery health. Combining
data from multiple sources not only improves the detection
of subtle faults, reducing diagnostic errors but also compen-
sates for potential sensor failures or data inaccuracies due to
environmental interference.

Moreover, most existing work on MFD focused on specific
machine types and operational environments. Usually, mod-
els are trained on data from one type of machine in a particular
environment and are expected to perform effectively on simi-
lar machines or the same machine under different conditions.
This expectation is based on the assumption that the source
(training) and target (test) data are independent and identi-
cally distributed (iid) (Li et al., 2022). However, achieving
this iid condition in industrial applications is challenging due
to several factors: (a) machines can exhibit different behav-
iors and degradation patterns over time or when operated in
varying conditions; (b) differences in machine manufacturing,
wear-and-tear, and operational settings can introduce signif-
icant variability in the data. These factors contribute to the
‘domain-shift’ problem, where the training data no longer rep-
resents the new conditions under which the model is tested.
This domain shift can significantly reduce the effectiveness
of fault detection models, as they fail to generalize across
different operational scenarios. Thus, addressing this issue
is crucial for affecting machine health monitoring and fault
diagnosis in diverse environments.
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4. Research Aim and Objectives
This PhD project aims to develop a robust framework for MFD
by addressing identified limitations and research gaps. De-
fined as ‘robust’, our framework ensures that various algorithms—-
including unsupervised, semi-supervised, and reinforcement
learning techniques—-perform effectively in real-world in-
dustrial settings. These environments are often complex and
noisy, with heterogeneous data. By utilizing diverse data
types, our framework anticipates supporting effective appli-
cations across different domains. This aim will be achieved
through the following objectives:

1. To investigate the potential of unsupervised and semi-
supervised anomaly detection (AD) methods for identify-
ing anomalous patterns in MFD. This approach eliminates
the need for labeled data and addresses the challenges of
class imbalance.

2. Additionally, there is a goal to fully utilize the capabilities
of RL for MFD by creating specialized algorithms that
can optimize maintenance and fault detection strategies.
Apart from fault classification, RL has potential in AD
(Arshad et al., 2022), optimizing maintenance strategies
(Marugán, 2023) or prediction (Siraskar, Kumar, Patil,
Bongale, & Kotecha, 2023). This will help overcome the
limitations of treating fault diagnosis as a guessing game
and improve performance in diverse operating conditions.

3. Another objective is to explore the potential of using di-
verse data types for developing MFD algorithms, which
can enhance diagnostic efficiency and provide a compre-
hensive understanding of machinery health status. The
study will also investigate the use of ensemble models to
improve accuracy and efficiency.

4. Lastly, the aspiration is to bridge the gap between dif-
ferent data types and operational settings using domain
adaptation and transfer learning techniques, which can
enhance the model’s ability to generalize across diverse
settings.

5. Research Methodology and Timeline
To create an integrated framework for MFD that makes use

of robust semi and unsupervised learning-based AD algo-
rithms, our approach encompasses data preprocessing, algo-
rithm selection, and model training, with the aim of generating
anomaly scores for predicting faults. We will evaluate the per-
formance of our models using metrics such as precision, recall,
F1 score, etc., and compare them with supervised methods.
Our work on this project is ongoing, and we submitted an
article to “the 8th European Conference of the PHM Society
(PHMe2024), presenting the results of our experiments with
various AD algorithms on the Case Western Reserve Uni-
versity (CWRU) bearing dataset, Paderborn University (PU)
bearing dataset, and Health and Usage Monitoring System
(HUMS) datasets. The outcomes of our study so far have

been encouraging, demonstrating the efficacy of AD meth-
ods.

To achieve our second objective in employing RL in MFD,
the formulation of problems, the development of algorithms
(including state representation, action space definition, reward
function design, and RL algorithm selection), data collection
and preprocessing, training and testing, and continuous refine-
ment of the RL algorithm based on evaluation metrics such
as performance against baseline models, rewards evaluation,
fault detection accuracy, and training convergence progress
will be done. Since real-time data collection is limited in
our setup, we will focus on employing offline RL techniques
(Deng, Sierla, Sun, & Vyatkin, 2023). Offline RL is ideal for
situations where learning must be derived from pre-existing
datasets rather than from interactions with the environment in
real-time. For implementing these techniques, we can utilize
well-established libraries, which provide the necessary tools
to effectively apply offline RL algorithms to our data.

To accomplish our third objective, we aim to develop a com-
prehensive MFD algorithm by integrating various data types.
Our aim is to improve adaptability, generalization, accuracy,
and fault detection capabilities under different machinery con-
ditions. We employ flexible models that can handle hetero-
geneous data, which are preprocessed for noise and normal-
ization, and utilize ensemble techniques like data, feature, or
decision fusion. Evaluation will be based on accuracy, preci-
sion, recall, and F1 score metrics. We have made progress by
using the PU dataset to fuse vibration and current data, which
will gradually advance to the integration of X and Y-axis vibra-
tion data, two phases current data, and torque data, ensuring
comprehensive feature integration and decision-making.

To effectively enhance MFD in diverse operating conditions
and overcome the challenges of limited data by employing
domain adaptation and transfer learning techniques, we will
apply domain adaptation methods like discrepancy, adversar-
ial, or reconstruction-based approaches (Zhang et al., 2023).
Moreover, multi-source domain adaptation is also being ex-
plored. The effectiveness of the approach is evaluated using
classification and domain discrepancy metrics.

5.1. Expected Outcomes and Publications
This project aims to develop a novel, robust, and flexible MFD
system for real-world applications. The framework will im-
plement an unsupervised or semi-supervised learning-based
fault detection framework, utilizing diverse data types and
incorporating RL for fault prediction and cross-domain plat-
forms as well. Apart from these, we have expected to publish
a review paper, which is almost ready to submit. Also, a few
conference articles and collaboratory publications are also
expected.

3
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Figure 3. Proposed Timeline for this PhD

5.2. Works Done So Far and Timeline
During the course of this research project, significant progress
has been made across various aspects of the study.

Literature Review and Draft Article: Our initial phase in-
cluded a comprehensive literature review and a draft of a
detailed review paper on significant MFD developments. The
paper covers multiple topics and is almost ready for submis-
sion.

Participation in HUMS Data Challenge and Conference
Presentation: We participated in the HUMS Data Challenge
and presented our research at the HUMS conference, where
our findings were published. Our work involved using signal
processing and statistical-based approaches to detect cracks in
the provided dataset and the auto-regressive integrated moving
average method for predicting fault progression.

Manuscript Submission in PHMe2024: We also submitted
an abstract and full manuscript for the upcoming conference
PHMe2024, going to be held on July 3- 5, in Prague, CZ. The
article is related to the use of semi-supervised-based tech-
niques for machinery fault detection, which is objective 1 of
this project.

Objective 1 continued:The work being carried out for ob-
jective 1 is being extended. We are actively engaged in the
incorporation of a new dataset and in the application of semi-
supervised techniques for anomaly detection. Furthermore,
we are exploring various data transformation methods and
combinations of features to enhance our results.

This PhD program commenced in October 2022 and is ex-
pected to be completed by 2025, within a three-year time-
frame. In addition to core research and publication activities,
administrative tasks must be carried out throughout the pro-
gram, as per university and faculty regulations. To facilitate
effective planning, the entire three-year period has been di-
vided into twelve three-month periods and is shown in figure 3.

6. Conclusion
Implementing a robust machinery fault detection system in

real-world settings presents several challenges, such as adapt-
ability to a variety of machines, compatibility with existing
infrastructure, and scalability across diverse industrial envi-
ronments. To tackle these challenges, we aim to develop adap-
tive algorithms, enhancing system compatibility with current
technologies, and ensuring scalability for broad industrial ap-
plications. Moving forward, our vision for MFD research en-
compasses the integration with predictive analytics, aiming to
transform MFD systems into comprehensive diagnostic tools
that not only detect but also predict faults, significantly reduc-
ing downtime and maintenance costs. This future-oriented
approach aims to solidify the role of MFD in advancing pre-
dictive maintenance strategies and thereby contribute a sus-
tained impact to the field.
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ABSTRACT 

Natural Language Processing (NLP) has seen a surge in 
recent years, especially with the introduction of transformer 
architectures, relying on the now famous self-attention 
mechanism. Especially, with the rise of Large Language 
Models (LLM), propelled by the appearance of ChatGPT in 
2022, a new hope of extracting relevant information from text 
has emerged. In the meantime, natural language data have not 
often been used in risk, resilience, and reliability tasks. 
However, text data containing reliability-related information, 
that can be used to monitor health information regarding 
complex systems, are available in several and diverse shapes. 
Indeed, text data can either contain theoretical expert 
knowledge (technical reports, documentation, Failure Modes 
and Effects Analysis (FMEA)), or in-practice expert 
knowledge (incident reports, maintenance work orders), or 
in-practice non-expert knowledge (customer feedback, news 
articles). Critical infrastructures, such as nuclear 
powerplants, railway networks, or electrical power grids, are 
complex systems for which any failure would induce severe 
consequences affecting many people. Such systems have the 
advantage of serving many users, thus having many possible 
text sources from which technical information and past 
incident data can be mined for anticipating future failures and 
generating responses to catastrophic scenarios. The goal of 
this work is to develop methods and apply state-of-the-art 
NLP techniques to text data relating to critical infrastructures 
and failures, to (1) mine information from unstructured 
language data, and (2) structure the extracted information. 
Preliminary experiments were conducted on customer review 
data and incident reports, and show promising performance 
for failure detection from text data with transformers, as well 
as incident-related information extraction using LLMs. 

1. STATEMENT OF THE PROBLEM ADDRESSED 

Risk, resilience, and reliability have seen some attempts to 
use Natural Language Processing (NLP) to make use of text 
data in systems health monitoring. NLP was applied to 

maintenance records data so as to filter maintenance records 
by types (Stenström et al., 2015). Sharp et al. (2017) also 
developed a framework on maintenance records, to classify 
such data based on expert tags and by supervised learning. 
Considering the specificity of technical terms used in 
maintenance work orders, Brundage et al. (2021) introduced 
the notion of Technical Language Processing (TLP) and 
discussed the need for models designed and trained 
specifically on technical language data. Other works (Li & 
Wu, 2018; Huang et al., 2021) have proposed a statistical 
approach to look at co-occurrences of terms and a graph 
visualization to quickly perceive how failures are 
characterized in diesel engines, based on Failure Modes and 
Analysis Effects (FMEA) data. Research in NLP for risk, 
resilience, and reliability covers multiple applications, with 
different datasets and tasks. However, it suffers from a lack 
of common shared open-source datasets and benchmarks, and 
with the rise of generative artificial intelligence, there is 
currently room for improving existing frameworks and 
developing new ones. 

The research question addressed in this thesis is the 
following: how can one extract information from 
unstructured text data, and then structure the extracted 
information, to learn failure knowledge from text data? 

The initial approach should involve using state-of-the-art 
NLP techniques, especially Large Language Models (LLMs) 
and transformers (Vaswani et al., 2017) in general, to extract 
information from text. The extracted information will then be 
organized in knowledge databases, according to ontologies, 
in order to structure the information relating to risk, 
resilience, and reliability. The goal is to use the large amount 
of available text data containing health information of 
complex systems so as to learn and structure knowledge on 
failures of critical infrastructures. 

To that end, various forms of text can be used. Either 
documents containing theoretical expert knowledge, such as 
technical reports, technical documentation, or FMEA; or 
documents with in-practice expert knowledge, such as 
incident reports, or maintenance work orders; or documents 
with in-practice non-expert knowledge, such as customer 
feedback, or news articles. Such data can then be used in two 
complementary ways: either to directly mine information 
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from them, or to give context and knowledge while extracting 
information from other documents.  

The expected benefits are the creation of tools in the form of 
specialized technical search engines and automated text 
assistants to support informed decision-making for the 
anticipation of incidents and the generation of response 
scenarios when encountering failures in critical 
infrastructures. 

2. EXPECTED CONTRIBUTIONS TO THE FIELD 

The main expected contributions to the field include (1) the 
development of open-source datasets to support NLP tasks 
applied to risk, resilience, and reliability, (2) the application 
of state-of-the-art NLP techniques, including LLMs to 
reliability data and the creation of associated benchmarks, (3) 
the design of an ontology for reliability engineering and the 
development of a method to automatically populate 
knowledge databases whose architecture would rely on this 
ontology. 

3. RESEARCH PLAN 

The research plan currently includes the following parts: (1) 
detecting failures and assessing reliability from text data, (2) 
applying LLMs for information extraction, (3) focusing on 
failure mode extraction with the proposed framework for 
information extraction assisted by LLMs, (4) designing an 
ontology for reliability engineering, and (5) automatically 
populating knowledge databases for system reliability. 

As a transversal task, the development of fine-tuned LLMs 
for risk, resilience, and reliability tasks, e.g., including code 
generation for reliability engineering, is a common thread. 

3.1. Failure Detection and Reliability Assessment from 
Text Data 

The simplest unit of information that can be extracted from 
text data regarding reliability is whether or not the document 
at hand states that a failure occurred. 

Following previous research (Meunier-Pion et al., 2021), a 
set of customer review data for failure detection was 
developed for the task of detecting if customers report a 
failure in their review of a product. It is composed of 2,415 
customer reviews labeled for binary classification. 
Additionally, labels include a level of granularity that enables 
the subtask of classifying failures severity as tolerable or 
intolerable. 

Due to the ambiguity of customer reviews, several annotators 
were required to label the dataset and a human benchmark 
score was derived from the annotations to know what the best 
performance of a machine model could be. The human 
performance was estimated to 91.24% of balanced accuracy, 
while the best model involving a fine-tuned DeBERTa-v3 
transformer (He et al., 2023) reached 88.50% balanced 

accuracy. This constitutes promising results for detecting 
failures in customer review data, and in natural language in 
general, in order to generate lifetime data from text corpora 
and assess reliability directly from natural language data. 

The results from this research part suggest that reliability-
related information can be extracted from text data. Building 
upon this preliminary work, the aim of this thesis is to gather 
more fine-grained information regarding systems health, 
such as failure causes, failure modes, degradation, 
maintenance actions, interdependencies between system 
components, and so on. 

3.2. Application of LLMs to Information Extraction 

 With the rise of LLMs and their incredible capabilities for 
understanding natural language, it seems that NLP 
information extraction tasks can be addressed more 
effectively. However, one limitation of LLMs is that they are 
designed for generating text, in the form of long consecutive 
sentences, instead of returning only a specific word or set of 
words answering a short query. 

In this research, LLMs were applied on nuclear powerplants 
incident reports data for extracting basic information such as 
the date of an incident and the place of an incident. Using a 
small LLM stored on less than 3 GB, an average accuracy of 
94.5% could be reached for the extraction of date and place 
of incidents, over an initial dataset of 50 incident reports. 
Besides, one should note that if a LLM outputs “The date of 
the incident was 2023.”, then the output is considered invalid, 
as the expected queried information is only “2023”, making 
the task more challenging as conciseness matters. 

The goal is to provide a framework for extracting information 
thanks to LLMs, that combines the ability of LLMs to 
understand text and generate high quality answers, with a 
methodology for extracting specific queried information. 
Here, in this part of the research, the goal is not necessarily 
to extract technical information, but rather to come up with 
an effective and performant framework for extracting pre-
defined attributes when queried, as illustrated in Figure 1. 

 
Figure 1. Information extraction using an LLM. 
 

3.3. Failure Mode Extraction 

By leveraging the framework developed for Section 3.2., one 
type of reliability-related information that can be queried 
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from text is the failure mode of a given system, i.e., how the 
system failed. As part of this research, methods are developed 
to extract failure mode information from text. 

There are mainly two ways of extracting failure mode 
information from text: (1) classifying failure mode based on 
pre-defined failure mode labels, or (2) generating a failure 
mode label that fits the given description of an incident. 

While the first way, involving multi-class classification may 
be convenient to assess performance and compare models, it 
requires the definition of class labels, which are not always 
available, especially when working with new unseen data. On 
the other hand, the second envisioned approach to extracting 
failure mode from text involves generating labels, which 
requires a more sophisticated evaluation framework. This 
approach is intended in this research, in order to leverage 
LLMs for information extraction. Additionally, one modern 
technique that will be investigated in this research is 
Retrieval-Augmented Generation (RAG), which consists of 
generating an answer to a query, with the addition of a 
context from a vector database and similar to the input query.   

In the meantime, the first way of extracting failure mode 
information is currently under study and preliminary results 
on the National Highway Traffic Safety Administration 
(NHTSA) complaints dataset show that it is possible to reach 
86% balanced accuracy on multi-class classification of 
failure modes on text data, using only standard NLP 
techniques, without even the use of transformers. 

3.4. Definition of an Ontology for Reliability 

The objective of this research being to learn failure 
knowledge from text data, one important part of this work is 
to define an ontology for reliability. Previous works in 
maintenance have already applied ontology frameworks to 
define ontologies like an Ontology model for Maintenance 
Strategy Selection and Assessment (OMSSA) (Montero 
Jiménez et al., 2023). 

The purpose of defining an ontology for reliability is to 
organize concepts relating to failures in order to structure 
failure knowledge. This should enable and facilitate the 
automatic instantiation of knowledge databases containing 
failure information extracted from text data. 

3.5. Automatic Population of Knowledge Databases 

Ultimately, the purpose of this research is to enable the 
automatic population of knowledge databases containing 
failure-related information extracted from text data. 

In that respect, a challenge that will be addressed in this 
research is grouping fields of the same data record. Indeed, 
multiple data records can have their information in the same 
document and an additional challenge thus is: how to 
distinguish between different data records? How can one 

group fields together to create the correct instance, and not 
mix fields from different records together? 

More specifically, fields that can be extracted from text data 
include, for example, the date of an incident, the failure 
mode, and the root cause of the failure. The challenge is to 
correctly map the date of incident A with the failure mode 
and root cause of A, and not map it with the failure mode and 
root cause of B, whenever A and B co-occur in a document. 

3.6. Fine-Tuning LLMs for Reliability Engineering 

As part of this research, a transversal component will be the 
development of fine-tuned LLMs specialized on technical 
data in order to efficiently use technical engineering data and 
to address tasks relating to system health monitoring. 

In that respect, a first attempt of benchmarking LLMs on the 
fields of risk, resilience, and reliability, is under study and 
involves the creation of a dataset for code generation 
containing more than 50 code generation questions. This 
dataset is inspired by the HumanEval dataset (Chen et al., 
2021) and involves the usage of unit tests to guarantee the 
capability of the model to generate effective code. The goal 
is to evaluate current state-of-the-art LLMs, such as 
variations of Mistral or Llama models, on the vertical 
application of risk, resilience, and reliability, whereas 
traditional code generation benchmarks (Austin et al., 2021; 
Du et al., 2023) consist of general programming tasks. 

Then, an LLM will be fine-tuned on specific data to 
compensate for the lack of expert knowledge from general 
LLMs, and enable the generation of more accurate technical 
scripts from an artificial intelligence code assistant. This 
approach will be generalized to fine-tune LLMs not only for 
code generation, but also for natural language in general, in 
order to acquire expert knowledge on complex systems. 

4. CONCLUSION 

The current research aims at developing open-source datasets 
and benchmarks for NLP for risk, resilience, and reliability, 
while leveraging state-of-the-art techniques like LLMs. The 
main focus here is the development of methods for 
information extraction and structuring knowledge. 

Preliminary results show encouraging evidence that state-of-
the-art NLP techniques are able to mine failure-related 
information from text data. Nonetheless, the methods 
developed in this thesis are intended to be applied to critical 
infrastructures, thus confidence indicators are necessary to 
measure the trustworthiness of the developed models. 

As a common thread, an objective throughout this research is 
to create NLP-related materials, including datasets and code, 
that will be shared to encourage research in this field and 
ensure access to trustful and reproducible results. 
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ABSTRACT

Maintenance plays an important role in fulfilling the goals of
the Prognostics and Health Management (PHM) field. As of
now, no publication has addressed the impact of imperfect
repair actions from the prognostics perspective. Imperfect
repairs introduce complexities, altering system degradation
processes and increasing prediction uncertainties, thereby im-
pacting the accuracy of Remaining Useful Life (RUL) predic-
tions. To fill this gap in the literature, the study proposes de-
veloping a robust prognostic model adaptable to post-repair
operations. The prognostic model that will be developed is
stochastic since stochastic models have already proven their
adaptability to unseen test data. However, further develop-
ment of such models is needed to deal with data on repaired
systems. In addition to that, the implementation of a Bayesian
Extension allows uncertainty interpretability to be considered
to account for the uncertainty coming from the repair action
itself but also from the different sources of uncertainties that
have not been studied in the field of prognostics.

1. PROBLEM STATEMENT AND STATE-OF-THE-ART

Prognostics and Health Management (PHM) is a field that
provides users with a thorough analysis of the health condi-
tion of a system which allows users to maximize the oper-
ational availability, reduce maintenance costs, and improve
the system’s reliability and safety (Tsui et al., 2015). PHM
includes the following modules: data acquisition, diagno-
sis, prognosis, and decision-making (Moradi & Groth, 2020).
Prognosis takes the information of the data coming from data
acquisition alone or both the information of diagnosis and

Mariana Salinas-Camus et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

data acquisition. The output of prognosis is then the pre-
diction of the Remaining Useful Life (RUL) of the system,
which is the time left before the system reaches failure.

Prognostics plays a vital role in decision-making processes,
guiding actions like system retirement or maintenance
scheduling. Maintenance strategies vary from perfect mainte-
nance (replacement) to imperfect maintenance (repair), with
the latter being favored for its cost-effectiveness (Do Van et
al., 2013). (Bougacha et al., 2020) conducted a review on
post-prognostic decision-making, particularly focusing on
aerospace applications. Existing approaches in this review
typically consider current degradation levels or use prog-
nostics assuming the system is as good as new to inform
maintenance decisions. (Nguyen & Medjaher, 2019) de-
veloped a Deep Learning-based framework that covers the
entire process from data-driven prognostics to maintenance
decisions. However, the framework’s limitation lies in its
consideration of only perfect maintenance. To the best of
the author’s knowledge, (Welz et al., 2017) is the only work
that has addressed repair actions in prognostics, emphasizing
the importance of including data from repaired systems to
enhance prediction accuracy. Yet, this study lacks reporting
on RUL prediction and corresponding confidence intervals,
providing only an average error of failure time.

Therefore, a significant research gap exists in the current lit-
erature regarding how to perform prognostic when the engi-
neering system has been subjected to imperfect maintenance.
In other words, there is a need to develop prognostic models
that perform accurately when trained on data from systems
with no repair but tested on systems repaired one or more
times. This gap is notable given PHM’s predictive mainte-
nance and cost reduction goal.

Understanding the effects of repair actions on prognostic
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models is crucial, as repairs can alter the degradation pro-
cess of a system. As a consequence, it will negatively af-
fect the performance of the prognostic model by the decrease
in the accuracy of RUL predictions, and an increase in the
uncertainty of the predictions. Thus, it will reduce the re-
liability and robustness of prognostics, which will raise con-
cerns about the eligibility of prognostics for decision-making.
Therefore, many questions arise to deal with such a sce-
nario. Should prognostic models consider dependencies be-
tween pre and post-repair operations? How can the prognos-
tic model acknowledge the health recovery of the system?
And how can uncertainty arising from repair actions be man-
aged effectively?

To address the consideration of imperfect repairs in prognos-
tics, it is necessary to develop a robust prognostic model that
allows for interpretable uncertainty given the increased un-
certainty expected from the repair actions. Understanding the
concepts of robustness and uncertainty management, along
with the challenges they present, is essential.

Robustness, defined as a system’s ability to perform accept-
ably across various conditions, poses a challenge in prognos-
tics due to the lack of adaptation mechanisms in existing mod-
els. Attempts have been made to improve robustness, such
as using adaptive batch normalization or domain adversarial
neural networks. Still, challenges persist, with high errors
in terms of accuracy, along with instability and noise in the
predictions

Exceptionally, the Adaptive Non-Homogeneous Hidden
Semi-Markov Model (ANHHSMM) demonstrated adaptable
capabilities (Eleftheroglou et al., 2020). This stochastic
model was trained with 8 composite specimens under fatigue
loading, and later on, tested with 3 specimens, also under
fatigue loading, and suddenly experienced an unexpected
phenomenon. The model provided good results, however, it
has not been validated for a case study involving repairs.

Uncertainty management is the second challenge when per-
forming prognostics with data from repaired specimens in the
test set. Uncertainty management is defined as the identifica-
tion of sources of uncertainty and the reduction of uncertainty
by leveraging data to better characterize the inherent prog-
nostic uncertainties, thereby reducing their impact on RUL
predictions (Sankararaman, 2015).

However, to identify uncertainty it is first necessary to quan-
tify it. Uncertainty quantification (UQ) is already a challenge
in data-driven prognostics when using ML models that are
deterministic by nature. Such models usually do not report
UQ in their RUL predictions, as seen in (Zhu et al., 2020; Ma
& Mao, 2020; Ren et al., 2020; Zhang et al., 2023; Cheng et
al., 2022). In contrast, some publications address uncertainty
quantification when using stochastic models or particle filters,
but they provide broad confidence intervals, which results in

a lack of valuable information for decision-making (Huang
et al., 2017; Cadini, Sbarufatti, Cancelliere, & Giglio, 2019;
Cadini, Sbarufatti, Corbetta, et al., 2019; Moghaddass & Zuo,
2014; Liu et al., 2018).

To handle broad ranges of confidence intervals is then nec-
essary to perform uncertainty management. But even though
some data-driven prognostic models allow UQ, then it is nec-
essary to identify the sources of uncertainty. The classical
categorization divides uncertainty into aleatory and epistemic
(Der Kiureghian & Ditlevsen, 2009). However, as the authors
themselves have mentioned, such categorization is artificial
and it depends mostly on the modeler’s choice and the ap-
plication, which is why it is common to see disagreement on
how to disentangle uncertainty by using this categorization.

In (Eleftheroglou et al., 2020), a more relevant categorization
for prognostics is proposed, identifying five sources of un-
certainty: past uncertainties from manufacturing processes,
present uncertainty about the system’s health, future uncer-
tainty, model uncertainty, and prediction method uncertainty.
This new framework has not been applied to real-life scenar-
ios yet, with existing literature still relying on the classical
categorization.

2. EXPECTED CONTRIBUTIONS

There is no relevant literature addressing imperfect repair ac-
tions from the perspective of prognostics. Therefore, this re-
search will serve as a first attempt to address this issue by de-
veloping a robust prognostic model that can be trained with
degradation histories of systems that have not been repaired
and then tested on degradation histories of repaired systems.
Thus, the contribution to the field is a prognostic model that
has an adaptation mechanism and can take into account the
dependencies between pre and post-repair operation, as well
as include the recovery of the system after repair.

Additionally, a Bayesian extension is considered because it
allows the estimation of a subjective probability. Unlike the
frequentist approach, where the statistics are calculated based
on the entire population. This is undesirable since calculating
the uncertainty based on the statistics of the entire popula-
tion when they have been subjected to different conditions
has no purpose. Instead, the Bayesian approach works under
prior knowledge and available data (Bayarri & Berger, 2004).
Even more, the model should include the uncertainty coming
from the repair. Identifying this and calculating this source
of uncertainty allows for more interpretability in UQ that al-
lows future uncertainty management to have more valuable
information for the decision-making process. As mentioned
earlier, the classical categorization of uncertainty is not suit-
able for prognostics. Thus, this research attempts to tackle
uncertainty quantification from another perspective that has
not been implemented in the literature to date.
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3. RESEARCH PLAN

The research plan is divided into three main parts:

• Experimental Campaign: since there is no available
dataset for prognostics that includes maintenance ac-
tions, the first step is to perform an experimental cam-
paign. The experiments consider materials mostly used
in aviation structures, such as metals and composites.
This phase of the research also involves the analysis
of the experimental data, in terms of the effects on the
degradation process and a comparison study on how the
performance of different prognostic models that are com-
monly used are affected when dealing with this data.

• Development of the prognostic model: As mentioned
in Section 1, it is necessary to develop a prognostic
model that has an adaptive mechanism. After a litera-
ture review, the most suitable model for this application
is the ANHHSMM, however, the model needs the ad-
dition of variables to take into account the repair of the
system as well as the relaxation of some assumptions.
Therefore, in this part of the research, the work would
consist of developing the mathematical model, including
the programming implementation.

• Bayesian Extension: Finally, the last part of the research
involves the Bayesian extension that allows more inter-
pretable uncertainty in the prognostic model by identify-
ing sources of uncertainty.

As of now, the work that has already been done corresponds
to the experimental campaign. The research group performed
experiments with open-hole aluminum specimens of material
7075-T6. Each specimen had dimensions 300x45x2 [mm]
and a central hole of 6 [mm] diameter. The aluminum spec-
imens were subjected to constant amplitude fatigue, with a
maximum stress of 100 [MPa], frequency of 5 [Hz], and ratio
of 0.1. The training data consists of 5 degradation histories
of specimens from run to failure. The testing data consists
of 5 specimens, also from run to failure. However, the test-
ing specimens were repaired at cycle 14000 with a composite
patch to cover the fatigue crack.

Figure 1 shows health indicators derived from experimental
data using a neural network developed by the research team.
Training trajectories are depicted in blue shades while test-
ing trajectories are in red shades. For visualization, only two
trajectories per training and testing set are shown. Notably, a
distinct shift in cluster values occurs around cycle 14000 in
the testing trajectories, indicating specimen health recovery
post-repair. From the plot, it is evident that testing specimens
had a longer lifetime, in comparison with the training speci-
mens, due to the repair.

By using this data, a preliminary comparison between prog-
nostic models has been done by the use of SVR and MLP. The
results show the poor performance of both of these models

Figure 1. Experimental data of metal specimens for training
and testing set.

with an average RMSE value for the test dataset of 131.0119
and 131.4693, respectively. This preliminary comparison
shows the lack of adaptability of the models. Future work
involves the comparison of more complex prognostic mod-
els such as Long Short-Term Memory (LSTM) and the AN-
HHSMM.

Part of the work in progress, is a literature review on un-
certainty quantification in various prognostic models high-
lights the challenge in data-driven prognostics, particularly
with ML models. Despite their high accuracy, ML models
struggle with uncertainty quantification due to their determin-
istic nature. Another limitation is their reliance on the classi-
cal categorization of uncertainty into aleatory and epistemic
types. The review compares methods for quantifying these
uncertainties in ML models and implements a new prognostic
measurement for Hidden Markov Models (HMMs) to assess
stochastic models’ ability to capture relevant uncertainties in
prognostics, including past and future sources.

4. CONCLUSIONS

PHM is a field that assesses the health of an engineering sys-
tem to perform predictive maintenance. Therefore, prognos-
tics are key when predicting the health of the system and give
valuable information for decision-making. However, within
the prognostic field, a research gap exists when considering
maintenance actions, such as repair. Repair is a common pro-
cedure that can have an impact on the degradation process of
the system, and, therefore, it will negatively impact the per-
formance of a prognostic model if this data is not part of the
training set.

This research attempts to develop a robust prognostic model
that can be trained with systems that have never been repaired
and tested with systems that have been repaired one or several
times. Even more, the research will also address UQ chal-
lenges such as the quantification of sources of uncertainty
under the new categorization allowing more interpretability
of uncertainty.
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ABSTRACT

With the ever-growing capabilities of data acquisition and
computational units in industry, development, and deploy-
ment of data-driven models (e.g., predictive maintenance so-
lutions) have become more abundant. However, if these mod-
els are not trained and maintained properly, they can be coun-
terproductive as their predictions may be incorrect, unreli-
able, or difficult to interpret. In addition, unlike conventional
software, the issues with such models often result in reduced
productivity rather than traceable software errors. Therefore,
we aim to use model performance evaluation measures intro-
duced in trustworthy AI operations (TrustAIOps) to trigger
re-evaluation of different parts of the data pipeline and the
deployed data-driven model given machine learning opera-
tions (MLOps) requirements. We argue that by creating an
ecosystem capable of monitoring different aspects of a data-
driven solution by integrating and managing the implemen-
tation concepts in TrustAIOps and MLOps, it is possible to
boost the performance of models given the constant changes
induced by the specifications of Industry 4.0.

1. INTRODUCTION

Data acquisition and computational units improve daily which
facilitate the development and deployment of data-driven ap-
proaches in Industry 4.0 settings. However, these data-driven
models, when not trained and maintained properly, can be
counterproductive as their predictions are not correct, reli-
able or interpretable. Unlike conventional software, the issues
with model development manifest themselves in reduced pro-
ductivity and not in other forms of traceable software error. In
fact, when faced with during the run-time, they could be due
to the errors from the data acquisition, data preprocessing,

Kiavash Fathi et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

model training or model deployment submodels (Ashmore,
Calinescu, & Paterson, 2021).

To ensure the acceptable performance of data-driven solu-
tions, numerous implementation concepts have been intro-
duced from the machine leaning operations (MLOps) soci-
ety, which cover different aspects of preparing and deploying
a data-driven solution. The following are some the most im-
portant characteristics of the models developed given MLOps
requirements (Huyen, 2022):

1. Reliability: Correctness despite adversity
2. Scalability: Possibility of growth in complexity
3. Adaptability: Can cope with different data distribution

shifts and business requirements
4. Maintainability: Documented and open to different tools

On the other hand, given the ever-growing application of ma-
chine learning solutions in different use cases, especially in
safety-critical systems, performance criteria other than the ac-
curacy have been promoted in research targeting trust worthy
AI operations (TrustAIOps) which include but are not limited
to (Li et al., 2023):

1. Robustness: Ability to deal with unseen data
2. Generalization: Distilling knowledge from limited train-

ing data for accurate predictions on unseen data
3. Explainability: Clarity on how a model makes decision
4. Transparency: Disclosing information about the model’s

lifecycle

As it can be seen in the above-mentioned characteristics, both
MLOps and TrustAIOps put much emphasis on the perfor-
mance of the deployed models given the possible changes in
the data. These changes in Industry 4.0 settings are also rel-
evant as there are many factors including production recipe,
raw material vendor, product test unit fail/pass criteria, asset
wear and tear, etc., which can cause different types of data
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distribution shifts. Predictive maintenance (PdM) as one of
the important use cases of Industry 4.0 compliant solutions,
is not an exception and requires tailored solutions for ensur-
ing its effectiveness in an industrial setting.

1.1. Problem statement

How can the model performance evaluation measures intro-
duced in TrustAIOps be used to trigger re-evaluation of dif-
ferent parts of the data pipeline and the deployed model given
MLOps requirements? (As a small remark; however, given
the fact that the MLOps and TrustAIOps requirements cover
numerous aspects of the PdM models, in the conducted stud-
ies, we consider only the characteristics listed above.)

In the conducted research, we aim to introduce new imple-
mentation concepts which have proven to be useful for real
industrial use cases in Europe and that are not properly ad-
dressed in the related work. In what follows pairs of MLOps
and TrustAIOps, written as

TrustAIOps trigger →MLOps requirement

are introduced with a specific implementation challenge for
industrial PdM solutions:

1. Robustness→Reliability: Detecting previously unseen
failures in the system

2. Explainability→ Scalability: Interpretable model stack-
ing

3. Generalization → Adaptability: Classifying different
working conditions of an asset - Generation of run-to-
failure data via simulation models

4. Transparency→Maintainability: Human-readable re-
ports from different parts of the PdM solution

1.2. Research questions (RQs) and expected contributions

To elucidate further, given the complexity and high dimen-
sionality of industrial data from different assets, how can

RQ 1. The model prediction certainty be correctly interpreted
for out-of-training-distribution datapoints which repre-
sent previously unidentified failures of an asset? (see
red blocks in Fig. 1). For inspecting the data-distribution
shifts caused by changes in the working conditions refer
to RQ 3.

RQ 2. The impact of different sources of uncertainty be min-
imized during model training using interpretable AI? (see
grey blocks in Fig. 1)

RQ 3. Domain knowledge about different working condi-
tions be included in data preprocessing and model train-
ing for enhanced data aggregation across different in-
stances of the same production assets? (see green blocks
in Fig. 1)

RQ 4. Lack of annotated data, e.g., continuous data such
as run-to-failure samples, be compensated using domain

adaptation and simulation models? (see blue blocks in
Fig. 1)

RQ 5. Human-readable reports be generated for increasing
the transparency, e.g., about how predictions are made
and what data was used to train the model, of different
submodels of the PdM solution, esp. for safety-critical
system?

2. CONDUCTED STUDIES

In this section, a summary of the implemented solutions tar-
geting parts of the first four RQs, specifically developed for
the industry are presented. The solutions provided in this sec-
tion adhere to the identical sequence as outlined in the RQs.

2.1. Detecting previously unidentified failures of an asset
(Industry supported academic project)

It has been shown that the available data from different as-
sets, even in case that they are abundant, normally do not
cover different failure types that could occur in a system.
Therefore, it is inevitable to monitor a PdM model in case
data from a new working condition and/or failure type are
exposed to it (Fig. 2). Despite numerous model calibration
solutions, it has been observed that even models which are
calibrated cannot demonstrate their certainty correctly when
out-of-training-distribution data are fed into them. For PdM
solutions, it is of utmost importance to inform the mainte-
nance crew when a novel in the system has occurred as, oth-
erwise, an exhaustive search is require for fault localization
and diagnostics. In the conducted study, we have developed
a post-hoc sample-based classification model built on top of
the initial PdM solution that can detect previously unidenti-
fied failures in the system. The proposed method inspect the
behavior of the PdM model, defined as the sequence of the
PdM model certainty, and flags datapoints which indicate an
anomaly in the PdM model behavior. The proposed method
is tested on a demonstrator build by a company producing
pneumatic components and has a mean accuracy of 94.35%
(Fathi, Ristin, Sadurski, Kleinert, & van de Venn, 2024).

2.2. Reducing model uncertainty by interpretable model
stacking (Industrial project)

Various changes in the production, e.g., recipe updates, raw
material vendor changes, improvements in quality test unit
fail/pass criteria, etc., impact the performance of the trained
models given the potential data distribution shifts. If fact,
with the adaptability in production as one of the main focuses
of Industry 4.0, these changes reflect themselves in the data
gathered from different assets which directly can impact the
quality of the production. It is possible to counteract these
changes in the gathered data by using different ensembling
and model stacking techniques. In the conducted study we
propose a novel approach for stacking the formerly trained
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Figure 1. Overview of the proposed solution for TrustAIOps and MLOps integration in PdM

Figure 2. Asset parameter space and different known and un-
known data modalities of the system

base learners. To avoid information loss due to prediction
quantization of the base learners, in the proposed method we
directly use the predicted probability values from the base
learners and stack them using a linear regression model. The
results demonstrate a 19.49% reduction in the binary esti-
mated calibration error compared to convectional models which
indicates the increased reliability of the final solution (Fathi,
Stramaglia, et al., 2024).

2.3. Boosting model accuracy for different data modali-
ties of an asset (Industrial project)

The constant changes in the production introduced in Subsec-
tion 2.2, can also lead to different dominant working condi-
tion of an asset which is also refereed to as data modality. In
the conducted study, two instances of the same milling ma-
chine used for creating artificial bone joints of different sizes
are examined to first detect and later to classify their differ-
ent data modalities (see Fig. 3). Once different data modali-
ties are distinguishable from one another, separate prediction
models are trained for them which can increase the overall
accuracy of the predictions up to 25.20%. In addition, for the
data modality which forms the minority of the data from the
asset, it is shown that by combining the corresponding data
modalities from the two milling machines, it is possible to in-
crease the accuracy for the aforementioned data modality up
to 60.50%. In fact, by detecting corresponding data modal-
ities, it is possible to address the problem of lack of anno-
tated data for different instances of the same asset by simply
sharing data from the same data modalities across the assets
(Fathi, Sadurski, Kleinert, & van de Venn, 2023).
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Figure 3. Decision boundaries of the trained model for clas-
sifying different data modalities of the asset

2.4. Data generation from simulation model for domain
adaptation (Industrial project, paper under review)

Domain adaptation techniques developed for PdM normally
focus on classification problem and neglect the regression
problem of estimating the remaining useful life of an asset. In
addition, they do not consider cases where the degradation of
the asset is a random process itself either given the possibility
of changes in the dominant failing component. Therefore, in
the conducted study a novel approach for simulation data gen-
eration is introduced which is based on simulation parameter
and data perturbation. It is shown how the proposed method
can help cover different regions of the parameter space of the
asset indicating different working conditions and parameter-
ization of the asset (see Fig. 4). As a result, models trained
with such data are more robust against signal reading manipu-
lation and also demonstrate a more spread-out feature impor-
tance across a wider range of sensor readings while making
predictions.

3. FUTURE WORK AND NEXT STEPS

Given the conducted studies listed above, it is inevitable to
create an ecosystem which is capable of monitoring differ-
ent aspects of a PdM solution by integrating and managing
the implementation concepts introduced in Section 2. In fact,
this ecosystem will use the introduced TrustAIOps concepts
to ensure the expected performance of the PdM solution given
MLOps requirements. One of the most important features of
this ecosystem as introduced in RQ 5 (see Section 1.2), is pro-
viding human-readable reports from different submodels of
the PdM solution to ease its maintenance and debugging. One
feasible solution for the aforementioned ecosystem is to cre-

Figure 4. Domain adaptation via simulation parameter and
data perturbation

ate a metadata-based management system which is capable of
tracking changes in different submodels of the deployed PdM
solution. These changes are the essentially the response of
the PdM solution for adapting to the new working conditions
and/or previously unseen failures of the system. When done
correctly, the proposed solution can be used as a foundation
for data-driven PdM solutions of different assets including
safety-critical systems.
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